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ABSTRACT
Programmable network devices are on the rise with many applica-
tions ranging from improved network management to accelerating
and offloading parts of distributed systems. Processor-based Smart-
NICs, match-action-based switches, and FPGA devices offer on-path
programmability. Whereas processor-based SmartNICs are much
easier and more versatile to program, they have the huge disadvan-
tage that the resulting throughput may vary strongly and is not
easily predictable even to the programmer.Wewant to close this gap
by presenting a methodology which, given a SmartNIC program,
determines the achievable throughput of this SmartNIC program in
terms of achievable packet rate and bit rate. Our approach combines
incremental longest path search with SMT checks to establish a
lower bound for the slowest satisfiable program path. By analyzing
only the slowest program paths, our approach estimates throughput
bounds within a few seconds. The evaluation with our prototype
on real programs shows that the estimated throughput guarantees
are correct with an error of at most 1.7% and provide a tight lower
bound for processor- and memory-bottlenecked programs with
only 8.5% and 18.2% underestimation.

CCS CONCEPTS
• Networks→ Programmable networks; Network Performance
analysis; • Software and its engineering→ Formal software veri-
fication.
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1 INTRODUCTION
Data plane programmability promises the ability to add and change
functionality on general-purpose network devices. Data plane pro-
grams are used in large-scale deployments to provide functionality
such as load-balancing [41], DoS-traffic-scrubbing [1], and offload-
ing packet processing from hypervisors [19]. More examples can be
found in scientific literature ranging from in-network caching [32]
to offloading parts of distributed systems such as Paxos [13], and
accelerating machine learning within the network [36, 58, 59].

General-purpose data plane programmability bears the risk of
slow programs causing bad throughput. Therefore, match-action
pipelines in programmable switches were created to process packets
at a fixed packet rate [3]. Match-action pipelines, however, come
at the cost of complicated programming languages and reduced
expressiveness [22, 26].

Another option are FPGA-based SmartNICs, as these also allow
for data plane programmability with a fixed packet rate. However,
FPGA NICs cost at least 8× the price of a regular NIC and require
a dedicated team of hardware experts [4, 19] to write programs in
hardware description languages. FPGAs can be used to implement
a processor which is then much easier to program [4] but no longer
processes packets at a fixed rate and is less performant than a
hardware processor.

Processors are the common target when programming and allow
for rich computation and control flow. For example, the Netronome
Agilio CX SmartNIC can be programmed in C using a BPF/XDP
toolchain [28, 31]. Although BPF limits the number of executed
instructions per packet, the resulting throughput is not obvious [28]
and can greatly vary between different packets processed by the
same program. Measuring the throughput with a traffic trace can
give some idea about the performance of a program, but does not
help in predicting the performance in case the traffic changes. We
want to close this gap in providing a methodology that determines
throughput guarantees for processor-based SmartNICs.

Devices such as switches and NICs have bottlenecks which can
be well described in terms of achievable throughput. Whenever the
rate of incoming (packet-)data exceeds the throughput bottleneck,
congestion forms that induces queuing delay and packet drops that
then cause bad network performance. Device-induced latency on a
fully loaded SmartNIC is dominated by queuing behavior [27, 37]
instead of program execution time. We focus on throughput instead
of latency and present a methodology to determine a lower bound
for the achievable packet and bit rate of a program.

https://doi.org/10.1145/3485983.3494842
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A program developer or network operator can use our fully au-
tomated approach to derive the worst-case guaranteed throughput
of a program. If this guaranteed throughput is good enough to, e.g.,
not cause any congestion, the program can be safely executed on
the data path. In case the throughput of the analyzed program does
not yet meet the intended demand, she can try a different program
variant or further optimize the identified worst-case.

Throughput guarantees are related to the worst-case execution
time which is a well-established field of research (see [63] for an
overview) and is a hard problem for general programs on typical
processors. Packet processing programs are simpler to analyze,
since they typically have no unbounded loops [30, 57, 65]. Existing
packet processing performance analysis work targets general pur-
pose processors [30, 52, 54] and determine only rough estimates
such as the number of executed instructions and number of mem-
ory accesses [30] or use simplifying heuristics [52, 54]. They do
not identify the worst-case [52] or require exhaustive symbolic
execution [30, 54] which results in unfeasibly long analysis times.
We instead target a SmartNIC without memory caches, analyze
throughput instead of execution time, can determine both packet
rate and bit rate guarantees, and achieve short analysis time due to
incremental path enumeration.

To achieve short analysis time, we only analyze the slowest
program paths. However, some paths cannot be triggered by any
packet and are therefore irrelevant for the achievable throughput.
Our approach is based on enumerating program paths ordered
from the slowest path to the fastest path and uses satisfiability
checks to exclude the unsatisfiable slowest paths. With incremen-
tal enumeration, the analysis can already be stopped on the first
satisfiable path without enumerating all paths, resulting in short
analysis time. In case this analysis time is still too long, e.g., be-
cause of path explosion, an incrementally improving lower bound
for the throughput guarantee is produced with each enumerated
unsatisfiable path. If one waits until the slowest satisfiable path
is identified, our approach additionally yields an example packet
and memory assignment which can then be used to measure the
worst-case throughput on a real deployment.

We implemented a prototype that analyzes BPF/XDP programs
compiled for the Netronome Agilio CX SmartNIC. The evaluation
on real programs shows that a first lower throughput bound can be
determined within 23.6 s and can be improved by up to 44% within
101.9 s. Throughput measurements show an error of up to 1.7%
and a tight lower bound for processor- and memory-bottlenecked
programs with only 8.5% and 18.2% underestimation. Our prototype
yields useful results for real programs in a timely manner.
Structure.We start by explaining the targeted SmartNIC’s archi-
tecture in § 2 and subsequently give an overview on our throughput
analysis approach in § 3.Then, § 4 describes the per-path throughput
capacity heuristics followed by § 5 which presents our incremental
ordered path enumeration approach. § 6 evaluates the accuracy and
analysis time of our prototype. Finally, we discuss our approach in
§ 7 followed by related work in § 8 and a conclusion in § 9.

2 PROCESSOR-BASED SMARTNICS
We analyze BPF/XDP [28, 31] programs executed on the Netronome
Agilio CX 2x40 GbE SmartNIC. The Netronome Flow Processor
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Figure 1: The Netronome Flow Processor architecture.

(NFP) on this NIC is similar to its predecessor, the Intel IXP network
processor. Both have been investigated in previous performance
works [7, 12, 23, 25, 27, 50, 53]. Our work is based on the NFP’s
predictable cycle costs and the program properties ensured by the
BPF/XDP toolchain.
Islands. As shown in Figure 1, the NFP is organized into islands
which communicate over a high-throughput switching fabric [31,
43, 44]. Some islands contain processing cores whereas others con-
tain special functions such as Ethernet, PCIe, or a transactional
memory engine with DRAM.
Many Simple Cores. Packet processing is parallelized onto a huge
number of small cores lacking features such as branch prediction,
out of order execution, and integer division [46]. Instead of caches,
memory access latency is masked by cooperative hyper-threading
whereby a thread may yield when waiting for a memory response.
An Explicit Memory Hierarchy.The NFP has different kinds of
memory with varying access latencies [43]. Each processing core
has fast access to its own instruction and data memory, medium
latency when accessing the SRAM shared by all cores of its island,
and some larger latency when waiting for a response from the
memory engine which handles DRAM access. Unlike when using a
cache hierarchy, pointers always explicitly encode which memory
to access. When sending a memory request to the memory en-
gine which handles DRAM access, transactional commands enable
operations such as atomic increments without locks.
BPF/XDP on NFP. We analyze NFP Programs produced by the
BPF/XDP [28, 31] toolchain since it supports high-level program-
ming languages such as C and P4 and compiles programs to both
x86_64 and NFP bytecode [31, 49]. A simplified example program
is shown in Figure 2. The Linux kernel loads BPF/XDP programs
onto the NIC and verifies program termination by calculating loop
bounds and verifies that packet memory accesses are preceded by
packet size checks [28]. The NIC’s firmware [48] accepts packets
over Ethernet and evenly distributes them to 50 processing cores
where the BPF/XDP program is invoked for each packet. The pro-
gram may modify an initial part of the packet in the island’s SRAM,
may access permanent state in the shared DRAM, and finally de-
cides whether to drop a packet, to transmit it over Ethernet, or
forward it over PCIe to the host.

Our goal is, given such a BPF/XDP program compiled to NFP
bytecode, to determine a guaranteed throughput that the NIC will
always achieve. We, therefore, estimate and compare the amount of
processing and DRAM access of a program to identify the program-
specific bottleneck throughput.
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3 THROUGHPUT ANALYSIS
We want to establish throughput guarantees for SmartNIC pro-
grams to enable program developers and network operators to
assess whether a given program on a given SmartNIC can achieve
the required bit or packet rate. We do this with a fully automated
analysis for a program’s worst-case throughput capacity. Estab-
lishing a lower bound for the throughput capacity boils down to
identifying which program path takes the longest time to execute.
Program Paths. The execution time and therefore throughput
capacity fundamentally depends on the program path (i.e., the list
of instructions and their execution time) that is imposed by the
program’s structure, the packet’s as well as the memory’s content.
For example, when the program from Figure 2 receives an IPv4
packet of at least 100 byte, the program path through lines 2 4
5 6 8 is triggered and the throughput capacity depends on the
execution time of the instructions on this path. However, looking at
the example, we clearly see that it actually has four packet classes
(pkt.size < 100, IPv4, IPv6, other). Each packet class results in a
different program path and thus, different executed instructions,
likely having a different throughput capacity. As such, any approach
that wants to provide a lower bound on a program’s throughput
capacity must identify the slowest path through the instructions of
a program.
Per-PathThroughput Heuristics. To identify the paths with the
lowest throughput capacity, a heuristic is needed which estimates
the execution time of instructions. The instruction’s execution time
on the processing cores is, however, not the only variable through-
put limitation on the NFP. Instructions that issue memory opera-
tions to the shared DRAMmay overload the memory engine. When
the memory engine is overloaded, the packet throughput becomes
a function of the memory engine’s rate of executing memory oper-
ations. Depending on the ratio between memory and non-memory
instructions, the achievable throughput of a program path is lim-
ited by either the execution time on the processing cores or the
induced load on the memory engine. By using separate heuristics,
the throughput capacity of the processing cores and memory en-
gine can be independently estimated for each program path and
then compared to identify the actual bottleneck.

With an overall throughput capacity number for each path, we
can identify the path with the lowest throughput capacity inde-
pendent of the individual path’s bottleneck. In our example from
Figure 2 we can therefore figure out whether the path through
line 5 or the path through line 7 has the lower throughput capac-
ity despite one being memory bottlenecked and the other being
processing core bottlenecked.
Impossible Paths. When identifying paths through the program,
we may encounter impossible paths that cannot be triggered by any
packet. Looking at our example, the path with the highest number
of executed instructions (2 4 5 6 7 8) cannot be triggered by
any packet since the if conditions in lines 4 and 6 contradict. If
such an impossible path is estimated to yield the lowest through-
put capacity, its guarantee is not in itself wrong, however, as this
execution can never occur in reality, the throughput bound may
be far off from the actual (higher) lowest throughput capacity. As
such, checking whether paths are possible has the potential of more
closely estimating throughput guarantees.

1 int main(pkt) {

2 if (pkt.size < 100)

3 return XDP_DROP;

4 if (pkt[ethtype] == ETH_IPv4)

5 atomic_inc (& ip4_counter , 1);

6 if (pkt[ethtype] == ETH_IPv6)

7 for (i = 0; i < 10; i++) nop();

8 return XDP_PASS;

9 }

Figure 2: A simplified example of a BPF/XDP program.

Stateful Behavior. Program behavior may depend on permanent
state stored in the NFP’s shared DRAM. Whether a program path
is possible, therefore, may depend on the content of the DRAM.
By assuming, that the DRAM initially may contain any value, we
analyze a broad range of program paths and establish a throughput
guarantee which is valid independent of the actual DRAM content.
Since BPF/XDP on NFP does not support reading and writing from
the same DRAM location, the worst-case does not depend on any
packet processed before or in parallel to the currently processed
packet. We, therefore, do not consider sequences of packets, but
only analyze a single run of the BPF/XDP program.
Packet Sizes. There are two different commonly used metrics
for throughput capacity: packet rate and bit rate. Many programs
process only small headers independent of the actual packet size.
For those programs, a bit rate guarantee is equivalent to a packet
rate guarantee multiplied by the Ethernet minimum packet size of
60 byte (without CRC). Longer packets increase the actual bit rate,
but cannot be considered for a bit rate guarantee as long as the same
program paths can be triggered by small packets. This changes, if
the program processes longer headers (e.g., tunneling, IPv6 options)
or accesses the payload. Whenever a program successfully checks
the packet size to access packet data beyond the 60 byte mark, we
can infer that the actual packet size is at least the checked size. We
can therefore use this knowledge on the packet sizes to establish
higher bit rate guarantees.

In the example from Figure 2, all paths containing 2 4 require
a minimum packet size of 100 byte. It is not obvious if the short
path 2 3 triggered by a small packet, or one of the longer paths
triggered by a longer packet, result in a lower achievable bit rate.
To identify the path with the lowest bit rate, both the execution
time of paths and the minimum packet size required by paths must
be considered. Our approach can be used to analyze either a packet
rate guarantee or a bit rate guarantee by ignoring or analyzing
minimum packet sizes.
Path Explosion. When searching for the path with the lowest
bit or packet rate, a naïve approach would simply enumerate all
path and check each path for contradicting branch conditions and
throughput capacity. However, the number of paths may be too
large to enumerate them all. In our example, there are only 22 paths
through the ifs in lines 4 and 6. Yet, a program with = consecutive
ifs may produce 2= paths rendering naïve enumerations quickly
infeasible.
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Figure 3: Searching for the slowest satisfiable path.

Naturally, we strive to enumerate only as few paths as possible
while still producing valid throughput guarantees. By enumerat-
ing paths ordered from slowest path to fastest path (§ 5.1), we get
valid throughput guarantees quickly and ignore all paths whose
throughput capacity is too high to contribute to the worst-case
throughput capacity. As shown in Figure 3, incremental ordered
enumeration yields only the slowest paths which are then checked
by an SMT solver for contradictions (§ 5.5). In case the enumer-
ated paths are unsatisfiable, incremental ordered enumeration then
yields some more paths until a satisfiable path is found. Due to
the ordered enumeration, we can stop on the first satisfiable path
without enumerating all paths. Thus, the runtime is primarily dom-
inated by proving that low-throughput paths are impossible. This
has a further upside, each enumerated path incrementally improves
the lower bound, since all paths with a lower estimated throughput
capacity have already been shown to be impossible. Our approach,
therefore, produces valid intermediate results within a very short
analysis time even when a program contains huge numbers of
impossible paths with a low throughput capacity.

In the following, we provide details and design rationale for
the different steps of our approach. Since the path enumeration
builds upon the throughput costs, we start by analyzing the pro-
cessing (§ 4.1) and DRAM throughput capacity (§ 4.2).

4 PER-PATH THROUGHPUT CAPACITY
Our approach enumerates program paths ordered by the throughput
capacity of individual program paths. For that purpose, a heuristic
that estimates the execution time of individual instructions can be
used to determine the throughput capacity of individual program
paths. We start with packet rate throughput since each received
packet triggers one program execution. The resulting bit rates are
determined at a later step (§ 5.3) by combining these packet rates
with program path-specific packet size information.

In an ideal scenario, the SmartNIC manufacturer who has com-
plete knowledge of the inner workings of the SmartNIC would
provide a model which perfectly describes the throughput capac-
ities. The documentation [43, 46] of the used SmartNIC contains
only incomplete execution timing data and no throughput model.
We, therefore, performed measurements on the Netronome Agilio
CX SmartNIC to build throughput heuristics of the relevant parts.

We identified two NIC parts with a throughput capacity which
varies based on the executed instructions: the processing cores
and the DRAM memory engine. Whenever only one of these is
overloaded, the other will spend some of its time idling. The actual
throughput capacity of a path is the minimum throughput capac-
ity over all parts. We therefore analyze a program’s throughput
capacity separately for each part and then use the minimum. Each
instruction is therefore modeled by both a processing core exe-
cution time for the case that the processing cores are overloaded
and a DRAM execution time for the case that the DRAM memory
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numbers of NIC cores is limited by the maximum packet
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are proportional (orange lines) to the number of cores.
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engine is overloaded. Our approach can be extended to handle more
parts, but candidates like the per-island SRAM did not show any
bottleneck behavior and BPF/XDP programs do not have access to
any of the additional NFP co-processors.

Lastly, the NIC also has a fixed program-independent through-
put limits such as the maximum rate at which the MAC part of the
NIC accepts packets or the maximum bit rate of the used Ethernet
variant (2x40 GbE in our testbed). For a program to run with maxi-
mum throughput, both the program’s processing core throughput
capacity and the program’s DRAM throughput capacity need to be
higher or equal than the fixed program-independent NIC limits.

We start with the processing core throughput heuristic for non-
memory instructions followed by DRAM throughput and memory
instruction timing.

4.1 Processing Cores Throughput
We want to estimate the throughput capacity of the processing
cores for individual program paths. Since programs are executed
in parallel on many processing cores, the resulting throughput
capacity is influenced by the parallelization onto many cores and
the execution time of the program path.
Many-Core Parallelization. The Netronome Agilio CX executes
BPF/XDP programs on 50 processing cores. To investigate the im-
pact of parallelization we measure the throughput while varying
the number of processing cores by using multiple modified NIC
firmware variants. We use BPF/XDP programs which do not access
any memory, since in this first step we only investigate the process-
ing cores. § 6.1 has more details on how we generate huge numbers
of identical packets to always trigger the same program path.

Figure 4 shows the resulting packet rates for two programs, a
fast program performing few calculations on each packet and a
slower program performing more calculations. As can be seen with
the black bars showing the 99% confidence intervals, there is only
little variation between multiple runs of the same configuration.
No configuration exceeds a throughput of 54.4Mpkts/s, which was
confirmed by Netronome to be roughly the maximum rate at which
the MAC part of the NIC can receive packets. Below this limit, the
packet rate is strongly proportional to the number of cores, which
can be seen by the fitted lines with a resulting '2 close to 1. Since
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the throughput is proportional to the number of cores and the clock
frequency of the cores is fixed, the throughput capacity can be
calculated as:

#2>A4B × 2;>2: 5 A4@D4=2~

2~2;4B ?4A ?02:4C

Clock Cycles per Packet. The number of clock cycles that a pro-
cessing core spends per packet is composed of the instructions
executed inside the program and overhead in the firmware when
moving from one packet to the next. Since Netronome provides
a cycle accurate firmware simulator, we were confident that an
accurate model of instructions costs is possible. The NFP reference
manual [46] states that most non-memory instructions take a single
cycle. The cycle costs of a branch instruction is higher if the branch
is taken, but does not depend on previous executions since the NFP
has no branch prediction. We confirmed and extended the cycle
costs with microbenchmarks to build a cycle-accurate model of the
relevant non-memory NFP instructions. Given the instruction trace
of a program path, the model gives the number of cycles to execute
this program path. To calculate the resulting throughput capacity,
we additionally need the number of cycles between returning from
the program until the program is invoked with the next packet.

To quantify the per-packet firmware overhead we used the small-
est BPF/XDP program, overloaded the NIC with packets, and mea-
sured the resulting packet rate. The NIC firmware [48] however
contains variable packet processing, as it parses multiple head-
ers to assign packets from the same flow to the same host queue.
Whenever a processing core processes a packet, it first selects a
host queue for the packet and then calls the BPF/XDP program
which can arbitrarily override the selected queue. Therefore, queue
selection can safely be removed from the firmware, since the iden-
tical functionality can be implemented within a BPF/XDP program
(or even be replaced by more advanced queue selection [29]) for
which we then can determine a throughput guarantee. As an alter-
native, we could have extracted the queue selection part from the
firmware and include it in the program analysis. By removing the
queue selection decision from the firmware, we obtained a fairly
constant per-packet firmware overhead of approximately 224 cycles
which we found to be independent of packet sizes and content. 1
The per-packet cycle overhead is then calculated by converting the
measured packet rate into mean cycles per packet and subtracting
the calculated cycle costs of our benchmark program. When com-
bining this overhead with an instruction trace, we can calculate the
throughput capacity.

4.2 Memory Access
So far, we have looked at non-memory instructions. To analyze
programs that access packet data in the per-island SRAM or per-
manent state in the shared DRAM, we assess the cycle costs and
memory bottleneck of memory instructions.

The closed source variant of the NIC firmware [45] accesses
the shared DRAM through a hash table abstraction with hidden
code which we cannot analyze, whereas the open source NIC
firmware [48] does not support DRAM access from BPF/XDP pro-
grams. Since raw memory instructions are easier to analyze, we
modified the open source NIC firmware and the NFP Linux kernel

1All modifications are open-sourced as described in Appendix § A.
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Figure 5: The DRAM bottleneck is observable when enough
processing cores are used. The memory engine then per-
forms at a rate of 197.4Mops/s to 199.7Mops/s independent
of the number of reads per packet.

driver to expose the shared DRAM as raw memory through BPF
array maps. More complex memory access schemes can then be
implemented within BPF/XDP programs and will then be analyzed
by our approach together with the rest of the program.

The NIC’s documentation contains only coarse memory latency
information [43] and no memory throughput data. We instead
derive a throughput capacity heuristic from measurements. Since
BPF andNFP pointers always explicitly encode the targetedmemory
region in the memory hierarchy, per-island SRAM and shared-
DRAM performance can be independently modelled. As stated
before, we observed no bottleneck behavior on the per-island SRAM
but a varying shared-DRAM throughput capacity which depends on
the executed memory operation and the accessed memory locations.

The observed DRAM throughput is lowest when spreading the
accessed locations by no more than 16 byte and increases by four
times when spreading accesses over large ranges. Since we de-
termine throughput guarantees, we must analyze the worst-case
which is the case were only a small range of memory is accessed. A
factor of up to 4 may cause a huge underestimation of the actually
achievable throughput and we are unable to analyze which memory
access patterns a programmay experience. However, our evaluation
(§ 6.1) shows a much smaller gap between estimated worst-case
and measured throughput, since the analyzed programs repeatedly
access the same memory locations when repeatedly receiving the
same packet.
DRAM Throughput Capacity. As shown in Figure 5, we mea-
sured the achievable packet rate for small programs which perform
different numbers of read operations to the same location in the
shared DRAM. When using few processing cores, the processing
cores are the bottleneck, as can be seen by the initial proportional
increase in packet rate when increasing the number of cores. Once
there are enough cores to overload the memory engine with read
operations, the packet rate remains constant since the memory
engine throughput capacity now dominates the resulting packet
rate. The resulting memory throughput, which is calculated by mul-
tiplying the packet rate with the reads per packet, is in the range
of 197.4Mops/s to 199.7Mops/s for all program variants. We con-
clude that a read operation incurs a constant worst-case cost on
the DRAM memory engine.

We repeated the same measurements with the second DRAM
memory operation supported by the BPF/XDP to NFP compiler [49],
atomic increment, and observed a constant throughput capacity of
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248.5Mops/s to 250.5Mops/s. With the derived DRAM cost func-
tions for memory instructions, we can calculate the DRAM through-
put capacity of a program path. The overall throughput capacity
of a program path is then limited by the minimum over its DRAM
throughput capacity and processing core throughput capacity.
Memory Cycle Costs. Executing memory instructions puts load
onto both the memory engine and processing cores. Although the
NFP processing cores have no caches, memory instructions still take
a variable number of cycles. If the memory engine is not overloaded,
an atomic increment takes a single cycle on a processing core since
it does not wait for a response from the memory engine. However,
reading from DRAM or SRAM pauses execution until the result is
available, even when the memory engine is not overloaded. Hyper-
threading masks the throughput impact of waiting for a response
since another instance of the same program is scheduled.This works
well for a single memory access, but can still lead to all threads
waiting, if all threads on a core issue memory requests within short
succession.We found that the resulting throughput can be estimated
well by a minimum number of clock cycles between two memory
operations within an instruction trace. We empirically determined
the minimum cycles between blocking memory instructions and
found different values for SRAM and DRAM access.

Our processing core and DRAM throughput capacity heu-ristics
are complete for all instructions issued by the BPF/XDP to NFP
compiler and can be used to determine the throughput capacity for
all program paths. In the next step, we build upon these heuristics
and use the derived cost functions to enumerate paths ordered by
achievable bit rate or packet rate and identify or underestimate the
slowest satisfiable path.

5 FINDING THE SLOWEST SATISFIABLE
PROGRAM PATH

Given that we can estimate the runtime costs of individual program
paths, we now need to find the slowest path. However not all paths
are actually possible to execute. As such we are looking for the
satisfiable path that gives the lowest throughput capacity, which
we will simply refer to as the slowest satisfiable path (SSP). This
SSP yields a valid throughput guarantee, since all other paths have
either a higher throughput capacity or cannot be executed.

5.1 Incremental Sorted Path Enumeration
To mitigate path explosion, we avoid analyzing fast paths, since
only the SSP determines the throughput guarantee. Instead, we
enumerate paths ordered from lowest to highest throughput and
stop analyzing on the first satisfiable path. With each analyzed
path, we get an improved lower bound until the SSP yields the final
throughput guarantee.

Before identifying the SSP, it is unknown how many impossible
paths need to be checked. Enumerating a fixed number of slowest
paths may not suffice to find the SSP. Therefore, a mechanism is
needed to efficiently enumerate additional paths in case all already
enumerated paths are unsatisfiable.

As discussed in the previous section, the SmartNIC has mul-
tiple throughput limiting components and we use separate cost
functions for each component, e.g., processing core cycle costs and
DRAM cycle costs. The resulting throughput capacity is always the

1 int main(pkt) {

2 if (pkt.size < 100)
3 return XDP_DROP;

4 if (pkt[ethtype] == ETH_IPv4)

5 atomic_inc(&ip4_counter, 1);

6 if (pkt[ethtype] == ETH_IPv6)

7 for () nop();…7 for () nop();

8 return XDP_PASS; 9 }
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Figure 6: The resulting CFG of the program from Figure 2. A
realistic example would use NFP bytecode.

minimum over the throughput capacities of the individual compo-
nents. Because of its simplicity, we choose the incremental longest
path algorithm [35] to enumerate paths for a single component
ordered by packet rate. We then combine multiple instances of this
algorithm for different components and different packet sizes.
The incremental longest path algorithm [35] was initially pro-
posed to find the maximum delay in integrated circuit (IC) designs.
Similar to our problem, IC designs have “non-functional” paths
which cannot be triggered and therefore do not contribute to the
highest possible propagation delay through the IC. The incremental
longest path algorithm is suitable for our needs because, after it has
already enumerated the = longest paths it can enumerate the = + 1
longest path with a time complexity independent of =.

A single instance of this algorithm suffices to determine packet
rate guarantees for a single component, e.g., processing cores or
DRAM. We continue describing how to transform a program into a
graph suitable for this algorithm.

5.2 Preparing a Suitable CFG
To search for the SSP, a control flow graph (CFG) of the analyzed
program is needed which is loop-free and has constant costs.
Loop Unrolling. Packet processing programs typically have only
bounded loops [30, 57, 65] and the BPF in-kernel verifier only loads
NFP programs onto the NIC if it can prove the loop bound [28]. We,
therefore, unroll all loops as shown in Figure 6 which has multiple
copies of the for loop in line 7.
Cost Vector. We search for the SSP according to the processing
core cycles and DRAM cycles of individual instructions. Therefore,
each edge in Figure 6 has a cost vector although all edges except
5 6 do not incur any DRAM costs. Paths for either the processing
cores or DRAM can then separately be enumerated by using a single
entry from the cost vectors.
Edge Costs. We use edge costs instead of node costs, since the
number of processing cycles to execute a branch instruction de-
pends on the branch result as can be seen at 2 3 and 2 4. This
does however not yet suffice to have constant costs since our cost
functions for memory instructions depends on the number of cycles
since the previous memory access. We overestimate the cycle costs
for each edge according to the maximum possible with any path to
this edge, which gives a valid underestimated throughput capacity.
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The preprocessed CFG can be used to estimate a packet rate
guarantee for either processing cores or DRAM. We continue with
combining multiple search instances to estimate overall packet rate
guarantees.

5.3 Combining Multiple Cost Functions
We separately enumerate paths for processing cores throughput
capacity and DRAM throughput capacity and the minimum over
both components gives the overall throughput guarantee. Identify-
ing the SSP for each component separately in succession, however,
may result in unnecessary analysis work and does not yield valid
overall intermediate results. Instead, we simultaneously use mul-
tiple instances of incremental longest path search and interleave
their results in ascending throughput capacity order.
Multiple Search Instances. We enumerate paths by their overall
throughput capacity with the following procedure. For each cost
function, a separate search instance is initialized and asked for the
slowest path to form an initial set of candidate paths. Although
these paths are enumerated using different cost functions, they can
be compared by their throughput capacity and the slower path is
the path with the lowest overall throughput capacity. In case this
path is found to be unsatisfiable, the originating search instance
is asked for the next slowest path such that the set of candidate
paths again includes a path from each search instance and can
yield the next overall slowest path. With this procedure, paths are
enumerated according to the overall throughput capacity and each
enumerated path gives a valid intermediate result for the overall
throughput guarantee.

Each search instance produces each path, but each path should
be enumerated only once and only for its bottleneck throughput. In
our example from Figure 6, the path 1 2 4 5 6 7…7 8 9 is a
slow path for both the processing cores and DRAM, but we are only
interested in the bottleneck of this path. Each path is enumerated
first for its bottleneck component and later enumerated again for
the other components. We, therefore, only consider paths when
they are enumerated for their bottleneck and discard them in all
other cases. Now, all paths are enumerated once and ordered by
their minimum over the processing core and DRAM throughput
capacity.

Up to this point, we can determine packet rate guarantees, but not
yet bit rate guarantees. Next, we analyze packet size requirements
and use even more search instances.

5.4 Enumerating by Bit Rate
Achievable bit rates depend on the cycle costs of a path and on
the minimum packet size (MPS) required to trigger the path. Some
CFG edges require larger packets (e.g., 2 4), but this packet size
information cannot be mapped to constant edge costs. Instead, we
determine the set of possible MPSs for a program and then enumer-
ate paths for each distinct MPS by a separate search instance. In our
example from Figure 6 one search instance enumerates paths with
an MPS of 60 byte and another search instance enumerates paths
with anMPS of 100 byte. For each distinct MPS we additionally need
separate search instances for processing core and DRAM through-
put capacity. Our example needs a total of four search instances to
enumerate paths ordered by their overall bit rate capacity.

Packet Size Analysis. For each distinct MPS, only a subset of the
CFG edges is needed to cover all paths with that MPS. We statically
analyze theMPS requirement for each CFG edge and then collect the
set of edges needed for each distinct size. In Figure 6, the edge 2 4
requires a packet of at least 100 byte and additional predecessor and
successor edges are needed to cover all paths which have an MPS
of 100 byte. In this example, the solid edges are used to enumerate
100 byte paths and the dashed edges to enumerate 60 byte paths.
Edge 1 2 is needed for both 60 byte and 100 byte.

Since we use static analysis to determine packet size require-
ments for edges, we have to underestimate them to get valid lower
bounds for the bit rate guarantee. Therefore, a search instance for
a particular MPS may produce some paths which require a larger
packet size. Using the smaller size still yields valid lower bounds
and the bit rate guarantee is further improved by enumerating ad-
ditional paths up to a bit rate which matches the actually larger
MPS.
Improving Overestimated Costs. We overestimate edge costs
and underestimate packet sizes, both of which lead to an underesti-
mation of a path’s throughput capacity. We enumerate ordered by
this underestimated and the underestimation for a satisfiable path
gives a valid throughput guarantee. This underestimation can be
further improved by enumerating additional paths. The non-under-
estimated throughput capacity of a path can be used once all paths
with a higher underestimate have been enumerated. Thereby, lower
bounds of underestimated paths can be improved by enumerating
a few more paths.

With packet size analysis, paths can be enumerated ordered by
their achievable bit rate. Each enumerated path is then checked for
satisfiability and the first satisfiable path establishes the bit rate
guarantee.

5.5 Checking Paths for Satisfiability
Some program paths cannot be triggered by any packet since they
contain contradicting branch conditions. We use an SMT solver to
check each enumerated path for such contradictions. In case a path
is satisfiable, the SMT solver additionally produces an accurate MPS
and a minimally sized packet and DRAM assignment to trigger the
path.
Symbolic Memory and Pointers.We track register and memory
assignments with quantifier-free bitvector and array logic, resulting
in branch conditions that depend on a symbolic packet and symbolic
DRAMcontent.Thememory region addressed by a symbolic pointer
can be ambiguous. Since the BPF in-kernel verifier ensures that
pointers always stay within their memory region, we can assume
a segmented memory model [2] where no operation on a pointer
can change the memory region it points to.

For each satisfiable path, the SMT solver additionally produces a
DRAM assignment and minimally sized packet which triggers the
path.We evaluate the estimation accuracy bymeasuring throughput
with these example packets.

6 EVALUATION
We evaluate the estimation accuracy, the time to compute the
throughput guarantees, some of the design choices, and use cases.
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Table 1: Overview over the analyzed programs.

Analyzed
Program

Lan-
guage Bottleneck Loops

# NFP
Instruc-
tions

switch.p4 (parser) [10] P4 processing – 1 559
Cloudflare DoS [1, 9] C processing – 406
QUIC LB (IPv4) [17] C processing – 599
QUIC LB (IPv6) [17] C processing X 662
RTP a�μ-law [21, 56] C processing X 233
RTP a�μ-law (opt) [21, 56] C processing X 205
DNS Cache [55] C DRAM – 2 137
Count-Min (5) [11] C processing X 668
Count-Min (10) [11] C DRAM X 991
Count-Min (15) [11] C DRAM X 1 403
Count-Min (20) [11] C DRAM X 1 743
Path Explosion C processing – 1 035

Implementation. Our prototype fully implements our approach,
analyzes real BPF/XDP programs and is open source as described
in the Appendix § A. We use the Z3 [40] SMT solver and enumer-
ate batches of program paths to parallelize satisfiability checking
onto CPU cores. Unlike KLEE-based [6] approaches such as CAS-
TAN [52], BOLT [30], and SymPerf [54], our implementation does
not analyze LLVM bytecode. We instead choose to directly ana-
lyze NFP bytecode, since LLVM bytecode lacks many important
subtleties of the performance and behavior of the NFP.
Analyzed Programs.We estimate andmeasure throughput on real
BPF/XDP programs shown in Table 1. The number of NFP instruc-
tions cannot be directly translated to throughput, since not every
program path triggers each instructions, some of the programs have
loops, and the individual instructions incur non-uniform process-
ing and DRAM costs. Most programs are written in C, whereas
switch.p4 (parser) is implemented in the P4 language and prepro-
cessed by p4c-xdp [5] which produces BPF/XDP-compatible C. We
removed everything but the parser from the original switch.p4 [10]
and reduced the nesting depth for some protocols in order to fit
the program onto the NFP. The Cloudflare DoS program filters
unwanted packets during a DoS attack and is reconstructed from
code [1] and tools [9] published by Cloudflare. Most other programs
were created by different team members using existing documen-
tation. The QUIC LB computes on the QUIC connection id as de-
scribed in an Internet draft [17], the RTP a�μ-law transcodes up to
160 bytes of audio payload according to the standards [21, 56], the
DNS Cache responds with precomputed standard-compliant [55]
DNS responses, and the Count-Min sketches [11] counts the num-
ber of UDP and TCP flows, using a varying number of hash func-
tions. Finally, we created a program to resist our analysis with
264 unsatisfiable paths which are slower than the SSP.

Some of the analyzed programs can exceed the maximum achiev-
able packet rate of the NICs MAC part of 54.4Mpkts/s (26 GBit/s
at 60 byte packet size) when executed on all 50 processing cores.
Although this is usually a desired result when developing a pro-
gram, it limits our ability to evaluate the estimation accuracy, as we
can no longer measure the program’s throughput capacity. For this

Table 2: The throughput guarantees are improved by up to
44% by identifying the SSP and increase by up to 13% bymea-
suring identified paths. The estimated slowest paths are cor-
rect with an error of at most 1.0%.

Analyzed
Program

Naïve
Bound
[Bit/s]

Estimated
Slowest Sat.
Path [Bit/s]

Slowest
Measured
Path [Bit/s]

switch.p4 (parser) 17.1G +44% 24.7G +4.1% 25.8G ±0.05G
Cloudflare DoS 32.1G +10% 35.2G -1.0% 34.7G ±0.07G
QUIC LB (IPv4) 22.8G +0% 22.8G +2.9% 23.5G ±0.04G
QUIC LB (IPv6) 21.4G +29% 27.6G +2.9% 28.5G ±0.05G
RTP a�μ-law 2.97G +0% 2.97G X 2.97G ±0.01G
RTP a�μ-law (opt) 4.70G +0% 4.70G X 4.70G ±0.01G
DNS Cache 6.4G +41% 9.0G +13.1% 10.4G ±0.02G
Count-Min (5) 21.5G +0% 21.6G +2.4% 22.2G ±0.01G
Count-Min (10) 11.9G +0% 11.9G X 12.0G ±0.06G
Count-Min (15) 8.0G +0% 8.0G X 8.0G ±0.03G
Count-Min (20) 6.0G +0% 6.0G X 6.0G ±0.04G
Path Explosion 1.2G – –

evaluation, we, therefore, estimate and measure throughput capaci-
ties of processing core limited programs at 5 processing cores and
then scale these numbers to 50 processing cores. We still estimate
and measure DRAM throughput limited programs at 50 processing
cores at the cost of being unable to measure all satisfiable paths
through these programs.

6.1 Estimation Accuracy
To assess the accuracy of our estimates, we measure the throughput
of individual program paths.
Testbed.We use a Barefoot Tofino Switch to generate huge num-
bers of identical packets, similar as proposed by P4pktgen [51].
Each program path is measured separately by repeating a single
packet which always triggers this path. For most program paths,
the throughput capacity of a single path can be measured by fill-
ing 2x40 GbE with packets back to back. We then determine the
rate of actually processed packets by reading NIC counters at fixed
intervals over 30 s runs and calculating 99% confidence intervals.

Due to a bug in the MAC part of the NIC firmware (confirmed
by Netronome) we had to measure some of the program paths
differently. When a program has a throughput capacity between
∼36 Mpkts/s and ∼50 Mpkts/s (but not above ∼50 Mpkts/s) and
is overloaded with packets, the NIC accepts packets at a rate of
only ∼30 Mpkts/s. Since the NIC processes packet rates up to the
throughput capacity of the program path, as long as the program
is not overloaded, we measure these paths by shaping the rate of
transmitted packets to determine the maximum rate the NIC can
handle without breaking down.
Per-PathAccuracy. To asses the limits on our estimation accuracy,
we measure the throughput of many paths. We, therefore, enumer-
ate not only the SSP but continue enumerating slower paths for one
hour, thereby discovering a total of 21 470 measurable paths. The es-
timate matches the measurement for 9.9% of paths, underestimates
89.6% of paths and is too high for 0.4% of paths. No processing- and
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Table 3: The time it takes to calculate naïve and worst-path
throughput guarantees compared to the time it takes to enu-
merate and check all possible paths.

Analyzed
Program

Naïve
Bound

Slowest
Sat. Path

All Sat.
Paths

switch.p4 (parser) 1.6 s ±16ms 28 s ±24ms 68 s ±69ms
Cloudflare DoS 0.6 s ±15ms 0.9 s ±14ms 2.5 s ±13ms
QUIC LB (IPv4) 0.3 s ±63ms 0.4 s ±63ms 0.5 s ±65ms
QUIC LB (IPv6) 1.1 s ±21ms 33 s ±55ms ≥ 1h
RTP a�μ-law 23.5 s ±57ms 102 s ±57ms ≥ 4m
RTP a�μ-law (opt) 23.5 s ±59ms 95 s ±70ms ≥ 1h
DNS Cache 2.5 s ±25ms 38 s ±64ms 13m ±0.4 s
Count-Min (5) 0.2 s ±1ms 0.2 s ±1ms 0.5 s ±2ms
Count-Min (10) 0.3 s ±7ms 0.4 s ±7ms 4.2 s ±9ms
Count-Min (15) 0.5 s ±3ms 0.7 s ±4ms 51 s ±0.1 s
Count-Min (20) 0.8 s ±4ms 1.0 s ±4ms 33m ±5.6 s
Path Explosion 0.5 s ±4ms ≥ 47m ≥ 47m

memory-bottlenecked paths is underestimated by more than 8.5%
and 18.2%. For the paths with a too high estimate, no estimate ex-
ceeds the measured throughput by more than 1.7%, possibly caused
by inaccuracies in our per-path throughput heuristic. Despite our
per-path throughput heuristic being based on measurements, it still
produces mostly accurate and tight lower throughput bounds.
Slowest Satisfiable Path.We establish throughput guarantees for
programs by identifying the SSP. The estimated SSP is indeed also
the slowest measured path for all except one program. For the DNS
Cache, the slowest measured path was wrongly estimated to be the
seventh slowest path and has a measured bit rate 2.4% lower than
the measured bit rate of the estimated SSP. Such inaccuracies are
expected, since our example packets do not produce a worst-case
memory access pattern. As shown in Table 2, the slowest measured
bit rate for DNS Cache is still 13.1% higher than the estimated worst-
case throughput capacity. For all analyzable example programs, the
estimated worst-case throughput capacity is close to the slowest
measured path.
Naïve Lower Bound. For each program, we calculate different
throughput guarantees: a naïve lower bound which is the through-
put estimate for the slowest, possibly unsatisfiable, path, and a
throughput estimate of the SSP. As can be seen in Table 2, this
search for the SSP improves the throughput guarantees by up to
44%. However for some programs, the naïve bound cannot be im-
proved, since for these programs the overall slowest path is already
satisfiable. Satisfiability checking of paths has the potential of sig-
nificantly improving throughput guarantees, but is not needed for
all programs and prolongs the analysis time.

6.2 Analysis Time
For a useful approach, analysis results have to be computed within
a reasonable time, even when path explosion happens.
Analysis Setup.We executed our prototype on a desktop computer
with an Intel Core i7-7700 CPUwith 4 cores (8 threads) and 16 GiB of
RAM. Every program analysis was repeated over 20 runs with non-
terminating runs being aborted after one hour. The results of our
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(d) Path Explosion

Figure 7: The throughput guarantee improves until a satisfi-
able path is found (a-c) or the the analysis is aborted (d).

analysis time evaluation are realistic since we fully implemented
the approach as a working prototype, ran this prototype on real
programs, and used a typical desktop computer.
Analysis Time. As can be seen in Table 3, the naïve bound is
computed on all example programs within 23.5 s and except for the
Path Explosion program, the SSP is found within 102 s. Analyzing
a SmartNIC program takes only little time, enabling developers to
regularly check throughput guarantees. The analysis times are so
short, it is even feasible to integrate our prototype into regularly
executed regression tests.

A major advantage of our approach is the ordered enumeration
of program paths. Exhaustive symbolic execution approaches such
as BOLT [30] and SymPerf [54] always analyze all paths through a
program, whereas our approach only analyzes the slowest paths.
For comparison with such approaches, we do not stop on the SSP
but continue enumerating all satisfiable paths as shown in Table 3.
When enumerating all paths, the analysis time increases by a factor
of up to × 2 039 and becomes infeasible for some programs within
an hour or because we ran out of memory before that. Our approach,
therefore, provides significantly lower analysis times. By focusing
on only the slowest paths, we enable the analysis of many programs
which otherwise would have too many paths to analyze. Note that
enumerating additional paths or directly estimating a programmer-
defined path is possible and may give further insights. Incremental
sorted path enumeration identifies the SSP in significantly shorter
time compared to exhaustive symbolic execution.
Path Explosion. On the Path Explosion program, our prototype
checked 241 174 paths before running out of memory without hav-
ing discovered a single satisfiable path. However, the naïve bound,
which is a valid throughput guarantee, can always be computed
independently of path explosion.
Intermediate Results. In case it takes too long to identify the SSP,
ordered enumeration produces valid intermediate results for the
throughput guarantee. Each plot in Figure 7 shows one analysis run
where a first throughput guarantee is established through the naïve
bound and then improved until the SSP is found or the analysis is
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Table 4: Range of change in analysis time, > × 1.00 is slower.

Alternative Implementation SSP Analysis Time

Check Satisfiability on each Branch × 1.19 – ≥ 1 h
No Static Analysis × 0.35 – ≥ 1 h
Separate Processor & DRAM Analysis × 1.07 – × 2.36
Packet Rate Analysis × 0.02 – × 1.37

aborted. If for example, the QUIC LB (IPv6) program needs to process
25GBit/s, the analysis can already be stopped after 5.7 s instead of
33.2 s. There is however no guarantee that a useful intermediate
result is produced in a significantly shorter time, as can be seen with
the Path Explosion program. The ability to produce intermediate
results before identifying the SSP is a direct result of our choice to
perform incremental ordered enumeration.

To summarize, our prototype finds the SSP within minutes on
all useful example programs and yields intermediate results be-
fore that. In case the SSP cannot be found, the naïve lower bound
and additional intermediate results still produce valid throughput
guarantees for any program.

6.3 Influence of Design Choices
The analysis time is influenced by several design choices.
Satisfiability Checking.Unlike our approach, symbolic execution
checks the satisfiability each time the searcher crosses a branch
instruction. We only check the satisfiability of completed paths or-
dered by throughput capacity to avoid any checks on fast paths.
For comparison, we modified our prototype to perform checks on
each branch and repeated the search for the SSP on all example
programs except Path Explosion. Performing an SMT check on
each branch increased the number of required SMT checks by a
factor of up to × 23.5 and increases the CPU time spent in the
Z3 SMT checker by a factor of up to × 272.9. The impact on the
overall analysis time is shown in Table 4. The time to find the SSP
increases on the example programs by at least a factor of × 1.19 and
for some programs increases the time from previously minutes to
beyond 1 hour, confirming the advantage of our choice over sym-
bolic execution- and KLEE-based approaches (e.g., CASTAN [52],
BOLT [30], SymPerf [54]).
Static Analysis. We use static analysis to remove impossible CFG
edges and to determine the per-edge minimum packet size. Some
example programs do not benefit from this static analysis and can be
analyzed faster without it, for other programs it becomes unfeasible
to analyze them in a reasonable time without static analysis. Static
analysis, therefore, is an important step in our approach.
Combined Processor & DRAM Anlysis. Instead of interleav-
ing the throughput capacity analysis for the processing cores and
DRAM, these could be analyzed separately in succession. Separate
analysis not only has the disadvantage of no valid intermediate
results but also is slower in all cases.
Packet- vs. Bit-Rate Analysis. Depending on the program and
use case, one might be interested in packet rates or bit rates. Packet
rate analysis is simpler since it is independent of packet size infor-
mation. Packet rate analysis can indeed be significantly faster, but
this is not the case for all programs.
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Figure 8: Packet rate estimations and measurements for dif-
ferent variants of the Count-Min flow counter.

6.4 Use Cases
Our approach can have additional uses while developing a Smart-
NIC program.
Program Optimization. We were unsatisfied with the bit rate of
the RTP a�μ-law transcoder. Upon inspectingwhere the SSP spends
most of its execution time, we were able to create a program variant
with identical behavior but a 58% higher bit rate. Our approach,
therefore, can be used as a tool to aid the optimization of programs,
although this still requires human effort.
Program Parametrization. The Count-Min program overcounts
the number of packets for individual network flows. When increas-
ing the number of different hash functions used for the count-min
sketch, the counting accuracy increases at the cost of a decreased
achievable packet rate. We, therefore, analyze differently parameter-
ized variants of this program. As shown in Figure 8, the Count-Min
program achieves a perfect throughput with up to 2 hash func-
tions, is processing core limited up to 5 hash functions, and DRAM
throughput limited beyond. A developer of such a program can use
our approach to analyze the accuracy vs. throughput tradeoff and
better decide on a suitable parametrization.

7 DICUSSION & FUTUREWORK
Our approach works quite well, but can still be improved.
Search Strategy.The time to find the SSP is dominated by the work
of the satisfiability checker. Improvements in the search strategy
should, therefore, focus on reducing the number of satisfiability
checks. This may be achieved by reusing satisfiability results for
similar paths or reducing the number of to-be-checked paths. Es-
pecially, inaccurate minimum packet size estimates may result in
incorrect ordering of paths and therefore too many satisfiability
checks. Replacing the static analysis of packet size requirements
may therefore improve the analysis time for some programs.
Packet Sizes.We analyze for minimum packet sizes, but real pack-
ets will often be larger. Since our packet size analysis is based
on accessed packet memory, typical packet payloads that are for-
warded but not accessed, are ignored. Better incorporating actual
or typical packet sizes might lead to throughput guarantees which
are closer to the actual throughput.
DRAM Access Patterns. Although our throughput capacity esti-
mates are close to our measurements, the estimates will sometimes
be much lower than the real throughput. We assume a worst-case
DRAM access pattern (§ 4.2), but we are unable to analyze if a
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path can experience such a bad access pattern and our generated
example packets sometimes do not match this bad access pattern.
The throughput guarantees could, therefore, be further improved
by analyzing programs for their accessed DRAM locations.
Stateful Programs. BPF/XDP on NFP currently does not support
programs that modify the program-readable permanent state. Our
program analysis can be easily extended to support reading and
writing the same DRAM location but may result in an underes-
timation which is far off from the actual worst-case. Due to the
parallelized packet processing, memory content can change in be-
tween two reads or a write followed by a read from the same mem-
ory location. Additionally, in case a single program path reads and
writes the same memory location, this path may not be triggerable
multiple times in direct succession. Therefore, the actual worst-case
throughput may not be the result of always triggering a single
worst-case program path, but rather a sequence of packets trig-
gering different paths on multiple processing cores. Establishing
an underestimation for the single worst program path still results
in a valid throughput guarantee, but further work is necessary to
improve this lower bound.
Beyond BPF/XDP. This paper focuses on programs using the
BPF/XDP toolchain executed on a Netronome SmartNIC. For exam-
ple, a VPN endpoint cannot be reasonably implemented with XDP
as the SmartNICs crypto co-processor is currently not accessible
from BPF. Extending our approach to analyze programs written in
Micro-C [43] or with the Netronome P4 SDK [47] is in principle
possible but requires further work. Our approach relies on program
constraints such as bounded loops and a clear division between a
program which processes a single packet and a main loop which
iterates over the received packets. To identify the SSP, a program,
therefore, needs to be split into those two parts and loop bounds
need to be calculated. When accessing additional co-processor, e.g.,
for fast crypto operations, the cost vector needs to be extended
to handle the additional potential bottlenecks. Executing differ-
ent code on multiple processing cores may further complicate the
analysis.
Other SmartNICs.When analyzing programs for other processor-
based SmartNICs such as Mellanox Bluefield [39] or Marvel Liq-
uidIO [38], our approach needs to be adapted to their throughput
characteristics [33]. Ideally, the manufacturer of each SmartNIC
would provide a throughput model which is then used by our ap-
proach to enumerate paths ordered by throughput capacity.

To highlight our approach, we chose a SmartNIC which is easier
to predict. As some SmartNICs have memory caches and branch
prediction instead of cooperative hyper-threading and many simple
processing cores, the throughput underestimation will likely be less
accurate. When analyzing the worst-case for such SmartNICs, one
must assume that in most cases, the accessed memory locations are
not cached and therefore cause worst-case memory access latency
and worst-case memory hit rate. Similarly, to provide worst-case
guarantees, one must assume incorrect branch predictions. Our
approach still provides throughput guarantees, but the determined
guarantee will be more off from the typically experienced through-
put. Replaying the example packets from our approach will likely
cause amuch higher throughput than the predictedworst-case since
cache misses and branch mispredictions can often be caused only
by systematic variations of parts of the packets. Incorporating the

memory models and branch predictions models from CASTAN [52]
and SymPerf [54] can help in generating packet traces that are
closer to the actual worst-case.

In some cases cache misses or branch mispredictions are im-
possible to trigger. E.g., when all bad programs paths access the
same memory location or take the same branch direction, the lower
throughput bound can be improved. Future work could focus on
proving whether memory access will always hit the cache and
analyze the interaction between different program paths.
Network Analysis. SmartNIC programs are not running in iso-
lation but are part of a network of non-programmable and pro-
grammable devices and applications and often execute only parts
of an application. When automatically splitting programs [62] or
NF chains [65] our approach can reason about the performance
of program parts. The actual worst-case throughput capacity de-
pends on the behavior and interaction of all devices in the network
and can be higher than the minimum over the individual devices.
A next step could be the performance analysis of a network of
SmartNICs [34].

8 RELATEDWORK
Packet Processing Performance. Packet rate and bit rate esti-
mates have been a concern ever since packets were processed on
processors [14] in the beginning of the Internet. An important step
towards predictable throughput on general-purpose processors is
the packet processing system by Dobrescu et al. [16] for which they
can extrapolate the throughput when the number of flows changes.
Today, the conventional wisdom to achieve predictable throughput
is dominated by fixed or programmable match-action pipelines. We
show the possibility of predictable throughput on processors by
proposing a methodology to analyze SmartNIC programs for their
throughput capacity.
SmartNIC Performance.The packet processing performance of
SmartNICs is an established topic and we use the same SmartNIC as
several previous publications. The current paper is a continuation
of our previous work [27] where we showed that throughput and
latency of BPF/XDP programs on Netronome SmartNICs can vary
greatly. Hasanin et al. [25] presented similar results for P4 programs
on the same SmartNIC whereas Katsikas et al. [33] showed similar
results for Mellanox SmartNICs. George et al. [23], Dai et al. [12],
Wu et al. [64], and Chen et al. [7] optimize SmartNIC programs,
but give no guarantee on the resulting performance. Qiu et al. [53]
applies a performance model to unported programs to estimate
the performance of a potential ported program. Since all these
works use traffic traces to estimate the performance, they cannot
estimate the throughput for unknown traffic. We instead determine
throughput guarantees by analyzing programs for their worst-case.
Mitigating Performance Problems.Without a throughput guar-
antee, it is unknown how much overprovisioning is needed to pre-
vent throughput bottlenecks.There is a line of work whichmitigates
performance problems when they occur. iPipe [37] dynamically
adapts the offloaded portion of a program, but can only react once
it observes an overload. FairNIC [24] partitions the SmartNIC re-
sources among multiple programs, giving each program exclusive
access to a subset of processing cores and caches, thereby limiting
an overload to a single program. Unlike these approaches, we can
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tell beforehand whether an overload may happen and how much
SmartNIC resources are needed to prevent throughput bottlenecks.
Non-Performance Program Analysis. Formal methods such as
symbolic execution have successfully been applied to packet pro-
cessing programs to analyze non-performance properties such as
finding bugs [15, 51, 57, 60], verifying reachability [15, 61] and prov-
ing correctness [18, 20, 42, 66]. These approaches rely on similar
program properties as our approach, e.g., no unbounded loops, and
their success shows that it is easier to analyze packet processing
programs in comparison to many other programs.
Performance Analysis.We analyze SmartNIC programs for their
worst throughput capacity. This is similar to worst-case execution
time analysis which is a well-established research field [63] and is
hard for arbitrary programs on general-purpose processors. Our
problem is easier because we analyze throughput instead of latency,
because packet processing programs are sufficiently restricted, and
because the targeted SmartNICs are comparably simple.

Our approach has similarities and is inspired by using sym-
bolic execution for execution time analysis of packet processing
on general-purpose processors. Chipounov et al. [8] proposed this
idea in S2E by exemplarily analyzing the longest path through the
Apache HTTP Server’s URL parser. We presented a very basic ap-
proach (Rath et al., SymPerf) [54] on analyzing BPF performance
on Intel processors, followed by Pedrosa et al. (CASTAN) [52] and
Rishabh et al. (BOLT) [30], which analyze the performance of DPDK
programs. All of these works analyze the processing latency of
a single-threaded program on a general-purpose Intel processor,
whereas this paper analyzes throughput on a highly parallelized
SmartNIC, which results in some unique challenges. S2E, SymPerf,
and BOLT enumerate all satisfiable program paths, thereby incur-
ring very long analysis times and the inability to analyze programs
with path explosion. In contrast, our path enumeration approach
provides short analysis times by only analyzing the slowest paths
and provides valid throughput guarantees even in the case of path
explosion. The authors of BOLT suggest restricting the search space
by adding additional constraints on the input packet. Performance
results for a constrained input can however not be generalized for
packets beyond these constraints. Our approach often runs faster
with an unconstrained input, since we stop on the first satisfiable
path. S2E and BOLT only provide coarse metrics, such as the num-
ber of executed instructions and memory accesses which cannot
easily be mapped to throughput. Both, SymPerf and CASTAN use
a memory model to infer the memory latency for a single-threaded
program, but do not analyze the worst-case with respect to their
memory model. We additionally analyze memory throughput for
parallelized and multi-threaded execution to underestimate the
worst-case throughput.

CASTAN [52] is closest to our work, as it performs directed sym-
bolic execution to find bad packet sequences without analyzing all
program paths. CASTAN is a tool to debug bad performance with-
out giving any performance guarantees. Its strength is the ability to
find short packet sequences which deterministically result in a sim-
ilar number of cache misses as long random packet sequences. The
authors acknowledge the difficulties of analyzing Intel processors
and use several heuristics to guide the directed symbolic execu-
tion towards bad performance, thereby often finding local maxima
instead of a global maximum. We not only find bad performance

but establish throughput guarantees by tightly underestimating
the worst-case throughput capacity. To our knowledge, we are the
first to incorporate packet size requirements to analyze not only
packet-rate but also bit rate performance.

9 CONCLUSION
The achievable packet and bit rate of a SmartNIC program is not ob-
vious and varies between different packets and triggered program
paths. SmartNICs are easier to program, whereas programmable
match-action pipelines and FPGAs can provide a guaranteed packet
rate. We want to provide similar guarantees to SmartNICs by ana-
lyzing programs for their guaranteed packet rate and guaranteed
bit rate. With our approach, a program developer or network op-
erator can determine whether a SmartNIC program will always
achieve the needed throughput. In case the program does not yet
achieve this throughput, the program can be further optimized or
be parallelized onto the right number of SmartNICs.

Different packets trigger different paths through a program. We
analyze the guaranteed throughput by identifying or underestimat-
ing the slowest program path. We only consider satisfiable paths,
since a program may have slow paths which contain contradicting
branch conditions and therefore cannot be triggered by any packet.
An underestimation for the throughput capacity of the slowest
satisfiable path therefore gives a throughput guarantee for the com-
plete program. Programs may have huge numbers of paths, such
that it is unfeasible to check all paths through a program for satis-
fiability and their throughput capacity. Instead, we incrementally
enumerate paths from slowest to fastest and stop analyzing on the
first satisfiable path. Our prototype determines throughput guaran-
tees for real programs with an error of at most 1.7% and provides
tight lower bounds for the processor- and memory-bottlenecked
programs with only up to 8.5% and 18.2% underestimation.

We enable developers and network operators to determine if a
program meets the throughput requirements. When integrated into
the development toolchains for SmartNIC programs, the developer
can get rapid feedback on the throughput capabilities and can iter-
ate on optimizations until the requirements are met. When used
for automatic regression tests, changes which lead to undesirable
throughput are caught without impacting the production network.

With our throughput guarantees, SmartNICs can be used with
the same determinism as programmable match-action pipelines
and FPGAs. This enables a step towards more freely programmable
switches based on processors without sacrificing throughput guar-
antees. A network operator does not need to fear throughput prob-
lems if our approach assures that the used program has an adequate
throughput guarantee. Typical match-action pipelines have a fixed
packet rate and allow only few processing steps, even on large pack-
ets. However, large packets take longer to transmit and therefore
allow for more processing time before the next packet arrives. Our
approach can assure high bit rate guarantees, even when a program
iterates over the complete payload. With our approach, a program
on a processor-based switch can perform many operations on large
payloads and still meet the required bit rates.
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A ARTIFACTS
Artifacts are available at https://zenodo.org/record/5515910 or at
https://github.com/johannes-krude/nfp-pred-artifacts. These can
be used to repeat the full evaluation and can be reused to analyze
new BPF/XDP programs. Included is the source code and documen-
tation of the main approach, our modifications to the SmartNIC
device driver and firmware, as well as the infrastructure and raw
measurement data from our evaluation accompanied by documen-
tation.
Requirements. It suffices to use Docker on Linux or a single com-
puter with Ubuntu 20.04 to repeat the provided small evaluation
example and analzye the precompiled BPF/XDP programs. To re-
peat the full evaluation, one needs: three computers, a Netronome
Agilio CX 2x40 GbE SmartNIC, an additional 2x10 GbE NIC, and
a Barefoot Tofino based EdgeCore Wedge BF100-32X switch. The
proprietary compilers to build the NIC firmware and Tofino P4
program are not included and need to be obtained from Netronome
and Intel.
Implementation. The main approach from the paper is imple-
mented as a tool that determines throughput guarantees by in-
crementally enumerating programs paths of BPF/XDP programs
compiled to Netronome Flow Processor assembly. This tool is im-
plemented in 9600 lines of C++, heavily relies on the SMT solver Z3,
and is in part inspired by the KLEE symbolic execution engine. The
evaluation infrastructure consists of 4700 lines of Ruby source code
with low-level tools written in C and some small additions of Bash,
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Python, and P4. Our modifications to the SmartNIC device driver
and firmware consist of Linux kernel level C and NFP assembly.
Measurements. The evaluation mainly consists of two different
types of measurements. During the estimation phase, the approach
as described in the paper is executed on example programs to
estimate throughput guarantees. All discovered satisfiable program
paths are recorded together with an example packet to trigger
the path and the time it takes to discover that path. These results
from these measurements are presented in Table 2 (columns 2 &
3), Table 3, Figure 7, and Figure 8 (estimates). For Table 4, the
throughput estimation is executed again on all example programs
but uses different implementation variants.

The second kind of measurements in the evaluation, are mea-
surements of the actual throughput when executing programs on
the SmartNIC. These measurements use the example packets from
the estimation phase to measure the throughput capacity of each
discovered program path. These throughput measurements and
their comparison to the estimates are presented in Table 2 (column
4) and Figure 8 (measured throughput). Some additional throughput
measurements are shown in Figure 4 and Figure 5.
Repeating the Evaluation from the Paper.The full evaluation
takes approximately 10 days and requires a Netronome Agilio CX
2x40 GbE SmartNIC and a Barefoot Tofino-based EdgeCore Wedge
BF100-32X programmable switch. To enable partial repetition, we
structured the evaluation into smaller steps, some of which take

significantly less time and do not require special hardware. All
raw measurements gathered during our evaluation are included, to
enable repeating each evaluation step independently of the other
steps.

When having only a few minutes to spare, one can try the small
evaluation example which estimates the throughput bound of the
QUIC LB (IPv4) example program and compares these estimates
with existing measurements. With some more available time, one
can reanalyze all included measurement data and optionally repeat
all throughput estimates. In case of having access to the SmartNIC
and a Tofino switch, all throughput measurements can be repeated.
Reusing the Implementation for New Programs. Our imple-
mentation of the main approach, as well as the measurement in-
frastructure can be applied to new real BPF/XDP programs. Any
BPF/XDP programwhich adheres to the constraints for NFP offload-
ing and our modified NIC firmware and driver can be analyzed for
its worst-case throughput. The implementation supports analyzing
for bit rate or packet rate and can be configured to analyze for
processing cores throughput, DRAM memory engine throughput,
or both. For each enumerated path, an example packet is generated
which can be used to compare the estimated throughput capacity to
measured throughput. A detailed description is included which ex-
plains how to generate the data as presented in Table 2 and Table 3
for new XDP/BPf programs.

All further documentation is included in the README.md.
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