
Service-based Forwarding
via Programmable Dataplanes

René Glebke∗, Dirk Trossen†, Ike Kunze∗, David Lou†, Jan Rüth∗, Mirko Stoffers∗, Klaus Wehrle∗
∗Communication and Distributed Systems, RWTH Aachen University, Aachen, Germany

{glebke, kunze, rueth, stoffers, wehrle}@comsys.rwth-aachen.de
†Huawei Technologies Germany, Düsseldorf, Germany

{dirk.trossen, zhe.lou}@huawei.com

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. This is the author’s version. DOI of the IEEE version: 10.1109/HPSR52026.2021.9481814

Abstract—Access to networks for purposes of executing remote
services has become a dominant form of communication, while
virtualization has enabled the flexible and fast deployment of
those services across distributed locations. This seems at odds
with the design that drives the network layer of the Internet.
Our paper presents an approach to flexibly deploy a network
layer solution for optimizing service access within a single do-
main, while retaining full connectivity to Internet-based services.
We discuss design considerations and the resulting design. We
analyze expected gains from our solution.

Index Terms—programmable forwarding, semantic addressing,
load balancing

I. INTRODUCTION

Data being sent to remote servers for processing is a
common pattern that can be found in many communication do-
mains, such as in the public Internet but also in industrial net-
working. Furthermore, it is estimated that approximately 72%
of all data center traffic stays within the local domain, i.e.,
terminates in the center where it originated [1].

In addition, compute resources can be provisioned quickly
through virtualization technologies. This leads to an increasing
replication of service functionality in what is called service
instances in the following, enabling the optimization of service
experience and quality, with an impact on a number of domains
such as industrial networking [2] or immersive gaming [3].

From those observations, we can define the goal for a
communication infrastructure as one focusing on the WHAT of
the communication, while regarding the place of execution, the
WHERE, as ephemeral. This goal is seemingly at odds with
existing Internet technologies, which route information based
on locator identifiers, while using mapping services, such as
the Domain Name System (DNS), to determine the location.

Efforts such as information-centric networking (ICN) [4],
[5] have similarly identified the purpose of communication as
key to developing a network layer, but ambitions of globally
replacing IP routing have stood in the way of widespread
deployment so far. In our approach, we rely on two key aspects
for realizing a service-oriented communication infrastructure
that would avoid a similar fate. The first is the concept of
a limited domain [6], which delimits the development and
deployment of technologies to the scope of network and
endpoint behavior that is specific to that domain. This means

that we see our solution limited to a single domain, while en-
abling full access to non-domain local services via the existing
Internet. We also see our solution deployed alongside (and
utilizing, where needed) the locator-based addressing (and
routing) of existing Internet solutions, addressing the challenge
of backward compatibility but also interconnection to existing
services. Deployment examples include industrial networks
with services executed on “workers” to aid equipment control.

The second aspect is the emergence of programmable
forwarding planes, i.e., the capability to change forwarding
behavior within the limited domain through programmability
that may exist in a limited number or all of the nodes.
Technologies such as P4 [7], [8] enable flexible but still
high performing execution of those programmable forwarding
instructions, thereby addressing the performance challenge
that often plagues initial deployments that aim to drive adop-
tion. Such programmability also opens up the opportunity to
tailor the network’s behaviors specific to (sets of) services.
Through this, our solution addresses the challenge of fast
deployment to avoid the fate of ICN and similar propositions,
while relying on orchestration and endpoint programmability
to realize necessary changes to endpoint and network behavior.

We see three opportunities for our solution. First, we
expect an impact on network latency since communication can
directly take place between the relevant endpoints, removing
the need for any reflection points, such as brokers and alike.
Second, we expect the service latency to improve since the
decision which instance of a service should serve a request
can be realized at the network level, not requiring, e.g.,
application-level load balancers such as those employed in
content delivery networks (CDNs). Last, we also expect to
improve deployability through combining the programmability
of forwarding planes with the general trend of service orches-
tration and application-centric development in end systems.

We organize the remainder of this paper as follows:
• We discuss design considerations, taken into account in

our work, in Section II.
• We then shape those considerations into a system design

in Section III for realization in a limited domain.
• We analyze the impact that our solution may have on the

aforementioned key aspects, in Section IV.
• We conclude our paper, including a discussion on possible

extensions of this work, in Section V.

II. DESIGN CONSIDERATIONS

Our main design goals are the routing on service names and
the steering of traffic aided by in-network programmability,
while limiting the deployment to limited domains that strongly
exhibit the expected service-oriented nature of communication.
We elaborate on the main considerations to achieve these goals
through our design in the following.

A. Addressing

We observed already in the introduction that the service-
centricity of the endpoint behavior is key, which is directly
reflected in the addressing utilized. Here, the identity of the
service matters foremost in finding suitable service instances
out of the pool of (many) possible ones. For this, we utilize
the concept of a serviceID that represents the overall service
that is implemented by those possible service instances.

A number of choices exist for the naming of services. A
first option is to use structured binary names, such as those
used in ICN [9]. Another option is that of a P:L name,
where P is rooted in the security credentials of the principal
owner of the services and the label L identifies the service
itself [5]. Both approaches, however, were designed with
global deployment in mind, resulting in possibly long names,
although [9] does allow for app-specific short names. Given
the limited domain nature of our envisioned deployment, we
advocate instead to use simple binary identifiers of fixed size,
assuming the existence of a domain-local service for mapping
app-level names onto those identifies. Using such shorter, fixed
size identifiers also allows for a practical integration of the
identifier into existing packet structures.

Apart from the service identifier, the location of the service
instance does still matter, as we discuss in more detail in
Section II-C. For that reason, our design also utilizes IP
addresses (and therefore IP routing and forwarding solutions).

B. Service Scheduling

When selecting the most ‘suitable’ service instance from
the pool of deployed ones, several criteria may define what
is ‘suitable’. Traditional constrained routing solutions, such as
EIGRP [10], utilize network-centric metrics, foremost delay
and bandwidth, to steer traffic to a specific destination. We
instead foresee service-specific metrics, such as the load of an
instance, certain compute capabilities (that may differentiate
the service implementation in terms of execution speed or
storage capability), or end-to-end delay (which goes beyond
network delay to include, e.g., the processing for a response).
Hence, our design needs to support such service-specific
metrics and the necessary selection criteria to choose based
on such metrics. We here expect the biggest impact of using
programmable dataplanes through efficiently implementing
those metric-specific forwarding decisions, while we still see
those service-specific decisions as being aligned with end-to-
end arguments, where the programmable forwarding behavior
is seen as an “...incomplete version of the function [standing
at the endpoints] provided by the communication system [that]
may be useful as a performance enhancement.” [11].

C. Instance Affinity

While the identification of the most suitable service instance
is driven by the serviceID and the metric to choose one of the
available service instances, our design must also accommodate
the situation in which traffic must continue to be steered to
an initially selected service instance. Reasons for this situation
are, e.g., the creation of application-specific state at the service
instance; we call this property instance affinity.

For this, we utilize existing locator-based addressing to
support instance affinity by differentiating the initial service
request, forwarded based on the serviceID/metric selection,
from an instance request to a specific instance. Here, the
response from the service instance chosen in the service re-
quest provides the necessary locator information to realize the
continued communication with that specific service instance.

It is important to understand that only the service instance
and client can decide when affinity is no longer required in
that the client issues another service request, rather than use
the locator of the service instance it maintained affinity to
before. This would also support short-lived, even single packet
requests by only using service requests.

D. Forwarding Behavior

As discussed before, the forwarding behavior extends exist-
ing locator-based forwarding (i.e., longest-prefix match of IP
addresses) through a service-centric behavior. Here, the service
identifier and metric need to be used to select from a set of
available service instances. The information on those service
instances is assumed to be provided by a routing protocol to
build a suitable service routing table alongside the existing
IP routing table. In the case of a service request, the set
of instances, determined by the serviceID, is then further
constrained through the metric-based decision. If instead,
an instance request is provided (indicated by the missing
serviceID), normal locator-based forwarding applies.

While a design may strive for supporting a rich set of sup-
ported metrics, our selection is driven by the ability to realize
them in programmable forwarding planes, while allowing for
clear impact on service and network latency.

E. Scope of Limited Domain

As discussed before, we see our solution deployed within
a limited domain. Coupled with the intention of utilizing
programmable forwarding switches, we see the scope of
such domains reach from a single switch (e.g., in localized
industrial deployments) to larger bridged Ethernet deploy-
ments (e.g., in larger factories) to larger routed domains
(e.g., campus networks). The extension to the latter requires
a routing protocol for distributing service identification and
metric information; we discuss this aspect in Section III-B.

A key aspect for the limited domain is its interconnection
to other limited domains and the Internet itself1. In our current
design, we assume client knowledge to differentiate the access

1Note that the limited domain itself can span different geographical loca-
tions, e.g., different industrial sites, by virtue of tunnels between the separate
deployments, still forming a single limited domain.

to services within the limited domain versus those provided
in the Internet. An approach for ensuring true interconnection
without such client knowledge required is left for future work.

F. Security

Security in service interactions is paramount, both at the
level of the service relation as well as content. For the latter,
encrypting the payload of a service request is entirely left to
the application, similar to the Internet. Technologies such as
TLS can be used over a suitable transport protocol like TCP or
QUIC. In its current version 1.3 [12], this would facilitate 1-
RTT secure transactions. With newer work, such as Encrypted
Client Hello (ECH)2, even 0-RTT can be achieved, thereby
well supporting single request interactions.

The privacy of the service relation can be achieved by
using service-specific serviceIDs (e.g., by providing a mapping
service separate from the network provider). If the deployment,
however, is entirely vertical, i.e., the service and network
provider may be the same entity, privacy of the communication
relation may not be an issue, in which case a simple hashing
of service information into serviceIDs may suffice.

III. SYSTEM DESIGN

We now present our design utilizing programmable data-
planes (PDPs). Due to the large variety of PDPs, we do not
aim for an implementation on a specific PDP but generality.
For this, we target the more abstract RMT architecture [13],
whose match-action pipeline based operation principle is most
prominently embodied by the P4 language [7], [8] and imple-
mented by a multitude of PDPs (see e.g., [14] for an overview).
Furthermore, we aim for coexistence with legacy systems, in
order to enable an incremental deployment.

We first present the major components of our design to-
gether with the broad interaction scheme. We then discuss the
intended system scope, the addressing mechanism, and the
constraint model clients and service instances use to express
their desires and abilities. Finally, we show how we realize our
forwarding mechanism on PDPs (switches) based on P4/RMT.

A. Architecture

Our system, visualized in Figure 1, comprises three types of
entities: workers, clients, and service scheduling units. Workers
offer a set of services, thereby acting as service instances
for those services. A worker can be any type of uniquely
identifiable system, such as a hardware server or a virtual
machine (already running or instantiated on-demand). Services
are accessed by clients, whose service requests are dispatched
by service scheduling units (SSUs) on programmable switches.
All entities are interconnected within some limited domain.
Services are addressed using a unique serviceID; one or more
workers may provide realizations of a service exposed by a
given serviceID.
Offering services: Workers announce their participation in
providing a given service by announcing its associated
serviceID, together with constraint information (which we

2https://blog.cloudflare.com/encrypted-client-hello/

Worker 1 Worker 2
Worker 3

Worker n

… …

Switch with service
scheduling unit

Client 1 Client z

…

…

Service 42 Instance 1

Service 13 Instance 1
Service 37 (inactive)
Service 42 (inactive)

Service 42 Instance m

……

Workload

Request

Limited domain Other networks

Constraint
announcement

Fig. 1: Main entities and relations in our architecture.

detail in Section III-D), to their local SSU, which in turn
disseminates the information to its peer SSUs. For gathering
of constraint information, workers employ service monitors to
ascertain their current constraints for executing instances of
the services they offer. Monitors may coordinate with running
instances of the service they monitor, as well as with other
local monitors, to determine the current constraints. The result
of a monitor’s work is a constraint value (CV) sent to the
SSU, which matches the current CVs of all workers against
the requirements contained within the requests received by
clients. Monitors can run periodically or on an on-demand
basis, depending on the nature of their respective service;
whenever they detect a change in the CV they deem significant,
they inform the SSU accordingly.
Accessing services: When a client wishes to access a service,
it sends a service request to its local SSU, which in turn
schedules the request packet to a chosen worker (described
later in Section III-E). The worker then processes the request
and, depending on the nature of the service, sends a response
to the client. Workers support the execution of workloads,
representing a stream of packets that a client sends when using
a certain service and for which an instance relationship must be
maintained for reasons of, e.g., ephemeral state being created
at the worker (independent workloads may be dispatched to
separate workers). We refer to requests by clients within the
same workload following the initial request and a response
by the worker as instance requests. When responding to the
clients, workers provide their IP locators, which the clients
use for their subsequent instance requests. The requests from
clients also encode means for workers to provide responses
that allow clients to distinguish responses to multiple requests
issued in parallel (e.g., port numbers in plain TCP/UDP or
connection IDs in QUIC headers [15]). Note that while service
requests target single services only, workers may likewise re-
quest the execution of subsequent services for their workloads,
which enables processing chains.

The described interaction between client and workers allows
for a 0-RTT communication from the client to the chosen
worker. Within a multi-packet workload, however, the client
will need to wait for the worker’s response first to obtain its IP
locator. This, however, is consistent with the typical behavior
in connection-based scenarios (e.g., TCP), albeit introducing
an initial 1-RTT delay. However, if combined with transport

layer security techniques, such 1-RTT handshakes are part of
the security mechanisms anyway. Secure 0-RTT exchanges are
possible e.g., via the approaches discussed in Section II-F, but
we consider this future work for now.

B. Scope of System

As indicated in Figure 1, we generally allow the entities
in our system to be distributed over the limited domain in
which our system is deployed . This means that clients and
workers may not be directly attached to the switch running the
SSU, and also that there may be both multiple paths between
clients and workers, as well as multiple SSUs or intermediary
switches that do not participate in our system. All service
(and instance) requests would then be relayed towards the
SSU without the need to change the behavior of intermediate
systems, except for an eventual addition of appropriate prefix-
based forwarding rules. We assume that the SSU information
would be provided to the client and worker through suitable
discovery protocols, such as DHCP.

This assumption leads us to an initial centralized scope of
the limited domain system, with a single SSU dispatching
incoming service requests. However, relying on a single SSU
will lead to non-optimal paths since placing such SSU opti-
mally in regards to all entities would require networks of small
size. Hence, we foresee that multiple SSUs exist, possibly at
every ingress point to the network.

This in turn requires that serviceIDs and constraint in-
formation, announced by workers to a specific SSU, are
distributed to all other SSUs in the system. Such distribution of
routing information could be realized using existing protocols
and strategies such as OSPF [16], [17]. Depending on the
network size, the nature of the constraints (e.g., those requiring
frequent updates), as well as the number of services offered by
workers, a flooding-based routing approach will not scale well.
Fortunately, announcing constraints (and their operations)
provides the opportunity for aggregation and suppression of
announcements. For instance, considering a min operation
on the announced CVs for some service, the announcement
of CV=5 after another worker already announced CV=4 to
the same SSU does not change the minimum of announced
CVs and needs hence not be forwarded to other SSUs. The
development of a routing protocol that would utilize such
capability, however, is beyond the scope of this paper.

C. Addressing

We utilize simple opaque binary identifiers of fixed size
(unsigned integers) for our serviceIDs to limit the possible
overhead in service requests and ease deployment of our
solution. As those serviceIDs are opaque, client and service
developers need to negotiate which serviceIDs to employ so
that the service can be reached, while avoiding ID colli-
sions with other services. Thus, either some entity within
the limited domain needs to specify the serviceIDs to be
used by clients and servers, or existing discovery/mapping
mechanisms such as DHCP/BOOTP [18] or DNS can be
employed, in turn relying on some assignment or mapping

match

else

m

<

<=

==

>=

>

exact

min

avg

max

sum

ReducSum

Drop request
or

send to random
fallback worker

Send to random
eligible worker

(c)

Fig. 2: Constraint model for selecting service instances. Client
demands (m, left) are matched against worker supply (right).

services to provide the right serviceID. The nature of our
system does not prescribe lookups of serviceIDs to be repeated
as long as the requested service does not change by some
administrative or programmatic necessity, and hence these
negotiation mechanisms constitute a negligible overhead.

This allows us to integrate requests from clients into the
majority of existing system architectures. When employed
within an IP-based realm, serviceIDs can e.g., be assigned
per virtual subnets (as in CIDR [19]), with the SSU acting as
the gateway into these subnets. The client then utilizes the IP
address of the worker to which the service request was initially
sent for issuing subsequent instance requests.

D. Constraint Model

Workers and clients have service-specific constraints they
impose on instances and workloads, e.g., the time they require
for executing the requested functionality. We model this as
matching the demand of clients (included in their request
packets) against the supply from workers (announced as CVs)
at the SSU. To simplify the scheduling process, we assume
that the constraints on the client side do not change while
a workload is being processed, i.e., clients determine their
constraints at the moment they send their service request
to the SSU, while for any subsequent packet of the same
workload, the same worker is being used (i.e., instance affinity
is maintained). Clients can declare new demands by issuing
a new service request. We also leave handling changes in
worker constraints during an ongoing workload to the involved
applications since they are best positioned to do so.

Figure 2 shows the supported constraint-based operations.
We allow both equality and relative comparisons of a client’s
demand m against either exact advertised CVs c, as well as
against some aggregated values over all advertised CVs for
a respective serviceID, specifically avg, min, max, the sum
or the reducing sum. For the latter, the sum of the advertised
constraints is reduced by the value m before forwarding, while
new arriving CV values increase sum, which in combination
allows for consumption-based scenarios. Our model also sup-
ports expressions like choose the min/max over all advertised
CVs when a client sends the wildcard value ? in its service
request. For each request, any worker with a CV satisfying
the constraints of the client is a potential recipient.

As examples, the request “m ≤ 5” matches all workers
with a CV ≤ 5, “? == min” matches all workers that have

Workers

Constraints
Constraint Values (CVs)
ServiceID

13 B5A778D88E
37 100

Per-service
monitors

Constraints
Constraint Table (CT)
ServiceID

12 0110010
13 B5A778D88E

Service
Scheduling

Unit
(CP) 13 B5A778D88E

IP
::998B
::A5D3
::6F8E

Re-announcements

37 100::A5D3
37 200::FE8C

(Periodic)
updates

Exact Value Table (EVT)

Service Scheduling Unit (DP)

CVsServiceID
12 0110010
13 B5A778D88E

SetID
1
2

37 100 3
37 200 4

Relative Value Table (RVT)
CVsServiceID

12 [0110010; inf)
13 [0; B5A778D88E]

SetID
1
2

37 [50; 150] 3

Aggregation Table (AT)
AggregationServiceID

12 min(CVs)
37 avg(CVs)

Value
0110010

150

Worker Set Table (WST)
SetID

1
2

Worker
1
1

IP
::998B
::A5D3

2 2 ::6F8E
3 1 ::A5D3
4 1 ::FE8C

Fig. 3: Based on announcements from service monitors entities on the workers (left), the control plane of the service scheduling
unit generates views of the current constraints (right) which allow the dataplane to schedule requests by clients to appropriate
workers. (The figure shows the full information contained within EVT for this example, and excerpts for the other tables.)

advertised the current minimum CV, and “m ≥ min” matches
any worker with the minimum CV as before, but only if that
minimum is less or equal to m. Clients can instruct the SSU
to either drop a request that cannot be satisfied (the SSU then
informs the client using e.g., an ICMP message) or to choose
a random worker as a fallback.

Note that metrics that contribute to constraints of a worker
can differ largely between services and their exact meaning is
determined only by the associated service. It is not necessary
for other services or the SSU to understand the semantics that
define the CV nor its operations. Our only requirement for
clients’ m values and worker’s CVs is for them being fixed size
unsigned integers. This eases implementation of the matching
logic on the SSU, described in the next subsection.

We position our approach here as a baseline, supporting
a single constraint value per service. However, our approach
can be extended to provide a choice between more than one
constraint, so that constraints which are hard to combine
into one (e.g., worker latency vs. worker throughput) can
be separately used. In this case, workers/clients would need
to specify which constraintID they are targeting in their
announcements/requests, and the tables in the SSU need to be
amended by a column for the constraintID. However, multi-
dimensional constraints are not supported since, as we will
see in the following, restrictions concerning lookups and the
handling of sets on the dataplane render multi-dimensional
lookups on current PDPs very delicate without heavily involv-
ing the control plane in each decision. We therefore defer the
support for such complex constraints to future work.

E. Scheduling Service Requests
To implement our scheduling operations directly within

the dataplane (DP), we utilize a combination of comparisons
and table lookups. However, the capabilities of P4/RMT DPs
with regard to table lookups are limited. Most notably, the
structure of lookup keys (i.e., which columns to search) is
predetermined at compile time, and tables may be accessed
at most once for a packet passing through the match-action
pipeline, making programmatic iterations through tables to
find the best match impossible. Furthermore, lookups express-
ing arithmetic relations (e.g., “key ≥ x”) are not possible.

Range lookups (“key ∈ [a, b]”) are possible, but only the CP
can define the bounds while the DP provides the key. In the
following, we detail how we still achieve the desired variety
of matchings between clients’ requests and workers’ offers.
Data structures: An overview of the major data structures
involved in our approach is presented in Figure 3. First,
all CVs received from workers are handed to the CP (left
part of the figure) to save the contents in a constraints
table (CT). To enable lookups on the DP, the CP then fills
four tables accessible by the DP: (1) the exact value table
(EVT), which groups workers with the same CVs together;
(2) the relative value table (RVT), which groups workers
of similar CVs together into buckets and employs P4/RMT
range lookups3; (3) the aggregation table (AT), which provides
meta-information on the received CVs (such as minimum,
maximum, and average)4, and at last (4) the worker set table
(WST), which stores the groups to which workers have been
assigned in the EVT and RVT. The keys to ECT, RVT and
AT are composed of the respective serviceID as well as the
CV and/or an ID of the requested aggregated information (we
address the WST later). This allows us to store all necessary
values for all services within the same four structures.
Handling constraint updates from workers: The tables
accessible to the DP are updated by the CP when a new CV is
received from a worker. The required operations for updating
known workers are straightforward: A new CV simply means
replacing a single old entry in the EVT, touching the previous
and new buckets/groups in the RVT/WST, and performing
some minor calculations with the help of the CT to update
the meta-values in the AT. Most PDPs support changes to
a limited number of entries without interruption of the DP,
and we expect modern CP implementations to be capable of
handling hundreds of updates per second at least. In case the
update rate of workers is high, the CP can also first use its
CT to collect new announcements for a certain period, and

3The EVT can also be represented within the RVT when ranges always
comprise exactly one value, but often, PDPs put limits on the number of
ranges in tables, so that we chose two distinct tables for increased scalability.

4The reducing sum additionally requires P4/RMT registers, which can be
read and written from both CP and DP. We leave out the details and treat it
like the other aggregation types in the following for simplicity.

Request

Relative Value
Table (i,m)↦ (s,|s|)

Aggregation
Table (i,m)↦ m’

Worker Set
Table (s,r)↦ IP

Exact Value
Table (i,m)↦ (s,|s|)

Value mServiceID i

t ∈
{avg, min, max,
sum, reducSum}

t = exact

set m := m’

set r :=
random(1, |s|)

Worker IP

Operator o Target t

m = ★ (wildcard)

o(m, m’) is true

else

drop request
or

choose random fallback worker

IP
found

No IP found

Fig. 4: Depending on the value, operator and comparison
target in a request, the service scheduling unit uses different
sequences of table lookups, comparisons and lookup value
rewrites. A final semi-random lookup in the worker set table
yields the IP of a worker able to satisfy the request.

then perform bulk updates of the tables in the DP. Our design
in principle also allows that services and the SSU negotiate
individual update rates, which would require coordinating with
the authority managing the SSU; we defer this to future work.
Matching requests and offers: Finding a matching worker
for a client’s request employs a sequence of lookups in the AT,
EVT/RVT and WST against the constraint value sent by the
client. As visible in Figure 4, the sequence differs depending
on the type of comparison the client wishes the SSU to fulfill.
While equality comparisons using the EVT are straightforward
(the value contained within a client’s request is directly used
as part of the key), relative comparisons via the RVT require a
different approach. As P4/RMT only allows matching against a
single (exact) value in a table, we need to transform the request
of the client into a format that allows us to emulate a relative
lookup. We accomplish this by deriving a new lookup value
based on the constraint value received from the client and
the chosen relation. Our approach is based on the observation
that when a client requests some worker satisfying a relation,
then any worker with an announced CV to the left (≤, <)
or the right (≥, >) of the value sent by the client will do
the job. We consequently shift the received constraint value
into the required direction, by subtracting or adding a random
value5 and capping the results at 0 and the maximum value for
CVs, respectively (to stay within the bounds of the requested
relation). The resulting value can then be used as the lookup
value representing the requested relation in the RVT, and the
random offset ensures a distribution of requests among the
workers that fall into the value range of the relation. Note
that the bounds of the ranges in the RVT need to cover the
entire domain of possible CVs to guarantee that the lookups
succeed; the maintenance overhead for the CP is proportional
to the number of different CVs advertised by a service.

As indicated in the lower part of Figure 4, requests in-
volving the meta-information contained within the AT require

5Random number generators are not defined by P4/RMT per se, but most
PDPs include one for use on the DP.

a lookup that precedes those in the EVT or RVT. By first
performing a lookup on the respective meta-information in
the AT, we can use the resulting value in lieu of a concrete
value received from the client in the subsequent lookups in the
other two tables. This on the one hand enables queries such as
“any worker ≥ avg” (when following the first branch below
the AT in the figure). On the other hand, it also allows us to
compare the client’s value against the aggregated value and
only continue the scheduling process in case the comparison
operation evaluates to true (second branch). This comparison
can be expressed using unsigned integer operations, which are
available on all but the most restrictive PDPs.
Choosing an eligible worker: Lookups to the EVT or RVT
yield a set of workers all capable of satisfying a client’s
request, as well as the size of that set. P4/RMT requires sets
to be represented via tables (sets are structures of varying
lengths, which are not supported by the majority of current
PDPs), and our lookup for a client’s request is thus concluded
by choosing an appropriate worker by performing a lookup in
the WST. For this, we take the resulting worker set ID returned
from the EVT/RVT lookup, and complete the lookup key by
using a random number as the second part, capping the random
numbers so that they do not surpass the size of the worker set.
The result of this lookup (shown in the lower right of Figure 4)
is the address of a unique worker capable of servicing the
client’s request, and we conclude our scheduling by forwarding
the client’s request accordingly. In case no suitable worker set
is found and the client’s request thus cannot be satisfied, the
SSU either drops the request (informing the client accordingly)
or chooses a random fallback worker among those generally
available for the requested serviceID. Both actions require
some additional operations (i.e., sending a failure message to
the client and looking up the fallback worker, respectively),
which are not detailed here for simplicity, but which can also
be entirely executed on the DP.

IV. ANALYSIS

We now analyze different aspects of our design, starting
with security, then the impact on network latency compared
to application-level solutions as well as the impact on service
completion time compared to traditional approaches. We con-
clude with outlining the opportunities brought about by the
realization of our mechanisms on programmable dataplanes.

A. Security

Authentication: Clients and workers can continue to apply
established authentication and validation mechanisms (e.g.,
PKI/X.509), as long as a notion of the serviceID used by
the client to initially access the service is included within
that process. Furthermore, constraint values sent from service
monitors towards the SSU can be encrypted and authenticated
as long as the control plane of the SSU has cryptographic
capabilities, so that neither a spoofing of service states nor a
participation as an unsolicited worker is possible in our system.

Security of discovery: As we utilize mechanisms, such as
the DNS or other mapping services, for the management and

discovery of available services and serviceIDs, the security of
this part of our design is equal to that of these mechanisms.

Endpoint security: As we expect the workers and installed
service applications to be benign (since the limited domain
controls their setup), there are also no adverse effects con-
ceivable from running multiple services on the same machine.

Dataplane security: As most PDPs currently do not have
cryptographic capabilities on the dataplane, requests from
clients for the mean time cannot be encrypted or authen-
ticated, so that fingerprinting and eavesdropping attacks on
serviceIDs and the requested capabilities of workers by clients
are possible. However, this restriction is not imposed by our
design; once cryptography becomes possible on the dataplane,
a suitable decryption and authenticity validation (or a check
for access rights of the client to the requested service) can
preclude the other scheduling steps. Until such functionality
is largely available, the opaqueness of serviceIDs and CVs at
least hampers eavesdroppers from gaining instant knowledge.

B. Network latency

To capture the impact of network latency on our design
versus traditional approaches, we investigate the differences
in Figure 5. Here, we model a simple network in SimPy6

using different latency distributions and show the combined
latency of 10 000 random samples. The network consists of
a low latency wireless link (e.g., 5G) followed by a central
router at which a directory service, a load-balancer, and all
actual services are connected. We model the wireless link
with a constant delay of 5ms plus an exponentially distributed
delay with a mean of 2.5ms, the rest are modeled by normal
distributions. Our model assumes an average 1ms of delay
to pass through the router to any connected entity and 500µs
to perform any action (e.g., lookup) both with a very small
variance. We compare the time it takes a client to receive a first
meaningful byte from a service with our service-based routing
employed at the central router to a traditional model that
first requests a mapping to a service from a central directory
(e.g., DNS), waits for the result and subsequently requests the
service. Additionally, we show the impact of having to go
through another indirection step after the directory discovery
when an application-load balancer is involved; both cases can
be handled by service-based routing.

What the figure shows and what is expected is that when
employing service-based routing at the central router, we save
additional roundtrips. Here, latency gains for the service-based
routing primarily stem from not having to traverse the wireless
link as often as the traditional approaches. While these gains of
course diminish over the course of the duration of a workload,
they are especially important for short-lived encounters.

C. Service latency

For the impact on service latency when utilizing a dis-
tributed set of workers, we consider the following scenario.
A number n of clients send service requests to a number k

6https://simpy.readthedocs.io

0 10 20 30 40 50 60

Latency [ms]

0.00

0.25

0.50

0.75

1.00

CD
F

Service-based
Trad.
Loadbal.

Fig. 5: Expected gains for network latency. Simulation results
show that service-based forwarding can significantly cut time
to first byte retrieval latencies.

0 10 20 30 40 50

Number of Clients

0

2

4

6

8

10

M
ea
n
W
ai
tT

im
e
[s] CDN model

Service-based

Fig. 6: Mean wait times for CDN and service-based access
model with increasing number of clients. Solid lines are
simulated results, with shaded areas as standard deviation.
Dashed lines are analytical results.

of workers. We assume for simplicity that the clients are all
connected to the same SSU.

We distinguish two affinity models. In the first, a random
server is selected and the client maintains affinity throughout
the scenario. This is reminiscent of situations where clients are
assigned CDN servers, e.g., based on an initial load balancing
decision, and remain connected to the respective servers for
the entire workload. We hence call this the CDN model. In
our second model, we fully utilize the routing level decision
to send a service request to any worker, i.e., the affinity here
is that of a single request; we term this model service-based.
A typical use case that would exhibit such behavior is the
retrieval of chunk-based data from workers, such as graphic
or video assets in gaming or over-the-top video scenarios.

To ground our simulation results, we abstract the first model
through an M/M/1 queueing model with n/k clients accessing
the single server, i.e., clients will be distributed equally across
all available servers (but continue to be served from the
assigned one). Our service-based model can be abstracted
through an M/M/k queueing model where all n clients will
access the k servers of the system.

Figure 6 shows the results for our simulation with the solid
lines showing the mean waiting time for a total of 1 million
requests coming from an increasing number of clients, together
with its standard deviation (shaded area). We utilize an inter-
arrival time for the packet requests of 10s by each client and

a service time of 2s at each server in the system, while setting
the number of servers to k=10. Additionally, the dashed lines
show the analytical results for the aforementioned queueing
model abstractions. As confirmed by our analytical model, the
service-based access completes service requests much faster
than the CDN model, while also providing smaller variances;
both are important factors in the overall user experience for
the underlying service.

D. Programmability

The work in [3] outlines the combination of mobile ap-
plication installation with the deployment of micro-services,
which are part of the application, through existing service
orchestration frameworks like ETSI NFV7. We see our solution
here complementing this view of future app-centric deploy-
ments since the programmability at the level of the forwarding
plane enables the insertion of forwarding rules “on-the-fly”, all
encoded in suitable orchestration templates.

Similar to [3], we envision suitable interfaces to be offered
by orchestration platforms, which could in turn deploy the
suitable forwarding rules, too, therefore establishing the table
structures outlined in Section III-E in intermediary switches.
The key point to ensure that rules do not collide across
different applications and services is the serviceID, i.e., how
to generate or obtain such serviceIDs is crucial to ensure the
on-demand deployment of any service solution.

V. CONCLUSIONS & FUTURE WORK

This paper presents a design for a communication solution
that improves on service access in a limited domain, utilizing
the programmability of its underlying forwarding plane for key
capabilities of our design. It outlines key considerations for our
design as well as the feasibility of this design within existing
frameworks such as P4. Our analysis shows initial results for
the expected gains of our solution in terms of network and
service latency. Apart from a more thorough platform-based
analysis of key performance aspects, there are a number of
design aspects that we see need further study.
Routing: To scale in network size, number of offered services
as well as frequency of constraint announcements, suitable
routing protocols will be required. While link state approaches
could be used, as discussed in Section III-B, those do not
provide the scale needed due to the excessive flooding. Two
key aspects seem promising to reduce the message overhead,
namely (i) suppression of announcements along paths where
previously announced metrics are already met and (ii) avoid-
ance of loops through suitable construction of virtual loop-
free topologies. Both aspects are currently flowing into the
development of such routing protocols.
Mobility: A moving client or service endpoint should be
supported by our system. Given that endpoints may issue new
service requests at any time (even after a mobility event), the
only issue may arise when moving during an ongoing affinity
relation with a specific service instance. Since the endpoint

7https://www.etsi.org/technologies/nfv

communicates with the service instance via its IP address,
Mobile IP or QUIC sessions could be applied to provide
session continuity. For the case of moving service endpoints,
the key issue will be to deal with any application state that
needs transferring, which is outside the scope of our system.
More advanced service scheduling: Our supported metric op-
erations are relatively simplistic in order to be directly realized
in a programmable forwarding fabric. Likely future advances
in that programmability will lead to increasingly more com-
plex metric operations being possible to be performed, which
in turn open up the opportunity for more advanced service
scheduling solutions to be realized. Conversely, the reliance
of those more complex service scheduling solutions and their
potential benefits for overall system performance may serve as
a driver for improving the capabilities of the programmability
capabilities we utilize in our design.

REFERENCES

[1] Cisco, “Cisco Global Cloud Index: Forecast and Methodology, 2016 -
2021,” Tech. Rep., 2018.

[2] C. Pallasch et al., “Edge Powered Industrial Control: Concept for
Combining Cloud and Automation Technologies,” in IEEE EDGE, 2018.

[3] I. Kunze et al., “Use Cases for In-Network Comput-
ing,” IETF, Internet-Draft, Feb. 2021. [Online]. Available:
https://datatracker.ietf.org/doc/draft-irtf-coinrg-use-cases/

[4] V. Jacobson et al., “Networking named content,” in ACM Conext, 2009.
[5] T. Koponen et al., “A data-oriented (and beyond) network architecture,”

in ACM SIGCOMM, 2007.
[6] B. Carpenter and B. Liu, “Limited Domains and Internet

Protocols,” IETF, RFC 8799, Jul. 2020. [Online]. Available:
http://tools.ietf.org/rfc/rfc8799.txt

[7] P. Bosshart et al., “P4: Programming Protocol-Independent Packet
Processors,” ACM SIGCOMM CCR, vol. 44, no. 3, pp. 87–95, 2014.

[8] The P4 Language Consortium, “P416 Language Specification version
1.2.1,” 06 2020. [Online]. Available: https://p4.org/p4-spec/docs/P4-16-
v1.2.1.html

[9] M. Mosko et al., “Content-Centric Networking (CCNx) Messages
in TLV Format,” IETF, RFC 8609, Jul. 2019. [Online]. Available:
http://tools.ietf.org/rfc/rfc8609.txt

[10] D. Savage et al., “Cisco’s Enhanced Interior Gateway Routing
Protocol (EIGRP),” IETF, RFC 7868, May 2016. [Online]. Available:
http://tools.ietf.org/rfc/rfc7868.txt

[11] J. H. Saltzer et al., “End-to-End Arguments in System Design,” ACM
Trans. Comput. Syst., vol. 2, no. 4, p. 277–288, Nov. 1984.

[12] E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.3,” IETF, RFC 8446, Aug. 2018. [Online]. Available:
http://tools.ietf.org/rfc/rfc8446.txt

[13] P. Bosshart et al., “Forwarding Metamorphosis: Fast Programmable
Match-action Processing in Hardware for SDN,” in ACM SIGCOMM,
2013.

[14] F. Hauser et al., “A Survey on Data Plane Programming with P4:
Fundamentals, Advances, and Applied Research,” 2021, arXiv preprint.
[Online]. Available: https://arxiv.org/abs/2101.10632

[15] E. J. Iyengar and E. M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” IETF, Internet-Draft, Jan. 2021. [Online].
Available: https://datatracker.ietf.org/doc/draft-ietf-quic-transport/

[16] J. Moy, “OSPF Version 2,” IETF, RFC 2328, Apr. 1998. [Online].
Available: http://tools.ietf.org/rfc/rfc2328.txt

[17] R. Coltun et al., “OSPF for IPv6,” IETF, RFC 5340, Jul. 2008.
[Online]. Available: http://tools.ietf.org/rfc/rfc5340.txt

[18] S. Alexander and R. Droms, “DHCP Options and BOOTP Vendor
Extensions,” IETF, RFC 2132, Mar. 1997. [Online]. Available:
http://tools.ietf.org/rfc/rfc2132.txt

[19] V. Fuller and T. Li, “Classless Inter-domain Routing (CIDR): The
Internet Address Assignment and Aggregation Plan,” IETF, RFC 4632,
Aug. 2006. [Online]. Available: http://tools.ietf.org/rfc/rfc4632.txt

