Utilizing Public Blockchains for the Sybil-Resistant
Bootstrapping of Distributed Anonymity Services

Roman Matzutt, Jan Pennekamp, Erik Buchholz, Klaus Wehrle
{matzutt,pennekamp,buchholz,wehrle}@comsys.rwth-aachen.de
Communication and Distributed Systems, RWTH Aachen University, Germany

ABSTRACT

Distributed anonymity services, such as onion routing networks
or cryptocurrency tumblers, promise privacy protection without
trusted third parties. While the security of these services is often
well-researched, security implications of their required bootstrap-
ping processes are usually neglected: Users either jointly conduct
the anonymization themselves, or they need to rely on a set of non-
colluding privacy peers. However, the typically small number of pri-
vacy peers enable single adversaries to mimic distributed services.
We thus present AnonBoot, a Sybil-resistant medium to securely
bootstrap distributed anonymity services via public blockchains.
AnonBoot enforces that peers periodically create a small proof of
work to refresh their eligibility for providing secure anonymity
services. A pseudo-random, locally replicable bootstrapping pro-
cess using on-chain entropy then prevents biasing the election of
eligible peers. Our evaluation using Bitcoin as AnonBoot’s under-
lying blockchain shows its feasibility to maintain a trustworthy
repository of 1000 peers with only a small storage footprint while
supporting arbitrarily large user bases on top of most blockchains.

CCS CONCEPTS

« Security and privacy — Pseudonymity, anonymity and un-
traceability; « Networks — Peer-to-peer protocols.

KEYWORDS

anonymization; bootstrapping; public blockchain; Sybil attack; an-
onymity network; cryptocurrency tumbler; Bitcoin; Tor

ACM Reference Format:

Roman Matzutt, Jan Pennekamp, Erik Buchholz, Klaus Wehrle. 2020. Uti-
lizing Public Blockchains for the Sybil-Resistant Bootstrapping of Dis-
tributed Anonymity Services. In Proceedings of the 15th ACM Asia Con-
ference on Computer and Communications Security (ASIA CCS °20), Octo-
ber 5-9, 2020, Taipei, Taiwan. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3320269.3384729

1 INTRODUCTION

Preserving user privacy on the Internet has become a complex
task due to increasingly pervasive measures for online surveillance:
While re-establishing their anonymity traditionally was only crucial
for a set of especially privacy-aware users, the Snowden revelations
have shown that every online user’s privacy is at stake [23]. This

ASIA CCS °20, October 5-9, 2020, Taipei, Taiwan

© 2020 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
15th ACM Asia Conference on Computer and Communications Security (ASIA CCS °20),
October 5-9, 2020, Taipei, Taiwan, https://doi.org/10.1145/3320269.3384729.

Onion Routing Circuit Anonymity
Utilize Cryptocurrency ~Services
Services : Shuffling Network ‘.‘ ryTumb/er y (Section 2)
(Section 5)
A
Bootstrap Peer
Services Repository
(Section 4.3) (Section 4.1)
Host
A Blockchain
Advertise (Section 4.1)
as a Peer
(Section 4.2) Privacy
Peers
(Section 4.1)

Figure 1: High-level design overview of AnonBoot, our
medium for securely bootstrapping anonymity services.

shift further fueled distributed anonymity services, such as mes-
sage shuffling networks [13], anonymous communication networks
based on onion routing [16], or cryptocurrency tumblers [31, 54, 55].
While various works have investigated secure building blocks for an-
onymity services, those works typically overlook the bootstrapping
of such services. Often, related work simply assumes non-colluding
peers, e.g., because of their operators’ presumed real-world reputa-
tion. However, this perceived reputation does not always warrant
trust, as evidenced, e.g., by numerous alleged scams regarding cryp-
tocurrencies [2, 49, 55] and the need for manually reporting [45] or
actively probing [12, 50] bad peers in the Tor network. Hence, the
question remains: How to securely bootstrap distributed anonymity
services without having to rely on operator reputation?

In this paper, we propose to outsource privacy-enhancing tasks
to small networks of peers selected randomly in a secure, unbiased,
and transparent fashion from a Sybil-resistant peer repository. We
introduce AnonBoot as a medium for indexing and bootstrapping
these anonymity services on top of a public host blockchain, which
provides accepted means to maintain an immutable and transparent
event log. As we illustrate in Figure 1, peers join by periodically pub-
lishing advertisements containing a small proof of work (PoW) to
the host blockchain. Peer operators thus need to periodically invest
hardware resources into refreshing their membership within a lim-
ited time frame, and all participants can locally derive AnonBoot’s
state by monitoring the host blockchain. Hence, AnonBoot creates
a Sybil-resistant index of privacy peers from which users can then
request bootstrapping new anonymity services. Users can choose
privacy peers or established anonymity services from this index to
cater to their individual privacy requirements. We exemplarily build
AnonBoot on top of Bitcoin to showcase its low requirements as
well as the small storage footprint it has on its host blockchain, and
to show that our system does not require sophisticated blockchain
features, such as smart contracts, to operate.

https://doi.org/10.1145/3320269.3384729
https://doi.org/10.1145/3320269.3384729
https://doi.org/10.1145/3320269.3384729

i . : Cascade of Anonymized | Users with Cascade of Anonymized
Dslreert‘:’tig;y Onion-Routing Relays Users Shuffling Peers Users Funds Tumbling Peers Funds
a Internet
individual,
User private shuffle Fund Random
Escrow Refunds
(a) Anonymity Network (b) Shuffling Network (c) Cryptocurrency Tumbler

Figure 2: Well-known distributed anonymity services encompass (a) anonymity networks, such as Tor, for anonymous Internet
communication, (b) message-shuffling networks, and (c) cryptocurrency tumblers to increase users’ financial privacy.

Contributions.

By analyzing existing anonymity services (Section 2), we identify
a lack of secure bootstrapping for such services (Section 3).
Through AnonBoot!, we show that public blockchains are a
suitable basis to create such a secure bootstrapping process (Sec-
tion 4) for heterogeneous established use cases (Section 5).

We show that PoW and peer election can prevent adversaries
from gaining advantages over honest peer operators (Section 6).
AnonBoot scales to repositories of, e.g., 1000 privacy peers and
large user bases with only low storage impact on its host block-
chain and low, tunable costs for its participants (Section 7).

2 AVAILABLE ANONYMITY SERVICES

We identify three categories of distributed anonymity services for
outsourcing privacy management: Internet anonymity networks,
message shuffling networks, and cryptocurrency tumblers.

2.1 Anonymity Networks

Anonymity networks, such as Tor [16], enable low-latency and
anonymous Internet communication through onion routing, i.e.,
tunneling users’ traffic through a user-selected circuit under a lay-
ered encryption, as we exemplify in Figure 2a. The user creates
her circuits locally at random, but she also considers performance
metrics, such as available bandwidth at individual nodes [15], as
well as node-specific policies, e.g., exit nodes only performing re-
quests to certain ports on the user’s behalf [16]. Tor provides the
information required to build circuits through a directory that is
maintained by exceptionally trusted directory servers [16]. These,
currently ten [44], directory servers are vetted by the Tor project
maintainers, and users must trust that those directory servers do
not collude [36]. To further increase the reliability of this direc-
tory, relays are actively being probed [12, 50], and users can report
misbehavior to the Tor project [45]. Thus, misbehaving nodes are
flagged in the directory to enable users to avoid such relays [45].

Takeaway. Tor relies on an index of available nodes and their
properties but requires trusted authorities to maintain this index.

2.2 Message Shuffling Networks

Long before the recent proliferation of anonymity networks, David
Chaum introduced networks for oblivious message shuffling [13],
to which we refer to as shuffling networks, as a means to realize
anonymous mail systems that provide sender anonymity, e.g., to

Python-based implementation available at: https://github.com/ COMSYS/anonboot

protect whistleblowers from retribution. Figure 2b showcases the
basic user interaction with such a shuffling network. Similarly to
anonymity networks, users relay their messages through a cascade
of known shufflers, again after encrypting them in layers. However,
multiple users shuffle their messages through the same cascade
of nodes to achieve a vastly reduced overhead. These shufflers
hence, one after another, receive the batch of encrypted messages
of which they can lift only the outermost encryption layer. After
decrypting the message batch, each shuffler obliviously shuffles
the batch’s messages and forwards the result to the subsequent
shuffler. Therefore, shufflers are unable to correlate other shufflers’
input and output batches. As long as one shuffler remains honest,
no passive adversary can deanonymize the users from now on.
However, shuffling networks are often prone to active attacks,
such as denial of service (DoS) or replacing encrypted messages [14].
Furthermore, adversaries can easily operate full shuffling networks
at low costs since those networks are fixed and small in size.
Takeaway. Users need to trust that non-colluding operators run
the shuffling network faithfully, which is especially challenging due
to the current lack of a widely accepted index of shuffling networks.

2.3 Cryptocurrency Tumblers

Multiple analyses of public blockchains, especially Bitcoin [32, 35,
38], debunked the initial hope that cryptocurrencies provide suffi-
cient user privacy by not building up long-lived identities [34]. To
counteract curious blockchain observers, cryptocurrency tumblers,
or cryptotumblers, break the linkability of privacy-aware users and
their funds. Cryptotumblers pool the funds of multiple users and
then pay out random coins of the same value to each user such that
the new coin owners are unknown to blockchain observers.

Cryptotumblers evolved over time, yielding different generations
and flavors to appropriately address users’ security and privacy con-
cerns. First, users of centralized cryptotumblers require strong trust
in the service operator to not steal their funds or disclose the shuf-
fling history at a later point to deanonymize users. Series of alleged
scams [2, 49, 55], however, underpin the need for further technical
protection, e.g., holding the cryptotumbler accountable [11].

The first generation of distributed cryptotumblers let privacy-
aware users jointly simulate a centralized tumbler by creating one
large transaction with unlinkable inputs and outputs [30, 39]. As the
mixing is only performed if all users agree on the transaction’s cor-
rectness, this approach is much more secure than involving a trusted
third party. However, single users can stall the mixing, which the
other users must be able to detect to re-run the mixing without the

https://github.com/COMSYS/anonboot

misbehaving user [39]. Another branch of cryptotumblers aims for
providing a distributed mixing service [31, 54, 55], i.e., mix users’
funds on their behalves without the risks involved with centraliza-
tion. While Mébius [31] achieves this via an Ethereum smart con-
tract, CoinParty [54, 55] implements a blockchain-external service
via a shuffling network and secure multiparty computation (SMC),
and thus can also be used for mixing cryptocurrencies without sup-
port for smart contracts, e.g., Bitcoin. In Figure 2c, we illustrate the
operation of such a CoinParty-like distributed cryptotumbler. Using
threshold signatures among the mixing peers prevents single adver-
saries from stealing funds, and secret-shared checksums are used
to hold misbehaving mixing peers accountable during CoinParty’s
shuffling phase [55], e.g., if attempting to perform attacks known
from shuffling networks (cf. Section 2.2). However, this additional
protection can only tolerate adversaries controlling a share fg <1/3
of the service’s privacy peers due to the application of SMC [4].

Takeaway. Although distributed cryptotumblers can increase the
user’s privacy, they either rely on smart contracts or are prone to
Sybil attacks, i.e., single adversaries mimicking a distributed service.
To the best of our knowledge, providing a technical medium to
securely bootstrap cryptotumblers is still an open problem [39].

3 SCENARIO AND DESIGN GOALS

Based on existing anonymity services and the lack of proper boot-
strapping processes, we now specify our scenario and design goals.

3.1 A Generalization of Anonymity Services

As we discussed in Section 2, technical means for securely boot-
strapping distributed anonymity services are currently lacking. For
a holistic solution resolving this lack of means to establish trust, we
derive our scenario from the diverse landscape of existing services.

We assume a group of privacy-aware users who seek to utilize an
anonymity service that increases their privacy on their behalf. To
provide sufficient security and privacy guarantees, the users require
that multiple independent operators of privacy peers jointly offer
distributed anonymity services. Due to only limited scalability of
network sizes of existing anonymity services, we assume that only
a few privacy peers (e.g., < 100) provide services to much larger
user groups. Service provision is thus prone to Sybil attacks.

To account for local user decisions, such as creating Tor circuits
(cf. Section 2.1) or a minimum number of independent peers jointly
providing a service, the user needs means to securely discover avail-
able peers and already established anonymity services. Furthermore,
she has to establish trust in the faithful setup of those services even
if she does now know the peer operators. Finally, the service dis-
covery must allow for pooling users’ anonymization efforts, as is
required for shuffling networks or cryptotumblers. Additionally,
we need to incentivize maintaining an honest majority of privacy
peers. However, we assume that a share of privacy peers will still
act maliciously and aim to, e.g., deanonymize users, stall the service,
or inflict other damages such as theft through cryptotumblers.

In conclusion, users need to be ensured that they only utilize
distributed anonymity services that act faithfully, i.e., the majority
of the respective peers are honest. However, especially the setup
and discovery of such services currently constitute weak points
that adversaries could exploit to infiltrate anonymity services.

3.2 Design Goals for Secure Bootstrapping

The goal of our work is to create a decentralized medium for boot-
strapping distributed anonymity services in a trustworthy manner
and allowing privacy-aware users to discover both available peers
and anonymity services. To achieve this goal, we identify the fol-
lowing main requirements and features.

(G1) Trustworthy Bootstrapping. Our medium must provide
technical means to establish trust in available anonymity services
and hence must be trustworthy itself. To this end, a decentralized
design is reasonable to eliminate the need for users’ trust in any ded-
icated medium operator. Furthermore, the medium must mitigate
Sybil attacks to prevent its infiltration through adversaries. Finally,
the medium must still remain in control over the setup of offered
anonymity services through a secure bootstrapping procedure.
(G2) Secure and Lightweight Service Discovery. Our medium
must only relay users to privacy peers and services that have been
bootstrapped in a trustworthy manner. Previous approaches have
proposed piggybacking node discovery for peer-to-peer systems
onto a well-established decentralized medium such as IRC [21]. For
such approaches, service discovery must limit its impact on the
host system to facilitate the adoption of the bootstrapping process.
(G3) Broad Applicability. In Section 2, we discussed the variety
of existing anonymity services. Consequently, we must account
for this variety and allow users to discover and utilize different
services for diverse applications. Finally, users should be able to use
anonymity services corresponding to their individual preferences.
(G4) Scalability. Sufficiently large user bases are crucial to achiev-
ing high privacy levels via anonymity services. Our medium must
thus effortlessly scale to large numbers of users and privacy peers.
(G5) Operator Incentives. Current honest anonymity services
are typically offered on a voluntary basis [16]. However, if the effort
of signaling honesty through our medium to publicly offer ano-
nymity services becomes burdensome for operators, the number of
volunteers might decrease. Hence, our medium must also consider
the option to compensate for operators’ efforts in its design.

4 ANONBOOT: A MEDIUM FOR SECURELY
BOOTSTRAPPING ANONYMITY SERVICES

In this section, we first provide an overview of AnonBoot and then
describe in detail how AnonBoot maintains a Sybil-resistant peer
repository on top of a public host blockchain through standard
transactions. Finally, we elaborate on how AnonBoot bootstraps
anonymity services from this repository, i.e., how we elect privacy
peers and then hand over control to the elected peers.

4.1 Design Overview

The main goal of AnonBoot is to provide a medium for securely
bootstrapping distributed anonymity services that typically consist
of only a few privacy peers. AnonBoot maintains a robust distributed
state of available privacy peers and bootstrapping requests without
storing privacy-compromising information. To this end, AnonBoot
relies on the immutable ledger of a public host blockchain as the
current state-of-the-art medium for communication and consensus
without the need to rely on special trust in particular peers. By
having privacy peers periodically advertise themselves on-chain
through proof of work (PoW), AnonBoot maintains a Sybil-resistant

Host
Blockchain

(—
Pulse
“*= Biock

Privacy
Peers

Periodic
Peer Ads

Connector

Spawn
4= Block

Service
Requests

Service
Request
Service
Request

New
+ puise

Connector

Users

Derive

i AnonBoot
” - Messages @

Connector

Local Common
AnonBoot State EEER

Peer
Repository

Local
Selection
-

MTMOOW>
©

SOAON

Peer
Statistics
Bootstrap
N Services
Service
———

Figure 3: In AnonBoot, peers periodically advertise themselves on the host blockchain while solving small PoW puzzles to
prevent Sybil attacks. Users can bootstrap different anonymity services, which are then utilized independently of AnonBoot.

peer repository. This way, the peer repository only contains recent
privacy peers and adversaries need to invest resources in maintain-
ing their influence rather than increasing it over time. AnonBoot
realizes trustworthy bootstrapping (G1) by dynamically electing
privacy peers based on these advertisements and further on-chain
entropy. Thereby, AnonBoot prevents adversaries from manipulat-
ing peer election to gain an advantage over honest operators.

All participants locally operate a connector for all interactions
with the host blockchain. The connector publishes new messages
to the host blockchain and monitors it for new events. Based on
these events, the connector updates AnonBoot’s state. In this work,
we detail how Bitcoin can be used as AnonBoot’s host blockchain
despite its very restricted intended ways to insert application-level
data to show that AnonBoot can operate on top of most blockchains.
Furthermore, the Bitcoin network is well-established with around
10 000 reachable nodes [52] vetting its blockchain and thus provid-
ing a strong trust anchor regarding AnonBoot’s privacy peers.

In Figure 3, we present an overview of AnonBoot’s bootstrap-
ping process in four steps: First, in Step (D, privacy peers advertise
themselves on the host blockchain. Subsequently, in Step), users
request bootstrapping new anonymity services from a random set
of advertised privacy peers. Next, in Step (3, all participants lo-
cally derive a common AnonBoot state. Finally, based on their state,
users can either (Step @) locally select privacy peers for personal
anonymity services without the need for full synchronization, or
(Step @) privacy peers bootstrap a new shared anonymity service.
We now provide a more detailed overview of these individual steps.
Periodic Peer Ads. In Step (D), AnonBoot creates a Sybil-resistant
peer repository by requiring privacy peers interested in providing
anonymity services to periodically issue advertisements on the host
blockchain. Peer operators need to periodically refresh their adver-
tisements at the start of each refreshment period, or pulse, while
solving a small PoW puzzle. This core element of AnonBoot estab-
lishes a Sybil-resistant peer repository as peer operators need to
invest their hardware resources at the start of each pulse to remain
in the peer repository. To mitigate the advantage adversaries may
gain through dedicated mining hardware, the exact design of the
PoW puzzles is a crucial parameter of AnonBoot (cf. Section 6.1).
Service Requests. In Step (2), privacy-aware users may issue ag-
gregatable on-chain service requests to request bootstrapping a
shared anonymity service, e.g., a shuffling network or a crypto-
tumbler, after a fixed-length negotiation phase. Service requests

specify the type of the anonymity service as well as service-specific
parameters such as minimum required sizes of anonymity sets.
Derive State. In Step (3), all participants locally process advertise-
ments and service requests from the host blockchain to derive and
verify AnonBoot’s current state. By locally processing all on-chain
service requests, all participants maintain a common service list. For
processing requests, AnonBoot defines a randomized peer election
that is inspired by blockchain sharding [22, 27, 53] to select random
subsets of compatible privacy peers, which then jointly provide
the requested service. Peer election is based on a pseudo-random
number generator that is seeded with tamper-resistant entropy
drawn from the host blockchain to enable all participants to locally
derive the same service list. After discarding invalid or delayed
messages, all participants obtain the same state, i.e., the current
peer repository and statistics about previously discovered peers.
Local Selection & Service Bootstrapping. Step (9 finalizes the
bootstrapping process provided by AnonBoot with two possible
actions for users. Either, users directly perform an instant local
peer selection only based on the peer repository (Step @), e.g., to
establish a Tor circuit. Alternatively, users browse the service list
(Step @) for securely bootstrapped anonymity services (G2). Since
all privacy peers derive the same state as users, they can check
whether they were elected to provide a shared anonymity ser-
vice and subsequently bootstrap these services by contacting other
elected privacy peers. In both cases, communication is initiated
through the AnonBoot connector, which then hands over the con-
trol entirely to the underlying anonymity protocol.

Our design ensures that AnonBoot only indexes anonymity ser-
vices that are created in a Sybil-resistant manner as long as the peer
repository itself consists of an honest majority. The maintenance
of an honest peer repository is therefore essential to AnonBoot’s
security. To increase the willingness of honest peer providers to
participate, AnonBoot can further decrease peer operators’ costs
by increasing the pulse duration, or existing anonymity services
can be augmented with means for financial compensation, e.g., via
anonymous micropayments [18]. We argue that the increased ro-
bustness against adversaries offered by AnonBoot is worthwhile
for privacy-aware users even if they are required to compensate
privacy peer operator’s costs. However, AnonBoot is explicitly also
operable by volunteers as long as its periodicity is tuned to pre-
vent their recurring costs from becoming prohibitively high. In the
following, we present AnonBoot’s protocol design in more detail.

0 8 16 24
[~ [_OP_RETURN_ | OP_PUSHDATA1 | Payload Length | « BTC Header
Protocol Identifier (=AB) | [Type [reserved|

p[iP[reserved

Version

Connector Public Key

J
IPv4/6 Address

[TCP Port
Service ID |

Structure of Peer Advertisements
s3sanbayf 914196 JO 2In3ONIG

Service-specific Capabilities

Nonce

Figure 4: AnonBoot can run on top of Bitcoin using
OP_RETURN transactions. Peer advertisements convey peers’
contact information, capabilities, and the required PoW. Ser-
vice requests bootstrap a service based on the capabilities
and using the nonce as further entropy for peer election.

4.2 Sybil-Resistant Index of Peers and Services

AnonBoot relies on its host blockchain to maintain its Sybil-resistant
peer repository and to instantiate new anonymity services based
on users’ requests. We now detail how AnonBoot can use Bitcoin
as its host blockchain, only relying on standard transactions. All
concepts carry over to other blockchains, especially to systems that
can process arbitrary messages on-chain through smart contracts,
e.g., Ethereum. After presenting the basic structure of AnonBoot’s
Bitcoin-compatible messages, we thoroughly describe the message
layout of peer advertisements and service requests. Finally, we fur-
ther elaborate on how AnonBoot enforces periodically refreshing
messages to remain Sybil-resistant as well as fair toward honest
privacy peers, and how it reduces its impact on the host blockchain.

Basic Message Layout. In Figure 4, we show the generalized
structure of a Bitcoin-compatible AnonBoot message. Those mes-
sages are either peer advertisements or service requests. All messages
consist of OP_RETURN Bitcoin transactions, which are allowed to
carry up to 80 B of payload data [28]. This structure results in an un-
avoidable 3 B-long Bitcoin header consisting of the OP_RETURN oper-
ation and the payload’s length [6]. The following AnonBoot header
contains a protocol identifier (AB), as is common for OP_RETURN-
based protocols [3], as well as the protocol version and message
type. For extensibility reasons, we reserve four bits for future use.

Peer Advertisements. Privacy peers join AnonBoot’s peer repos-
itory by periodically refreshing and publishing peer advertisements
to the host blockchain. As we detailed in Figure 4, peer advertise-
ments convey three main pieces of information for users and other
privacy peers: (a) the peer’s contact information, (b) its capabilities,
and (c) a solution of its POW puzzle. While sharing their capabilities
and contact information is required for coordinating the peer elec-
tion (Section 4.3), ensuring Sybil resistance via peer advertisements
is crucial for AnonBoot’s promised security properties.

First, each privacy peer announces the contact information of its
connector so that users and other privacy peers can contact it se-
curely in the following. The privacy peer announces its connector’s
public key as well as a pair of IP address and port for incoming

connections. This indirection through a connector enables a uni-
fied connection interface for all anonymity services supported by
AnonBoot. However, if the advertised service’s required contact
information fits into the peer advertisement, the privacy peer may
set the D-flag to indicate the direct reachability of the service, i.e.,
the connector can be bypassed. By setting the IP-flag, the privacy
peer toggles whether it is reachable via IPv4 or IPv6, respectively.
Similarly, we reserved six additional bits for future use to remain
flexible regarding other formats of contact information.

Second, each peer advertises its capabilities. These capabilities
consist of a service identifier denoting which anonymity service the
privacy peer supports as well as service-specific capabilities. This
design supports the integration of a diverse landscape of anonymity
services (cf. Section 2) as well as future services into AnonBoot and
thus respects our requirement for broad applicability (G3). These
service-specific capabilities help users request services or locally
select privacy peers that suit their individual needs. While smart
contract-based host blockchains can process arbitrary messages
and thereby enable the fine-grained expression of privacy peers’
capabilities, the space limitations of Bitcoin’s OP_RETURN payloads
restrict this expressiveness. For instance, creating Tor circuits relies
on potentially complex relay descriptors [43] that easily exceed
available space and otherwise would impose a large overhead on
the host blockchain. We make AnonBoot operable even in such
restricted environments by allowing privacy peers to advertise
coarse-grained capabilities as a browsing aid that is subsequently
verified and refined via the participants’ connectors.

Finally, privacy peers need to include a small PoW in their peer
advertisements to thwart Sybil attacks. To be effective, the PoW
must be cryptographically tied to the peer’s identity as well as a
recent point in the host blockchain to prevent an adversary from
pre-computing or reusing peer advertisements. Only then, the PoW
puzzle ensures that no peer can create disproportional numbers of
peer advertisements compared to its hardware resources.

Service Requests. Users issue service requests to express that they
want AnonBoot to bootstrap a new anonymity service correspond-
ing to their requirements. Service requests closely resemble peer
advertisements in their structure (cf. Figure 4), but they do not
contain contact information. Further, the remaining fields are inter-
preted slightly differently. Through the capabilities, users express
what service they intend to use as well as minimum requirements
for the service to be bootstrapped. AnonBoot only allows users to re-
quest distinct classes of services through the capabilities to prevent
a highly fragmented service list. In contrast to privacy peers, users
do not solve a PoW puzzle in their service requests. Instead, users
choose a random nonce, which AnonBoot will incorporate into its
peer election to subsequently bootstrap the requested services. This
way, users can further thwart attempts by adversaries to interfere
with the peer election. A single service request will cause AnonBoot
to instantiate the requested service to be used by an arbitrary num-
ber of users. Hence, AnonBoot easily scales to large user bases (G4).
However, users questioning the existing requests’ randomness can
issue redundant service requests and thus contribute to the entropy
used for the peer election. AnonBoot aggregates redundant requests
or similar requests superseded by service requests with stronger
requirements, i.e., all requests’ nonces influence the peer election,

Genesis
Block
Pulse Block
Spawn Block
So

Use recent pulse for
fresh PoW puzzles

Pulse Duration Lp

Negotiation Phase Ln Ongoing Pulse

Pulse Block
P4

Spawn Block
Si

Use recent pulse for
fresh PoW puzzles

Figure 5: Peer advertisements are written to the host blockchain and must be renewed by the AnonBoot peers after each pulse,
incorporating PoW over the most recent pulse block to ensure freshness. Only peer advertisements published during the
negotiation phase are considered valid, where miners are advised to optionally not exceed the desired capacity of AnonBoot
messages per block. New anonymity services are bootstrapped after the negotiation phase based on the next spawn block.

but only one service with the most restrictive capabilities of all
aggregated service requests will be bootstrapped. At this point,
we leave defining strategies to simultaneously instantiate multiple
similar services as future work.

Pulse-based Message Release. In Figure 5, we illustrate Anon-
Boot’s soft-state approach, which defines a pulse of length L, in
terms of block height on the host blockchain that triggers refresh-
ing peer advertisements and accepts new service requests. Every p
blocks, a new pulse starts and the most recent block on the block-
chain serves as the new pulse block. Now all peers start to create
their PoWs incorporating (a) their connector’s public key, (b) a ref-
erence to the pulse block to ensure the freshness of advertisements,
and (c) a nonce solving the PoW. To extract the maximum entropy
from the pulse block, AnonBoot can apply extraction techniques,
e.g., as proposed by Bonneau et al. [10].

For ideal fairness, all peers would have the same time window
for providing a valid PoW. However, AnonBoot must be able to cope
with a potential backlog of valid peer advertisements since we have
no means to reliably enforce prioritized consideration of AnonBoot
messages after a pulse block was being mined. Thus, we tolerate
peer advertisements to be delayed throughout a negotiation phase of
length L after each pulse. This length should be chosen as short as
possible to prevent a devaluation of PoWs provided by honest peers,
but it simultaneously should allow for including all anticipated peer
advertisements in time even if single miners deliberately ignore
AnonBoot messages. Furthermore, the negotiation phase provides
some tolerance against accidental blockchain forks. While peers
must recompute their PoW if the host blockchain discards the pulse
block, a fork does not require AnonBoot to skip an entire pulse.

The tunable duration of each pulse with its associated negotia-
tion phase also allows to adjust the burden put on its participants as
well as its host blockchain in a fine-grained manner and thus allows
keeping the service discovery lightweight (G2). First, AnonBoot
disincentivizes excessive creation of messages as honest peers will
ignore all messages outside of a pulse’s negotiation phase. Second,
increasing L, without changing Ly reduces the number of mes-
sages required to maintain the peer repository, i.e., costs for all
peers are reduced, without weakening AnonBoot’s Sybil resistance
and only at the cost of the peer repository becoming less flexible.
However, AnonBoot still releases messages in bursts at the start
of each pulse. If these occasional message bursts prove to be bur-
dening the host blockchain, AnonBoot-aware miners can follow

an optional guideline to accept messages only up to a per-block
capacity ¢ € (0, 1] without impacting AnonBoot negatively. Further-
more, more awareness from miners on the host blockchain has the
potential to further reduce costs of AnonBoot peers and thereby
lower the bar for altruistic peer operators. Either through updated
consensus rules or novel, AnonBoot-tailored blockchain designs,
miners can be incentivized to reserve up to c-100% of their blocks
during each negotiation phase for including AnonBoot messages
at no costs. For instance, full nodes may then reject blocks that ig-
nore a current backlog of pending AnonBoot messages. We further
quantify how the host blockchain can steer the impact of Anon-
Boot in Section 7.2. While this approach requires that miners are
not entirely oblivious of AnonBoot, it ensures that AnonBoot can
operate at minimal costs without burdening the host blockchain.

4.3 Bootstrapping Secure Anonymity Services

All privacy peers that regularly refresh their peer advertisements
are eligible for providing anonymity services. In this section, we de-
scribe how AnonBoot facilitates bootstrapping anonymity services
based on the current pulse and its resulting peer repository. After
briefly describing how control is handed over from AnonBoot to
its bootstrapped services, we consider users locally picking privacy
peers directly from the peer repository and then provide details on
how AnonBoot elects privacy peers to bootstrap publicly available,
distributed anonymity services.

Bootstrapping Users and Privacy Peers. AnonBoot provides
only a medium for establishing and finding trustworthy distributed
anonymity services. Its responsibility thus also involves enabling
users to contact privacy peers that provide the requested anonymity
service. In most cases, peer advertisements will announce the con-
tact information of the involved privacy peers’ AnonBoot connector.
During the handover of control via her own connector, the user ver-
ifies the correctness of each peer’s contact information, especially
whether it possesses the private key corresponding to its adver-
tisement. If successful, the connectors perform a service-specific
handover so that further interaction is now performed entirely
according to the anonymity service protocol. In cases where indi-
rection through the connector is undesired, privacy peers may use
the D-flag (cf. Section 4.2) to signal that the contact information
directly corresponds to the endpoint of its offered service. However,
a Bitcoin-backed AnonBoot only supports OP_RETURN-based direct
advertisements if they can hold all required contact information.

Blockchain Entropy Local Election Process Bootstrapped Services

Service || Service || Service
Request || Request|| Request

Nonce Nonce Nonce

ook | [P0
Block [1

Entropy 72 :I

Nonce Nonce

'gervicet r‘?ervicet

eques! eques!
= = J

Figure 6: A pseudo-random peer election based on block-
chain entropy enables all participants to locally compute
the same service lists from the peer repository.

Depending on the particular anonymity service (cf. Section 2),
users either contact (a) only one privacy peer, (b) all privacy peers
of one anonymity service, or (c) may only indirectly contact subse-
quent privacy peers for security reasons, e.g., when establishing Tor
circuits. In cases where a direct connection to peers is prohibited,
users can interleave bootstrapping with the anonymity service and
incrementally contacting the new peers’ connectors. For instance,
Tor builds circuits hop by hop [46], and thus users can contact
the connectors of subsequent Tor nodes via partially established
circuits, which aligns well with Tor’s design [46].

Local Selection of Peers. The peer repository’s Sybil resistance
(cf. Section 4.2) makes it a suitable replacement for centrally main-
tained directories. Privacy-aware users individually monitor peer
advertisements, which enable them to instantly select privacy peers
based on their local view on the peer repository, i.e., this peer selec-
tion is independent of AnonBoot’s pulses. Furthermore, users may
base their decisions on individual security and privacy preferences,
e.g., they only select privacy peers who recently advertised them-
selves, or they may locally keep track of peer statistics, such as
their first occurrence or how regularly they refresh advertisements.

When selecting privacy peers, the user verifies the correctness
of those peers’ advertisements and contacts their connectors. To
this end, users only have to passively monitor the host blockchain
for valid peer advertisements from the current pulse. Each peer that
(a) performed a valid and fresh PoW, (b) is reachable via its connec-
tor’s contact information, and (c) advertised a valid corresponding
public key is eligible to be selected by the user. Ultimately, the user
randomly selects a sample of peers she considers eligible replacing
any inaccessible peers until the service can be provided correctly.
Service Requests For Peer Election. AnonBoot derives the de-
mand for anonymity services from users’ service requests dur-
ing the negotiation phase (cf. Section 4.2). Based on these service
requests, we must ensure that peers are chosen randomly in a
transparent manner to provide a secure bootstrapping process. We
achieve this requirement through a locally replicable peer election
process that relies on a pseudo-random number generator (PRNG)
and seeds derived from random values on the host blockchain. This
way, all participants obtain the same list of elected peers for each
distinct service request for subsequent coordination.

In Figure 6, we present AnonBoot’s peer election in more detail.
To derive the seed, we rely on two sources of entropy. On the one
hand, users submit 8 B-long nonces with their service requests.
We aggregate the nonces of all matching service requests during
one pulse, i.e., requests for the same anonymity service with the

compatible capabilities. This approach allows a bootstrapping of
anonymity services with a single service request for efficiency while
italso offers privacy-aware users the chance to directly influence the
peer election’s randomness without spawning concurrent services
that are potentially under-utilized. On the other hand, we consider
the spawn block of each pulse, i.e., the first block after the pulse’s
negotiation phase has concluded. Thus, an adversary cannot craft
nonces to bias the peer election without mining the spawn block.
We incorporate entropy from this block into the seed for the PRNG
to ensure its freshness. All participants locally use the PRNG with
this seed to elect peers for each service request and select a pseudo-
random sample of privacy peers from the peer repository that is
compatible with the service request. A common ordering of the
peer advertisements ensures that all participants select the same
samples. The peer election allows all participants to compute the
same service list and thus synchronize in a decentralized manner.
Hence, AnonBoot helps users find the required entry points for
using anonymity services, and the privacy peers learn whom to
connect to when being elected to join a specific anonymity service.

Conclusion of Design. Our design of AnonBoot enables trust-
worthy bootstrapping (G1) since (a) it operates on top of a public
host blockchain in a decentralized manner, (b) it mitigates Sybil
attacks through periodically refreshed and PoW-based peer adver-
tisements, and (c) it realizes a secure bootstrapping process using
entropy from users as well as the host blockchain’s mining process.
By exchanging messages through the host blockchain, our design
facilitates secure service discovery with only a low impact on the
host blockchain due to AnonBoot’s parametrizable pulse length and
per-block capacity (G2). Our protocol-agnostic message structure
and handover of control moreover ensure a broad applicability of
AnonBoot (G3). Finally, AnonBoot scales to large user bases as sin-
gle service requests suffice to bootstrap anonymity services usable
by arbitrarily many users (G4). In the following, we outline how to
integrate different anonymity services into our medium and how
AnonBoot can incentivize honest participation of privacy peers to
satisfy the remaining design goal (G5).

5 REALIZING USE CASES IN ANONBOOT

After presenting the general medium provided by AnonBoot, we
now discuss how the established anonymity services, which we
presented in Section 2, can operate on top of this medium regarding
the achievable benefits, the technical integration, and how to finan-
cially incentivize honest privacy peers’ participation (G5). First, we
discuss how AnonBoot’s peer repository can realize a distributed
directory service for anonymity networks. Subsequently, we dis-
cuss the bootstrapping of shuffling networks and cryptotumblers,
as both behave similarly in AnonBoot.

5.1 Decentralized Onion Routing via AnonBoot

AnonBoot’s Sybil-resistant peer repository constitutes a crypto-
graphically controlled replacement for otherwise logically central-
ized directory services. Hence, our approach is beneficial if users
expect operators to be corruptible or malicious. Nevertheless, Anon-
Boot must allow users to still make informed choices about the
establishment of circuits, and we must account for the infeasibility
and insecurity of users directly contacting all peers of a circuit.

Benefits. In currently deployed anonymity networks, the directory
service is essentially centralized. For example, Tor is pre-shipped
with a hard-coded list of currently ten directory authorities [44],
which jointly maintain its directory [43]. This approach leaves
current anonymity networks vulnerable to viable attacks on the
directory service [16]. Contrarily, AnonBoot allows creating a fully
decentralized directory that is implicitly maintained through the
host blockchain and locally verifiable by all AnonBoot participants.
Based on this directory, users can locally select privacy peers for
their circuits as they currently do through Tor’s directory service.

Peer Advertisements. Privacy peers can advertise themselves as
onion routers. However, Tor’s directory service maintains extensive
meta information about available peers [43], which in most cases
cannot be encoded in a single OP_RETURN-based peer advertisement
as required when AnonBoot shall operate on top of Bitcoin. Among
this meta information is the peer’s contact information, crypto-
graphic identity, available bandwidth, supported features, and exit
policies, i.e., access control list for connections to hosts on the pub-
lic Internet [43]. We thus make use of the peer advertisements’
capabilities (cf. Section 4.2) to encode an overview of the peers’ full
meta information. This overview is a coarse summary of a privacy
peer’s advertised capabilities and should be indicative of its actual
capabilities. Users can then browse available privacy peers based
on these advertised capabilities without additional delays. When
establishing a new circuit, the user should then request the chosen
privacy peers’ full server descriptors, verify that this descriptor
matches the previously advertised capabilities, and check that the
full descriptor is also compatible with the user’s requirements.

Bootstrapping Phase. The circuits users establish within ano-
nymity networks are intended to provide sender-receiver anonym-
ity. Hence, a critical constraint is that users only communicate di-
rectly with the first peer of a circuit. AnonBoot naturally integrates
with the resulting incremental circuit establishment of Tor [46]: The
user incrementally establishes the next hop of her new circuit based
on her selected peers’ advertisements. She contacts the new peer
through her partially established circuit and attempts to hand over
control to the Tor client through the connector. If this handover of
control fails, e.g., due to an invalid advertisement, she terminates
the connection to that peer and selects a replacement privacy peer.
Although an honest majority among privacy peers reduces the
overhead of such security back-offs, enabling privacy peers to build
up a positive reputation across consecutive peer advertisements
promises to further reduce respective risks for users.

Incentives. If honest providers of onion routers must be compen-
sated for investing their resources to periodically solve PoW puzzles
and advertise themselves in AnonBoot, cryptocurrency-based ser-
vice fees are a promising means for creating operator incentives.
However, on-chain payments bear high risks of implicitly recording
information about users’ circuits irrevocably. We thus propose that
users and privacy peers create anonymous unidirectional micropay-
ment channels [18]. Although micropayment channels require an
on-chain setup, users can protect their privacy due to the concur-
rent setup transactions of all users. This way, users can pay peers
who advertise themselves via AnonBoot for their service.

5.2 Shuffling Networks and Cryptotumblers

AnonBoot’s main advantage is to provide a medium for bootstrap-
ping distributed anonymity services and to ensure their privacy
peers’ independence through its PoW puzzles and secure peer elec-
tion. Privacy-aware users thus gain the opportunity to rely on
secure on-demand anonymization for, e.g., message shuffling or
increasing their financial privacy.

Benefits. Distributed systems that outsource responsibility to a set
of peers typically rely on secure multi-party computation (SMC) [1,
55]. Unfortunately, scalability limitations of those SMC protocols
hinder distributing responsibility among large sets of privacy peers.
Without carefully selecting the responsible privacy peers, insider
adversaries thus can gain power and cause harm relatively easily.
However, our considered use cases of anonymous message disclo-
sure and tumbling cryptocurrencies lack a trustworthy peer selec-
tion process, and adversaries are highly incentivized to attack such
systems. For example, an adversary could easily spawn numerous
interconnected privacy peers, and thereby mimic a distributed cryp-
totumbler, tricking users into participation. AnonBoot provides the
ingredients to cryptographically ensure through its Sybil-resistant
peer repository and locally verifiable peer election that an adversary
cannot bootstrap malicious services. Hence, privacy-aware users
reduce their individual risks when utilizing distributed anonymity
services bootstrapped via AnonBoot.

Peer Advertisements. The capabilities privacy peers need to ad-
vertise highly depend on the provided anonymity service. Similarly
to our previous use case, privacy peers should facilitate the users’
browsability of anonymity services by advertising supported poli-
cies or security parameters. However, AnonBoot does not consider
the service-specific capabilities during its peer election but requires
the service identifier used (cf. Section 4.2) to ensure compatibility
among privacy peers advertising the same service.

Bootstrapping Phase. Privacy peers are partitioned by the identi-
fier of the anonymity service they advertise to ensure compatibility
during the bootstrapping process. By locally replaying the peer
election, each privacy peer gets to know (a) whether it was elected
to provide a service, (b) which peers are elected to bootstrap the
same service instance, and (c) the peer’s logical position within the
new network. Hence, privacy peers can independently configure
and bootstrap the anonymity service. Currently, we take a conser-
vative approach and declare services stale after a couple of pulses
to mitigate the impact of privacy peer churn and malicious services
bootstrapped by chance. However, conceptually, AnonBoot also
supports bootstrapping long-lived anonymity services.

Incentives. Since these use cases do not prohibit a direct connec-
tion between users and elected privacy peers, we can simplify our
payment scheme proposed in Section 5.1 and instead require users
to pay an upfront fee (e.g., as proposed by CoinParty [55]). We
argue that the increased security provided by AnonBoot is worth
compensating the privacy peer’s efforts of solving PoW puzzles.

Takeaway. In conclusion, AnonBoot provides a viable medium for
bootstrapping anonymity services from a diverse set of available
applications as it simultaneously mitigates malicious influences
and compensates honest operators if privacy peers.

6 SECURITY DISCUSSION

We assess AnonBoot’s robustness against adversaries by discussing
the implications of incorporating PoW into peer advertisements
and arguing that active adversaries cannot bias the peer election.

6.1 Proof of Work Against Sybil Attacks

Requiring a PoW in each peer advertisement hampers an adver-
sary’s effort to control large portions of the peer repository and
thus his overall influence. However, the choice of the PoW scheme
is paramount for AnonBoot’s resilience against Sybil attacks. We
thus highlight the need for an appropriate PoW scheme but leave
its final instantiation to be adapted to users’ needs in future work.

Particularly, AnonBoot’s PoW scheme must ensure that opera-
tors can only create peer advertisements at rates corresponding to
their number of physical devices controlled while not excluding
honest operators using commodity hardware. While specialized
hardware is known to provide huge advantages for CPU-bound PoW
schemes such as Bitcoin’s scheme, memory-bound PoW schemes
such as Ethereum’s Ethash [42, 51], Cuckoo Cycle [47], Equihash [5],
or RandomX [41], which was recently adopted by Monero [40], are
promising candidates to be adapted for utilization with AnonBoot.
For instance, based on openssl speed, we observe that a server
(two Intel Xeon Silver 4116, 187.39 GiB RAM) outperforms a com-
modity desktop PC (Intel Core 2 Q9400 CPU, 7.67 GiB RAM) by two
orders of magnitude for Bitcoin’s HASH256-based PoW scheme.
Further, Bitcoin mining hardware [7] reportedly outperforms our
commodity PC by eight orders of magnitude, which clearly under-
lines the potential advantage of adversaries relying on specialized
hardware to forge advertisements using CPU-bound PoW schemes.

Contrarily, initial measurements using Ethash (via geth’s CPU-
based mining) and RandomX indicate that the same server only
achieves a mere 7.5X (12.7X) speed-up over the desktop PC in terms
of achievable hash rate using this PoW scheme. Thus, relying on
memory-hard PoW schemes is preferable to prevent adversaries
with powerful devices or, e.g., a botnet, from increasing their influ-
ence on the peer repository in an incommensurate manner [5].

Finally, we address the challenge of steering the PoW puzzles’ dif-
ficulty to account for improvements in hardware capabilities. In con-
trast to cryptocurrency mining, AnonBoot’s peer advertisements
have no inherent concurrency, i.e., the size of the peer repository
does not influence the required difficulty for the PoW. Assuming an
honest majority, we can expect that privacy peers have an interest
in keeping an appropriate PoW difficulty for security reasons. Thus,
we can dedicate unused bits in the peer advertisements (cf. Sec-
tion 4.2) to enable voting on increasing the difficulty. Privacy peers
would then update their local threshold for accepting the PoW in
peer advertisements based on votes of the (honest) majority.

Takeaway. Utilizing a simple CPU-bound PoW scheme for our
puzzles would significantly impact AnonBoot’s security proper-
ties. Contrarily, memory-bound PoW schemes constitute a secure
building block to maintain a Sybil-resistant peer repository. As for
existing systems, such as Tor or Bitcoin, the reliability of Anon-
Boot’s peer repository then depends on maintaining an honest ma-
jority, either on a voluntary basis or through operator incentives.
Finally, we can further leverage this honest majority to implement
a self-regulated adaption of the puzzles’ difficulty.

Share of 1/3-Infiltrated Networks (1000 Peers in Repository)

B 4 privacy peers
90 16 privacy peers
80— | ™™ 31 privacy peers
70— | ™ 100 privacy peers
r | robustness threshold
= cxpected share

Adversary Success Rate [%
o
<)
1

0 5 10 15 20 25 30 333 35 40 45 50
Adversary-controlled Peers fg [%)]

Figure 7: The success rate of an adversary to 1/3-infiltrate ser-
vices by chance can be kept below the robustness threshold
Ty;3 for fr <30%, i.e., peer election remains robust for rele-
vant scenarios involving SMC-based anonymity services.

6.2 Security of Bootstrapped Services

The core design goal of AnonBoot is to securely bootstrap dis-
tributed anonymity services. We have already shown that Anon-
Boot can maintain a Sybil-resistant peer repository, i.e., adversaries
cannot control a disproportional fraction of the peer repository.
However, adversaries can still enter the peer repository as long as
they can create a valid PoW. We now highlight that AnonBoot’s peer
election is robust against adversarial bias and that bootstrapped
anonymity services can tolerate a share of adversarial privacy peers.
Security of Local Peer Selection. Anonymity services which
rely on local peer selection only require the Sybil resistance pro-
vided by AnonBoot’s peer repository (cf. Section 6.1). However, pri-
vacy peers are not always treated equally: For example, in Tor, users
change their first relays, i.e., guard nodes, only infrequently [26]
and they can only use exit nodes that support their requests [16]. By
encoding the privacy peers’ capabilities accordingly (cf. Section 4.2),
users can respect these properties when establishing circuits. The
peer repository hence constitutes a secure alternative to current
directory services provided by trusted third parties.
Robustness of Peer Election. AnonBoot’s peer election must
properly protect its users, i.e., bootstrap secure anonymity services.
To assess the influence of an adversary, we consider his chance of
infiltrating an anonymity service during peer election based on the
share of privacy peers he controls. An adversary successfully infil-
trates an anonymity service if he controls a share fs >t; of that ser-
vice’s privacy peers, exceeding its infiltration threshold ty,i.e., he can
defy the service’s underlying security guarantees. E.g., a malicious
adversary infiltrates any SMC-based anonymity service when con-
trolling fs>1/3 of the peers [4]. Under this notation, we consider
peer election to be robust if adversaries cannot increase their chance
of infiltrating services beyond their share fg of privacy peers in the
peer repository. More formally, assuming that no adversarial share
of the peer repository exceeds a threshold tg, we define a robustness
measure R(tr, tr) = 1-Pr(fs >t | fr <tr). We further define that
the peer election is robust iff Pr(fs >t1 | fr <tr) < tgr =: Ty holds,
ie., T1 = tg can be interpreted as a robustness threshold against
tr-infiltration. For instance, an adversary controlling up to fg <10%
of the peer repository should only have a chance of Ty = 10% to
tr-infiltrate an anonymity service.

Figure 7 highlights AnonBoot’s robustness regarding SMC-based
anonymity services, i.e., ty =1/3 [4], which can tolerate up to | n/3]

adversary-controlled privacy peers. For desired networks consist-
ing of 4, 16, 31, and 100 peers (i.e., t; = 1,5, 10, 33) respectively,
we measured the success of an adversary controlling a growing
share fg of the peer repository to infiltrate anonymity services
by chance due to our peer election. To extract entropy from the
pulse’s spawn blocks, we rely on the Merkle tree root. More secure
entropy extraction can be achieved by applying more sophisticated
randomness extractors [10]. For our evaluation, we assume a peer
repository consisting of 1000 peers, randomly elect peers for 100 000
anonymity services for each scenario, and count the number of
1/3-infiltrated services. We also highlight the robustness threshold
for comparison and provide the expected shares of 1/3-infiltrated
services based on combinatoric considerations.

Our evaluation reveals two major findings: First, our peer elec-
tion is fair in that it almost perfectly yields the expected distribution
of 1/3-infiltrated services when electing honest and dishonest peers
uniformly at random. Second, the peer election remains robust as
long as the adversary controls fr <25% of the peer repository. For
a growing power of the adversary, AnonBoot cannot guarantee
robustness, although larger anonymity services yield better pro-
tection if the adversary controls a share of at most fg <30%. For
all fr >1/3, AnonBoot is not robust anymore as the adversary can
infiltrate most SMC-based services. However, in those cases, his
control of the peer repository exceeds the infiltration threshold for
SMC-based services; thus, we consider the peer repository insecure.

AnonBoot relies on entropy from the host blockchain to seed
its PRNG for peer election. Adversaries are thus tempted to influ-
ence the seed by interfering with the on-chain data to increase
their chances of infiltrating anonymity services. Our rationale for
AnonBoot’s robustness only holds if we can effectively prevent
such interference. As we described in Section 4.3, we include user-
submitted entropy into the seed derivation to ensure that seeds are
not entirely determined by the miners of AnonBoot’s host block-
chain. However, by incorporating the spawn block, we, in return,
drastically limit the capabilities of an adversary. Namely, the ad-
versary must (a) successfully mine the spawn block S; for pulse P;,
while (b) crafting this block to yield, in conjunction with the user-
supplied entropy, a biased pre-image of a favorable seed, which
is (c) derived from a cryptographic hash function. Assuming that
no adversary possesses the computing power to control the host
blockchain, we deem this kind of attack economically infeasible as
honest mining is more profitable for the adversary. In the future,
we could also adapt AnonBoot to consider multiple consecutive
spawn blocks to further thwart the influence of adversaries.

Security of Handover Process. For most anonymity services,
AnonBoot requires indirection through the connector when first
establishing connections. During this handover process, each par-
ticipant’s connector has to authenticate all privacy peers based on
the public key previously announced in the respective peer adver-
tisements. Hence, users only connect to privacy peers controlled by
operators that created valid and distinct peer advertisement. The
adversary thus cannot launch Sybil attacks through this indirection.

Denial of Service (DoS). Due to our secure local peer selection,
robust peer election, and secure handover primitives, the security
of utilizing bootstrapped anonymity services only depends on the
security guarantees offered by those services. While AnonBoot

prevents adversaries from infiltrating anonymity services with
high probability, distributed services are still prone to DoS attacks,
effectively preventing proper anonymization. However, we argue
that the anonymity services currently covered by AnonBoot can
cope with such attacks: First, AnonBoot allows for the efficient
creation of circuits for anonymity networks. Hence, the limited
influence of single stalling relays does not significantly impede the
users’ privacy. Second, CoinParty, our investigated cryptotumbler,
detects and excludes stalling peers as long as adversaries did not
infiltrate at least 1/3 of the peers of the CoinParty instance’s mixing
network [55]. Finally, while traditional shuffling networks do not
provide protection against DoS attacks, extending them with the
measures taken by CoinParty achieves the same level of protection.
Thus, our peer election does not directly thwart DoS attacks, but
their impact on our considered anonymity services is highly limited.

Takeaway. In conclusion, the peer election yields trustworthy
anonymity services as long as the majority of eligible privacy peers
contribute honestly to providing these services, which we ensure
through our Sybil-resistant peer repository and operator incentives.

7 PERFORMANCE EVALUATION

We demonstrate AnonBoot’s feasibility by discussing its required
synchronization times and its impact on its host blockchain.

7.1 Time Overheads

To continually monitor AnonBoot’s state, participants should main-
tain a local copy of its host blockchain. However, we only rely on
the correctness of the host blockchain’s PoW as AnonBoot’s trust
anchor. Hence, while constrained devices may rely on a trusted
source to provide a correct state, e.g., a trusted IoT gateway [20],
more powerful devices preferably maintain their AnonBoot state
themselves. We again consider Bitcoin as our working example for
a host blockchain and highlight how initial synchronization with
AnonBoot differs from a full synchronization with Bitcoin. Since
the validity of peer advertisements typically expires in AnonBoot,
as with block-pruning approaches [29] participants only have to
download and verify the chain of Bitcoin’s block headers and pro-
cess only a few recent full blocks to derive their state by searching
for AnonBoot-related OP_RETURN transactions. The required num-
ber of blocks to process depends on the pulse length L, the validity
period of single peer advertisements, and the maximum lifespan
of bootstrapped anonymity networks. Even if bootstrapped ser-
vices remain active indefinitely (cf. Section 5.2), new users can still
start synchronizing from only recent blocks and afterward discover
older services from the remaining blocks in the background. After
this initial synchronization, participants actively monitor the host
blockchain for new AnonBoot messages. This overhead is negligible
for Bitcoin as new blocks are only mined every ten minutes [48].
This potentially slow block creation interval, however, intro-
duces unavoidable delays for the bootstrapping of new anonymity
services as services are only created once a pulse’s spawn block has
been mined (cf. Figure 5). For instance, a pulse length of L, = 12
blocks and a negotiation phase of Ly = 3 blocks on top of Bitcoin
means that privacy peers have at most 30 min to solve their PoW
puzzle, but in the worst case users have to wait up to 2 h until their
requested anonymity service starts bootstrapping. Regardless, our
relevant use cases of shuffling networks and cryptotumblers are

Blockchain Footprint of AnonBoot

Per-Block Capacity
= 5% =— 50%

10% =——100%
—25%

Blocks Required [#]
1T 1T

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
Messages per Pulse [#]

Figure 8: AnonBoot scales to thousands of messages per
pulse with only small impact on Bitcoin as its exemplary
host blockchain even for constrained per-block capacities.

latency-tolerant and sometimes even deliberately stretch their oper-
ation over time to further increase the level of achieved privacy [55].
If more timely service utilization is required, users can consider
services valid for longer periods, thereby reducing the impact of
the inflicted one-time overhead. In this case, users have to trade
off delays against security as longer validity periods devalue the
protection offered by periodic PoW puzzles.

Contrarily, local peer selection only depends on individual user
decisions and thus only relies on knowing a recent valid state of the
peer repository, i.e., full synchronization up to the most recent pulse
is desirable but not required. Namely, users can instantly sample
privacy peers based on their current state, and thus AnonBoot
preserves the low-latency requirement of anonymity networks.

Takeaway. We conclude that AnonBoot (a) has low synchroniza-
tion overhead, (b) introduces feasible latencies for bootstrapping
anonymity services, and (c) supports instant local peer selection.

7.2 Small Blockchain Footprint and Low Costs

We now show that AnonBoot realizes lightweight service discov-
ery (G2) by assessing its impact on the host blockchain. We measure
the blockchain footprint of AnonBoot using Bitcoin’s regression
test mode. As we discussed in Section 4.2, the per-block capac-
ity ¢ helps to trade off how much transaction bandwidth AnonBoot
consumes and the duration Ly of the negotiation phase.

In Figure 8, we illustrate how the minimal required Ly grows
depending on the number of used AnonBoot messages and the ca-
pacity c. On average, an OP_RETURN transaction for one peer adver-
tisement or user request has a size of 307 B and a weight of 901 WU
(weight units). Since the introduction of Segregated Witnesses, the
notation of block weight (limit 4 million WU) superseded the old
measure of the block size (limit 1 MB) [8]. For our measurements,
we fill Bitcoin blocks while respecting the allowed capacity c. Our
results reveal that AnonBoot easily scales to large peer repositories
and user bases with only a small footprint on Bitcoin. When using a
per-block capacity of only 10 %, AnonBoot can support up to 10 000
messages during a negotiation phase with Ly = 23.

Peer repositories of size 1000, which are already sufficiently
secure as we demonstrated in Section 6.2, have an only negligible
impact on Bitcoin: For a small capacity of only 5 % to account for
Bitcoin’s low overall transaction throughput the negotiation phase
still concludes after Ly = 5 blocks with space for up to 109 user
requests. We expect only a few user requests as a single request

suffices to bootstrap a service. The scalability then only depends
on the upper-layer protocol used and is independent of AnonBoot.

Finally, we briefly consider the costs inflicted by fees when pri-
vacy peers and users publish their OP_RETURN transactions to lever-
age Bitcoin’s consensus properties. Albeit fluctuating, the current
(March 8, 2020) recommended fee is 6 satoshi per byte (1 satoshi
=10"8 BTC) [17], and Bitcoin’s market price is around 9067 USD [9].
Hence, a peer advertisement currently costs an operator 0.17 USD,
which AnonBoot can amortize through larger pulse lengths while
keeping the negotiation phase, e.g., of multiple days.

Takeaway. Overall, our analysis shows that AnonBoot can boot-
strap over 100 services from a peer repository of size 1000, serving
potentially thousands of users, and can scale well beyond this size
with only a small impact on Bitcoin as its host blockchain.

8 RELATED WORK

The bootstrapping problem and Sybil attacks are inherent for dis-
tributed protocols. In 2007, Knoll et al. [21] surveyed different ap-
proaches to finding entry points for established peer-to-peer net-
works. Among other approaches, the authors proposed to bootstrap
nodes through a distributed host system such as IRC [21]. Orthog-
onally, Levine et al. [25] reviewed approaches to mitigate Sybil
attacks. From this taxonomy, only resource testing and recurring
costs and fees are applicable to fully decentralized systems without
further assumptions. Recurring costs, namely periodic PoW-based
refreshments of eligibility, are a familiar building block in the field
of blockchain sharding [22, 27, 53], where responsibilities to verify
the proposed transactions are distributed among full nodes over
time to improve scalability. AnonBoot adapts this Sybil-resistant
building block in the form of peer advertisements to implement
the novel application that is securely bootstrapping distributed
anonymity services. In line with Knoll et al. [21], we publish these
periodic advertisements through a public blockchain as AnonBoot’s
host system and trust anchor. This choice allows us to massively
reduce the coordination complexity in AnonBoot since blockchains
already offer a distributed means to reach a consensus of state.

Recently, Lee et al. [24] proposed that the user’s ISP could pro-
vide privacy services, such as address hiding or VPN tunneling.
This work is orthogonal to our approach as we bootstrap services
without relying on a dedicated central operator. Namely, AnonBoot
can also help users to increase their privacy against the ISP itself.

As one of its applications, AnonBoot realizes a decentralized
directory service for anonymity networks such as Tor. Similar con-
tributions were made by other works, e.g., NISAN [36] or Shad-
owWalker [33]. However, while both proposals prevent adversarial
bias, they do not feature AnonBoot’s protection against Sybil at-
tacks. Furthermore, these approaches do not address the challenges
of heterogeneous privacy peers, such as Tor nodes with differ-
ent exit policies. AnonBoot introduces the capabilities in its peer
advertisements specifically to overcome this shortcoming. While
approaches to realize sticky data policies on how to handle user pri-
vacy [37] are related to our specification of peer capabilities, even
highly compressed policies such as provided by CPPL [19] may
exceed our space limitations, especially when relying on Bitcoin’s
OP_RETURN transactions to operate AnonBoot. Although CPPL may
facilitate simple peer capabilities, more complex instances, such as
Tor relay descriptors, require manual capability abstractions.

9 CONCLUSION

We introduced AnonBoot, a blockchain-based medium to securely
bootstrap distributed anonymity services via already established
public blockchains, such as Bitcoin, as a trust anchor. All AnonBoot
peers communicate with each other through on-chain transactions,
and, thereby, they are able to derive the same local view on Anon-
Boot’s state by simply monitoring the host blockchain. Our design
allows for discovering peers to create Tor circuits as well as to boot-
strap shuffling networks and distributed cryptocurrency tumblers
on demand. AnonBoot achieves its resilience against adversaries
by two core mechanics: First, Sybil attacks are thwarted by forc-
ing peers to periodically refresh their membership in a repository
of peers who are eligible to provide anonymity services while in-
cluding a memory-bound, and thus fair, proof of work. Second, an
adversary who joins this peer repository cannot bias the peer elec-
tion for new anonymity services since this peer election is based
on user inputs as well as future blocks from the host blockchain.
The evaluation of our Bitcoin-based prototypic implementation
of AnonBoot shows that public blockchains constitute a well-suited
foundation for bootstrapping distributed systems: AnonBoot can
easily maintain a peer repository consisting of 1000 peers on top of
Bitcoin, managing services for potentially thousands of users. These
results show that AnonBoot can operate on top of most blockchains,
even if they have limited capabilities to store application-level data.
In the future, AnonBoot’s utility can be further increased by
identifying novel use cases apart from anonymity services. Anon-
Boot lends itself to bootstrapping any distributed service, e.g., to
distribute trust in other domains via secure multiparty computation.

ACKNOWLEDGMENTS

This work has been funded by the German Federal Ministry of
Education and Research (BMBF) under funding reference numbers
16DHLQO013 and Z31 BMBF Digital Campus. The funding under
reference number Z31 BMBF Digital Campus has been provided
by the German Academic Exchange Service (DAAD). The responsi-
bility for the content of this publication lies with the authors. The
authors thank Joran Wiechert for his support with the prototype.

REFERENCES
[1

Giuseppe Ateniese et al. 2017. Redactable Blockchain - or — Rewriting History
in Bitcoin and Friends. In Proc. IEEE EuroS&P.
[2] Badbitcoin.org. 2014. The Definitive Bitcoin and Cryptocurrency Fraud List. Ac-
cessed: 03/10/2020.
[3] Massimo Bartoletti and Livio Pompianu. 2017. An analysis of Bitcoin
OP_RETURN metadata. In Proc. IFCA FC Bitcoin Workshop.
[4] Michael Ben-Or et al. 1988. Completeness Theorems for Non-cryptographic
Fault-tolerant Distributed Computation. In Proc. ACM STOC.
[5] Alex Biryukov and Dmitry Khovratovich. 2017. Equihash: Asymmetric Proof-of-
Work Based on the Generalized Birthday Problem. Ledger 2.
] Bitcoin Wiki. 2010. Script. bitcoin.it, accessed 03/10/2020.
] Bitcoin Wiki. 2015. Mining Hardware Comparison. bitcoin.it, accessed: 03/10/2020.
8] Bitcoin Wiki. 2017. Segregated Witness. bitcoin.it, accessed: 03/10/2020.
] Blockchain.com. 2011. BTC to USD: Bitcoin to US Dollar Market Price. blockchain.
com/charts/market-price, accessed 03/10/2020.
[10] Joseph Bonneau et al. 2015. On Bitcoin as a public randomness source. IACR
Cryptology ePrint Archive 2015.
[11] Joseph Bonneau et al. 2014. Mixcoin: Anonymity for Bitcoin with Accountable
Mixes. In Proc. IFCA FC.
[12] Sambuddho Chakravarty et al. 2011. Detecting Traffic Snooping in Tor Using
Decoys. In Proc. RAID.
[13] David Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Comm. ACM 24, 2.
[14] George Danezis et al. 2003. Mixminion: Design of a Type IIl Anonymous Remailer
Protocol. In Proc. IEEE S&P.

jpry
)

e
S

oy
&

[
-

[22]

[23

[24]

[25

[26

[27

[29

[30

[31

[32

[33

[34]
[35

&
2

(37]

'@
&

=
=

[47]

S
&

o
o

Roger Dingledine and Nick Mathewson. 2006. Tor Path Specification. github.com/
torproject/torspec, accessed: 03/10/2020.

Roger Dingledine et al. 2004. Tor: The Second-Generation Onion Router.
Earn.com. 2013. Bitcoin Fees for Transactions. bitcoinfees.earn.com, accessed:
03/10/2020.

Matthew Green and Ian Miers. 2017. Bolt: Anonymous Payment Channels for
Decentralized Currencies. In Proc. ACM CCS.

Martin Henze et al. 2016. CPPL: Compact Privacy Policy Language. In Proc. ACM
WPES.

Martin Henze et al. 2014. A Trust Point-based Security Architecture for Sensor
Data in the Cloud. Springer.

Mirko Knoll et al. 2007. Decentralized Bootstrapping in Pervasive Applications.
In Proc. IEEE PerComW.

Eleftherios Kokoris-Kogias et al. 2018. OmniLedger: A Secure, Scale-Out, Decen-
tralized Ledger via Sharding. In Proc. IEEE S&P.

Susan Landau. 2013. Making Sense from Snowden: What’s Significant in the
NSA Surveillance Revelations. IEEE Security & Privacy 11, 4.

Taeho Lee et al. 2018. Bootstrapping Privacy Services in Today’s Internet. ACM
SIGCOMM Computer Communication Review 48, 5.

Brian Neil Levine et al. 2006. A Survey of Solutions to the Sybil Attack. Technical
Report. University of Massachusetts Amherst.

Isis Lovecruft et al. 2017. Tor Guard Specification. github.com/torproject/torspec,
accessed: 03/10/2020.

Loi Luu et al. 2016. A Secure Sharding Protocol For Open Blockchains. In Proc.
ACM CCs.

Roman Matzutt et al. 2018. A Quantitative Analysis of the Impact of Arbitrary
Blockchain Content on Bitcoin. In Proc. IFCA FC.

Roman Matzutt et al. 2020. How to Securely Prune Bitcoin’s Blockchain. In Proc.
IFIP Networking.

G. Maxwell. 2013. CoinJoin. https://bitcointalk.org/index.php?topic=279249.
bitcointalk.org, accessed: 03/10/2020.

Sarah Meiklejohn and Rebekah Mercer. 2018. Mdébius: Trustless Tumbling for
Transaction Privacy. PoPETs.

Sarah Meiklejohn et al. 2013. A Fistful of Bitcoins: Characterizing Payments
Among Men with No Names. In Proc. ACM IMC.

Prateek Mittal and Nikita Borisov. 2009. ShadowWalker: Peer-to-Peer Anonymous
Communication Using Redundant Structured Topologies. In Proc. ACM CCS.
Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.
Micha Ober et al. 2013. Structure and Anonymity of the Bitcoin Transaction
Graph. Future Internet 5, 2.

Andriy Panchenko et al. 2009. NISAN: Network Information Service for Anony-
mization Networks. In Proc. ACM CCS.

Siani Pearson and Marco Casassa Mont. 2011. Sticky Policies: An Approach for
Managing Privacy across Multiple Parties. Computer 44, 9, 60-68.

Fergal Reid and Martin Harrigan. 2013. An Analysis of Anonymity in the Bitcoin
System.

Tim Ruffing et al. 2014. CoinShufle: Practical Decentralized Coin Mixing for
Bitcoin. In Proc. ESORICS.

Andrey Shevchenko. 2019. Monero Penalizes GPU and ASIC Mining with RandomX
Upgrade. cryptobriefing.com, accessed: 03/10/2020.

tevador. 2018. RandomX. github.com/tevador/RandomX, accessed: 03/10/2020.
The Ethereum Foundation. 2015. Ethash. github.com/ethereum/wiki, accessed:
03/10/2020.

The Tor Project. 2007. Tor Directory Protocol, Version 3. github.com/torproject/
torspec, accessed: 03/10/2020.

The Tor Project. 2009. Tor Metrics — Relay Search (flag: Authority). metrics.
torproject.org, accessed: 03/10/2020.

The Tor Project. 2014. Reporting Bad Relays.
03/10/2020.

The Tor Project. 2019. Tor Protocol Specification. github.com/torproject/torspec,
accessed: 03/10/2020.

John Tromp. 2015. Cuckoo Cycle: A Memory Bound Graph-Theoretic Proof-of-
Work. In Proc. IFCA FC.

Florian Tschorsch and Bjorn Scheuermann. 2016. Bitcoin and Beyond: A Technical
Survey on Decentralized Digital Currencies. IEEE Commun. Surveys Tuts. 18, 3.
Marie Vasek and Tyler Moore. 2015. There’s No Free Lunch, Even Using Bitcoin:
Tracking the Popularity and Profits of Virtual Currency Scams. In Proc. IFCA FC.
Philipp Winter et al. 2014. Spoiled Onions: Exposing Malicious Tor Exit Relays.
PoPETs.

Gavin Wood. 2014. Ethereum: A Secure Decentralised Generalised Transaction
Ledger.

Addy Yeow. 2013. 730-day Charts. bitnodes.earn.com, accessed: 03/10/2020.
Mahdi Zamani et al. 2018. RapidChain: Scaling Blockchain via Full Sharding. In
Proc. ACM CCS.

Jan Henrik Ziegeldorf et al. 2015. CoinParty: Secure Multi-Party Mixing of
Bitcoins. In Proc. ACM CODASPY.

Jan Henrik Ziegeldorf et al. 2018. Secure and Anonymous Decentralized Bitcoin
Mixing. Future Gener. Comput. Syst. 80.

trac.torproject.org, accessed:

https://bitcoin.it
https://bitcoin.it
https://bitcoin.it
https://blockchain.com/charts/market-price
https://blockchain.com/charts/market-price
https://github.com/torproject/torspec
https://github.com/torproject/torspec
https://bitcoinfees.earn.com
https://github.com/torproject/torspec
https://bitcointalk.org/index.php?topic=279249
https://bitcointalk.org
https://cryptobriefing.com
https://github.com/tevador/RandomX
https://github.com/ethereum/wiki
https://github.com/torproject/torspec
https://github.com/torproject/torspec
https://metrics.torproject.org
https://metrics.torproject.org
https://trac.torproject.org
https://github.com/torproject/torspec
https://bitnodes.earn.com

	Abstract
	1 Introduction
	2 Available Anonymity Services
	2.1 Anonymity Networks
	2.2 Message Shuffling Networks
	2.3 Cryptocurrency Tumblers

	3 Scenario and Design Goals
	3.1 A Generalization of Anonymity Services
	3.2 Design Goals for Secure Bootstrapping

	4 AnonBoot: A Medium for Securely Bootstrapping Anonymity Services
	4.1 Design Overview
	4.2 Sybil-Resistant Index of Peers and Services
	4.3 Bootstrapping Secure Anonymity Services

	5 Realizing Use Cases in AnonBoot
	5.1 Decentralized Onion Routing via AnonBoot
	5.2 Shuffling Networks and Cryptotumblers

	6 Security Discussion
	6.1 Proof of Work Against Sybil Attacks
	6.2 Security of Bootstrapped Services

	7 Performance Evaluation
	7.1 Time Overheads
	7.2 Small Blockchain Footprint and Low Costs

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

