
MUST, SHOULD, DON’T CARE:
TCP Conformance in the Wild

Mike Kosek, Leo Blöcher, Jan Rüth, Torsten Zimmermann, and
Oliver Hohlfeld†

Communication and Distributed Systems, RWTH Aachen University
{kosek, bloecher, rueth, zimmermann}@comsys.rwth-aachen.de

†Chair of Computer Networks, Brandenburg University of Technology
oliver.hohlfeld@b-tu.de

Abstract. Standards govern the SHOULD and MUST requirements for
protocol implementers for interoperability. In case of TCP that carries
the bulk of the Internets’ traffic, these requirements are defined in RFCs.
While it is known that not all optional features are implemented and non-
conformance exists, one would assume that TCP implementations at least
conform to the minimum set of MUST requirements. In this paper, we use
Internet-wide scans to show how Internet hosts and paths conform to these
basic requirements. We uncover a non-negligible set of hosts and paths
that do not adhere to even basic requirements. For example, we observe
hosts that do not correctly handle checksums and cases of middlebox
interference for TCP options. We identify hosts that drop packets when
the urgent pointer is set or simply crash. Our publicly available results
highlight that conformance to even fundamental protocol requirements
should not be taken for granted but instead checked regularly.

The final publications is available at Springer via https://doi.org/10.1007/978-3-

030-44081-7 8

1 Introduction

Reliable, interoperable, and secure Internet communication largely depends on the
adherence to standards defined in RFCs. These RFCs are simple text documents,
and any specifications published within them are inherently informal, flexible, and
up for interpretation, despite the usage of keywords indicating the requirement
levels [20], e.g., SHOULD or MUST. It is therefore expected and known that
violations—and thus non-conformance—do arise unwillingly. Nevertheless, it can
be assumed that Internet hosts widely respect at least a minimal set of mandatory
requirements. To which degree this is the case is, however, unknown.

In this paper, we shed light on this question by performing Internet-wide active
scans to probe if Internet hosts and paths are conformant to a set of minimum
TCP requirements that any TCP speaker MUST implement. This adherence to
the fundamental protocol principles is especially important since TCP carries
the bulk of the data transmission in the Internet. The basic requirements of a
TCP host are defined in RFC 793 [47]—the core TCP specification. Since its over
40 years of existence, it has accumulated over 25 accepted errata described in
RFC 793bis-Draft14 [27], which is a draft of a planned future update of the TCP

ar
X

iv
:2

00
2.

05
40

0v
2

 [
cs

.N
I]

 1
9

M
ar

 2
02

0

https://doi.org/10.1007/978-3-030-44081-7_8
https://doi.org/10.1007/978-3-030-44081-7_8

2 M. Kosek et al.

specification, incorporating all minor changes and errata to RFC 793. We base
our selection of probed requirements on formalized MUST requirements defined
in this drafted update to RFC 793.

The relevance of TCP in the Internet is reflected in the number of studies
assessing its properties and conformance. Well studied are the interoperability of
TCP extensions [21], or within special purpose scenarios [40,41], and especially
non-conformance introduced by middleboxes on the path [24,35]. However, the
conformance to basic mandatory TCP features has not been studied in the wild.
We close this gap by studying to which degree TCP implementations in the
wild conform to MUST requirements. Non-conformance to these requirements
limits interoperability, extensibility, performance, or security properties, leading
to the essential necessity to understand who does not adhere to which level of
non-conformance. Uncovering occurrences of non-conformities hence reveal areas
of improvement for future standards. A recent example is QUIC, where effort is
put into the avoidance of such misconceptions during standardization [46].

With our large scale measurement campaign presented in this paper, we show
that while the majority of end-to-end connections are indeed conforming to the
tested requirements, a non-trivial number of end-hosts as well as end-to-end
paths show non-conformities, breaking current and future TCP extensions, and
even voiding interoperability thus reducing connectivity. We show that

� In a controlled lab study, non-conformance already exists at the OS-level: only
two tested stacks (Linux and lwIP) pass all tests, where, surprisingly, others
(including macOS and Windows) fail in at least one category each. Observing
non-conformance in the wild can therefore be expected.

� In the wild, we indeed found a non-negligible amount of non-conformant hosts.
For example, checksums are not verified in ∼3.5% of cases, and middleboxes
inject non-conformant MSS values. Worrisome, using reserved flags or setting
the urgent pointer can render the target host unreachable.

� At a infrastructure level, 4.8% of the Alexa domains with and without www.

prefix show different conformance levels (e.g., because of different infrastruc-
tures: CDN vs. origin server), mostly due to flags that limit reachability. The
reachability of websites can thus depend on the www. prefix.

Structure. In Section 2 we present related work followed by our methodology
and its validation in Section 3. The design and evaluation of our Internet-wide
TCP conformance scans are discussed in Section 4 before we conclude the paper.

2 Related Work

Multiple measurement approaches have focused on the conformance of TCP
implementations on servers, the presence of middleboxes and their interference
on TCP connections, and non-standard conform behavior. In the following, we
discuss similarities and differences of selected approaches to our work.
TCP Stack Behavior. One line of research aims at characterizing remote
TCP stacks by their behavior (e.g., realized in the TCP Behavior Inference Tool

MUST, SHOULD, DON’T CARE: TCP Conformance in the Wild 3

(TBIT) [45] in 2001). One aspect is to study the deployment of TCP tunings
(e.g., the initial window configuration [48–50]) or TCP extensions (e.g., Fast
Retransmit [45], Fast Open [39,44], Selective Acknowledgment (SACK) [36,43,45],
or Explicit Congestion Notification (ECN) [18,36,37,42,43,45] and ECN++ [38]
to name a few). While these works aim to generally characterize stacks by
behavior and to study the availability and deployability of TCP extensions, our
work specifically focuses on the conformance of current TCP stacks to mandatory
behavior every stack must implement. A second aspect concerns the usage of
behavioral characterizations to fingerprint TCP stacks (e..g., via active [30] or
passive [19] measurements) and mechanisms to defeat fingerprinting (e.g., [53]).
Middlebox Interference. The end-to-end behavior of TCP not only depends
on the stack implementations, but also on on-path middleboxes [22], which
can tune TCP performance and security but also (negatively) impact protocol
mechanisms and extensions (see e.g., [18, 42,43]). Given their relevance, a large
body of work studies the impact within the last two decades and opens the
question if TCP is still extensible in today’s Internet. Answering this question
resulted in a methodology for middlebox inference which is extended by multiple
works to provide middlebox detection tools to assess their influence; By observing
the differences between sent and received TCP options at controlled endpoints
(TCPExposure [32]), it is observed that 25 % of the studied paths tamper with
TCP options, e.g., with TCP’s SACK mechanism. Similarly, tracebox [24] also
identifies middleboxes based on modifications of TCP options, but as client-side
only approach without requiring server control. Besides also identifying the issues
with TCP’s SACK option, they highlight the interference with TCP’s MSS option
and the incorrect behavior of TCP implementations when probing for MPTCP
support. PATHSpider [35] extends tracebox to test more TCP options, e.g.,
ECN or differentiated services code point (DSCP). They evaluate their tool in
an ECN support study, highlighting that some intermediaries tamper with the
respective options, making a global ECN deployment a challenging task. Further
investigating how middleboxes harm TCP traffic, a tracebox-based study [28]
shows that more than a third of all studied paths cross at least one middlebox, and
that on over 6% of these paths TCP traffic is harmed. Given the negative influence
of transparent middleboxes, proposals enable endpoints to identify and negotiate
with middleboxes using a new TCP option [34] and to generally cooperate with
middleboxes [23]. While we focus on assessing TCP conformance to mandatory
behavior, we follow tracebox’s approach to differentiate non-conforming stacks
from middlebox interference causing non-conformity.
Takeaway: While a large body of work already investigates TCP behavior and
middlebox inference, a focus on conformance to mandatory functionality required
to implement is missing—a gap that we address in this study.

3 Methodology

We test TCP conformance by performing active measurements that probe for
mandatory TCP features and check adherence to the RFC. We begin by explaining

4 M. Kosek et al.

how we detect middleboxes before we define the test cases and then validate our
methodology in controlled testbed experiments.

3.1 Middlebox Detection

Middleboxes can alter TCP header information and thereby cause non-conformance,
which we would wrongly attribute to the probed host without performing a middle-
box detection. Therefore, we use the tracebox approach [24] to detect interfering
middleboxes by sending and repeating our probes with increasing IP TTLs. That
is, in every test case (see Section 3.2), the first segment is sent multiple times
with increasing TTL values from 1 to 30 in parallel while capturing ICMP time
exceeded messages. We limit the TTL to 30 since we did not observe higher
hop counts in our prior work for Internet-wide scans [51]. To distinguish the
replied messages and determine the hop count, we encode the TTL in the IPv4
ID and in the TCP acknowledgment number, window size, and urgent pointer
fields. We chose to encode the TTL in multiple header fields since middleboxes
could alter every single one. These repetitions enable us to pinpoint and detect
(non-)conformance within the end-to-end path if ICMP messages are issued by
the intermediaries quoting the expired segment. Please note that alteration or
removal of some of our encodings does not render the path or the specific hop
non-conformant. A non-conformance is only attested, if the actual tested behavior
was modified as visible through the expired segment. Further, since only parts of
the fields—all 16 or 32 bits in size—may be altered by middleboxes (e.g., slight
changes to the window size), we repeat each value as often as possible within
every field. Our TTL value of at most 30 can be encoded in 5 bits, and thus be
repeated 3 to 6 times in the selected fields. Additionally, the TCP header option
No-Operation (NOOP) allows an opaque encoding of the TTL. Specifically, we
append as many NOOPs as there are hops in the TTL to the fixed-size header.
Other header fields are either utilized for routing decisions (e.g., port numbers
in load balancers) or are not opaque (e.g., sequence numbers), rendering them
unsuitable. Depending on the specific test case, some of the fields are not used
for the TTL encoding. For example, when testing for urgent pointer adherence,
we do not encode the TTL in the urgent pointer field.

3.2 TCP Conformance Test Cases

Our test cases check for observable TCP conformance of end-to-end connections
by actively probing for a set of minimum requirements that any TCP must
implement. We base our selection on 119 explicitly numbered requirements
specified in RFC 793bis-Draft14 [27], of which 69 are absolute requirements
(i.e., MUSTs [20]). These MUSTs resemble minimum requirements for any
TCP connection participating in the Internet—not only for hosts, but also
for intermediate elements within the traversed path. The majority of these
69 MUSTs address internal state-handling details, and can therefore not be
observed or verified via active probing. To enable an Internet-wide assessment
of TCP conformance, we thus focus on MUST requirements whose adherence is

MUST, SHOULD, DON’T CARE: TCP Conformance in the Wild 5

Checksum PASS Condition

ChecksumIncorrect (2,3)

� When sending a SYN or an ACK segment with a non-zero
but invalid checksum, a target must respond with a RST
segment or ignore it

ChecksumZero (2,3) � As above but with an explicit zeroed checksum

Options PASS Condition

OptionSupport (4)
� When sending a SYN segment with EOOL and NOOP

options, a target must respond with a SYN/ACK segment

OptionUnknown (6)
� When sending a SYN segment with an unassigned option

(# 158), a target must respond with a SYN/ACK segment

MSSSupport (4,14,16)
� When sending a SYN segment with an MSS of 515 byte,

a target must not send segments exceeding 515 byte

MSSMissing (15,16)
� When sending a SYN segment without an MSS, a target

must not send segments exceeding 536 byte (IPv4) or
1220 byte (IPv6, not tested)

Flags PASS Condition

Reserved (no MUST)

� When Sending a SYN segment with a reserved flag set
(# 2), a target must respond with a SYN/ACK segment
with zeroed reserved flags

� Subsequently, when sending an ACK segment with a
reserved flag set (# 2), a target must not retransmit the
SYN/ACK segment

UrgentPointer (30,31)
� When sending a sequence of segments flagged as urgent,

a target must acknowledge them with an ACK segment

Table 1. Requirements based on the MUSTs (number from RFC shown in brackets)
as defined in RFC 793bis, Draft 14 [27]. Further, we show the precise test sequence and
the condition leading to a PASS for the test.

observable by communicating with the remote host. We synthesize eight tests
from these requirements, which we summarize in Table 1, and discuss them in the
following paragraphs. Each test is in some way critical to interoperability, security,
performance, or extensibility of TCP. The complexity involved in verifying
conformance to other advanced requirements often leads to the exclusion of these
seemingly fundamental properties in favor of more specialized research.

TCP Checksum. The TCP checksum protects against segment corruption in
transit and is mandatory to both calculate and verify. Even though most Layer 2
protocols already protect against segment corruption, it has been shown [55]
that software or hardware bugs in intermediate systems may still alter packet
data, and thus, high layer checksums are still vital. Checksums are an essential
requirement to consider due to the performance implications of having to iterate
over the entire segment after receiving it, resulting in an incentive to skip this
step even though today this task is typically offloaded to the NIC. Both the
ChecksumIncorrect and the ChecksumZero test (see Table 1) verify the handling
of checksums in the TCP header. They differ only in the kind of checksum used;
the former employs a randomly chosen incorrect checksum while the latter, posing

6 M. Kosek et al.

as a special case, zeroes the field instead, i.e., this could appear as if the field is
unused.

TCP Options. TCP specifies up to 40 bytes of options for future extensibility.
It is thus crucial that these bytes are actually usable and, if used, handled
correctly. According to the specification, any implementation is required to
support the EOOL, NOOP, and MSS option. We test these options due to
their significance for interoperability and, in the general case, extensibility and
performance. The different, and sometimes variable, option length makes header
parsing somewhat computationally expensive (especially in hardware), opening
the door for non-conformant performance enhancements comparable to skipping
checksum verification. Further, an erroneous implementation of either requirement
can have security repercussions in the form of buffer overflows or resource wastage,
culminating in a denial of service. The OptionSupport test validates the support
of EOOL and NOOP, while the OptionUnknown test checks the handling of
an unassigned option. The MSSSupport test verifies the proper handling of an
explicitly stated MSS value, while the MSSMissing test tests the usage of default
values specified by the RFC in the absence of the MSS option.

TCP Flags. Alongside the stated TCP options, TCP’s extensibility is mainly
guaranteed by (im-)mutable control flags in its header, of which four are currently
still reserved for future use. The most prominent “recent” example is ECN [29],
which uses two previously reserved bits. Though not explicitly stated as a
numbered formal MUST1, a TCP must zero (when sending) and ignore (when
receiving) unknown header flags, which we test with the Reserved test, as incorrect
handling can considerably block or delay the adoption of future features.

The UrgentPointer test addresses the long-established URG flag. Validating
the support of segments flagged as urgent, the test splits around 500 bytes
of urgent data into a sequence of three segments with comparable sizes. Each
segment is flagged as urgent, and the urgent pointer field caries the offset from
its current sequence number to the sequence number following the urgent data,
i.e., to the sequence number following the payload. Initially intended to speed up
segment processing by indicating data which should be processed immediately,
the widely-used Berkeley Software Distribution (BSD) socket interface instead
opted to interpret the urgent data as out-of-band data, leading to diverging
implementations. As a result, the urgent pointer’s usage is discouraged for new
applications [27]. Nevertheless, TCP implementations are still required to support
it with data of arbitrary length. As the requirement’s inclusion adds computational
complexity, implementers may see an incentive to skip it.

Pass and Failure Condition Notation. For the remainder of this paper, we
use the following notation to report passing or failing of the above-described
tests. Connections that unmistakably conform are denoted as PASS, whereas not
clearly determinable results (applies only to some tests) are conservatively stated
as UNK. UNKs may have several reasons such as, e.g., hosts ceasing to respond

1 RFC 793bis-Draft14 states: “Must be zero in generated segments and must be ignored
in received segments, if corresponding future features are unimplemented by the sending
or receiving host.” [27]

MUST, SHOULD, DON’T CARE: TCP Conformance in the Wild 7

MUST Test as Linux Windows macOS uIP lwIP Seastar
defined in Table 1 5.2.10 1809 10.14.6 1.0 2.1.2 19.06

ChecksumIncorrect 3 3 3 3 3 7

ChecksumZero 3 3 3 3 3 7

OptionSupport 3 3 3 3 3 3

OptionUnknown 3 3 3 3 3 3

MSSSupport 3 7 3 3 3 3

MSSMissing 3 3 7 3 3 3

Reserved 3 3 3 3 3 3

UrgentPointer 3 3 3 7 3 3

Table 2. Results of testbed measurements stating PASS (3) and FTarget(7)

to non-test packets after having responded to a liveness test. Non-conformities
raised by the target host are denoted as FTarget, and non-conformities raised by
middleboxes on the path rather than the probed host are denoted as FPath.

3.3 Validation

To evaluate our test design, we performed controlled measurements using a
testbed setup, thereby eliminating possible on-path middlebox interference. Thus,
only FTarget can occur in this validation, but not FPath. To cover a broad range
of hosts, we verified our test implementations by targeting current versions of
the three dominant Operating Systems (OSs) (Linux, Windows, and macOS) as
well as three alternative TCP stacks (uIP [13], lwIP [7], and Seastar [8]).

We summarize the results in Table 2. As expected, we observe a considerable
degree of conformance. Linux, as well as lwIP, managed to achieve full conformance
to the tested requirements. Surprisingly, all other stacks failed in at least one test
each. That is, most stacks do not fully adhere to these minimum requirements.
uIP exposed the most critical flaw by crashing when receiving a segment with
urgent data, caused by a segmentation fault while attempting to read beyond the
segment’s size (see Section 3.2). Since the release of the tested Version of uIP, the
project did not undergo further development, but instead moved to the Contiki
OS project [3], where it is currently maintained in Contiki-NG [2]. Following
up on Contiki, it was uncovered that both distributions are still vulnerable.
Their intended deployment platform, embedded microcontrollers, often lack the
memory access controls present in modern OSs, amplifying the risk that this flaw
poses. Addressing this issue, we submitted a Pull request to Contiki-NG [1]. The
remaining FTarget have much less severe repercussions. Seastar, which bypasses
the Linux L4 network stack using Virtio [15], fails both checksum tests. While
hardware offloading is enabled by default, Seastar features software checksumming,
which should take over if offloading is disabled or unsupported by the host OS.
However, host OS support of offloaded features is not verified, which can lead to
mismatches between believed to be and actually enabled features. We reported
this issue to the authors [9]. The tests pass if the unsupported hardware offloads
are manually deselected. The FTarget failure for macOS in the MSSMissing test
is a consequence of macOS defaulting to a 1024 bytes MSS regardless of the IP

8 M. Kosek et al.

version, thereby exceeding the IPv4 TCP default MSS, and falling behind that
of IPv6. Windows 10 applies the MSS defaults defined in the TCP specification
as a lower bound to any incoming value, overwriting the 515 bytes advertised in
the MSSSupport test. Both MSS non-conformities could be mitigated by path
maximum transmission unit (MTU) discovery, dynamically adjusting the segment
size to the real network path.
Takeaway: Only two tested stacks (Linux and lwIP) pass all tests and show full
conformance. Surprisingly, all other stacks failed in at least one category each.
That is, non-conformance to basic mandatory TCP implementation requirements
already exists in current OS implementations. Even though our testbed validation
is limited in the OS diversity, we can already expect to find a certain level of host
non-conformance when probing TCP implementations in the wild.

4 TCP Conformance in the Wild

In the following, we move on from our controlled testbed evaluation and present
our measurement study in the Internet. Before we present and discuss the obtained
results, we briefly focus on our measurement setup and our selected target sets.

4.1 Measurement Setup & Target Hosts

Measurement Setup. Our approach involves performing active probes against
target hosts in the Internet to obtain a representative picture of TCP conformance
in the wild. All measurements were performed using a single vantage point within
the IPv4 research network of our university between August 13 and 22, 2019. As
we currently do not have IPv6-capable scan infrastructure at our disposal, we
leave this investigation open for future work. Using a probing rate of 10k pps
on a distinct 10GBit/s uplink, we decided to omit explicit loss detection and
retransmission handling due to the increased complexity, instead stating results
possibly affected by loss as UNK if not clearly determinable otherwise.
Target Hosts. To investigate a diverse set of end-to-end paths as well as end
hosts, a total of 3,731,566 targets have been aggregated from three sources: i)
the HTTP Archive [33], ii) Alexa Internet’s top one million most visited sites
list [17,52], and iii) Censys [25] port 80 and 443 scans.

The HTTP Archive regularly crawls about 5M domains obtained from the
Chrome User Experience Report to study Web performance and publishes the
resulting dataset. We use the dataset of July 2019. For this, we were especially
interested in the Content Delivery Network (CDN) tagged URLs, as no other
source provides URL-to-CDN mappings. Since no IP addresses are provided,
we resolved the 876,835 URLs to IPv4 addresses through four different public
DNS services of Cloudflare, Google, DNS.WATCH, and Cisco’s OpenDNS. Some
domains contain multiple CDN tags in the original dataset. For these cases, we
obtained the CDN mapping from the chain of CNAME resource records in the
DNS responses and excluded targets that could still not be linked to only a single
CDN. Removing duplicates on a per-URL basis, one target per resolved IPv4

MUST, SHOULD, DON’T CARE: TCP Conformance in the Wild 9

address was selected. The resulting 4,116,937 targets were sampled to at most
10,000 entries per CDN, leading to 147,318 hosts in total. Removing duplicate IP
addresses and blacklist filtering, we derived the final set of 27,795 CDN targets.

As recent research has shown [16], prefixing www. to a domain might not only
provide different TLS security configurations and certificates than their non-www
counterparts, but might also (re-)direct the request to servers of different Content
Providers (CPs). To study this implications on TCP conformance, we used the
Alexa 1M list published on August 10th, 2019, and resolved every domain with
and without www-prefix according to the process outlined in the HTTP Archive.
The resulting 3,297,849 targets were further sampled, randomly selecting one
target with and without www-prefix per domain, removing duplicate IP addresses
and blacklist filtering, leading to 466,685 Alexa targets.

Censys provided us research access to their data of Internet-wide port scans,
which represent a heterogeneous set of globally distributed targets. In addition to
the IPv4 address and successfully scanned port, many targets include information
on host, vendor, OS, and product. Using the dataset compiled on August 8th, 2019,
10,559,985 Censys targets were identified with reachable ports 80 or 443, including,
but not limited to, IoT devices, customer-premises equipment, industrial control
systems, remote-control interfaces, and network infrastructure appliances. By
removing duplicate IP addresses and blacklist filtering we arrive at 3,237,086
Censys target hosts.
Ethical Considerations. We aim to minimize the impact of our active scans as
much as possible. First, we follow standard approaches [26] to display the intent
of our scans in rDNS records of our scan IPs and on a website with an opt-out
mechanism reachable via each scan IP. Moreover, we honor opt-out requests to
our previous measurements and exclude these hosts. We further evaluated the
potential implications of the uIP/Contiki crash observed in Section 3.3. Embedded
microcontrollers, commonly used in IoT devices, are the primary use-case of
uIP/Contiki. We could not identify hosts using this stack in the Censys device
type data to exclude IPs, but assume little to very little use of this software stack
within our datasets. We thus believe the potential implications to be minimal.
We confirm this by observing that 100% of failed targets in the CDN as well as
the Alexa dataset, and 99.35% of failed targets in the Censys dataset, are still
reachable following UrgentPointer test case execution. We thus argue that our
scans have created no harm to the Internet at large.

4.2 Results and Discussion

We next discuss the results of our conformance testing, which we summarize
in Table 3. The table shows the relative results per test case for all reachable
target hosts, excluding the unreachable ones. As the target data was derived from
the respective sources multiple days before executing the tests (see Section 4.1),
unreachable targets are expected. Except for minor variations, which can be
explained by dynamic IP address assignment and changes to host configurations
during test execution, ∼12% of targets could not be reached in each test case and
are removed from the results. While the CDN and Alexa datasets were derived

10 M. Kosek et al.

CDN Alexa Censys
MUST Test as n = 27,795 n = 466,685 n = 3,237,086

defined in Table 1 UNK FTarget FPath UNK FTarget FPath UNK FTarget FPath

ChecksumIncorrect 0.234 0.374 - 0.441 3.224 0.002 3.743 3.594 0.003
ChecksumZero 0.253 0.377 - 0.455 3.210 0.001 3.873 3.592 0.003
OptionSupport - 0.040 - - 0.470 0.009 - 1.410 0.313
OptionUnknown - 0.026 0.011 - 0.585 0.053 - 1.477 0.019
MSSSupport - 0.018 - - 0.728 0.002 - 0.412 0.004
MSSMissing 0.026 - 0.018 0.303 0.299 0.136 1.423 0.388 0.416
Reserved - 2.194 0.011 - 6.689 0.293 - 2.791 0.048
Reserved-SYN - 0.138 0.011 - 1.297 0.309 - 1.849 0.049
UrgentPointer 0.150 0.330 0.022 0.804 3.179 0.208 3.815 7.300 0.042

Table 3. Overview of relative results (in %) per test case per dataset. Here, n denotes
the number of targets in each dataset. For better readability, we do not show the PASS
results and highlight excessive failure rates in bold.

from sources featuring popular websites, we expect a large overlap of target hosts,
which is confirmed by 15,387 targets present in both datasets. Alexa and Censys
share only 246 target hosts, while CDN and Censys do not overlap. All datasets
are publicly available [5]. The decision to classify a condition as PASS, UNK,
FTarget, or FPath, does vary between test cases as a result of their architecture
(see Section 3.2) and are discussed in detail next.

TCP Checksum. We start with the results of our checksum tests that validate
correct checksum handling. As Table 3 shows, CDNs have a low failure rate
for both tests, and we do not find any evidence for on-path modifications. In
contrast, hosts from the Alexa and the Censys dataset show over ∼3% FTarget

failures. Drilling down on these hosts, they naturally cluster into two classes
when looking at the AS ownership. On the one hand, we find AS (e.g., Amazon),
where roughly 7% of all hosts fail both tests. Given the low share, these hosts
could be purpose build high-performance VMs, e.g., for TCP-terminating proxies
that do not handle checksums correctly. On the other hand, we find hosts (e.g.,
hosted in the QRATOR filtering AS) where nearly all hosts in that AS fail the
tests. Since QRATOR offers a DDoS protection service, it is a likely candidate
for operating a special purpose stack.

Takeaway: We find cases of hosts that do not correctly handle checksums. While
incorrect checksums may be a niche problem in the wild, these findings highlight
that attackers with access to the unencrypted payload, but without access to the
headers, could alter segments and have the modified data accepted.

TCP Options. We next study if future TCP extensibility is honored by the
ability to use TCP options. In our four option tests (see Table 3 for an overview),
we observe overall the lowest failure rates—a generally good sign for extensibility
support. Again, the Censys dataset shows the most failures, and especially the
OptionSupport and the MSSMissing test have the highest FPath (middlebox
failures) across all tests. Both tests show a large overlap in the affected hosts and
have likely the same cause for the high path failure rates. We observe that these
hosts are all located in ISP networks. For the MSSMissing failures, we observe

MUST, SHOULD, DON’T CARE: TCP Conformance in the Wild 11

that an MSS is inserted at these hosts—likely due to the ISPs performing MSS
clamping, e.g., due to PPPoE encapsulation by access routers. These routers
need to rewrite the options header (to include the MSS option), and as the
OptionSupport fails when, e.g., some of the EOOL and NOOP are stripped, the
exact number of EOOL and NOOP are likely not preserved. Still, inserting the
MSS option alters the originally intended behavior of the sender, i.e., having an
MSS of 536 byte for IPv4. In this special case, the clamping did actually increase
the MSS, and thereby strip some of the EOOL and NOOP options.

Looking at the OptionUnknown test, where we send an option with an
unallocated codepoint, we again see low FPath failures, but still, a non-negligible
number of FTarget fails. There is no single AS that stands out in terms of the
share of hosts that fail this test. However, we observe that among the ASes with
the highest failure rates are ISPs and companies operating Cable networks.

Lastly, the MSSSupport test validating the correct handling of MSS values
shows comparably high conformance. As we were unable to clearly pinpoint the
failures to specific ASes, the most likely cause can be traced to the non-conformant
operating systems as shown by our validation (see Section 3.3), where Windows
fails this test and likely others that we did not test in isolation.

Takeaway: Our TCP options tests show the highest level of conformance of
all tests, a good sign for extensibility. Still, we find cases of middlebox infer-
ence, mostly MSS injectors and option padding removers—primarily in ISP
networks hinting at home gateways. Neither is inherently harmful due to path
MTU discovery and the voluntary nature of option padding.

TCP Flags. Besides the previously tested options, TCPs extensibility is mainly
guaranteed by (im-)mutable control flags in its header to toggle certain protocol
behavior. In the Reserved test, we identify the correct handling of unknown
(future) flags by sending an unallocated flag and expect no change in behavior.
Instead, we surprisingly observe high failure rates across all datasets, most notable
CDNs. When inspecting the CDN dataset, we found ∼10% of Akamai’s hosts to
show this behavior. We contacted Akamai, but they validated that their servers
do not touch this bit. Further analysis revealed that the reserved flag on the
SYN was truthfully ignored, but our test failed as the final ACK of the 3-way
handshake (second part of the test, see Table 1), which also contains the reserved
flag, was seemingly dropped as we got SYN/ACK retransmissions. However, this
behavior originates from the usage of Linux’s TCP DEFER ACCEPT socket
option, which causes a socket to only wakeup the user space process if there is
data to be processed [10]. The socket will wait for the first data segment for a
specified time, re-transmitting the SYN/ACK when the timer expires in the hope
of stimulating a retransmission of possibly lost data. Since we were not sending
any data, we eventually received a SYN/ACK retransmission, seemingly due to
the dropped handshake-completing ACK with the reserved flag set. Hence, we
credited the retransmission to the existence of the reserved flag at first, later
uncovering that the retransmission was unrelated to the reserved flag, but actually
expected behavior using the TCP DEFER ACCEPT socket option. Following
up with Akamai, they were able to validate our assumption by revealing that

12 M. Kosek et al.

parts of their services utilize this socket option. While it is certainly debatable if
deliberately ignoring the received ACK is a violation of the TCP specification,
our test fails to account for this corner case. Thus, connectivity is not impaired.

In contrast, connectivity is impaired in the cases where our reserved flag SYN
fails to trigger a response at all, leaving the host unreachable (see Reserved-SYN
in Table 3). The difference between both failure rates thus likely denotes hosts
using the defer accept mechanism, as CDNs, in general, seem to comply with
the standard. We also observe a significant drop in failures in the Alexa targets.
While our results are unable to show if only defer accepts are the reason for this
drop, they likely contribute significantly as TCP implementations would need to
differentiate between a reserved flag on a SYN and on an ACK, which we believe
is less likely. Our results motivate a more focused investigation of the use of
socket options and the resulting protocol configurations and behavioral changes.

Lastly, the URG flag is part of TCP since the beginning to indicate data
segments to be processed immediately. With the UrgentPointer test we check if
segments that are flagged as urgent are correctly received and acknowledged. To
confirm our assumption of this test having minimal implications on hosts due to
the uIP/Contiki crash (see Section 3.3), we checked if the FTarget instances were
still reachable after test execution. Our results show that of these failed targets,
99.35% of Censys, and 100% of CDN and Alexa, did respond to our following
connection requests, which were part of the subsequent test case executed several
hours later. While we argue that these unresponsive hosts can be explained by
dynamic IP address assignment due to the fluctuating nature of targets in the
Censys dataset, we recognize that the implicit check within the subsequent test
case is problematic due to the time period between the tests and the possibility
of devices and services being (automatically) restarted after crashing. We thus
posit, that future research should include explicit connectivity checks directly
following test case execution on a per target basis, and skip subsequent tests if a
target’s connectivity is impaired.

Surprisingly, the UrgentPointer test shows the highest failure rate among all
tests. That is, segments flagged as urgent are not correctly processed. In other
words, flagging data as urgent limits connectivity. We find over ∼7% of hosts
failing in the Censys dataset, where ISPs again dominate the ranking. Only about
1.2% of these failures actively terminated the connection with a RST, while the
vast majority silently discarded the data without acknowledging it. Looking at
Alexa and CDNs, we again find an Amazon AS at the top. Here, we randomly
sampled the failed hosts to investigate the kind of services offered by them. At
the top of the list, we discovered services that were proxied by a Vegur [14],
respective Cowboy [4], proxy server that seem to be used in tandem with the
Heroku [6] cloud platform. Even though we were unable to find how Heroku
precisely operates, we suspect a high-performance implementation that might
simply not implement the urgent mechanism at all.

Takeaway: While unknown flags are often correctly handled, they can reduce
reachability, especially when set on SYNs. The use of the urgent pointer resulted
in the highest observed failure rate by hosts that do not process data segments

MUST, SHOULD, DON’T CARE: TCP Conformance in the Wild 13

flagged as urgent. Thus, using the reserved flags or setting the urgent pointer
limits connectivity in the Internet.

We therefore posit to remove the mandatory implementation requirement
of the urgent pointer from the RFC to reflect its deprecation status, and thus
explicitly state that its usage can break connectivity. Future protocol standards
should therefore be accompanied by detailed socket interface specifications, e.g.,
as has been done for IPv6 [31,54], to avoid RFC misconceptions. Moreover, we
started a discussion within the IETF, addressing the issue encountered with the
missing formal MUST requirement of unknown flags, which potentially led and/or
will lead to diverging implementations [11]. Additionally, we proposed a new
MUST requirement, removing ambiguities in the context of future recommended,
but not required, TCP extensions which allocate reserved bits [12].

Alexa: Does www. matter? It is known that www.domain.tld and
domain.tld can map to different hosts [16], e.g., the CDN host vs. the origin
server, where it is often implicitly assumed that both addresses exhibit the same
behavior. However, 4.89% (11.4k) of the Alexa domains with and without www.

prefix show different conformance levels to at least one test. That is, while the
host with the www. prefix can be conformant, the non-prefixed host could not,
and vice versa. Most of these non-conformance issues are caused by TCP flags,
for which we have seen that they can impact the reachability of the host. That is,
53.3% of these domains failed the reserved flags test, and 58% the urgent pointer
test (domains can be in both sets). Thus, a website can be unreachable using
one version and reachable by the other.
Takeaway: While the majority of Alexa domains are conformant, the ability to
reach a website can differ whether or not the www. prefix is used.

5 Conclusion

This paper presents a broad assessment of TCP conformance to mandatory
MUST requirements. We uncover a non-negligible set of Internet hosts and paths
that do not adhere to even basic requirements. Non-conformance already exists at
the OS-level, which we uncover in controlled testbed evaluations: only two tested
stacks (Linux and lwIP) pass all tests. Surprisingly, others (including macOS and
Windows) fail in at least one category each. A certain level of non-conformance is
therefore expected in the Internet and highlighted by our active scans. First, we
observe hosts that do not correctly handle checksums. Second, while TCP options
show the highest level of conformance, we still find cases of middlebox inference,
mostly MSS injectors and option padding removers—primarily in ISP networks
hinting at home gateways. Moreover, and most worrisome, using reserved flags
or setting the urgent pointer can render the target host unreachable. Last, we
observe that 4.8% of Alexa-listed domains show different conformance levels
when the www. prefix is used, or not, of which more than 50% can be attributed
to TCP flag issues—which can prevent connectivity. Our results highlight that
conformance to even fundamental protocol requirements should not be taken for
granted but instead checked regularly.

14 M. Kosek et al.

Acknowledgments

This work has been funded by the DFG as part of the CRC 1053 MAKI within
subproject B1. We would like to thank Akamai Technologies for feedback on
our measurements, Censys for contributing active scan data, and our shepherd
Robert Beverly and the anonymous reviewers.

References

1. Contiki-NG TCP URG Pull Request. https://github.com/contiki-ng/contiki-
ng/pull/1173

2. Contiki-NG: The OS for Next Generation IoT Devices. https://github.com/con
tiki-ng

3. Contiki OS. https://github.com/contiki-os
4. Cowboyku, https://github.com/heroku/cowboyku
5. Dataset to ”MUST, SHOULD, DON’T CARE: TCP Conformance in the Wild”.

https://doi.org/10.18154/RWTH-2020-00809
6. Heroku platform, https://www.heroku.com/
7. lwIP - A Lightweight TCP/IP stack. http://savannah.nongnu.org/projects/l

wip/

8. Seastar. https://github.com/scylladb/seastar
9. Seastar: Virtio device reports features not supported by the OS. https://github

.com/scylladb/seastar/issues/719

10. tcp(7) - linux man page, https://linux.die.net/man/7/tcp
11. TCPM Mailinglist: RFC793bis draft 14 Reserved Bits: Problem statement. https:

//mailarchive.ietf.org/arch/msg/tcpm/s0LtY3Ce3QBBAkJ DuSH5VDNFMY

12. TCPM Mailinglist: RFC793bis draft 14 Reserved Bits: Proposal. https://mailar
chive.ietf.org/arch/msg/tcpm/ jpUQx0AjByR3UOgyX88RWoTxL0

13. uIP. https://github.com/adamdunkels/uip
14. Vegur: Http proxy library, https://github.com/heroku/vegur
15. Virtio: Paravirtualized drivers for kvm/Linux. https://www.linux-kvm.org/page

/Virtio

16. Alashwali, E.S., Szalachowski, P., Martin, A.: Does “www.” Mean Better Transport
Layer Security? In: ACM International Conference on Availability, Reliability and
Security (ARES) (2019). https://doi.org/10.1145/3339252.3339277

17. Alexa Internet: About us, https://www.alexa.com/about
18. Bauer, S., Beverly, R., Berger, A.: Measuring the state of ECN readiness in servers,

clients, and routers. In: ACM Internet Measurement Conference (IMC) (2011).
https://doi.org/10.1145/2068816.2068833

19. Beverly, R.: A Robust Classifier for Passive TCP/IP Fingerprinting. In: Passive
and Active Measurement Conference (PAM) (2004). https://doi.org/10.1007/978-3-
540-24668-8 16

20. Bradner, S.O.: Key words for use in RFCs to Indicate Requirement Levels. RFC
2119 (Mar 1997). https://doi.org/10.17487/RFC2119

21. Cardwell, N., Cheng, Y., Brakmo, L., Mathis, M., Raghavan, B., Dukkipati, N.,
keng Jerry Chu, H., Terzis, A., Herbert, T.: packetdrill: Scriptable Network Stack
Testing, from Sockets to Packets. In: USENIX Anual Technical Conference (ATC)
(2013), https://www.usenix.org/conference/atc13/technical-sessions/pre
sentation/cardwell

https://github.com/contiki-ng/contiki-ng/pull/1173
https://github.com/contiki-ng/contiki-ng/pull/1173
https://github.com/contiki-ng
https://github.com/contiki-ng
https://github.com/contiki-os
https://github.com/heroku/cowboyku
https://doi.org/10.18154/RWTH-2020-00809
https://www.heroku.com/
http://savannah.nongnu.org/projects/lwip/
http://savannah.nongnu.org/projects/lwip/
https://github.com/scylladb/seastar
https://github.com/scylladb/seastar/issues/719
https://github.com/scylladb/seastar/issues/719
https://linux.die.net/man/7/tcp
https://mailarchive.ietf.org/arch/msg/tcpm/s0LtY3Ce3QBBAkJ_DuSH5VDNFMY
https://mailarchive.ietf.org/arch/msg/tcpm/s0LtY3Ce3QBBAkJ_DuSH5VDNFMY
https://mailarchive.ietf.org/arch/msg/tcpm/_jpUQx0AjByR3UOgyX88RWoTxL0
https://mailarchive.ietf.org/arch/msg/tcpm/_jpUQx0AjByR3UOgyX88RWoTxL0
https://github.com/adamdunkels/uip
https://github.com/heroku/vegur
https://www.linux-kvm.org/page/Virtio
https://www.linux-kvm.org/page/Virtio
https://doi.org/10.1145/3339252.3339277
https://www.alexa.com/about
https://doi.org/10.1145/2068816.2068833
https://doi.org/10.1007/978-3-540-24668-8_16
https://doi.org/10.1007/978-3-540-24668-8_16
https://doi.org/10.17487/RFC2119
https://www.usenix.org/conference/atc13/technical-sessions/presentation/cardwell
https://www.usenix.org/conference/atc13/technical-sessions/presentation/cardwell

MUST, SHOULD, DON’T CARE: TCP Conformance in the Wild 15

22. Carpenter, B., Brim, S.: Middleboxes: Taxonomy and issues (2002).
https://doi.org/10.17487/RFC3234

23. Craven, R., Beverly, R., Allman, M.: A middlebox-cooperative TCP for a non end-to-
end internet. In: ACM SIGCOMM (2014). https://doi.org/10.1145/2619239.2626321

24. Detal, G., Hesmans, B., Bonaventure, O., Vanaubel, Y., Donnet, B.: Revealing
Middlebox Interference with Tracebox. In: ACM Internet Measurement Conference
(IMC) (2013). https://doi.org/10.1145/2504730.2504757

25. Durumeric, Z., Adrian, D., Mirian, A., Bailey, M., Halderman, J.A.: A Search
Engine Backed by Internet-Wide Scanning. In: ACM Conference on Computer and
Communications Security (CCS) (2015). https://doi.org/10.1145/2810103.2813703

26. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: Fast Internet-wide Scanning
and Its Security Applications. In: USENIX Security Symposium (2013), https:
//www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/

durumeric
27. Eddy, W.: Transmission Control Protocol Specification. Internet-Draft draft-ietf-

tcpm-rfc793bis-14, Internet Engineering Task Force (Jul 2019), https://datatrac
ker.ietf.org/doc/html/draft-ietf-tcpm-rfc793bis-14, work in Progress

28. Edeline, K., Donnet, B.: A Bottom-Up Investigation of the Transport-Layer Ossifi-
cation. In: Network Traffic Measurement and Analysis Conference (TMA) (2019).
https://doi.org/10.23919/TMA.2019.8784690

29. Floyd, S., Ramakrishnan, D.K.K., Black, D.L.: The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168 (Sep 2001). https://doi.org/10.17487/RFC3168

30. Fyodor: Remote os detection via tcp/ip stack fingerprinting. https://nmap.org/n
map-fingerprinting-article.txt (1998)

31. Gilligan, R.E., McCann, J., Bound, J., Thomson, S.: Basic Socket Interface Exten-
sions for IPv6. RFC 3493 (Mar 2003). https://doi.org/10.17487/RFC3493

32. Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley, M., Tokuda, H.: Is It
Still Possible to Extend TCP? In: ACM Internet Measurement Conference (IMC)
(2011). https://doi.org/10.1145/2068816.2068834

33. HTTP Archive: About HTTP Archive, https://httparchive.org/about
34. Knutsen, A., Ramaiah, A., Ramasamy, A.: Tcp option for transparent middlebox

negotiation. https://tools.ietf.org/html/draft-ananth-middisc-tcpopt-02
(2013)

35. Kühlewind, M., Walter, M., Learmonth, I.R., Trammell, B.: Tracing Internet Path
Transparency. In: Network Traffic Measurement and Analysis Conference (TMA)
(2018). https://doi.org/10.23919/TMA.2018.8506532

36. Khlewind, M., Neuner, S., Trammell, B.: On the state of ECN and TCP options
on the internet. In: Passive and Active Measurement Conference (PAM) (2013).
https://doi.org/10.1007/978-3-642-36516-4 14

37. Langley, A.: Probing the viability of TCP extensions. http://www.imperialviol
et.org/binary/ecntest.pdf (2008)

38. Mandalari, A.M., Lutu, A., Briscoe, B., Bagnulo, M., Alay, O.: Measuring ECN++:
Good News for ++, Bad News for ECN over Mobile. IEEE Communications Maga-
zine 56(3), 180–186 (March 2018). https://doi.org/10.1109/MCOM.2018.1700739

39. Mandalari, A.M., Bagnulo, M., Lutu, A.: TCP Fast Open: initial measurements.
In: ACM CoNEXT Student Workshop (2015)

40. Marinos, I., Watson, R.N., Handley, M.: Network Stack Specialization for Perfor-
mance. In: ACM SIGCOMM (2014). https://doi.org/10.1145/2619239.2626311

41. Marinos, I., Watson, R.N., Handley, M., Stewart, R.R.: Disk, Crypt, Net: Rethinking
the Stack for High-performance Video Streaming. In: ACM SIGCOMM (2017).
https://doi.org/10.1145/3098822.3098844

https://doi.org/10.17487/RFC3234
https://doi.org/10.1145/2619239.2626321
https://doi.org/10.1145/2504730.2504757
https://doi.org/10.1145/2810103.2813703
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc793bis-14
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rfc793bis-14
https://doi.org/10.23919/TMA.2019.8784690
https://doi.org/10.17487/RFC3168
https://nmap.org/nmap-fingerprinting-article.txt
https://nmap.org/nmap-fingerprinting-article.txt
https://doi.org/10.17487/RFC3493
https://doi.org/10.1145/2068816.2068834
https://httparchive.org/about
https://tools.ietf.org/html/draft-ananth-middisc-tcpopt-02
https://doi.org/10.23919/TMA.2018.8506532
https://doi.org/10.1007/978-3-642-36516-4_14
http://www.imperialviolet.org/binary/ecntest.pdf
http://www.imperialviolet.org/binary/ecntest.pdf
https://doi.org/10.1109/MCOM.2018.1700739
https://doi.org/10.1145/2619239.2626311
https://doi.org/10.1145/3098822.3098844

16 M. Kosek et al.

42. Medina, A., Allman, M., Floyd, S.: Measuring Interactions between Transport
Protocols and Middleboxes. In: ACM Internet Measurement Conference (IMC)
(2004). https://doi.org/10.1145/1028788.1028835

43. Medina, A., Allman, M., Floyd, S.: Measuring the Evolution of Transport Protocols
in the Internet. SIGCOMM Comput. Commun. Rev. 35(2), 3752 (Apr 2005)

44. Paasch, C.: Network support for tcp fast open. Presentation at NANOG 67 (2016)
45. Padhye, J., Floyd, S.: On Inferring TCP Behavior. In: ACM SIGCOMM (2001).

https://doi.org/10.1145/383059.383083
46. Piraux, M., De Coninck, Q., Bonaventure, O.: Observing the Evolution of QUIC

Implementations. In: ACM CoNEXT Workshop on the Evolution, Performance, and
Interoperability of QUIC (EPIQ) (2018). https://doi.org/10.1145/3284850.3284852

47. Postel, J.: Transmission Control Protocol. RFC 793 (Sep 1981).
https://doi.org/10.17487/RFC0793

48. Rüth, J., Hohlfeld, O.: Demystifying TCP Initial Window Configurations of Content
Distribution Networks. In: Network Traffic Measurement and Analysis Conference
(TMA) (2018). https://doi.org/10.23919/TMA.2018.8506549

49. Rüth, J., Bormann, C., Hohlfeld, O.: Large-Scale Scanning of TCP’s Ini-
tial Window. In: ACM Internet Measurement Conference (IMC) (2017).
https://doi.org/10.1145/3131365.3131370

50. Rüth, J., Kunze, I., Hohlfeld, O.: TCP’s Initial Window - Deployment in the
Wild and its Impact on Performance. IEEE Transactions on Network and Service
Management (TNSM) (2019). https://doi.org/10.1109/TNSM.2019.2896335

51. Rüth, J., Zimmermann, T., Hohlfeld, O.: Hidden Treasures — Recycling Large-
Scale Internet Measurements to Study the Internet’s Control Plane. In: Passive
and Active Measurement Conference (PAM) (2019). https://doi.org/10.1007/978-3-
030-15986-3 4

52. Scheitle, Q., Hohlfeld, O., Gamba, J., Jelten, J., Zimmermann, T., Strowes, S.D.,
Vallina-Rodriguez, N.: A Long Way to the Top: Significance, Structure, and Stability
of Internet Top Lists. In: ACM Internet Measurement Conference (IMC) (2018).
https://doi.org/10.1145/3278532.3278574

53. Smart, M., Malan, G.R., Jahanian, F.: Defeating TCP/IP Stack Fingerprinting. In:
USENIX Security Symposium (2000)

54. Stevens, W.R., Thomas, M., Nordmark, E., Jinmei, T.: Advanced Sock-
ets Application Program Interface (API) for IPv6. RFC 3542 (Jun 2003).
https://doi.org/10.17487/RFC3542

55. Stone, J., Partridge, C.: When the CRC and TCP Checksum Disagree. In: ACM
SIGCOMM (2000). https://doi.org/10.1145/347059.347561

https://doi.org/10.1145/1028788.1028835
https://doi.org/10.1145/383059.383083
https://doi.org/10.1145/3284850.3284852
https://doi.org/10.17487/RFC0793
https://doi.org/10.23919/TMA.2018.8506549
https://doi.org/10.1145/3131365.3131370
https://doi.org/10.1109/TNSM.2019.2896335
https://doi.org/10.1007/978-3-030-15986-3_4
https://doi.org/10.1007/978-3-030-15986-3_4
https://doi.org/10.1145/3278532.3278574
https://doi.org/10.17487/RFC3542
https://doi.org/10.1145/347059.347561

	MUST, SHOULD, DON'T CARE:TCP Conformance in the Wild

