
A Performance Perspective on Web Optimized
Protocol Stacks: TCP+TLS+HTTP/2 vs. QUIC

Konrad Wolsing, Jan Rüth, Klaus Wehrle, Oliver Hohlfeld∗

RWTH Aachen University, Germany
{wolsing,rueth,wehrle,hohlfeld}@comsys.rwth-aachen.de

ABSTRACT
Existing performance comparisons of QUIC and TCP com-
pared an optimized QUIC to an unoptimized TCP stack. By
neglecting available TCP improvements inherently included
in QUIC, comparisons do not shed light on the performance
of current web stacks. In this paper, we can show that tuning
TCP parameters is not negligible and directly yields signif-
icant improvements. Nevertheless, QUIC still outperforms
even our tuned variant of TCP. This performance advantage
is mostly caused by QUIC’s reduced RTT design during con-
nection establishment, and, in case of lossy networks due to
its ability to circumvent head-of-line blocking.

CCS CONCEPTS
• Networks → Network measurement;
ACM Reference Format:
Konrad Wolsing, Jan Rüth, Klaus Wehrle, and Oliver Hohlfeld. 2019.
A Performance Perspective on Web Optimized Protocol Stacks:
TCP+TLS+HTTP/2 vs. QUIC. In ANRW ’19: Applied Networking
Research Workshop (ANRW ’19), July 22, 2019, Montreal, QC, Canada.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/334030
1.3341123

1 INTRODUCTION
The advancement of Web application and services resulted
in an ongoing evolution of the Web protocol stack. Driving
reasons are security and privacy or the realization of latency-
sensitive Web services. Today, the typical Web stack involves
using HTTP/2 over TLS over TCP, making it practically one
(ossified) protocol. While parts of the protocols have been
designed to account for the others, this protocol stacking still
suffers from inefficiencies, e.g., head-of-line blocking. Even
though protocol extensions promise higher efficiency (e.g.,

∗Is now at Brandenburg University of Technology

ANRW ’19, July 22, 2019, Montreal, QC, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in ANRW ’19: Applied Networking Research Workshop (ANRW ’19), July 22,
2019, Montreal, QC, Canada, https://doi.org/10.1145/3340301.3341123.

TLS 1.3 early-data [24] or TCP Fast Open [23]), the ossifica-
tion around the initial designs challenges their deployment.

QUIC [15] (as used in HTTP/3) combines the concepts of
TCP, TLS, HTTP/2, tightly coupled into a new protocol that
enables to utilize cross-layer information and to evolve with-
out ossification. While it fixes some of TCP’s shortcomings
like head-of-line blocking when used with HTTP, its design,
in the first place, should enable evolution.

A number of studies showed that QUIC outperforms the
classical TCP-based stack [2, 7, 8, 13, 17, 30]—that is by com-
paring QUIC to an unoptimized TCP-based stack; a limitation
that we address in this paper. Current QUIC implementations
were specifically designed and parameterized for the Web. In
contrast, stock TCP implementations, as in the Linux kernel,
are not specialized and are built to perform well on a large
set of devices, networks, and workloads. However, we have
shown [26] that large content providers fine-tune their TCP
stacks (e.g., by tuning the initial window size) to improve
content delivery. All studies known to us neglect this fact
and indeed compare an out-of-the-box TCP with a highly-
tuned QUIC Web stack and show that the optimized version
is superior. Furthermore, they often utilize simple Web per-
formance metrics like page load time (PLT) to reason about
the page loading speed, even though it is long known that
PLT does not correlate to user-perceived speeds [3, 14, 31].

In this paper, we seek to close this gap by parameteriz-
ing TCP similar to QUIC to enable a fair comparison. This
includes increasing the initial congestion window, enabling
pacing, setting no slow start after idle, and tuning the kernel
buffers to match QUIC’s defaults. We further enable BBR
instead of the CUBIC as the congestion control algorithm in
one scenario. We show that this previously neglected tuning
of TCP impacts its performance. We find that for broadband
access, QUIC’s RTT-optimized connection establishment in-
deed increases the loading speed, but otherwise compares to
TCP. If optimizations such as TLS 1.3 early-data or TCP Fast
Open were deployed, QUIC and TCP would compare well. In
lossy networks, QUIC clearly outperforms the current Web
stack, which we mainly attribute to its ability to progress
streams independently of head-of-line blocking. Our com-
parison is based on visual Web performance metrics that
better correlate to human perception than traditionally used
loading times. To evaluate real-world websites, we extend

https://doi.org/10.1145/3340301.3341123
https://doi.org/10.1145/3340301.3341123
https://doi.org/10.1145/3340301.3341123


ANRW ’19, July 22, 2019, Montreal, QC, Canada Wolsing and Rüth, et al.

the Mahimahi framework to utilize the Google QUIC Web
stack to perform reproducible comparisons between TCP and
QUIC on a large scale of settings. This work does not raise
any ethical issues and makes the following contributions:
• We provide the first study that performs an eye-level com-

parison of TCP+TLS+HTTP/2 and QUIC.
• Our study highlights that QUIC can indeed outperform

TCP in a variety of settings but so does a tuned TCP.
• Tuning TCP closes the gap to QUIC and shows that TCP

is still very competitive to QUIC.
• Our study further highlights the immense impact of choice

of congestion control, especially in lossy environments.
• We add QUIC support to Mahimahi to enable reproducible

QUIC research. It replays real-world websites in a testbed
subject to different protocols and network settings.

Structure. Section 2 examines related work, highlights the
evaluation metrics and introduces to the Mahimahi frame-
work. Section 3 explains our testbed, network configuration,
and protocol considerations. Section 4 shows the results of
the measurement. Finally, Section 5 concludes this paper.

2 RELATEDWORK AND BACKGROUND
QUIC is subject to a body of studies [2, 7, 8, 13, 17, 20, 30],
most compare QUIC against some combination of TCP+TLS+-
HTTP/1.1 or HTTP/2. But to the best of our knowledge, all
use stock TCP configurations measuring a likely unoptimized
TCP version to a QUIC version that inherently contains avail-
able TCP optimizations. Yu et al. [30] is the only study on
the impact of packet pacing for QUIC as a tuning option.
However, no further comparison to TCP is made.

Generally, the related work can be divided into two cate-
gories depending on their measurement approach. One body
of research [8, 17, 27] measures against websites hosted on
public servers utilizing both QUIC and TCP—however, usu-
ally operated by Google. Thus, they do not have any access
to the servers, which makes tuning the protocol impossi-
ble and the configurations in use are unknown. The second
body [2, 7, 13, 20] uses self-hosted servers, in principle al-
lowing for tuning, however, none of them does so.

One critical difference between TCP and QUIC is their
connection establishment since QUIC by design needs fewer
RTTs than traditional TCP+TLS until actual website payload
can be exchanged. Cook et al. [8] already take into account
that there is a difference between first and repeated con-
nections that require each one less RTT for both protocols.
Nevertheless, QUIC still has a one RTT advantage in both
connections, repeated as well as first, and again this fact is
not dealt with any further.

Since today’s websites consist of various resources hosted
by several providers, many connections to different servers
are established even for fetching a single website. Many stud-
ies consider websites with varying resources but deployed

by a single server only [2, 7, 17]. To study realistic Web sites,
the Mahimahi framework [21] was designed to replicate this
multi-server nature of current websites into a testbed (see
Section 2.2). Nepomuceno et al. [20] perform a study with
Mahimahi but find that QUIC is outperformed by TCP which
does not coincide with our and related work. We believe
this is due to the use of the Caddy QUIC server, which is
known to not (yet) perform very well [19]. Also, they did not
configure any bandwidth limitations.

2.1 Web Performance Metrics
We aim to evaluate the performance of a different protocol
stack on a broad set of standard Web performance metrics.
Besides network characteristics like goodput or link utiliza-
tion as measured in [7, 30], Page Load Time (PLT) is the most
used metric. But PLT does not always match user-perceived
performance [3, 14, 31], e.g., it includes the loading perfor-
mance of below-the-fold content that is not displayed and
thus not reflected in end-user perception. This is why we de-
cide to focus more closely on state-of-the-art visual metrics
that are known to better correlate with human perception.
These metrics are derived from video recordings of the pages
loading process above-the-fold as recommended by [5, 9].

Metrics of interest are the time of the First Visual Change
(FVC), Last Visual Change (LVC), and time the website reaches
visual completeness of a desired threshold in percent. In our
case, Visual Complete 85 (VC85), which corresponds to the
point in time measured from the navigation start when the
currently rendered website’s above-the-fold matches to 85%
the final website picture. Only navigation start can be used
as start point since visual metrics are derived from video
recordings only (see Section 3.2 how we deal with DNS im-
pacting the measurement). Lastly, we also take into account
the Speed Index (SI) [11].

2.2 Website Replay with Mahimahi
Mahimahi [21] is a framework designed to replicate real-
world websites with their multi-server structure in a testbed.
It uses HTTP traffic recordings that are later replayed. Mahi-
mahi preserves the multi-server nature with the help of
virtualized Web servers. Mahimahi is built upon multiple
shell commands that can be stacked to create a virtual net-
work. Each shell allows for modifying a single aspect of the
traversing network flow, e.g., generating loss or limiting the
bandwidth. Mahimahi yields realistic conditions for perfor-
mance measurements [21]. This way, it enables repeatable
and controllable studies with real-world websites.

3 TESTBED SETUP
We will now continue to explain how we design our testbed
to perform eye-level comparisons of TCP and QUIC.



A Performance Perspective on Web Optimized
Protocol Stacks: TCP+TLS+HTTP/2 vs. QUIC ANRW ’19, July 22, 2019, Montreal, QC, Canada

te
le

gr
ap

h.
co

m
w

ik
ip

ed
ia

.o
rg

gn
u.

or
g

w
or

dp
re

ss
.c

om
ph

pb
b.

co
m

w
3.

or
g

ed
.g

ov
gr

av
at

ar
.c

om
op

er
a.

co
m

go
og

le
.c

om
go

v.
uk

st
at

co
un

te
r.c

om
ap

ac
he

.o
rg

m
sn

.c
om

jo
om

la
.c

om
sp

ot
ify

.c
om

sc
ie

nc
ed

ir
ec

t.c
om

bi
t.l

y
im

gu
r.c

om
do

td
as

h.
co

m
et

sy
.c

om
re

se
ar

ch
ga

te
.n

et
na

tu
re

.c
om

ac
ad

em
ia

.e
du

im
db

.c
om

pi
nt

er
es

t.c
om

yo
ut

ub
e.

co
m

in
te

l.c
om

de
m

or
ge

n.
be

ha
rv

ar
d.

ed
u

fa
ce

bo
ok

.c
om

re
dd

it
.c

om
sc

ie
nc

em
ag

.o
rg

ca
nv

as
.b

e
gi

th
ub

.c
om

co
lu

m
bi

a.
ed

u
vt

m
.b

e
ny

ti
m

es
.c

om

0
2
4
6

Si
ze

[M
B

]

0
10
20
30

IP
s

[#
]

Figure 1: This figure depicts the download size of the
replayed websites (blue) and the number of unique IP
addresses that need to be contacted for resources (red).

3.1 Selecting and Recording Websites
Websites. We want to choose websites that replicate a real-
world picture of commonly used websites. The goal is to
obtain a small set of domains diverse in size, resources, and
involved servers. As there is no standard test set of such
website, we use the domain collection from [29] consisting
of 40 different websites from which we had to exclude two.
One domain is a private project website and the other failed
to record and reply properly. The domains originate from
the Alexa [1] and Moz [18] ranking lists and were chosen in
a way to obtain a good distribution of page size and resource
counts [29], see Figure 1. The bars in red suggest the ma-
jority of our tested sites to use multi-server infrastructures,
highlighting the relevance of replicating it with Mahimahi.
Recording.Downloading of the websites was not performed
with the tool provided by Mahimahi. Instead, we utilize Mitm-
proxy with a custom script that dumps the raw HTTP re-
sponses of the server to disk. According to the Google QUIC
server specification [10] the transfer-encoding header must
be removed if its value is chuncked. The same holds for the
alternate-protocol header for any value. Other than that, the
recorded HTTP responses remain unchanged.

In post-processing, few resource files needed to be down-
loaded additionally, since, e.g., the header of the github.com
website loads a random image from a fixed collection via
JavaScript.

3.2 Replaying with Mahimahi
Mahimahi. To support a state-of-the-art QUIC in Mahimahi,
we include Google’s QUIC server from the Chromium sources
utilizing QUIC Version 43. For TLS1.3 and HTTP/2, we re-
place the Mahimahi default Apache server with NGINX. All
NGINX servers forward the requests to a single uWSGI proxy
server that provides the previously recorded HTTP responses
from main memory. Similarly, the QUIC servers use their
built-in feature loading all responses from a folder into mem-
ory. Finally, we create a self-signed certificate authority (CA)
and incorporate it to the Chrome browser’s list of trusted
CAs to circumvent any authentication errors.

Protocol Description
TCP Stock TCP (Linux): IW10, Cubic

TCP+ IW 32, Pacing, Cubic, tuned buffers,
no slow start after idle

TCP+BBR TCP+, but with BBR as congestion control
QUIC Stock Google QUIC: IW 32, Pacing, Cubic
QUIC+BBR QUIC, but with BBR as congestion control
Table 1: Protocol configuration used in our tests.

Enforcing QUIC or TCP+TLS1.3+H2. We want to be sure
that only QUIC or TCP is used. On the one hand, we accom-
plish this using Chrome flags, to enforce QUIC, we set “–
enable-quic –origin-to-force-quic-on=*” and “–disable-quic”
for TCP respectively. On the other hand, the QUIC and NG-
INX servers never run at the same time. In the TCP case,
each request is performed over TLS1.3 and HTTP/2. There
are no resources that get transmitted unencrypted.
Protocol Tuning. To allow for a fair comparison between
TCP and QUIC, we tune the stock TCP stack of a Linux ker-
nel to more closely match QUIC’s defaults. This is done by
increasing the initial window to 32 segments, enabling pac-
ing, setting no slow start after idle and tuning the kernel
buffers. QUIC by default also uses an initial window of 32 and
pacing. Since we expect the employed congestion control
algorithm to significantly impact the measured performance,
we incorporated one scenario for TCP and QUIC each utiliz-
ing BBR [6] instead of CUBIC [12]. An overview of the five
protocol configurations is shown in Table 1.

TCP Fast Open [23] and TLS1.3 early-data [24] are two
possible options to tune TCP/TLS even further. We decided
against both techniques because of the following reasons.
TLS1.3 early-data was not supported by the Chrome browser
at the time of the measurement and as it is prone to replay
attacks requires idempotency which further challenges its
widespread use. TCP Fast Open is not widely deployed on
the Internet today [16, 22]. Moreover, we always measure the
website performance with a fresh browser and clean caches,
thus QUIC has to perform an extra RTT for connection es-
tablishment as well and does not use 0-RTT connections.
Network Settings. For network emulation, the built-in tools
from Mahimahi are used. We stack the following three net-
work parameters from server to client with Mahimahi shells.
First, a packet gets delayed in either direction, both adding
up to the desired minimum latency. Second, the link shell
implements a drop-tail buffer limiting the throughput per
direction. Finally, the loss shell drops packets at random for
both directions equally. The loss is configured, such that
the chance for two packets, e.g., request and response, get-
ting transmitted successfully equals 1 − p with p being the
desired loss rate. The implemented values are shown in Ta-
ble 2. Bandwidth and delay values for DSL and LTE are taken



ANRW ’19, July 22, 2019, Montreal, QC, Canada Wolsing and Rüth, et al.

Network Uplink Downlink Delay Loss
DSL 5 Mbps 25 Mbps 24 ms 0.0 %
LTE 2.8 Mbps 10.5 Mbps 74 ms 0.0 %
DA2GC .468 Mbps .468 Mbps 262 ms 3.3 %
MSS 1.89 Mbps 1.89 Mbps 760 ms 6.0 %

Table 2: Network configurations. Queue size is set to
200ms except for DSL with 12ms.

0 100 200 300 400 500
Download time [ms]

NGINX 2B
QUIC 2B

NGINX 10KB
QUIC 10KB

NGINX 1MB
QUIC 1MB

NGINX 10MB
QUIC 10MB

Figure 2: Boxplot of server download speeds in our
testbed (31 repetitions and no bandwidth limitation).

from [4], we assume no additional loss here. The last two
networks emulate slow links measured from in-flight WLAN
services [25]. Except for the DSL link with 12ms maximal
queueing delay, we assume rather bloated buffers of 200 ms.
Thus, our configured delay is the minimum delay and queu-
ing further adds jitter up to the configured buffer size.
Validation. Before conducting measurements, we validate
the implemented testbed regarding the network and protocol
parameters ensuring the correct protocol choice. We found
that the Chromium browser’s DNS timeout of 5 s signifi-
cantly distorts a measurement when a DNS packet is lost
and thus moved the DNS server such that no traffic shaping
is applied to DNS traffic. Moreover, Figure 2 shows that both
server variants yield similar performance for files ≤ 1 MB.
This suggests that our results are not biased by the servers’
implementations. For this test, we repeated 31 downloads
of a single file with the Chromium browser under static net-
work conditions—only 10 ms minimum delay, no loss, and no
bandwidth limits. The gap between NGINX and QUIC server
emerging at a file size of 10 MB is not relevant since our
website sizes are much smaller (see Figure 1). Independent
resources are even smaller, the largest being 4 MB.

3.3 Performing Measurements
The actual measurements are performed inside a virtual ma-
chine equipped with 6 cores and 8 GB of memory running
Arch Linux kernel Version 4.18.16. To measure a single set-
ting consisting of one website, network, and protocol config-
uration, a Mahimahi replay shell with the described network
stack is used. A single setting gets measured over 31 runs to
gain statistical significance and at the same time keep the

number of runs/videos manageable. We utilize the Browser-
time [28] framework to instrument the browser. It records
videos of the loading process that we subsequently evaluate
for the visual metrics. For each run, Browsertime opens up a
fresh Chromium browser Version 70.0.3538.77. In total, this
leads to 760 configurations (38 domains, 4 network, and 5
protocol settings). We validated that each run completed
successfully by reviewing the video recordings manually.

4 QUIC VS. TCP PERFORMANCE
We evaluate the performance difference with all metrics in
the different network settings (across all tested websites)
by means of a performance gain. The following equation
explains the calculation of the performance gain between a
reference protocol, e.g., TCP and a protocol to compare with
like QUIC. X correspond to the mean over the 31 runs.

performance gainTCPQU IC =
XQU IC − XTCP

XTCP

If not stated otherwise, numbers provided in the text are
mean performance gains over all websites for SI. Besides com-
paring means we also utilize an ANOVA test to tell whether
there is a statistically significant difference in the distribution
of the 31 runs of two protocols. If the ANOVA test for two
settings is p < 0.01 (significance level), we count the setting
with the lower mean as significantly faster otherwise no con-
clusion can be drawn. The results of our measurements are
depicted in Figure 3. We show the CDFs of the performance
gain of the different metrics comparing stock TCP to the
other protocol stacks. LVC is left out in this figure because
in contrast to PLT there is no relevant difference visible.
DSL and LTE. For the lossless DSL and LTE scenarios, the
protocols separate into two groups both yielding similar per-
formance gains. TCP+ (DSL: -0.05TCP+

TCP , LTE: -0.08TCP+
TCP ) and

TCP+BBR (DSL: -0.05TCP+BBR
TCP , LTE: -0.09TCP+BBR

TCP ) perform al-
most indistinguishable but against TCP, there is a notice-
able improvement visible throughout all metrics. Similarly,
QUIC (DSL: -0.09QUIC

TCP+, LTE: -0.14QUIC
TCP+) and QUIC+BBR (DSL:

-0.09QUIC+BBR
TCP+BBR , LTE: -0.13QUIC+BBR

TCP+BBR ) perform equally but are still
quite a bit faster than the two tuned TCP variants. For these
two networks, the congestion control choice does not make a
significant difference, which is likely due to the small queue.
Stock TCP indeed lags behind all other protocols show-
ing that stock TCP should not be used to compare against
QUIC here. QUIC achieves to decrease the average SI by
-131.3 msQUIC

TCP (DSL) and -344.9 msQUIC
TCP (LTE), but also against

TCP+ by still -87.1 msQUIC
TCP+ (DSL) and -215.9msQUIC

TCP+ (LTE).
In a second step, we take a look at the ANOVA test re-

sults focussing on DSL (LTE yields equivalent results). When
comparing the runs of TCP+ and QUIC in DSL with PLT
as the metric with each other, 30 of the 38 websites yield



A Performance Perspective on Web Optimized
Protocol Stacks: TCP+TLS+HTTP/2 vs. QUIC ANRW ’19, July 22, 2019, Montreal, QC, Canada

-.5 -.25 0
0.00
0.25
0.50
0.75
1.00

C
D

F

FVC

-.5 -.25 0

SI

-.5 -.25 0

VC85

-.5 -.25 0

PLT
Network DSL

-.6 -.3 0 .3
0.00
0.25
0.50
0.75
1.00

C
D

F

FVC

-.6 -.3 0 .3

SI

-.6 -.3 0 .3

VC85

-.6 -.3 0 .3

PLT
Network MSS

-.5 -.25 0
0.00
0.25
0.50
0.75
1.00

C
D

F

FVC

-.5 -.25 0

SI

-.5 -.25 0

VC85

-.5 -.25 0

PLT
Network LTE

-.6 -.3 0 .3
0.00
0.25
0.50
0.75
1.00

C
D

F

FVC

-.6 -.3 0 .3

SI

-.6 -.3 0 .3

VC85

-.6 -.3 0 .3

PLT
Network DA2GC

QUIC QUIC+BBR TCP TCP+ TCP+BBR

Figure 3: CDF of the performance gain over all websites with TCP as reference protocol. If the performance gain
is < 0 (left side of plot) then the compared protocol is faster than TCP.

a significant improvement with QUIC. For the remaining 8
websites, none was significantly faster than TCP+. For SI
even 32 are faster and only 6 show no significant difference.
Similar results can be seen when comparing QUIC+BBR with
TCP+BBR this way. For TCP+ and TCP in the same scenario
with PLT as the metric, 25 websites are faster with TCP+,
for 12 there is no significant difference and only 1 website
was significantly slower. Again when comparing TCP+BBR
with TCP+ and similarly QUIC+BBR with QUIC for DSL and
LTE throughout all metrics, we find for the majority of the
websites no difference. These results line up with the results
shown in Figure 3. Moreover, the steep incline of the CDFs
for QUIC and TCP+ indicate that the website size or struc-
ture seems to have little influence on the achievable gain.
Only looking at SI and VC85, we see a small percentage of
measurements where QUIC has a significantly higher gain.
In-Flight Wifi. For the networks MSS and DA2GC, the
overall picture is quite similar—meaning QUIC as well as
QUIC+BBR, are usually faster than TCP+ (MSS: -0.36QUIC

TCP+,
DA2GC: -0.14QUIC

TCP+) and TCP+BBR (MSS: -0.18QUIC+BRR
TCP+BBR , DA2GC:

-0.10QUIC+BBR
TCP+BBR ). But there are some important differences, for

the MSS link with the highest loss rate (6 %), TCP+BBR op-
erates much better than TCP+ (-0.26TCP+BBR

TCP+ ). Since BBR does
not use loss as a congestion signal it increases its rate re-
gardless of this random loss. This means that in this case,
the choice in congestion control has a greater impact on the
performance than the protocol choice itself. At the time of
the FVC, TCP+BBR is already -2866.2 ms (avg.) quicker than
TCP+ but with each later metric, the gap widens so that at
PLT, TCP+BBR can keep up the pace even against QUIC and
is 11395.4 ms (0.21×) quicker. This shows that TCP with BBR
needs some time to catch up and thus affects the FVC much
more than the later PLT. For the QUIC protocols, the picture
is similar. At first, QUIC and QUIC+BBR are similarly fast

and mostly better than TCP+BBR. But as the loading pro-
cess commences QUIC+BBR outperforms QUIC slightly, e.g.,
-1828.3 msQUIC+BBR

QUIC better SI. QUIC with CUBIC, nevertheless,
is reasonably fast being still a legit option to use. The shape
of the performance gain CDFs of QUIC+BBR and TCP+BBR
are very similar especially for PLT highlighting the influence
of the congestion control once again. We believe that QUIC
with CUBIC is still competitive due to QUIC’s ability to cir-
cumvent head-of-line blocking and its large SACK ranges.
For the MSS network, QUIC reduces the SI by -8364.8 msQUIC

TCP+
(avg.) compared to TCP+ and by -2091.5 msQUIC+BBR

TCP+BBR when tak-
ing both BBR protocols into account.

The last network, DA2GC, also has a high loss rate (3.3 %)
but a much lower bandwidth. This is the only scenario where
we observe no significant difference for most websites among
all TCP configurations even with the ANOVA test. We also
see that in a small fraction of our measurements stock TCP
outperforms QUIC and the tuned TCP variants. Nevertheless,
again the QUIC variants are generally significantly faster
with a higher performance gain at the FVC (e.g., -0.14QUIC

TCP+)
that persists towards the PLT (e.g., -0.16QUIC

TCP+). The choice of
the congestion control algorithm does not seem to have a
significant impact here likely due to the low bandwidth. Only
for PLT we find QUIC with CUBIC to be slightly superior
over QUIC with BBR. There is not a single website where
QUIC+BBR yields a significantly faster performance. The
SI decreases with QUIC by -2632.5 msQUIC

TCP+ vs. TCP+ and by
-1372.5 msQUIC+BBR

TCP+BRR for BBR.
DiscussingMetrics. Some of the websites exhibit very poor
performance regarding the visual metrics VC85 and SI. We
observe this behavior especially for the DA2GC network with
performance gains of up to +1.0 compared to stock TCP (not
shown, plots cropped for readability). The reason for these
outliers is that the protocol choice has such a substantial



ANRW ’19, July 22, 2019, Montreal, QC, Canada Wolsing and Rüth, et al.

Figure 4: Screenshot during the loading process of the
nytimes.com website. Left TCP right QUIC. QUIC in
comparison delays a top banner leading to bad scores
in visual metrics compared to the final website.

impact on some websites that their resources load in different
orders resulting in very distinct rendering sequences.

Figure 4 shows such a scenario exemplary for the ny-
times.com website in the DA2GC network. Here TCP reaches
VC85 after ∼48s whereas QUIC needs ∼124s even though the
PLT for QUIC (∼141s) is much faster than for TCP (∼170s).
For TCP the upper part of the website loads comparably early
such that the lower elements are already rendered at their fi-
nal positions. In contrast to that QUIC manages to receive the
lower contents first. Later, when the upper banner completes
loading it shifts the whole website down. Therefore, VC85
fails to express this setting given the large shift. Similarly,
SI is affected since it integrates over visual completeness
over time. Thus, it critically depends on the website, the
browser’s loading order, and a user’s preference for how a
website should load to know which metric to use.
Protocol Design Impact. Within our testbed, any TCP con-
figuration needs to fulfill two complete RTTs before the
actual HTTP request can be sent out to the server—TCP
handshake plus TLS setup. In contrast, QUIC requires only
one RTT to do so—the first CHLO gets rejected by the server
since the server certificates are unknown to the client. We
are interested in whether this 1 RTT difference can explain
the remaining performance gap between QUIC and TCP+.
However, the complex interactions with multiple servers
complicate an analysis since these connections are inter-
leaved simply subtracting 1 RTT is not possible. We, there-
fore, take a look at two websites served only via a single IP
(see Figure 1): wikipedia.org and gnu.org. We subtract one
RTT from the FVC, as the earliest metric and one RTT from
the PLT as the latest completing metric. Table 3 shows the
results in the different network settings for TCP+ and QUIC
and additionally for MSS using the BBR variants of both.

For DSL and LTE the corrected difference is below one
RTT and there are three cases where even TCP+ is slightly
faster now. For MSS in all cases with CUBIC as the congestion
control, QUIC is faster but only to a maximum of 1.4× RTT.
Since within this network congestion control has a huge

Net Website Metric [ms] [RTT]
DSL gnu.org FVC 0.5 0.020
DSL wikipedia.org FVC -8.2 -0.341
DSL gnu.org PLT 1.6 0.066
DSL wikipedia.org PLT -3.1 -0.128
LTE gnu.org FVC 0.6 0.008
LTE wikipedia.org FVC -40 -0.538
LTE gnu.org PLT -30 -0.412
LTE wikipedia.org PLT -13 -0.175
MSS gnu.org FVC -196 -0.258
MSS wikipedia.org FVC -412 -0.542
MSS gnu.org PLT -1100 -1.447
MSS wikipedia.org PLT -529 -0.696
DA2GC gnu.org FVC -130 -0.497
DA2GC wikipedia.org FVC -1384 -5.283
DA2GC gnu.org PLT 39 0.150
DA2GC wikipedia.org PLT -1005 -3.834
MSS gnu.org FVC -404 -0.532
MSS wikipedia.org FVC -143 -0.189
MSS gnu.org PLT -477 -0.628
MSS wikipedia.org PLT 451 0.593

Table 3: Difference between the means over the 31
runs of QUIC and TCP+ when subtracting one RTT.
Values <0 denote that QUICwas faster. The lowerMSS
table compares QUIC+BBR and TCP+BBR.

impact, we consider also BBR here. Overall in MSS with BBR,
the difference is also below of one RTT and for wikipedia.org
and PLT even TCP+BBR is faster. Instead with DA2GC, the
outcome is clearly for QUIC for the wikipedia.org website.
Table 3 shows nicely that QUIC’s RTT reducing design clearly
improves the performance. Even though, TCP Fast Open and
TLS 1.3 early-data would close the gap, especially Fast Open
remains challenging to deploy. Furthermore, having no head-
of-line blocking could still be a reason why in the majority
of the cases QUIC is still slightly faster, especially, when the
networks are lossy. We expect further improvements when
using 0-RTT connection establishment with QUIC.

5 CONCLUSION
Comparisons between TCP and QUIC have often been bi-
ased up until now. In this paper, we extended the Mahimahi
framework to support QUIC and perform reproducible per-
formance measurements of 38 websites under different proto-
col and network scenarios. We show that tuning TCP param-
eters has a tremendous impact on the results for performance
comparisons which can not be neglected when comparing
TCP and QUIC. Yet, in many settings, QUIC’s performance
is still superior but the gap gets narrower. Moreover, we find
that QUIC’s higher performance is caused mostly due to its
superior design during the connection establishment. We
assume that besides the RTT reducing design, features like
no head-of-line blocking increase QUIC’s performance, es-
pecially in lossy networks. In those lossy networks, we also
find that the choice of the congestion control algorithm has
a much larger impact than the protocol itself. In our opinion,
QUIC is still the preferred protocol for the future Web since
it paves the way for continuous evolution.



A Performance Perspective on Web Optimized
Protocol Stacks: TCP+TLS+HTTP/2 vs. QUIC ANRW ’19, July 22, 2019, Montreal, QC, Canada

ACKNOWLEDGMENTS
This work has been funded by the DFG as part of the CRC
1053 MAKI and SPP 1914 REFLEXES.

REFERENCES
[1] Alexa. 2019. Alexa Top 500 Global Sites. https://www.alexa.com/tops

ites.
[2] Prasenjeet Biswal and Omprakash Gnawali. 2016. Does QUIC Make the

Web Faster?. In IEEE Global Communications Conference (GLOBECOM).
https://doi.org/10.1109/GLOCOM.2016.7841749

[3] Enrico Bocchi, Luca De Cicco, Marco Mellia, and Dario Rossi. 2017. The
Web, the Users, and the MOS: Influence of HTTP/2 on User Experience.
In Springer Passive and Active Measurement (PAM). https://doi.org/10
.1007/978-3-319-54328-44

[4] Breitbandmessung. 2018. Breitbandmessung Ergebnisse als interaktive
Darstellung. https://web.archive.org/web/20181115105855/https:
//breitbandmessung.de/interaktive-darstellung.

[5] Jake Brutlag, Zoe Abrams, and Pat Meenan. 2011. Above the Fold
Time: Measuring Web Page Performance Visually. In Velocity: Web
Performance and Operations Conference. http://conferences.oreilly.co
m/velocity/velocity-mar2011/public/schedule/detail/18692.

[6] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson.
2016. BBR: Congestion-Based Congestion Control. ACM Queue 14, 5
(2016). https://doi.org/10.1145/3012426.3022184

[7] Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. 2015. HTTP
over UDP: An Experimental Investigation of QUIC. In ACM Symposium
on Applied Computing (SAC). https://doi.org/10.1145/2695664.2695706

[8] S. Cook, B. Mathieu, P. Truong, and I. Hamchaoui. 2017. QUIC: Better
for what and for whom?. In IEEE International Conference on Commu-
nications (ICC). https://doi.org/10.1109/ICC.2017.7997281

[9] Qingzhu Gao, Prasenjit Dey, and Parvez Ahammad. 2017. Perceived
Performance of Top Retail Webpages In the Wild: Insights from Large-
scale Crowdsourcing of Above-the-Fold QoE. In ACM Workshop on
QoE-based Analysis and Management of Data Communication Networks
(Internet-QoE). https://doi.org/10.1145/3098603.3098606

[10] Google. 2019. Playing with QUIC - The Chromium Projects. https:
//www.chromium.org/quic/playing-with-quic.

[11] Google. 2019. Speed Index. https://sites.google.com/a/webpagetest.o
rg/docs/using-webpagetest/metrics/speed-index.

[12] S. Ha, I. Rhee, and L. Xu. 2008. CUBIC: A New TCP-friendly High-
speed TCP Variant. ACM SIGOPS Operating Systems Review (OSR) 42,
5 (2008). https://doi.org/10.1145/1400097.1400105

[13] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-
Rotaru, and Alan Mislove. 2017. Taking a Long Look at QUIC: An
Approach for Rigorous Evaluation of Rapidly Evolving Transport
Protocols. In ACM Internet Measurement Conference (IMC). https:
//doi.org/10.1145/3131365.3131368

[14] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, and Samir R.
Das. 2017. Improving User Perceived Page Load Times Using Gaze. In
USENIX Symposium on Networked Systems Design and Implementation
(NSDI). https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/kelton.

[15] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles
Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan
Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik
Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton, Victor Vasiliev,
Wan-Teh Chang, and Zhongyi Shi. 2017. The QUIC Transport Protocol:

Design and Internet-Scale Deployment. In ACM SIGCOMM. https:
//doi.org/10.1145/3098822.3098842

[16] Anna Maria Mandalari, Marcelo Bagnulo, and Andra Lutu. 2015. TCP
Fast Open: Initial Measurements. In ACM Conference on emerging
Networking EXperiments and Technologies (CoNEXT) Student Workshop.
https://www.simula.no/publications/tcp-fast-open-initial-measurem
ents.

[17] P. Megyesi, Z. Krämer, and S. Molnár. 2016. How quick is QUIC?.
In IEEE International Conference on Communications (ICC). https:
//doi.org/10.1109/ICC.2016.7510788

[18] Moz. 2019. Top Sites: The 500 Most Important Websites on the Internet.
https://moz.com/top500.

[19] Ferdinand Mütsch. 2017. Caddy - a modern web server (vs. nginx).
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-
nginx.html.

[20] K. Nepomuceno, I. N. d. Oliveira, R. R. Aschoff, D. Bezerra, M. S. Ito,
W. Melo, D. Sadok, and G. Szabó. 2018. QUIC and TCP: A Performance
Evaluation. In IEEE Symposium on Computers and Communications
(ISCC). https://doi.org/10.1109/ISCC.2018.8538687

[21] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith
Winstein, James Mickens, and Hari Balakrishnan. 2015. Mahimahi:
Accurate Record-and-Replay for HTTP. In USENIX Annual Technical
Conference (ATC). https://www.usenix.org/conference/atc15/technical-
session/presentation/netravali.

[22] Christoph Paasch. 2016. Network support for TCP Fast Open. Presen-
tation at NANOG 67 (2016).

[23] Sivasankar Radhakrishnan, Yuchung Cheng, Jerry Chu, Arvind Jain,
and Barath Raghavan. 2011. TCP Fast Open. In ACM Conference on
emerging Networking EXperiments and Technologies (CoNEXT). https:
//doi.org/10.1145/2079296.2079317

[24] E. Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446. RFC Editor. http://www.rfc-editor.org/rfc/rfc8446.txt

[25] John P. Rula, James Newman, Fabián E. Bustamante, Arash Molavi
Kakhki, and David Choffnes. 2018. Mile High WiFi: A First Look At
In-Flight Internet Connectivity. In IW3C2 World Wide Web Conference
(WWW). https://doi.org/10.1145/3178876.3186057

[26] Jan Rüth and Oliver Hohlfeld. 2018. Demystifying TCP Initial Window
Configurations of Content Distribution Networks. In IFIP/IEEE Network
Traffic Measurement and Analysis Conference (TMA). https://doi.org/
10.23919/TMA.2018.8506549

[27] Michael Seufert, Raimund Schatz, Nikolas Wehner, Bruno Gardlo, and
Pedro Casas. 2019. Is QUIC becoming the New TCP? On the Potential
Impact of a New Protocol on Networked Multimedia QoE. In IEEE
International Conference on Quality of Multimedia Experience (QoMEX).

[28] sitespeed.io. 2019. Browsertime - Your browser, your page, your scripts!
https://github.com/sitespeedio/browsertime.

[29] Maarten Wijnants, Robin Marx, Peter Quax, and Wim Lamotte. 2018.
HTTP/2 Prioritization and Its Impact on Web Performance. In IW3C2
World Wide Web Conference (WWW). https://doi.org/10.1145/3178876.
3186181

[30] Y. Yu, M. Xu, and Y. Yang. 2017. When QUIC meets TCP: An Ex-
perimental Study. In IEEE International Performance Computing and
Communications Conference (IPCCC). https://doi.org/10.1109/PCCC.2
017.8280429

[31] Torsten Zimmermann, Benedikt Wolters, and Oliver Hohlfeld. 2017.
A QoE Perspective on HTTP/2 Server Push. In ACM Workshop on
QoE-based Analysis and Management of Data Communication Networks
(Internet-QoE). https://doi.org/10.1145/3098603.3098604

https://www.alexa.com/topsites
https://www.alexa.com/topsites
https://doi.org/10.1109/GLOCOM.2016.7841749
https://doi.org/10.1007/978-3-319-54328-4_4
https://doi.org/10.1007/978-3-319-54328-4_4
https://web.archive.org/web/20181115105855/https://breitbandmessung.de/interaktive-darstellung
https://web.archive.org/web/20181115105855/https://breitbandmessung.de/interaktive-darstellung
http://conferences.oreilly.com/velocity/velocity-mar2011/public/schedule/detail/18692
http://conferences.oreilly.com/velocity/velocity-mar2011/public/schedule/detail/18692
https://doi.org/10.1145/3012426.3022184
https://doi.org/10.1145/2695664.2695706
https://doi.org/10.1109/ICC.2017.7997281
https://doi.org/10.1145/3098603.3098606
https://www.chromium.org/quic/playing-with-quic
https://www.chromium.org/quic/playing-with-quic
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1145/3131365.3131368
https://doi.org/10.1145/3131365.3131368
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kelton
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kelton
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3098822.3098842
https://www.simula.no/publications/tcp-fast-open-initial-measurements
https://www.simula.no/publications/tcp-fast-open-initial-measurements
https://doi.org/10.1109/ICC.2016.7510788
https://doi.org/10.1109/ICC.2016.7510788
https://moz.com/top500
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://ferdinand-muetsch.de/caddy-a-modern-web-server-vs-nginx.html
https://doi.org/10.1109/ISCC.2018.8538687
https://www.usenix.org/conference/atc15/technical-session/presentation/netravali
https://www.usenix.org/conference/atc15/technical-session/presentation/netravali
https://doi.org/10.1145/2079296.2079317
https://doi.org/10.1145/2079296.2079317
http://www.rfc-editor.org/rfc/rfc8446.txt
https://doi.org/10.1145/3178876.3186057
https://doi.org/10.23919/TMA.2018.8506549
https://doi.org/10.23919/TMA.2018.8506549
https://github.com/sitespeedio/browsertime
https://doi.org/10.1145/3178876.3186181
https://doi.org/10.1145/3178876.3186181
https://doi.org/10.1109/PCCC.2017.8280429
https://doi.org/10.1109/PCCC.2017.8280429
https://doi.org/10.1145/3098603.3098604

	Abstract
	1 Introduction
	2 Related Work and Background
	2.1 Web Performance Metrics
	2.2 Website Replay with Mahimahi

	3 Testbed Setup
	3.1 Selecting and Recording Websites
	3.2 Replaying with Mahimahi
	3.3 Performing Measurements

	4 QUIC vs. TCP Performance
	5 Conclusion
	Acknowledgments
	References

