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Abstract—Blockchain systems promise to mediate interactions
of mutually distrusting parties without a trusted third party.
However, protocols with full smart contract-based security are
either limited in functionality or complex, with high costs for
secured interactions. This observation leads to the development
of protocol-specific schemes to avoid costly dispute resolution in
case all participants remain honest. In this paper, we introduce
SmartJudge, an extensible generalization of this trend for smart
contract-based two-party protocols. SmartJudge relies on a
protocol-independent mediator smart contract that moderates
two-party interactions and only consults protocol-specific verifier
smart contracts in case of a dispute. This way, SmartJudge avoids
verification costs in absence of disputes and sustains interaction
confidentiality among honest parties. We implement verifier
smart contracts for cross-blockchain trades and exchanging
digital goods and show that SmartJudge can reduce costs by
46–50% and 22% over current state of the art, respectively.

Index Terms—Ethereum, Bitcoin, smart contracts, two-party
protocols, dispute resolution, cross-blockchain trades

I. INTRODUCTION

Smart contracts enable trustworthy interactions between
otherwise mutually distrusting parties by providing a technical
replacement for intermediaries. Specifically, they provide a
robust and use case-custom verification system combined
with a transparent and immutable event log. However, these
valuable building blocks for novel protocols and systems
come with considerable drawbacks: First, complex verification
within smart contracts is costly as each required operation
inflicts monetary costs to protect the peers executing the smart
contract from overloading. Secondly, users experience a lack
of privacy since all interaction with a smart contract is being
recorded on the underlying blockchain in order to achieve the
desired transparency of the event log.

As a consequence of these drawbacks, we notice a shift of
designs for smart contracts: A potpourri of recent works [1]–
[5] either implicitly or explicitly propose to avoid expensive
verification processes during two-party interactions unless
there is a dispute whether or not both parties acted faithfully.
This approach currently enables individual applications to
reduce costs and increase privacy in the good case, as com-
putations can be shifted off-chain and are only verified if one
party disputes them. However, current approaches are tailored

towards their respective application. Hence, while these works
have a common pattern to improve their designs, seizing these
saving potentials remains manual effort.

To remedy this situation, in this paper we propose to gen-
eralize conditional dispute resolution within smart contracts
utilized by protocols executed by two mutually distrusting
parties. We hence propose SmartJudge, an extensible frame-
work for two-party protocols based on Ethereum smart con-
tracts, which requires only minimal information and a security
deposit from participating parties. At its core, SmartJudge
consists of a general-purpose mediator contract that consults
protocol-specific verifier contracts only in case of a dispute
to protect a cheated participant. SmartJudge thereby enables
protocol designers to minimize costs and maximize privacy
against blockchain observers while providing full protection
against misbehavior as long as the protocol generates a witness
of its execution that is verifiable by a smart contract.

Costs can be minimized as honest parties can easily execute
any protocol off-chain after an initial setup of preconditions
and ultimately only have to acknowledge the other party’s
faithful execution on the blockchain. As long as both par-
ties agree on the correctness of the execution, no on-chain
verification is required. In our evaluation, we show that even
protocols already using conditional conflict resolution can fur-
ther profit when additionally using SmartJudge. Furthermore,
SmartJudge maximizes achievable privacy against blockchain
observers as details of the protocol execution only need to
be disclosed in case of a dispute. If there is a dispute, i.e.,
either party claims to have been cheated on, then the mediator
contract consults the protocol-specific verifier contract, which
requires both participants to disclose cryptographic protocol
witnesses to unambiguously judge which party misbehaved.
The mediator contract then transfers the misbehaving party’s
security deposit, as well as a verifier-dependent fee, to the
honest party as a penalty to disincentivize dishonest behavior.

We implement two use cases within SmartJudge. First, we
realized cross-blockchain trades, which are currently being
executed via hashed time-locked contracts (HTLCs) [6]. In
contrast to HTLCs, SmartJudge performs potentially complex
and thus expensive cryptographic checks only in case of a
dispute. This way, we can reduce costs over HTLC-based ap-
proaches by 46–50%. Furthermore, we integrate FairSwap [3]
into SmartJudge and thereby can reduce costs by roughly 22%Author manuscript.
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Fig. 1. Scenario for smart contract-based two-party protocols. Alice and
Bob want to execute a specific, pre-negotiated protocol without necessarily
knowing each other. As they are not entirely trusting each other, they want to
rely on a smart contract to protect them in case a dispute arises. While this
publicly records information on the blockchain, the smart contract resolves
disputes fairly based on Alice’s and Bob’s protocol witnesses.

for honest parties, which shows that even two-party protocols
that already perform conditional dispute resolution can benefit
from using SmartJudge as an additional abstraction layer.

A. Main Contributions

In this paper, we make the following contributions to
improve two-party protocols based on smart contracts:

• We identify smart contract-based applications that rely on
two-party protocols, which can potentially benefit from
further optimizations w.r.t. costs, privacy, and security.

• We present SmartJudge, our extensible framework for
minimizing on-chain interaction for two-party smart
contract-based protocols as a general-purpose solution to
seize the identified potential for optimizations.

• We implement verifier contracts for cross-blockchain
exchanges between Bitcoin and Ethereum as well as
FairSwap [3] within our framework to show its feasibility.

• We perform a cost evaluation of our mediator contract as
well as our two use cases to show that SmartJudge can
both avoid expensive on-chain verification among honest
parties and further reduce costs of protocols already per-
forming protocol-specific conditional dispute resolution.

B. Paper Organization

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the assumed scenario for jointly executing
smart contract-based two-party protocols. From the scenario,
we derive a set of applications involving two-party protocols
seizing the protection offered by smart contracts in Section III.
Section IV subsequently introduces SmartJudge with a focus
on the mediator contract at its core. We then describe the
implementations and cost analyses for our verifier contracts
for cross-blockchain exchanges in Section V and FairSwap in
Section VI, respectively. In Section VII, we discuss related
work and Section VIII concludes this paper.

II. SMART CONTRACT-BASED TWO-PARTY PROTOCOLS

In this paper, we consider protocols in which two parties,
Alice and Bob, want to interact with each other over the Inter-
net without necessarily knowing each other, e.g., to exchange
digital goods. Hence, Alice and Bob do not necessarily trust

each other. Bob can have an incentive to cheat during the
interaction, e.g., as a musician he can try to lure Alice into
digitally paying for his songs without ever giving her access
to them. In general, we say that Alice and Bob want to jointly
execute a two-party protocol in order to reach their respective
goals, e.g., Alice wants to receive Bob’s songs and Bob wants
to be paid accordingly in our example.

Executing such a protocol in private proves risky for Alice
and Bob as disputes may arise over whether or not the other
party acted faithfully. When Alice and Bob communicate via
a typical online service, then the service operator can resolve
disputes by judging evidence provided by Alice and Bob,
respectively. However, service providers are potentially biased
and hence a fair and transparent dispute resolution cannot
be guaranteed. In the most severe case, the service operator
can even be Alice’s counterpart of the two-party protocol, for
instance when Alice buys goods from an online store.

Online users thus require means to resolve disputes in a
trustless manner. Smart contracts promise to provide exactly
this functionality and consequently smart contracts now con-
stitute a well-used building block to act as a decentralized and
thus independent mediator for two-party protocols. Examples
comprise FairSwap [3], a protocol for exchanging digital
goods, and CAIPY [4], a smart contract-based platform for
processing car insurance claims. These and further related pro-
tocols such as Truebit [1] and Arbitrum [5] have in common
that verification can become costly and are thus deferred to
an optional dispute resolution phase instead of using built-in
protocol-level protection via the utilized smart contracts.

From these observations, we derive the following general
interaction pattern of Alice and Bob when jointly executing a
smart contract-based two-party protocol, as shown in Figure 1.
First, Alice and Bob match interests, i.e., they commit to
jointly executing a specific protocol (Step 1). They typically
negotiate the protocol to execute as well as necessary precondi-
tions in private, for instance via an anonymous bulletin board
(e.g., as in XIM [7]). After being matched, Alice and Bob
both commit to executing the negotiated protocol via the smart
contract (Step 2). In case of a dispute, this mutual commitment
later on allows either party to prove that their counterpart
agreed to perform the interaction as negotiated. Optionally,
it can be required that Alice and Bob attach security deposits
to their commitments to be deducted by the smart contract in
case of misbehavior [8]. Subsequently, Alice and Bob execute
the two-party protocol off-chain (Step 3). In order to enable the
smart contract to resolve potential disputes, it is required that
the protocol creates a protocol witness of its correct execution,
i.e., Alice and Bob can only provide a sound protocol witness
if they acted faithfully. After the execution, Alice and Bob
either agree on their mutually faithful interaction or have a
dispute. If both parties agree, they confirm this to the smart
contract and attest that they will not contend their interaction
in the future (Step 4a). Contrarily, in case of a dispute, i.e.,
one party misbehaves or stalls the protocol execution, the other
party can contend the interaction and the smart contract has
to resolve the dispute (Step 4b).



From now on, we consider this interaction pattern among
Alice, Bob, and a mediating smart contract as the basic sce-
nario for executing smart contract-based two-party protocols.
In the next section, we derive applications involving such
interactions and thus could benefit from improved mediation.

III. POTENTIAL USE CASES

Based on recent works in the field of smart contracts, we
derive applications involving two-party protocols that poten-
tially benefit from utilizing a smart contract-based mediator.
Namely, potential use cases comprise cross-blockchain ex-
changes, trading digital goods, safety for Bitcoin transactions,
two-party mixing of cryptocurrencies, off-chain execution of
smart contracts, and physical-state verification.

Cross-Blockchain Exchanges. Over the past years, Bitcoin
has inspired the creation of many other cryptocurrencies. At
the time of writing, CoinMarketCap tracks the respective
market capitalization of over 2000 cryptocurrencies [9]. To
mitigate the fragmentation of cryptocurrency assets, cross-
blockchain trading emerged. However, trading parties must
ensure that neither party can receive funds without completing
the exchange [10], especially when trading across cryptocur-
rency borders. Current approaches such as TierNolan’s proto-
col [11] or BarterDEX [12] utilize HTLCs to achieve atomic
swaps, i.e., payments are locked and inevitably redeemable as
soon as the seller concluded their part of the trade. Alterna-
tively, Coincer [13] relies on a peer-to-peer overlay to facilitate
trustless exchanges.

Trading Digital Goods. Smart contracts have been de-
ployed to control access to digital goods in a decentralized
manner, e.g., as a platform for digital music [14]. In this
setting, Alice wants to buy a digital good from Bob, where
(i) Alice wants the guaranty that she can access her purchased
good after her payment and (ii) Bob only grants access after
receiving Alice’s payment. While this fairness approach is
well-studied [15]–[18], corresponding protocols had to rely
on a trusted third party [19]. Introducing cryptocurrency
deposits, however, allowed for secure, decentralized payment
escrows [20], optionally with only conditional conflict resolu-
tion [21]. Finally, FairSwap [3] provides a general framework
for the smart contract-based trading of digital goods.

Safety for Bitcoin Transactions. Bitcoin transactions need
roughly one hour to be confirmed. While this is prohibitive
for everyday transactions, Bitcoin remains the most widely
accepted cryptocurrency for real-world payments [22]. If Al-
ice’s and Bob’s two-party protocol simply consists of Alice
paying her coffee in Bitcoin, Alice can additionally back up
her payment via an Ethereum smart contract as this transaction
is expected to be verified much faster. While this additional
overhead seems counter-intuitive at first, it can provide addi-
tional safety for merchants in case of one-time customers, i.e.,
whenever micropayment channels [23] are infeasible to set up.

Two-Party Mixing. As evidenced by various analyses [24]–
[26], cryptocurrencies without privacy-enhancing extensions
do not provide sufficient anonymity against blockchain ob-
servers. Contrary to other distributed mixing approaches [27]–

[30], XIM [7] proposes to mix bitcoins via a two-party pro-
tocol that allows Alice and Bob to securely and anonymously
mix by a combination of binding on-chain interaction and
private off-chain negotiation facilitated by Tor hidden services
locally operated by both parties, respectively. Thereby, XIM
charges additional transaction fees to incentivize Alice and
Bob to act faithfully, but also relies on an on-chain protocol
for fair exchange similar to HTLCs [10]. Two-party mixing
follows the interaction pattern described in Section II and we
see the potential to reduce the required on-chain operations.

Off-Chain Execution of Smart Contracts. A recent shift in
managing smart contracts proposes to execute smart contracts
off-chain and leave the result open for optional verification in
case of a dispute [1], [5]. While this optional on-chain verifica-
tion of individual computation steps of a smart contract today
comes with significant overhead, it enables smart contracts to
perform more complex and less redundant computations.

Physical-State Verification. To a limited extent, smart con-
tracts can also be used to process real-world events. Recently,
CAIPY [4] proposed to use tamper-resistant sensors in cars
to confidentially record information about insurance-related
events on the Ethereum blockchain. The respective smart
contract can then also perform rudimentary verification of the
soundness of reported events. Similarly, Slock.it [31] has the
vision to connect arbitrary smart devices to the blockchain. We
thus believe that physical devices have the potential to assume
a crucial role in opening up further classes of secure two-
party protocols as long as these devices can produce verifiable
protocol witnesses as described in Section II.

The wide range of potential applications motivates our work
to minimize costs for two-party protocols. In the following, we
thus propose a general framework to achieve this goal.

IV. A MEDIATION FRAMEWORK FOR ETHEREUM

We now present SmartJudge, our extensible framework for
smart contract-based two-party protocols as defined in Sec-
tion II to minimize protocol overhead via conditional dispute
resolution without forfeiting the security of the protocol. We
first state our design goals (Section IV-A) and then give an
overview of SmartJudge’s design (Section IV-B). Next, we
describe SmartJudge’s core element, the mediator contract
(Section IV-C), and finally discuss its costs (Section IV-D).

A. Design Goals

We identify the following design goals for extending two-
party protocols with efficient, optional dispute resolution:

Decision Correctness. Dispute resolution must detect and
punish dishonest behavior by either party at any time.

Cost Minimization. We seek to minimize costs for honest
parties even if a dishonest party necessitates dispute resolution.

Protocol Confidentiality. The details of Alice’s and Bob’s
negotiation process and protocol execution shall remain private
as long as both parties act honestly.

Extensibility. Any framework for dispute resolution must
remain extensible to cope with different and novel protocols
such as the potential applications outlined in Section III.
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Fig. 2. Overview of SmartJudge’s mediator contract. Alice creates a new agreement, submits her security deposit, and optionally escrows a payment for Bob.
Bob commits the agreement by accepting it, simultaneously submitting his security deposit. Then Bob provides his service off-chain (optionally with on-chain
proof). Now, either Alice finishes the interaction or Bob can contend the interaction in case he provided the service without Alice’s acknowledgement. If
Alice disagrees with the contention, she can invoke the initially agreed-upon verifier contract to enforce a decision in a trustless manner.

In the following, we detail how our proposed framework
SmartJudge achieves these design goals.

B. Design Overview of SmartJudge

At the core of SmartJudge resides the mediator contract, a
smart contract to handle on-chain interactions between Alice
and Bob independently from their agreed-upon two-party pro-
tocol. First, Alice and Bob negotiate the protocol they want to
execute and its respective preconditions. They commit to these
terms by submitting a confidentiality-protecting negotiation
witness and a security deposit to the mediator contract. This
witness includes the address of a verifier contract, a protocol-
specific smart contract to unambiguously judge disputes. This
way, SmartJudge remains extensible to mediate the execution
of novel two-party protocols. The verifier contract relies on the
creation of protocol witnesses that it can evaluate in order to
prove a party’s faithful execution of protocol-specific actions
outside the scope of the mediator contract (cf. Section II).

If Alice and Bob agree that both of them executed the
chosen protocol faithfully, they publish a confirmation to the
mediator contract, which then returns their security deposits.
Otherwise, the execution is contended and the mediator con-
tract consults the agreed-upon verifier contract. Alice and Bob
then have to submit their protocol witnesses to the verifier
contract. The verifier contract will reveal the dishonest party
based on these witnesses and then instructs the mediator
contract to reimburse the honest party with both security
deposits while simultaneously punishing the dishonest party.

C. The Mediator Contract

The mediator contract is the core component of Smart-
Judge. The mediator contract is a general-purpose smart
contract on the Ethereum blockchain that manages on-chain
interaction between Alice and Bob when they seek to jointly
execute a two-party protocol in a secure manner. By abstract-
ing away any protocol-specific structure from the mediator
contract, we enable Alice and Bob to record a transcript of
their interaction irrevocably on the blockchain at minimal
costs and information leakage. As long as both parties remain
honest, the mediator contract only confidentially records which
verifier contract must be consulted in case of a dispute and it
records an immutable witness of Alice’s and Bob’s negotiated

parameters. When committing to executing a protocol, the
mediator contract requires Alice and Bob to submit a secu-
rity deposit that is transferred back to the participants after
successful interaction. If a party contends the interaction, then
the mediator contract consults the specified verifier contract
and reimburses the cheated party with both security deposits
and verifier-dependent fees based on its decision.

Figure 2 shows the interaction with the mediator contract in
greater detail. As described in Section II, we assume that Alice
and Bob negotiated a two-party protocol they want to execute
and its required parameters in advance, e.g., via a bulletin
board. Without loss of generality, we now assume that Alice
instigates on-chain interaction with the mediator contract.
Furthermore, we assume in this section that Alice’s and Bob’s
two-party protocol involves that Bob has to provide a service
that Alice pays for in ether. By allowing Bob to submit
a higher security deposit than Alice, SmartJudge can also
generalize to arbitrary two-party protocols without payment
by Alice, in which she is compensated if Bob misbehaves.

Alice first creates a new agreement, in which she publishes
a negotiation witness to the mediator contract. The negotiation
witness contains a hash value over the verifier contract’s
address and further protocol-specific parameters from her
perspective. Storing only a hash value prevents blockchain
observers from deducing parameters from the negotiation
witness, e.g., the volume of a trade between Alice and Bob.

Bob then commits to the agreement by accepting it.
Thereby, Bob escrows the same security deposit as Alice
and accepts Alice’s protocol parameters. This way, Alice and
Bob publicly record that they agreed on the terms of their
interaction without disclosing any private information.

Next, Bob must provide his service to Alice as specified
in Alice’s negotiation witness. Once Alice recognizes that
Bob fulfilled his part of the agreement, she can gracefully
conclude their interaction by publishing a confirmation to the
mediator contract. If the agreed-upon protocol requires on-
chain evidence of Alice’s and Bob’s interaction, e.g., Bob
permanently transfers a digital good to Alice [3], Bob can also
reveal the required data as further proof before Alice confirms
the interaction’s conclusion.

However, up to now the mediator contract only covers the
good case in which Alice and Bob both act honestly. In this



case, the mediator contract shall minimize costs and maximize
privacy. However, both parties choose to interact involving a
smart contract in the first place because they do not entirely
trust each other and choose to rely on the mediator contract
for security in case of a dispute. The mediator contract must
ensure that an honest party can always progress towards a
graceful conclusion of the interaction, or that the verifier
contract identifies and punishes the dishonest party. It can
either happen that Bob refuses to provide his service, or that
Alice refuses to acknowledge that Bob did provide the service.

If Bob refuses to provide his service as agreed, Alice will
not conclude the interaction. This either forces Bob to reveal
a fake protocol witness, which can easily be debunked as
Alice can subsequently invoke the verifier contract, or he
never responses. In the former case, Alice has to disclose the
address of the verifier contract and the agreed-upon parameters
publicly in order to enable verification. In the latter case, Alice
can finish the interaction after an agreed-upon timeout and
thereby collect Bob’s security deposit.

If Bob provided his service, but Alice refuses to acknowl-
edge this, Bob can prove his faithfulness by publishing his
protocol witness. Afterwards, Alice has only the options to
either confirm Bob’s protocol witness or to contend it and
thereby initiate its on-chain verification. After verifying Bob’s
correct protocol witness, the verifier contract reimburses Bob
with both security deposits. Bob can further collect Alice’s
security deposit after a timeout period in case she attempts to
stall the verification process.

We deliberately accept that verifier contracts can be very
complex and thus costly. In Sections V and VI, we discuss
verifier contracts for two use cases and their associated costs,
respectively. The main principle of SmartJudge is that honest
parties can bypass all costs for securing their interaction while
still being able to rely on full verifiability if deemed necessary.
Yet, interaction with the verifier contract can cause asymmetric
additional costs. To account for this, both parties need to
deposit a verifier-dependent verification fee once the verifier
contract shall be involved. Insufficient verification fees are
detected once the verifier contract is revealed, causing the
underpaying party to lose the dispute.

Having Alice and Bob agree on a specific verifier contract
to back their interaction makes SmartJudge highly extensible.
We only require that all verifier contracts share a common
interface. However, in order to keep extremely complex veri-
fication operations off-chain, Alice and Bob can also involve
a mutually accepted trusted third party to overlook their
interaction within the same framework as on-chain verification.
This can be achieved by releasing a verifier contract that
accepts human decisions by a dedicated authority such as a
notary, potentially in exchange for a monetary reward.

Concluding, Alice and Bob can be sure that their interac-
tion is overlooked properly due to their agreed-upon verifier
contract. Furthermore, the mediator contract’s design allows
Alice and Bob to interact at protocol-independent low costs
and according to confidential terms in case that Alice and Bob
remain honest as they can avoid costly verification. Finally,

TABLE I
COSTS OF INTERACTING WITH THE MEDIATOR CONTRACT

Function Caller Costs
Gas Costs A [USD] C [USD]

create Alice 135 445 0.20 0.18
create_reuse Alice 55 703 0.08 0.07
abort Alice 36 080 0.05 0.05
accept Bob 43 321 0.06 0.06
reveal Bob 66 112* 0.10 0.09
finish Alice 43 720 0.07 0.06
contend Bob 97 193* 0.15 0.13
init_verif. Alice 121 192 0.18 0.16
timeout Alice/Bob 36 112 0.05 0.05
reg._verif. anybody 69 686 0.10 0.09
* Split gas costs A: average model; C: current model

negotiating the verifier contract keeps SmartJudge extensible.
Hence, we argue that SmartJudge fulfills our design goals set
out in Section IV-A. In the following, we quantify the actual
costs introduced by using SmartJudge’s mediator contract in
the good case where Alice and Bob are honest.

D. Evaluation of Mediator Contract Costs

To evaluate SmartJudge, we implemented the mediator
contract for Ethereum1 and analyze its costs.

Methodology. We measure the costs for using SmartJudge
(in USD) to assess the efficiency of our framework. To account
for price volatility, we calculate costs w.r.t. two different price
models, the average model A and the current model C. In A,
we fix an ether price of 500USD and a gas price of 3GWei.
These costs roughly correspond to the average recommenda-
tions during the summer of 2018 and enable us to compare
our costs with the analysis of [3] in Section VI. In the current
model C, we use the recent ether price of 94.74USD [9] and
gas costs of 13.8GWei [33] as of 12/19/2018.

Cost Analysis. The mediator contract can easily be de-
ployed to the Ethereum blockchain costing 1 947 000 gas
(A / C: 2.92 / 2.55 USD, limit per block: 8 000 000 gas).
The costs for interacting with the mediator contract are shown
in Table I. Single-use interaction of honest Alice and Bob
costs them 222 000 gas (A / C: 0.33 / 0.29 USD). These
costs mostly stem from agreement creation. Hence, we further
reduce the costs by allowing Alice and Bob to reuse previously
allocated storage, reducing the total costs of the good case to
143 000 gas (A / C: 0.21 / 0.19 USD). If Bob needs to transfer
data on-chain, this costs 66 000 gas (A / C: 0.10 / 0.09 USD)
for 32B of data. In total, contending an interaction can inflict
costs of up to 338 000 gas (A / C: 0.51 / 0.44 USD) on Alice
and 125 000 gas (A / C: 0.19 / 0.16 USD) on Bob, which
motivates an initial security deposit of 400 000 gas for both.

Our analysis shows that the mediator contract only inflicts
low costs. To account for price volatility, the security deposits
are scaled based on the current gas price to ensure that honest
parties are fully reimbursed even when exchange rates peak.

V. TRUSTLESS EXCHANGE OF DIGITAL CURRENCIES

In this section, we describe and evaluate our verifier
contract for secure cross-blockchain trades using trades be-

1Code available at: https://github.com/COMSYS/smartjudge

https://github.com/COMSYS/smartjudge
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Fig. 3. Simplified interactive process to verify the existence of a Bitcoin transaction via an Ethereum smart contract. If Alice and Bob agree that the block
of interest is part of Bitcoin’s blockchain, the verifier contract can perform Simple Payment Verification (SPV) [32] to verify Bob’s transaction on that block.
Otherwise, Alice and Bob perform a binary search on Bob’s view of the Bitcoin blockchain to derive the block containing the transaction. The verifier contract
then verifies that this block is confirmed according to Bitcoin’s rules and judges in favor of Bob if this is the case, and in favor of Alice otherwise.

tween Ethereum and Bitcoin as an example. Our approach
is, however, extensible to other cryptocurrencies as long as
an Ethereum smart contract can decide whether or not a
specific transaction is included in the remote blockchain. In
principle, this approach also enables trading between two
remote cryptocurrencies in a trustless manner by escrowing
ether, e.g., to trade cryptocurrencies without original support
for cross-blockchain trades.

We first describe our verifier contract for the existence
of transactions on the Bitcoin blockchain (Section V-A) and
then argue how our approach brings improvements over using
HTLCs to escrow funds (Section V-B).

A. An Efficient Verifier Contract for Bitcoin Transactions

In this section, we describe the design and implementation
of our verifier contract that decides whether or not a given
transaction exists on the Bitcoin blockchain. In this use case,
Alice wants to trade her ether for Bob’s bitcoins. The key
challenge here is that such a verifier contract cannot interact
with the Bitcoin blockchain directly. Instead, if there is a
dispute among Alice and Bob whether Bob correctly sent
his bitcoins to Alice, our verifier contract relies on claims
by both parties reflecting their individual views on the Bitcoin
blockchain. These claims constitute our protocol witnesses and
can only be faked by parties that can attack Bitcoin mining.

Figure 3 shows how the verifier contract works and which
interaction it requires from Alice and Bob. Our verifier con-
tract first determines whether the block allegedly containing
Bob’s transaction is accepted by Alice and then uses either
simple payment verification (SPV) [32] to verify that this
block contains Bob’s transaction or a binary search to identify
who is dishonest about the state of the blockchain. This way,
we aim to minimize the number and size of messages Alice
and Bob have to send to the verifier contract.

Before engaging in their trade, Alice and Bob negotiate its
conditions as well as a snapshot of Bitcoin’s blockchain and
submit a hash value of the snapshot to the mediator contract
as part of their commitment. The conditions specify Alice’s
Bitcoin address and how many bitcoins Bob must send her.
The snapshot consists of the identifier of a recent Bitcoin block

as well and a lower bound of its mining difficulty2. Similarly,
after his transaction was added to Bitcoin’s blockchain, Bob
shares the hash value of another snapshot with the mediator
contract to prove confirmation of his transaction. This snapshot
contains the identifier of the block that confirms Bob’s Bitcoin
transaction (i.e., the sixth-next block) and the number of blocks
mined since the initial snapshot. In case of a dispute, this
snapshot constitutes evidence that his Bitcoin transaction has
been confirmed based on the agreed-upon initial snapshot.

If Alice refuses to acknowledge Bob’s transaction, then
he contends the interaction (cf. Section IV) and publishes
his protocol witness to prove that his transaction has been
confirmed based on the initial snapshot. To this end, he
releases (i) the full information for the initial and later snapshot
and (ii) the identifier of the block containing his transaction.

If Alice agrees that Bob’s claimed block is on the
blockchain, the verifier contract immediately checks that Bob’s
transaction is part of this block using SPV. Bob then has to
publish his transaction, the block’s header, and the hash values
of the block’s Merkle tree needed to perform SPV. The verifier
contract then verifies that Bob’s information is sound w.r.t. the
agreed-upon trade terms and decides the dispute accordingly.

If, however, Alice claims that Bob submitted an invalid
block identifier, the verifier contract must decide whether
or not Bob’s claim was correct. At this point, the verifier
contract knows a valid block from the initial snapshot and
can verify the relative validity of the confirming block stated
in Bob’s later snapshot. However, there must be some block
in between that Alice and Bob do not agree on. Hence, Alice
and Bob perform an interactive binary search via the verifier
contract to efficiently find this point of disagreement. Alice
challenges Bob to upload new block identifiers until the binary
search terminates. Bob then publishes the block headers of
the determined and the six following blocks to the verifier
contract. The verifier contract can then verify whether or
not Bob’s submitted later snapshot is sound by checking the
integrity and proof of work of his submitted block headers. To
limit the number of verification steps, we cap the maximum

2The verifier contract uses this lower bound to validate that the transaction
was confirmed using sufficient proof of work
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Fig. 4. Cost savings of SmartJudge over HTLC-based atomic swaps. The top graph shows the absolute costs according to average exchange rates and fees
of Ethereum [33] and Bitcoin [34], respectively. For readability purposes, we omitted the peaks around January 2018 (28.82USD and 68.17USD), but
additionally show the relative cost savings of SmartJudge over HTLC-based atomic swaps over the whole considered duration in the bottom graph.

time between the initial and Bob’s later snapshots to two weeks
(roughly 2016 blocks), which results in worst-case verification
costs of 1 343 000 gas (A / C: 2.01 / 1.76 USD).

While the required interaction by Alice and Bob seem
infeasible at first, the interactive binary search only inflicts
moderate costs and the honest party will be reimbursed accord-
ingly. As the verifier contract will unveil dishonest behavior,
however, trading partners are incentivized to remain honest,
which allows bypassing all verification overhead.

B. Comparison of SmartJudge and HTLC-based Approaches

As discussed in Section III, cross-blockchain trades are
mainly performed via HTLC-based atomic swaps. Hence, we
evaluate our verifier contract for Bitcoin transactions w.r.t.
costs, address linkability, fairness, and versatility.

Cost Analysis. As discussed in Section IV-D, honest parties
can conclude an interaction at costs of 143 000 gas (A / C:
0.21 / 0.19 USD). Still, for cross-blockchain trades we also
have to take costs on the remote blockchain, i.e., Bitcoin, into
account. Similarly to our approach in Section IV-D, we assume
a bitcoin price of 6500USD and fees of 10 sat/B for the
average model A and a price of 3215.21USD with fees of
13 sat/B for the current model C as of 12/19/2018 [9], [35].

We now compare these costs with HTLC-based approaches,
specifically as proposed by BIP 199 [6]. The hash-locking and
unlocking transactions there have an average size of 475B.
As they have one input and output, respectively, we mimic
the same behavior when considering Bob’s standard Bitcoin
transaction, which we fixed at a size of 191B and which
would cost fees of 0.12USD (A) respective 0.08USD (C).
Considering the typical output for change only accounts to a
constant overhead for both approaches. To simulate HTLCs
in Ethereum, we use the smart contract of Altcoin.io [36].
As concluding a trade in our framework then yields costs of
232 000 gas (A / C: 0.35 / 0.30 USD), we conclude that we
can reduce the costs for cross-blockchain trades by around
50% over current HTLC-based approaches.

To further investigate the relations between HTLC-based
approaches and SmartJudge, we also consider the long-term
evolution of Ethereum’s and Bitcoin’s market prices since
2017 in Figure 4. Again, SmartJudge can reduce costs over

HTLC-based approaches by 50% on average, with a slight
decrease to a 46% cost reduction in 2018. This is a result
of Ethereum’s increased popularity relative to Bitcoin, which
we identify as an important factor to further judge the saving
potential of our approach for cross-blockchain trades. In fact,
cost savings of SmartJudge over HTLC-based approaches are
maximized if the remote blockchain has higher exchange rates
compared to Ethereum. However, SmartJudge vastly outper-
forms HTLC-based approaches even though we observed the
opposite trend during our price analysis.

Address Linkability. HTLC-based approaches enable link-
ing the involved parties’ addresses as they cryptographically
link the transactions across blockchains with a distinctive pat-
tern. Using SmartJudge, contrarily, Bob only has to announce
a standard transaction on the remote blockchain. As long as
both parties remain honest, Alice and Bob do not have to
reveal any information about the executed protocol.

Fairness. HTLC-based atomic swaps are asymmetric in that
only Alice can back out of an agreed-upon trade. Hence, only
she can base her decision to conclude or abort a trade based
on the development of exchange rates. Using SmartJudge, both
parties can back out of the trade until Bob confirms its condi-
tions. After both parties committed to the trade, SmartJudge
will punish non-compliance. Hence, SmartJudge achieves fair-
ness for cross-blockchain trades w.r.t. price volatility.

Versatility. To use HTLC, the bridged cryptocurrencies
need to support the same primitives. Although this is also
beneficial for SmartJudge, SmartJudge remains more resilient
to situations where the verifier contract has to emulate features
of the remote blockchain. While we expect such emulation
to quickly become expensive, SmartJudge again incentivizes
parties to be honest and thus avoid such costs.

VI. SELLING DIGITAL GOODS VIA SMARTJUDGE

Another use case for smart contract-based two-party pro-
tocols is to immutably manage access to digital goods such
as music via the blockchain. As outlined in Section III, Alice
wants to buy some digital good from Bob, but neither party
may be able to abort the transaction prematurely to rip off their
counterpart. A recent solution to this problem is FairSwap [3].
By integrating FairSwap into our general-purpose framework



SmartJudge (Section VI-A), we can show that SmartJudge can
even reduce costs for protocols that already deploy protocol-
specific conditional conflict resolution (Section VI-B).

A. Integration of FairSwap Into SmartJudge

In FairSwap [3], Bob offers to sell a set of files to interested
parties. If Alice is interested in buying a file from Bob, he
sends her an encrypted version of the file and constructs a
Merkle tree over the file and sends its root to Alice. This
constitutes the initial protocol witness based on which Bob
can later prove that he sent Alice the correct file. Bob submits
this information to the smart contract and Alice accepts this by
escrowing her payment. Furthermore, Bob publishes metadata
for the file as well as a cryptographic commitment which
enables him to later prove that he sent Alice the correct key.

SmartJudge can cover this general protocol flow with only
minor adjustments. In fact, SmartJudge can act as an abstrac-
tion layer for FairSwap since Alice and Bob only publish hash
values over their negotiated terms. Once Bob accepted Alice’s
request via the mediator contract, he sends her the required
decryption key off-chain. If Alice refuses to conclude the
trade, Bob reveals the decryption key as his protocol witness to
prove his faithfulness in combination with the negotiated terms
and the encrypted file. Hence, Alice either has to conclude or
contend the trade, which would determine Bob’s faithfulness.

B. Advantages of Using SmartJudge

Introducing SmartJudge as a layer of abstraction on top of
FairSwap has several adavantages. First, SmartJudge inflicts
much lower costs if Alice and Bob remain honest. The authors
report costs of 1.60USD for using FairSwap [3]. Based on
the provided prototype implementation, we obtained respective
costs of 174 000 gas (A / C: 0.26 / 0.23 USD) for using
FairSwap. Despite these vastly lower costs, SmartJudge still
reduces costs by 22% over vanilla FairSwap. Even though
our integration of FairSwap into our framework yields worst-
case costs of 271 000 gas (A / C: 0.41 / 0.35 USD) when
invoking the verifier contract, parties are incentivized to avoid
this case and a honest party would be reimbursed. Secondly,
SmartJudge can handle multiple trades in parallel, which
would require multiple deployments of FairSwap. Thirdly,
incentives to remain honest have been discussed as a future
extension of FairSwap and are a core feature of SmartJudge.
Finally, the biggest advantage might be that SmartJudge allows
honest parties to trade digital goods confidentially without
revealing any information about the terms or even that a trade
took place (in case that multiple verifiers are deployed).

VII. RELATED WORK

Several other works consider conditional dispute resolu-
tion to reduce the costs of smart contract-based verification.
CAIPY [4] proposes to integrate smart contracts judging event
readings of tamper-proof sensors into car insurance-related
processes to avoid costly manual inspection where possible.
While CAIPY’s approach is highly application-specific, the
anticipation of verifier contracts relying on tamper-proof data

readings promises a further design space for SmartJudge-based
protocols. FairSwap [3] applies a similar pattern as ours to the
use case of general trading of digital goods. In Section VI, we
showed that costs for using FairSwap can be further reduced
by relying on SmartJudge as an additional abstraction layer.
Truebit [1] is more closely related to SmartJudge. Truebit also
proposes to use verifier contracts, albeit in the form of web
assembly code that is partially interpreted on-chain in case
of a dispute. While this approach allows for more complex
verification, it comes with significant overhead. Furthermore,
Truebit does not allow for user-submitted protocol witnesses,
which limits the scope of realizable use cases. While the
limited complexity of SmartJudge’s verifier contracts may also
limit its applicability, we believe that Truebit and SmartJudge
can complement each other nicely. Finally, Arbitrum [5]
outsources the execution of smart contracts to special virtual
machines whose execution traces can be verified on-chain.
A small set of trusted managers can investigate the state
of a virtual machine to ease verification. We envision that
SmartJudge can also complement Arbitrum’s approach with
a suitable verifier contract. While being only suitable for
verifying single computation steps, SmartJudge maintains its
low costs for honest parties, increases achievable privacy by
not revealing the initial setup and has simpler integration of
interaction with the participants during the protocol execution.

VIII. CONCLUSION

We presented SmartJudge, a general framework for the
efficient and secure moderation of two-party protocols using
Ethereum smart contracts. Our design involves minimal inter-
action by honest users to reduce costs and to preserve confi-
dentiality of the negotiated terms of the respective protocols.
Furthermore, SmartJudge incentivizes parties to remain honest
by consulting protocol-specific smart contracts in case of a
dispute to identify and punish any dishonest party.

To showcase the applicability of SmartJudge, we imple-
mented and evaluated two use cases. First, we replaced hashed
time-locked contracts with SmartJudge for cross-blockchain
trades between Ethereum and Bitcoin. Our rationale is that
current solutions cryptographically protect also trades among
honest users and, as a consequence, inflict avoidable costs
on them. Our evaluation shows that SmartJudge can reduce
costs by 46–50% on average compared to current state of the
art. Secondly, we integrated FairSwap, a protocol for trading
digital goods, into SmartJudge. Even though FairSwap already
does conditional conflict resolution we still reduced costs by
22% when combining it with SmartJudge.

Because of these promising results, we believe that Smart-
Judge can provide a valuable building block for further appli-
cations, parts of which we already outlined in this paper.
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