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ABSTRACT
Transport protocols use congestion control to avoid overloading a
network. Nowadays, different congestion control variants exist that
influence performance. Studying their use is thus relevant, but it is
hard to identify which variant is used. While passive identification
approaches exist, these require detailed domain knowledge and
often also rely on outdated assumptions about how congestion
control operates and what data is accessible. We present DeePCCI,
a passive, deep learning-based congestion control identification
approach which does not need any domain knowledge other than
training traffic of a congestion control variant. By only using packet
arrival data, it is also directly applicable to encrypted (transport
header) traffic. DeePCCI is therefore more easily extendable and
can also be used with QUIC.
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• Networks → Transport protocols; Network resources allo-
cation;Networkmeasurement; Packet classification; •Comput-
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1 INTRODUCTION
Congestion control (CC) [12] is a fundamental building block in
today’s transport protocols and strongly influences the performance
of data transmissions. Initially built in the 1980s to counteract the
congestion collapse of the early Internet [17], CC still evolves and
new variants, such as BBR [1] or Vivace [3], emerge.
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CC introduces a congestion window (cwnd) that limits the num-
ber of unacknowledged bytes in flight. Each CC algorithm defines
how it governs the evolution of the cwnd subject to algorithm-
specific congestion signals. Given the number of CC approaches
and their (inter-) performance implications [9], it is hence relevant
to study the CC usage. E.g., it is easier to tune a new CC for fairness,
if it is known which other algorithms it typically competes with.

However, existing works (e.g., [2, 18, 24]) for identifying CC
variants are not adapted to the latest CC and transport protocol
developments. Extending and maintaining these approaches is com-
plex since it requires detailed domain knowledge to know how
CC parameterization and configuration affect their behavior. This
becomes even more critical when CC leaves the kernel and is intro-
duced in user space protocols such as QUIC [11] that are compa-
rably easy to change and see already large-scale deployment [21].
Moreover, many identification approaches are based on fragile as-
sumptions. For example, they fail when using TCP pacing, e.g.,
in combination with RENO [12] or CUBIC [5]. Aggravatingly, all
passive approaches known to us are based on the assumption of
parsable header information. A fully encrypted transport, as for ex-
ample QUIC implements, renders these designs invalid and would
require significant changes if possible at all. Thus, it is currently
challenging to reason about the CC deployment.

As a first step to tackle these challenges, this paper presents
DeePCCI, a supervised deep learning-based approach for passive
congestion control identification. It identifies CC variants solely
based on flow packet arrival time information and thus even works
on encrypted transport headers. Moreover, it uses deep learning to
learn features — thereby avoiding manual, domain-specific feature-
engineering. Thus, unlike related approaches, DeePCCI makes no
assumptions other than the availability of flow packet timings nor
requires any domain knowledge other than being able to gather
training traffic of a CC variant. We argue that this assumption
and hand-tuning free method allows for generic and extensible CC
identification in Internet traffic.

Specifically, we present DeePCCI’s design, its evaluation, and its
limitations and make the following contributions:
• We describe the preprocessing of traffic and the deep learning

model for identification of congestion control variants.
• We present how to train the model for multiple congestion con-

trol variants with labeled data generated in a testbed.
• We evaluate the performance in a testbed for CUBIC, RENO,

and BBR as major congestion control variants. We show that
the approach is able to identify flow congestion control variants
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in various scenarios, but we also present and discuss scenarios
where it is unable to identify congestion control variants.

Structure. Section 2 discusses the state-of-the-art in CC identi-
fication and its shortcomings. Section 3 describes the design of
DeePCCI while Section 4 shows how we generate training data and
evaluate our approach. Finally, Section 5 concludes the paper and
discusses future work. Our paper does not raise any ethical issues.

2 RELATEDWORK
Various works deal with identifying CC variants. There are two
main categories for these approaches: Identification approaches
using passive [2, 6, 13, 18, 20] or active [19, 24] measurements.
Active approaches stimulate CC reactions for detection by ac-
tively opening connections and manipulating them. Padhye and
Floyd propose TBIT [19] which sends crafted TCP segments to
web servers to actively trigger congestion control. It records which
segments are sent in reaction to a lost packet, as this reaction differs
drastically between the CC variants distinguished in TBIT.

Yang et al. present CAAI [24] extending TBIT’s approach. CAAI
artificially delays ACKs observing all in-flight segments in order to
estimate the cwnd of the sender. CAAI then induces packet loss and
extracts characteristic features from the changing cwnd. These fea-
tures are subsequently used for classification using random forests.
While both approaches achieve high identification accuracies, rely-
ing on active measurements can easily introduce a measurement
bias due to wrongly selected hosts.
Passive approaches (as ours) do not interact with hosts and rather
rely on traffic traces to infer the used CC variants of traffic flows.
Therefore, they allow gathering information on real traffic which
depends on vantage points, not actively selected hosts.

Paxson et al. and Jaiswal et al. rebuild TCP state machines with
tcpanaly [20] and tcpflows [13] to compare received with expected
packets. Both approaches require very detailed CC and even imple-
mentation knowledge to rebuild the state machines. Our approach
differs in that it does not need detailed CC knowledge.

Casagrande et al. [2] use characteristic changes in a cwnd as fea-
tures in their approach TCPMoon. Different handcrafted rules are
checked against these features to distinguish CCs. For cwnd estima-
tion, the authors use an RTT estimation based on TCP timestamps.
Identifying flows without the TCP timestamp option or when trans-
port headers are encrypted is hence not feasible with TCPMoon.
As our approach does only observe the behavior of packet arrivals,
it does not need any cleartext transport protocol fields.

Oshio et al. [18] propose a clustering-based method. They extract
features of a cwnd based on an RTT estimate and cluster these to
discriminate two competing CC variants. Our approach differs in
that it is not limited to only two competing variants.

Hagos et al. [6] use the outstanding bytes between sender and
receiver as a rough and noisy cwnd estimate. This estimate is refined
using a recurrent neural network. Sudden decreases in the refined
cwnd are used as an estimate of the multiplicative decrease factor
which differs between CUBIC, BIC and RENO. While this approach
is similar in that it uses deep learning, it still requires the manually
engineered multiplicative decrease factor and thus only identifies
loss-based CC. Our approach uses an end-to-end deep learning
model, identifies also delay-based CC and avoids manual features.

3 DeePCCI DESIGN
In this section, we present the architecture of DeePCCI. We show
our design goals and list the steps necessary to identify CC variants
without variant-specific domain knowledge.

3.1 Design Goals
DeePCCI is designed to allow passive CC variant identification.
It uses supervised deep learning to learn features of CC variant
behavior from generated traffic flows and subsequently allows to
identify / classify the used CC variants of new flows with these
features. Our design is guided by the following two main points:
• First, we want to avoid assumptions such as the availability of

headers or specific CC behavior. Such assumptions are prone to
change or break with slight changes to the algorithms and may
render the approach inapplicable. We, therefore, do not analyze
packet headers, as the assumption of unencrypted packet headers
will not hold in the advent of QUIC. Moreover, we do not need
the ACK control-flow from receiver to sender, as it might be
unavailable due to routing asymmetry and encryption.

• Second, we want to manually engineer as few features as possible.
Otherwise, new CC variants would require new manually crafted
domain-specific features, so having the ability to automatically
learn which features to extract for classification will enable future
applicability and easier adaption in case of changes.

We argue that these guidelines enable our approach to be robust
against minor changes in the Internet and to be easily extendable
for major changes by retraining on new data.

3.2 CC Identification & Learning Approach
We now present the architecture of DeePCCI along Figure 1.
CC Manifestation in Traffic. We use passive traffic captures to
identify the CC variant. Our only input is the packet arrival time of
a flow, we thus only assume packet timing information (e.g., unlike
Netflow) and that we are able to associate packets to flows. Since
any CC variant will effectively control the sending of packets in
terms of how many will be sent and at which point in time, we
argue that packet timing data inherently captures a CC’s behavior.
We associate the packet arrivals into constant-sized bins to get a
histogram of packet arrivals with equidistant timesteps for a fixed
timing structure. We denote this histogram asX = [x0, ..., xt ]where
every xi is a one-dimensional feature. The timing structure is then
exploited by the convolutions of our neural network.
Packet Arrival Times as the Only Feature. We feed the his-
togram of packet arrivals X into a deep neural network (DNN). Our
primary motivation for using deep learning is its ability to learn
features from data [16]. Therefore, we do not engineer any features
other than packet timing—the signature of every CC—to ensure the
versatility of our approach.
Deep Learning-based Classification. Inspired by convolutional,
long short-term memory DNN (CLDNN) approaches used in speech
recognition [22], our DNN consists of a convolutional neural net-
work (CNN) [16] and a long short-term memory (LSTM) [8] part
(see lower part of Figure 1). First, the histogram is processed by
a CNN which we regard as a feature extraction stage and is de-
rived from a 2D VGGNet-13 [23] which is mainly used for image
recognition. We use 5 subsequent modules, which consist of 1D
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Figure 1: Architecture of DeePCCI. Captured packets are at
first assigned to histogram bins with regard to arrival time.
The packet arrival histogram is then used in a 1D-CNNwith
added unidirectional LSTM RNN layers and a final splitted
classification layer.

convolutional layers, ReLU activations and 1D maxpooling layers.
We combine two 1D convolutional layers with 64 filters of size
3 and stride 1 with a ReLU activation in between. We then add
the input to the second convolutional layer output as identity skip
connection and add a final ReLU activation. To be able to add the
input to the output w.r.t. the dimensions, we add a first convolution
with 64 filters of filtersize 1 to increase the dimensionality of the
histogram input. We adopted the skip connections from the resid-
ual learning [7] approach, as it allowed our network to train more
easily and achieve better inference results. In contrast to residual
networks, we use a maxpooling layer instead of convolutions with
higher strides to reduce the dimensionality after each module, as
our convolutions of size 3 are smaller than the pooling strides of 4
we are using. Moreover, we use a batch normalization [10] layer
after every convolution to normalize the activations in turn reduc-
ing overfitting and improving training speed. The CNN part of the
network reduces the incoming data dimensionality by a factor of
1024. 1024 timesteps (e.g., 1024ms with 1ms binsize) are reduced
into a single LSTM timestep. This timestep is then used in three sub-
sequent unidirectional LSTM [8] layers with 100 memory units. If
only fixed sequences of packets should be identified, it proved to be
sufficient to also use a fully connected layer as a standard VGGNet
does. However, as we are interested in identifying varying length
traffic flows, we use LSTM recurrent neural network (RNN) layers
to build up a memory depending on previous behavior. Following
every LSTM layer, we again incorporate a batch normalization layer
for the same reasons as before. After the last LSTM layer, we com-
pute 3 + 2 logits using convolutional layers with filtersize 1. We

Bandwidth (Mbps) 1, 2,..,10, 20, 25, 30, 40, ..., 100, 150, 200
Latency (ms) 1, 2, ..., 20, 30, ..., 100, 150, ..., 300
BDP Factor 0.5, 1, 2, 5, 10

Table 1: Parameters for the single-host network

Bandwidth (Mbps) 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, 100
Latency (ms) 1, 2, 5, 10, 20, 50
BDP Factor 1, 5, 10

Table 2: Parameters for the multi-host network.

split the logits for two different softmax classifications: 3 logits are
used for CC classification (e.g., RENO, CUBIC, BBR), while 2 logits
are used for classification whether pacing was used. This allows us
to split the loss function into two crossentropy-losses which we can
weight accordingly to emphasize correct CC variant rather than
correct pacing classification during training.

4 EVALUATION
We next evaluate DeePCCI in a testbed setup by focusing on CUBIC,
RENO, and BBR as major CC variants. We first describe our setup
used for training data generation and testing. Subsequently, we
present how well DeePCCI identifies CC variants and put a special
focus on where it struggles.

4.1 Experimental Setup
Since DeePCCI bases on supervised deep learning, we need labeled
data of traffic flows in order to train the neural network. Labeled
data of traffic flows with respect to CC is scarce, so we generate
this data on an experimental testbed.
Mininet-based Network Testbed. We utilize Mininet [15] to gen-
erate traffic in two topologies subject to different network condi-
tions. We vary the number of TCP senders, the link latency, the
bottleneck link bandwidths, and its queue sizes defined as multiples
of the bottleneck link’s BDP. The senders send 60s of fully-loaded
TCP streams using a chosen CC variant (in this paper, we focus
on BBR, CUBIC, RENO - when using pacing we note “-p“ to the
name) from a standard Linux 4.18 kernel. Other senders than the to
be observed sender (if available) start 2s prior. In each setting, we
capture traffic before and after the bottleneck link in the respective
network that is used to train and evaluate our approach.
Single-Host Network. The single-host network serves as a base-
line condition where only a single TCP sender is active—the sim-
plest condition for CC detection. It consists of a dumbbell topology
where the sending host is connected to a router which is connected
via a bottleneck link to a router which is connected to another host.
No background traffic is generated. The specific parameters used
in this network topology are shown in Table 1.
Multi-Host Network. More complex than the single-host net-
work, here, three hosts reside on each side of the network. The
hosts use all possible combinations of the CC variants such that we
generate traffic with impact of all other CC variants. We reduced
the parameter set to counter the growing parameter space for all
combinations. The specific parameters used are shown in Table 2.
Cross-Traffic Network. In the cross-traffic network, we emulate
the influence of 3 side flows which cross 4 main flows on parts of
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Figure 2: F1 scores for single and multi-host network w.r.t. bandwidth and delay.

a route. The side flows traverse a 25Mbps, a shared 50Mbps and
another 25Mbps link. The main flows traverse 3 links limited to
50Mbps. The second link is shared with the side flows in the same
sending direction. The latency of all links is fixed to 10ms, while the
queue sizes can be either 1, 5 or 10 times the BDP. The side flows
and 3 main flows use CUBIC, RENO, and BBR as CC to emulate
background traffic. The fourth main flow uses a CC of choice. We
capture traffic before and after the shared link. Thus, this network
shows the influence of vantage points where not all traffic is visible
and where CCs with different bottlenecks interact.
Training. As training data, we use the single and multi-host net-
work datasets with vantage points before and after the bottleneck.
We utilize bottleneck link rates of 4Mbps and 30Mbps as the vali-
dation set on which we optimized the DNN and 2Mbps, 10Mbps,
25Mbps and 50Mbps bottlenecks as the test set. This fixed holdout
allows us to use the same trained model during all of the evaluation
and to reason more in detail about certain results.

We use 1ms as histogram bin-size such that the histogram con-
tains 60000 entries after 60s of traffic. For training, we utilize back-
propagation through time unrolling all LSTM timesteps. Moreover,
we train the model with the Adam[14] optimizer with a learning rate
of 0.001 and a learning rate schedule to halve it every 5 epochs, use
a batch size of 32 and early stop after 5 epochs of no validation loss
improvement. As loss, we use the 1:4 weighted cross-entropy be-
tween pacing and variant classification averaged over all timesteps
and batch entries (to put more emphasis on the variant).

4.2 DeePCCI Performance
4.2.1 Identification Performance by Delay and Bandwidth. At first,
we evaluate the identification performance w.r.t. delay and band-
width. For this, we evaluate the F1 scores of all variants per band-
width and delay for the single and the multi-host network before
and after the bottleneck. The F1 scores are shown in Figure 2.

We can see that our approach distinguishes very well between
BBR and loss-based congestion for larger bandwidths above 10Mbps.
Bandwidths ≥ 10Mbps and delays ≥ 5ms lead to individual F1 scores
above 90% in the more realistic multi-host scenarios and F1 scores
above 55% in the single-host scenario while BBR is identified with
F1 scores above 90%. Including also the smaller bandwidths, the
minimum F1 score drops onto 40% in the single-host case and 55%
in multi-host case. Including also the smaller delays decreases the
performance for the single-host network further with F1 scores
below 20%. In general, we can see that larger bandwidths, larger
delays and multiple competing flows are beneficial for our approach.

We attribute the effect of the bandwidth to the integer discretiza-
tion of the congestion window. The maximum cwnd depends on
the bottleneck bandwidth. Therefore, more steps of, e.g., the cubic
behavior of CUBIC are sampled with larger bandwidths. Lower
bandwidths imply fewer sampled steps and the cubic behavior is
harder to discriminate against, e.g., linear behavior as with RENO.

Next, we could see that higher delays increased the identification
performance. We attribute the effect of the delay to our histogram
bin-size. If the delay is too small, the change in packet arrival is too
fast for the time sub-sampling of the bins such that the behavior
cannot be derived if it does not differ drastically enough (e.g. with
higher bandwidths). Moreover, the delay also affects the decision
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of whether pacing was used due to too many packets (being paced
or not) falling into the same bin (not shown).

However, we can see that also the multi-host case achieves better
results for the same delays. We attribute this effect to the competi-
tion of the flows. Beside filling the queues, increasing the queuing
delays and leading to more congestion, these hosts also imply a
competition for packets in the queue. While the rate of a single-
host flow quickly does not increase with an increasing cwnd when
the link is saturated, increasing the flow’s cwnd in the multi-host
scenario can increase the share of its packets in the queue in turn in-
creasing its rate. The individual changes to the cwnd of the different
congestion control variants therefore have a higher influence onto
the rate which affects the packet-arrival stronger and over a longer
time contrasting the issues of smaller delays and bandwidths.

As we have seen, bandwidth and delay impact our approach and
too small delays / bandwidths result in low identification perfor-
mance. For our further evaluation we will continue with 50Mbps as
bandwidth to better see where the approach is further challenged.

4.2.2 Vantage Point before Bottleneck. We now evaluate the iden-
tification performance of our model with only a vantage point
before the network bottleneck. Here, we see packets before they
are dropped due to congestion or shaped due to queues and thus
capture packet arrival times as generated by CC. We, therefore,
expect very good identification results.
Single-Host Network. The single-host identification performance
before the network can be seen in Table 3 (values not in brackets).
The upper results in a cell were evaluated on the same delays as
for the multi-host scenario (mh), while the lower results use all
available delays in the test-set (all). We employ this split as our
single-host test set contains more delays but we would like to
maintain comparability. As expected, the results are good with an
F1 macro average and overall accuracy of 89% when observing
the same delays as in the multi-host network. With all delays, the
accuracy increases to 98% due to the inclusion of higher delays.
Multi-Host Network. The multi-host (i.e., when having compet-
ing traffic of other hosts) identification performance is shown in
Table 4 (values not in brackets). The results are significantly better
as already observed before with an overall accuracy of 99% and a
macro F1 average of 99%. Comparing the single and multi-host per-
formance, we can see a significant drop in recall for CUBIC-p and
decreased precision for CUBIC in the single-host scenario. More-
over, also precision and recall are smaller for RENO and RENO-p.
Indeed, CUBIC-p flows are often erroneously classified as CUBIC
and RENO flows are confused with RENO-p and vice versa (not
shown due to space limits). This also explains why higher delays
are beneficial, as this way the pacing is easier to distinguish.

4.2.3 Vantage Point after Bottleneck. When applied to realistic
Internet traffic, CC identification must be robust to packet arrival
patterns being altered by queues and other elements. We therefore
now evaluate the performance on traffic after being shaped by the
bottleneck link on the same trained model as before.
Single-Host Network. For the single-host network, we can see
some interesting differences. The identification performance is
again shown in Table 3 (values in brackets). Our approach is more
challenged with data after the bottleneck which can be easily ex-
plained by the queuing dynamics, smoothing the behavior, making

Precision Recall F1 Accuracy

BBR mh 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
all 1.00 (0.99) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

CUBIC mh 0.78 (0.59) 0.97 (0.90) 0.87 (0.71) 0.94 (0.85)
all 0.95 (0.63) 0.99 (0.92) 0.97 (0.75) 0.99 (0.88)

RENO mh 0.90 (0.77) 0.87 (0.33) 0.88 (0.47) 0.95 (0.85)
all 0.98 (0.89) 0.97 (0.47) 0.98 (0.61) 0.99 (0.88)

CUBIC-p mh 0.96 (0.83) 0.73 (0.67) 0.83 (0.74) 0.94 (0.91)
all 0.99 (0.91) 0.93 (0.81) 0.96 (0.85) 0.98 (0.94)

RENO-p mh 0.87 (0.85) 0.90 (0.73) 0.89 (0.79) 0.95 (0.92)
all 0.96 (0.90) 0.98 (0.88) 0.97 (0.89) 0.99 (0.95)

mh Overall Accuracy: 0.89 (0.73)
0.98 (0.81)all

Table 3: Identification metrics for single-host network be-
fore (after) 50Mbps bottleneck for all delays or delays as in
the multi-host network (mh) for comparability.
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Figure 3: F1 scores for single and multi-host network after
a 50Mbps bottleneck w.r.t. queue size for the same delays as
in the multi-host network for comparability.

it harder to identify certain characteristics of CC. While most re-
calls decrease slightly, RENO’s recall decreases to 33%. We found
a correlation between the queue size (as a factor of the BDP) and
RENO’s F1 score, which is shown in Figure 3a. For BDP factors 0.5
and 1, RENO is classified with F1 scores above 70% but for greater
factors, it reduces to 50% for twice of the BDP and 0% for 5 and
10 times the BDP. In fact, many of the RENO flows are classified
as CUBIC (not shown), which also results in worse precision and
hence worse F1 score for CUBIC.

Our approach, therefore, seems to be prone to bufferbloat [4]
w.r.t. RENO. We account this effect to the shaping nature of queues,
which in essence paces out data smoothly when the link is saturated
causing RENO as well as CUBIC to look more similar. This also
explains why paced RENO can be distinguished better: Packets are
more equally distributed over an RTT and there is an increased
chance that the queue is already drained if the next packet arrives,
so the queue size is less impacting the smoothing.
Multi-Host Network. When evaluating the multi-host network,
we see more expected results. The identification performance is
again shown in Table 4 (values in brackets). The overall accuracy
reduces only insignificantly by 2 percent-points onto 97%. We are
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Precision Recall F1 Accuracy
BBR 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

CUBIC 0.99 (0.94) 0.99 (0.97) 0.99 (0.96) 1.00 (0.98)
RENO 0.99 (0.98) 0.99 (0.95) 0.99 (0.96) 1.00 (0.99)

CUBIC-p 0.99 (0.95) 1.00 (0.97) 0.99 (0.96) 1.00 (0.99)
RENO-p 1.00 (0.98) 0.99 (0.96) 0.99 (0.97) 1.00 (0.99)

Overall Accuracy: 0.99 (0.97)
Table 4: Identification metrics for multi-host network be-
fore (after) 50Mbps bottleneck.

Precision Recall F1 Accuracy
BBR 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

CUBIC 0.98 (0.97) 0.88 (0.92) 0.93 (0.94) 0.97 (0.98)
RENO 0.89 (0.92) 0.98 (0.97) 0.93 (0.95) 0.97 (0.98)

CUBIC-p 0.97 (0.96) 0.93 (0.89) 0.95 (0.93) 0.98 (0.97)
RENO-p 0.93 (0.90) 0.97 (0.96) 0.95 (0.93) 0.98 (0.97)

Overall Accuracy: 0.95 (0.95)
Table 5: Identification metrics for cross-traffic network be-
fore (after) shared link

therefore convinced that our approach’s susceptibility to bufferbloat
alleviates with concurrent flows. We attribute this to the stronger in-
fluence of the cwnd onto the flow rate when multiple flows compete
as we described before in Section 4.2.1.

4.2.4 Arbitrary Vantage Points. Until now, we have investigated
what happens if packet arrivals are captured at the edge - either
before or after a single link. However, in reality, a flow will traverse
multiple links, so there are multiple vantage points to observe the
flow. Moreover, there might cross flows which have been shaped
by different bottlenecks interacting with the flow to be observed.

Thus, we now focus on what happens if we measure at a van-
tage point in the middle of a network, where flows with different
bottlenecks compete. To evaluate this scenario, we use our initially
trained model on the cross-traffic network.

The performance results can be seen in Table 5 and are surpris-
ingly similar to the multi-host network after the bottleneck. We
achieve an overall accuracy of 95% which indicates that our ap-
proach generalizes also to arbitrary vantage points although not
trained for with remarkable performance regarding distinguishing
between BBR and loss-based CC with an F1 score of 100%.

4.2.5 Required Flow Duration. The previous results were obtained
with flows of 60 seconds length but flows this long occur relatively
seldom [25]. Therefore, we now evaluate the flow duration needed
for correct classification over the single-host and multi-host net-
work vantage points at 50Mbps. The F1 scores depending on the
flow duration sampled in 512ms steps are shown in Figure 4. Gen-
erally speaking, we can see that the identification performance
increases when flows can be observed over a longer time.

BBR (due to its characteristic behavior in and after slowstart)
can be identified with an F1 score of 85% in 1024ms in the multi-
host setting / in 3584ms in the single-host setting. The unpaced
variants need 4096ms to achieve an F1 score over 75%, while the
paced variants need 2048ms to achieve the same in the multi-host
setting. In the single-host setting, 75% are achieved in 8706ms for
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Figure 4: F1 score w.r.t. flow duration for single and multi-
host network. The duration is increased in 512ms steps. The
bottleneck was limited to 50Mbps and the delays of the
multi-host network are used for comparability.

the unpaced variants and 1536ms for the paced variants. However,
the scores are very unsteady and fluctuate such that, e.g., RENO’s
F1 score approaches 75% only for certain moments.

We also found a trivial correlation for loss-based CC between
delay and classification duration (longer delay =̂ longer duration).

5 CONCLUSION
In this paper, we presented the design and performance of DeePCCI,
a passive method to identify congestion control variants using just
packet arrival time information. DeePCCI does not need header
information, visibility into the reverse path nor domain knowledge
during training of the variants that it wants to identify. It is thus
designed for a QUIC-enabled world and can be easily adapted for
new congestion control variants. Our results indicate a promising
performance over a diverse set of vantage points. Especially variants
which eminently vary in behavior in comparison to traditional
approaches, such as BBR, can be distinguished with remarkable
performance throughout most tested scenarios. Yet, the approach
is challenged in distinguishing loss-based CC when it cannot find
enough characteristic features, e.g., when only one flow sends data.

We believe that this performance can be partly increased when
training and optimizing for specific network properties, i.e., when
knowing where DeePCCI should be used and how many flows
compete, by, e.g., adapting the histogram bin-size. In the future, we
plan to evaluate DeePCCI on real-world network traces, on further
congestion control variants, when subject to AQMs affecting the
identification abilities as well as how receiver ACK generation or
ACK compression affect the forward path and thus DeePCCI.
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