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Abstract—TCP congestion control and particularly its initial
congestion window (IW) size is one long-debated topic that
can influence web performance. Its size is, however, assumed
to be static by IETF recommendations—despite being network-
and application-dependent—and only infrequently changed in
its history. To understand if the standardization and research
perspective still meets Internet reality, we study the IW con-
figurations in IPv4 and of major content delivery networks
(CDNs). We have been regularly inspecting IPv4 for HTTP and
TLS servers to investigate their IW configuration and found
a steady increase in IETF-recommended configurations. We
additionally study how CDNs configure their IWs given their
relevance for content distribution. To shed light on network-
dependent CDN configurations, we use a globally distributed
infrastructure of VPNs giving access to residential access links.
We observe that most CDNs are well aware of the IW’s impact
and find a high amount of customization that is beyond current
Internet standards. We find various initial window configurations,
most below 50 segments, yet, with exceptions of up to 100
segments—the tenfold of current standards. Our study highlights
that Internet reality has drifted away from recommended and
standardized practices. Driven by these findings, we investigate
the effects of this new reality on the slow start of Cubic and
BBR congestion controlled TCP flows. We find that TCP pacing
is a key to enable increased IWs when competing against other
traffic.

Index Terms—TCP congestion control, Initial Congestion Win-
dow, Pacing, Measurements, Cubic, BBR

I. INTRODUCTION

The Internet and specifically the web have transformed
the way we gather information, interact or do business. This
increasing dependence on the web has fueled a pursuit of
researchers and operators to develop and implement web perfor-
mance optimizations. For example, Google has pushed several
improvements to web technology, including new protocols such
as HTTP/2 (through SPDY) or QUIC, both of which have found
swift adoption [1]–[3] by others. Apart from technological
advances, content distribution networks (CDNs) have changed
the Internet on an architectural scale. Their ongoing quest
to serve web content from nearby servers has flattened the
hierarchical structure of the Internet [4] thereby promising
lower latencies. In pursuit of performance, CDNs are known to
be early adaptors of new technology in an attempt to optimize
the web experience for their customers.

While adopting new technologies offers promising gains,
their correct configuration is often challenging—e.g., HTTP/2
server push is regarded as a key feature but known to be
notoriously hard to use [3], [5], [6]. Some of these configuration
challenges stem from the fact that they are dependent on
network and application characteristics.

One long-debated performance configuration parameter is
TCP’s (and QUIC’s) initial congestion window (IW) size.

The IW characterizes the performance at the beginning of a
new connection and is a key component of all congestion
control algorithms. The IW size controls the amount of
unacknowledged data sent at connection start and thereby
heavily influences the start-up behavior of new and especially
short-lived connections (e.g., typical web transfers) or those that
are revived from idle. A small IW can prolong transmissions
and cause unnecessary latency as the transport protocol needs
to await feedback (ACKs) to increase the congestion window.
Contrary, too large IWs can lead to loss and retransmissions
when the network simply cannot handle large bursts of data.
Thus choosing the optimal value for each network is critical
for good performance—and thus interesting for CDNs.

Despite its relevance, the IW size is typically regarded as a
static parameter whose IETF-recommended size should fit all
networks and applications. Since its first definition to 1 segment
in 1988 [7], its recommended size has only changed twice, to 2-
4 segments in 1998 [8], [9] and—motivated by increasing access
speeds and its promise to shorten page loading times [10]—to
10 segments in 2013 [11]. It was very recently shown that IW
customization can help in reducing CDN latency [12]. In this
regard, a small-scale study by CDNPlanet showed that half of
the probed CDNs use IW10 as the IETF-recommended size
while others already use larger IW sizes [13]. Others [14] even
argue to abandon static IETF-standardized values for the IW
to enable customization already in the standards. Yet, little is
known about IW configurations especially in case of CDNs.

In this paper, we broadly probe IPv4 hosts and specifically
CDNs to gather an empirical understanding on how IW
customization already takes place in today’s Internet. We
investigate the prevalence of IETF-recommended values in
samples of IPv4 over a period of 1.5 years extending our
previous work [15], [16]. Further, we investigate CDN IW
configurations from globally distributed vantage points and
from our University’s network, thereby shedding a light on the
degree of customization that CDNs show today. Our results
show that the Internet at large converges towards the current
IETF recommendation of 10 segments. On the other hand, we
observe that IW customization beyond standardized practices
is already common practice and there exists a gap between
standardization, research, and Internet reality.

Driven by this gap, we further extend our work [16] and
investigate the effects of this new Internet reality on the
performance of slow start when competing against other
flows. To this end, we seed a testbed study by our real-world
observations and investigate the start-up performance benefits
and disadvantages when the traditional CUBIC and the recent
BBR congestion control have to compete for traffic against
an elephant flow. Our findings indicate that the way CDNs
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utilize IW customization can indeed yield drastic performance
increases. Specifically, this work contributes the following:
• The first long term analysis of the evolution of IW configu-

rations in IPv4. Our results show a convergence towards the
IETF-recommended values at Internet-scale.

• We provide a comprehensive analysis of current IW configu-
ration practices of CDNs. We show that IWs are configured
up to ten times larger than recommended by IETF’s current
experimental standard.

• Further, we find multiple CDNs which use customized IW
configurations, i.e., deliver data using different IWs for
different customers or service types. We observe that larger
IWs are for example preferred for streamed video instances,
yet, content types do not necessarily enforce certain IW
settings.

• By analyzing IWs through different geographically dis-
tributed networks, we find instances of network-dependent
IW configurations of CDNs.

• We investigate the burstiness of IWs and find that some
CDNs utilize pacing to space out packets over time during
slow-start to potentially reduce the chance of losses.

• Our measurements show different configurations of packet
pacing, challenging the traditional notion of IWs, we find
that a data rate better captures the demand on a network
than a fixed number of segments.

• We build a testbed to evaluate our real-world observations in
a controlled environment; we find that increasing IWs can
increase or hurt performance, specifically our investigations
show that increasing the IW should go hand in hand with
TCP pacing to actually benefit.

Structure. Section II discusses related work and shows how
IWs are defined, standardized, and how they impact perfor-
mance. Our IW scanning methodology, IP-based IPv4 scans and
the resulting changes for our scanner architecture to investigate
CDNs is introduced in Section III. Following, Section IV–
Section VI paint the global CDN IW configuration space by
discussing CDN specific IW configuration. In Section VII, we
project our real-world findings to a testbed and investigate
its impact on flow start-up behavior. Finally, Section VIII
concludes our findings.

II. TCP’S INITIAL CONGESTION WINDOW

We start by exploring TCP’s Initial Congestion Window
(IW): i) how it is defined and sized, ii) how its size influences
flow completion time, and iii) how related works have gathered
an understanding on IWs through Internet measurements.
IW Definition. TCP’s IW governs the number of unacknowl-
edged bytes in flight until the first acknowledgment is received.
That is typically data sent in the first roundtrip of a connection
after the three-way handshake is completed. Thus, the IW at
the sender-side and the receive window at receiver side define
the application’s data rate at the start of the connection and
bootstraps the window doubling during slow start. Furthermore,
depending on the congestion control algorithm, the IW is also
used after long idle periods for restart (e.g., in web browsers
when using HTTP/2).
IW Size Definition. The IW is typically defined in bytes
and often operating systems allow configuration of the IW in

Fig. 1: Average flow completion time (AFCT) when varying
bandwidth, latency, and IWs. Horizontal lines mark roundtrips.
Larger IWs can improve the latency.

multiples of the maximum segment size (MSS). To this end,
many RFCs (here at the example of [11]) define a dualism
for the IW, either in terms of the multiple of the MSS, e.g.,
IW 10 for ten segments worth of data, or by an upper limit of
bytes, e.g., 14600 byte typically corresponding to a classic full
ethernet frame minus TCP and IP headers times the multiple.

A. Testbed Study: Impact of IW Size on Internet Performance

To highlight the impact of different IW sizes on Internet
performance, we conduct a testbed study. The testbed involves
two directly connected Gigabit Ethernet Linux hosts whose
link bandwidth and latency are controlled by NetEm in each
host. We select four bandwidth configurations (i.e., 4, 7, 26,
and 100 MBit/s) and three delay configurations (i.e., 30, 100,
and 250 ms) to reflect typical Internet access characteristics
reported by Akamai [17]. We further choose six IWs: 4, 10,
16, 20, 32, and 50 segments, to reflect the current standard
of 4 segments [9], the current IETF recommendation of 10
segments [11], and larger IWs. In each experiment, we transfer
a single flow of size 71 kB, i.e., 50 frames of data (the
average size of the Google landing page in 2017). For each
configuration, each experiment is repeated 30 times.
Flow Completion Time. Given its relevance to web browsing,
we first measure the TCP flows’ average flow completion time
(AFCT) subject to the different parameters (i.e., IW size, RTT,
and bandwidth). We define the AFCT as the average time to the
last byte of the flow. The AFCT for the different parameters
and its standard deviation is shown in Figure 1. It shows
that increasing the IW reduces the AFCT if the link speed
or RTT is sufficiently high. For low bandwidth connections
with low latency, larger IWs have effectively no impact on the
AFCT as these connections are limited by throughput. However,
when higher speeds are available, increased IWs can effectively
shorten the required roundtrips to finish the data transfer—a
key motivation for CDNs to configure larger IWs.
Retransmissions. Large IWs, however, yield more bursty
traffic that can lead to temporary phases of congestion more
easily, reflected in higher loss rates. To highlight this effect, we
conduct a second experiment which measures the average
retransmission rates of the TCP flows subject to different
bottleneck link configurations. We realize this setting by now
connecting the hosts via a bottleneck router with different
bandwidth capacities and queue sizes (QLIMs) of a regular
drop tail FIFO queue. We again transfer 71 kB and vary the IW
configurations for each bandwidth, queue size, and IW triple,
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Fig. 2: Losses increase when increasing IWs depending on
bottleneck bandwidth and queue sizes. Benefits of increased
initial congestion windows are highly network-dependent.

testing every configuration 30 times. We show the average
retransmissions required and standard deviation in Figure 2.

As the figures show, increasing the IW can have detrimental
effects on the connection. We observe that larger IWs cause
higher loss rates when either the bottleneck bandwidths or
the bottleneck queue sizes are too small. Considering the
retransmissions for the smallest queue size, we can see that
large IWs cause heavy losses. Increasing the queue size helps
in buffering the IWs, yet at the cost of added latency, e.g., a
7 Mbit/s link with a buffer of 16 packets can add up to 27 ms of
delay to a packet. Thus, simply increasing the queue size is not a
desired solution. While these motivating measurements neglect
multiple users sharing the bottleneck, loss-based congestion
control of multiple users will lead to full queues all of the
time leading to tight buffer space for new flows as shown in
these measurements.
Takeaway. Our study shows, similar to related works [10],
[18], that the IW size can strongly influence flow performance
but can also overload congested or low-bandwidth connections.
It is thus key to congestion control to correctly set an initial
congestion window that adequately balances throughput and
loss to bootstrap a TCP connection.

B. Related Work

The relevance of TCP’s initial congestion window size is
reflected in an extensive debate and a successive evolution of
its value in the TCP standards over the last decades. Initially,
the IW was set to 1 segment in 1988 [7] and 9 years later
standardized in 1997 [19]. This setting was experimentally
extended to 2-4 segments (or 4380 byte) in 1998 [8] and later
moved to a proposed standard [9]—a setting that remained
untouched for a decade. Motivated by the increase of network
access speeds and the desire to reduce web page loading times,
[10] proposed in 2010 and later RFC 6928 [11] recommended
in 2013 to increase the IW to ten segments. Most recently,
Allman [14] even argues for abandoning a specification of the
IW size and thus ending a decades-long debate. This argument
is motivated by allowing hosts to configure more tailored IWs.

Given the relevance of the IW on both flow completion times
and Internet traffic burstiness leading to losses, an empirical
study of the IW is necessary to understand current network
performance aspects. This understanding has been gained in
both active and passive measurement studies. With regard to
active measurements, Medina et al. [20] probed 85 k servers
in 2004 and found most servers to be on an IW of one or

two with only 1% of hosts having an IW larger than four.
Our measurements are similar to those of Medina in terms of
methodology but we especially focus on CDNs which were
still on the rise in 2004 and did not have as much footprint
as today. Regarding passive measurements, Qian et al. [21]
inferred IW distributions from several traces in 2009. While
their dataset covers traces captured in a diverse set of networks
and also covers non-publicly visible hosts they did not discuss
the impact of CDNs in their study. A small-scale study by
CDNPlanet [13] probed 15 CDNs via HTTP and found 6 to use
IW10 and others to use larger IWs. Our work is similar to that
of CDNPlanet, we share the same goal to shed light on CDN
IWs but their methodology (manual inspection of packet traces)
limits a broad assessment of CDN IW configurations which is
one focus of this work. An unknown vantage point and limiting
TCP receive windows further limits the comparability of their
study to ours. In [15], we proposed an approach to estimate
TCP’s IW for all reachable IPv4 HTTP and TLS hosts. We
used this approach in [16] to estimate CDN IW configurations.
This paper extends upon these works as we use our findings
that 1% random samples of IPv4 are enough to estimate the IW
distribution in IPv4 and provide a longitudinal analysis of the
evolution of IWs in IPv4 over the course of 1.5 years. Further,
we extend our analysis and provide IW estimations for more
CDNs while also extending our result discussion, e.g., providing
more insights into the packet pacing that we found. Moreover,
this paper extends these works by projecting our real-world
findings back into a testbed to evaluate the effects of increased
IWs on flow completion time when subject to competing traffic.
In this regard, we examine the advances of TCP pacing. The
idea of pacing TCP flows goes back to the observations of
ACK clocking in [22] which motivated pacing in [23] to clock
data until ACKs arrive but has first been extensively studied
in [24]. Their simulative results employ a non-bursty pacing
implementation and their focus is on long-lived connections in
contrast to the impact of pacing at the start of the connection.
Similarly, work on router buffer sizing [25] has shown that
tiny buffers can only be realized when some form of pacing is
used, an observation that we are able to qualitatively validate.
Wei et al. [26] replicate many experiments from [24], e.g.,
with different TCP variants, and their simulations show that
the congestion control algorithm itself has a large impact.
Motivated by this, we rely on emulation of real implementations
to study how pacing affects the slow start behavior, in this
regard TCP Jump Start [27] is similar by abandoning an IW
and simply pacing out all data. Yet, again, this work is based
on simulations, to the best of our knowledge the behavior of
Linux’s pacer has not been analyzed in academic work which
is a new contribution of this paper.

III. MEASURING IW CONFIGURATIONS IN THE WILD

We next describe our approach to estimate the IW size, its
validation, our overall scanning architecture, and results in the
Alexa Top 1M and IPv4.

A. Measuring IWs
We begin by summarizing our IW size estimation approach

which is based on our previous work in [15]. To also enable
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Fig. 3: Scan procedure: MSS and large receive window are
announced and no ACKs are sent until a retransmission. The
estimated IW is the # bytes received before the retransmission.

measuring CDNs, we extend our scheme to also account
for virtualization by incorporating per-CDN target URLs and
hostnames. This is needed to fetch large content from CDNs
for IW estimation. We next describe its general procedure and
details that we modify to account for CDN properties.

The IW estimation procedure (visualized in Figure 3) can
be split into four phases: First, a regular TCP handshake is
performed announcing the largest possible receive window of
65 kB and, to account for overly large IWs configured at some
CDNs, also a window scaling option (shifting the window by
3) to never block the data transmission due to flow control.
Since IWs can be configured depending on the MSS, we
additionally set a MSS (varied by the later measurements).
No further options like Selective Acknowledgements, which
can for, e.g., cause TCP tail-loss probes that would challenge
IW estimation, are activated. After establishing the TCP
connection, the second phase starts by transmitting an HTTP
GET request in hope to trigger a response that exceeds the
configured IW at the probed host. The probed host will now
commence sending the requested resource, however, we are not
going to generate acknowledgments for any segment that we
receive, thus the initial congestion window will not increase
and the host can only send as many bytes as the IW. By
not acknowledging segments, the probed host will eventually
initiate a retransmission of the first (from its point of view)
lost segment, which heralds the start of the third phase. Either,
the sending host was in fact limited by the IW or it ran out of
data to send. To test for this, we start acknowledging the last
segment enabling the host to continue sending data and if the
host does so we know that the host did not run out of data.
At this point, we are able to estimate the IW by observing the
sequence number space and segment sizes that we received
before the retransmission. Finally, the last phase consists of
tearing down the connection with TCP’s RST mechanism. As
this IW estimation methodology fails when tail-loss occurs
(i.e., loss of the last packet in IW), we recommend to perform
multiple scans of the same host.
Implementation & Validation. We implement our approach
in go-lang (source available at [28]) to benefit from its
multiprocessing capabilities and also reuse our ZMap-based

Fig. 4: Evolution of TLS server IWs in Alexa Top 1M since
June 2017. HTTP evolution similar.

Fig. 5: IPv4 IW scan taken from [15]. Results from August
2017 indicate that 1% random samples closely estimate the
overall IW distribution.

scanner from [15] (source available at [29]). To test both
implementations and to validate the correctness of the IW
estimation, we run them in a mininet [30]. We use iptable’s
statistic module to drop packets at the head, within, and at
the tail of the IW to validate the estimation correctness, i.e.,
correct estimations for the first two, and a reduced IW for
the latter case (tail-loss). Further, we vary the IW size and
available bytes on the server-side and the announced MSS at
the probing client to validate non-standard IWs and out-of-data
situations in various settings. Our tools always estimated the
IW correctly except for tail-loss (as expected).

B. Measuring IWs in IPv4 and Alexa Top 1M

To estimate how IETF-recommended values find adoption
in the Internet at large, we perform regular scans of HTTP and
TLS servers in the IPv4 address space and in the Alexa Top
1M list using our ZMap scanner.
Alexa Top 1M. We start by investigating how IW configura-
tions evolved in “popular” Internet infrastructure by looking at
the Alexa Top 1M list. To do so, we have been scanning the
hosts on the list roughly every week since June 2017 enabling
us to investigate how IW configurations have changed.

To this end, Figure 4 shows the evolution of IW configura-
tions at the example of TLS hosts (HTTP is similar) in the
Alexa list. As the figure shows, the current IETF-recommended
value of 10 segments prevails and is slowly but steadily
increasing. In contrast, the legacy values of IW1, IW2, and
IW4 diminish in favor for IW10. We observe little ditches and
jumps in our data which we believe is due to the nature of the
list having churn [31].
IPv4. In [15], we found that scanning a 1% random sample of
IPv4 is enough to gather a good estimate of IETF-recommended
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IW sizes. Figure 5 shows the results of a full IPv4 scan and
subsamples of the IW distribution. For multiple 1% random
samples, we found that all of them are very close to the true
100% scan. Back then we already found that TLS and HTTP
show significantly different distributions.

Driven by these findings and to lower the footprint of our
scans onto the Internet, we scheduled regular 1% scans of IPv4
to track the IW evolution at large. Figure 6 (circles) shows the
results for HTTP (tcp port 80) scans with an MSS of 64 byte.
In contrast to our Alexa scans, we can see a steeper increase
of IW10 hosts. At the end of May 2017, we find that ∼54%
of hosts utilize an IW of 10 segments, one year later, this has
increased to ∼67%. Similar to Alexa, the increase of IW10
results in a steady decline of IW1, IW2, and IW4.

Looking at TLS, things continue to look differently as
indicated in Figure 6 (triangles). At the beginning of our
observations, IW10 has a lower share than IW4. However,
in the beginning of 2018, this changes and we observe more
IPs using IW10 in combination with TLS. We believe that
these large-scale observations are mainly driven by adoption
of more recent operating systems that default to the current
recommended value of IW10.
Limitations. While these ZMap-based IPv4 scans are useful
to investigate IW configurations at large, they have an inherent
disadvantage. Given the nature of ZMap to enumerate IP
addresses, these scans are unable to penetrate through any
kind of virtualization or utilize additional information. So,
for example in [15] we found that 47.6% (13.3%) of hosts
do not offer enough data for an IW estimation when using
HTTP (TLS). Further, HTTP can be virtualized via the Host-
header, i.e., when sending a request to a server, the server can
deliver different content subject to this header, so thereby, a
single IP can serve multiple websites. This is a challenge
for the scanner since it does only have an IP and not a
fully qualified hostname, on the one hand, this can result
in the IP not delivering enough data for an IW estimation (a
challenge that we address in [15]) and, on the other hand, a
server could adjust the IW depending on which website is
requested. Similar virtualization exists in TLS through server
name indication (SNI), similarly challenging an IW estimation.
This is especially problematic in presence of CDNs that
typically heavily virtualize their infrastructure to serve multiple
customers with the same hardware. Thus, these scans are either
not representative for CDNs or they heavily underestimate IWs
when surfing the web. To this end, we next focus on how to
estimate IWs at CDNs.

C. Measuring CDN IWs

This part of our measurement study is structured into three
phases. At first, we gather lists of target URLs that are served
by CDNs. In a second phase we derive the initial windows of
the hosts serving the URLs. At last, we use VPNs to derive
the IWs from different networks for a subset of these URLs.
Target Addresses. The first phase is relatively straightforward,
we utilize data published by the HTTP Archive [32]. The HTTP
Archive crawls websites while recording diverse information
about the websites, for their bi-monthly crawls they visit all

Fig. 6: Evolution of IETF-recommended TCP IWs in IPv4 since
June 2017 for HTTP (circles) and TLS (triangles) established
through periodic 1% random samples.

websites included in the Alexa Top 1M list. We utilize the crawl
data from the 15th of January 2018 and extract all URLs that
are loaded during the crawl, i.e., the landing page URLs as well
as subsequently requested objects such as images or Javascripts.
Even though the HTTP Archive already marks CDNs in their
data, we repeat this step as the CDN choice could be geo-
location dependent and as the HTTP Archive data can be up
to half a month old the CDN operator could have changed
in the meantime. To do so, we apply the domain list [33]
published by the WebPagetest [34] framework (the framework
driving the HTTP Archive), which enables to classify a URL
by resolving its domain using DNS. Many CDNs utilize the
DNS to redirect (using CNAME records) a user to the CDN
server. Thus a CDN can be identified by its CNAME pattern
in the DNS resolution step. The result is a rather large list of
URLs which we filter to include only URLs hosted at CDNs
and only one URL per domain. For each domain, we choose
the URL with the largest object size. This results in a list of
≈ 227k URLs (available at [28]) hosted on 69 CDNs used to
establish initial windows. 116K objects (25 CDNs) that are
too small to reliably estimate an IW (for large segment sizes,
see Section IV) are removed from the results.
Scanning Architecture. We use the architecture depicted
in Figure 7 to structure and perform our scans. To enable
concurrent scanning at multiple vantage points, we make use
of OpenVPN and Linux’s network namespaces. A network
namespace can be seen as a shallow copy of the network stack
with its own interfaces and routing tables. As many VPNs apply
Network Address Translation (NAT) to assign IP addresses
to their peers, we experienced that different VPNs assigned
the same IP or the same subnet to us. To overcome this issue,
we override OpenVPN’s device creation and insert a script to
manually create network devices in a new network namespace
identified by the VPNs publicly facing IP. This enables to
completely disregard any routing or name clash issues when
using multiple VPNs in parallel. We then start one instance of
an IW-prober in each namespace and feed it with the URLs.

To not put a large burden on the VPNs, we perform
a preprocessing step. Instead of querying all 111k URLs
(potentially multiple times to account for tail losses) through
the VPNs we first derive a list of candidate URLs in our campus
network. We select query candidates by grouping URLs hosted
at the same CDN using the same IW and select a random
sample of URLs for each (CDN, IW) pair.
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Fig. 7: Overview of our scanning architecture. We leverage
Linux network namespaces to scan concurrently and to easily
manage multiple VPN connections.

Vantage Points. Gathering globally distributed vantage points
that grant packet-level access is hard. To do so for our mea-
surements, we make use of the VPN Gate [35] project by the
University of Tsukuba. This project’s goal is to give access to
the Internet without censorship. To this end, the project manages
a list of thousands of relay VPN servers around the globe, many
of which are operated by volunteers via their private Internet
uplinks. While the site lists many VPNs, we found only a
small set of them to reliably work for our measurements which
might also be due to the implemented censorship protection
announcing false gateway servers. To account for our scan
methodology, we only use VPN connections made through
TCP, thus loss between our VPN client and the VPN server
is automatically resolved and is not accounted as loss for our
prober. According to [35], most of the VPN servers only have
a relatively small bandwidth capacity mostly below 10 MBit/s.
Consequently, to not disturb the regular VPN operation, we
implement a rate shaper into our prober that smooths burst
and limits the outgoing bandwidth. We configure it to transmit
at most 100 packets per second, thus we limit the prober to
≈1.2 Mbit/s for full-sized frames and much less for smaller
frames. Further, through local experiments we found that
excessively parallelizing IW estimations challenge NATs easily
causing exhausted NAT tables, therefore, we limit ourselves
to a handful of parallel estimations per VPN. We chose both,
the parallelism and the rate shaper, such that only short bursts
are shaped and no long standing queues are formed that could
impact our measurements.

IV. CAMPUS NETWORK PERSPECTIVE ON CDN IWS

We next explore CDN IW configurations from the perspec-
tive of a well-provisioned campus network (RWTH Aachen
University) (worldwide perspective follows in Section V) to set
an upper bound on the expected IW sizes. As our network’s
upstream ISP peers with DE-CIX (at which many CDNs peer
as well) and our network offers at least one order of magnitude
higher capacity than typical consumer Internet connections,
CDNs could potentially adapt by serving content with higher
IWs thus providing an upper bound on the expected IW sizes.

Fig. 8: CDN IWs as seen from our university network. IETF
sizes 4 (not shown) and 10 are present but also larger IWs.

IW Probe Procedure. As IWs can be configured in bytes or
segments, we scan each URL (see Section III-C) with different
maximum segment sizes of 64, 128, 536, 1200 bytes, ten times
each. This enables to derive if the scanned host changes the
total number of bytes delivered in the IW, i.e., the IW is fixed
to a certain number of packets (we refer to the segments) or if
it is fixed to a certain amount of bytes (we refer to the bytes).
To account for tail-loss, we perform a majority vote for each
segment size and regard a scan as successful if > 50 % of the
votes agree on the largest observed IW (97% of measurements).
To derive the final IW, we inspect the number of packets and
bytes received over the four different segment sizes: if the IW
depends on the segment size, we calculate an IW (in bytes)
as if we were using maximum-sized segments (1460 byte),
otherwise, we directly use the fixed amount of bytes. Note
that we refrain from showing quantities in which we observed
certain IWs as they could be biased by the choice of URLs.
Furthermore, we are not able to estimate IWs for all URLs,
since their object size can simply be too small to fill a larger
IW. This would bias the results towards smaller IWs.

A. IW Sizes

Figure 8 shows the resulting IW sizes in bytes and segments
assuming 1460 byte packets from our local campus network.
Each dot represents an IW configuration, the adjacent box lists
a selection of CDN providers that deliver URLs with this IW
(a CDN can occur in multiple boxes). Even though we find
many CDNs offering URLs via IW10, we also find much larger
sizes. This is in contrast to our prior IP only scans over the
IPv4 address space (see Section III-B and [15]), which found
IETF-recommended IW sizes to dominate most likely due to
the number of deployed legacy systems (e.g., DSL gateways).

Our findings show that CDNs do in fact depart from IETF-
recommended IW sizes and customize the IW. For example,
we observe IW16 and IW32 for the probed Akamai URLs1,
both larger than the current IETF recommendation of IW10.
However, we also find very large IWs. For example, the largest
IW that we observed is by Fastly, they deliver some URLs
using an IW of 100 segments. Cachefly also shows a larger
than usual IW of 105 kB, notably, Cachefly uses a fixed IW

1We remark that each CDN can use additional IW configurations beyond
the configurations discovered in our measurements.
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Operating System RWIN [B] WS WIN [B] Segs.

Linux 4.4 58 512 29.696 20
Android 6.0 (Linux 3.4) 685 128 87.680 60
Android 7.0 (Linux 3.18) 641 128 82.048 56
iOS 11.2.5 2.058 64 131.712 90
Mac OS 10.9.5 8.235 16 131.760 90
Mac OS 10.13.2 4.117 32 131.744 90
Windows 7 (SP 1) 256 256 65.536 44
Windows 8.1 / 10 1.024 256 262.144 179

TABLE I: TCP receive window (RWIN), window scaling (WS),
resulting window (WIN) in bytes and full-sized segments on
different operating systems as reported on an HTTP GET
request from an otherwise idling system.

configured in bytes which leads to many transmitted segments
when small segment sizes are used. On the opposite end of
the spectrum, we find URLs hosted on CDNs that deliver data
with a smaller IW than currently recommended. For example,
we find URLs hosted on ChinaCache (not shown) that are
delivered with an IW of 4, yet, we can again observe that
ChinaCache customizes as well, as they also deliver URLs
with IW20.
Can Increased IWs be Utilized? The actual amount of data
that is transported is of course not only dependent on the
server’s congestion window. The client permanently announces
a receive window (RWIN), TCP demands that no more than
the minimum of the advertised RWIN and the congestion
window is in flight. Table I shows the client’s advertised receive
window on an HTTP GET request for a selection of client
operating systems. As the table highlights, the largest IWs that
we measured would not be effective for a couple of operating
systems. Linux 4.4 shows the lowest advertised receive window
which would not be able to utilize many of our discovered
CDN IWs. We found a git commit [36] documenting this
receive window in response to the IW10 increase. Interestingly,
Android, even though using an older Linux kernel, has increased
the receive window and would be able to utilize most of the
IWs measured, the same holds for iOS and all other tested
Mac OS variants. Apart from Windows 7, all recent Windows
variants announce receive windows large enough to not thwart
even the largest observed IW.
Takeaway. We observe CDNs to configure IW sizes beyond
IETF recommended values, highlighting that i) Internet reality
departed from standardization and ii) IW sizes larger than
standardized are of practical relevance. Their actual impact
on network performance, in terms of losses, fairness and
flow completion is practically unexplored by current research,
highlighting that Internet reality also departed from research.
We found that CDNs do customize IWs, however, it remains
unclear when a CDN decides to utilize which IW.

B. Are IWs Content Dependent?

One way to customize IW sizes is by delivery service class
(e.g., low latency web delivery vs. elastic download), which
can explain multiple observed IWs per CDN. Since we cannot
directly identify service classes, we analyze IWs for typical
content types by filtering the HTTP Archive for Akamai-served
URLs according to their mime type. We focus on Akamai,

Fig. 9: IW distribution for Akamai URLs per mime type.

as one of the largest CDNs for which we already observed
multiple IW sizes. For each domain, we take the largest
URL of the following mime types: i) application/mp2t
(62 URLs) typically employed for streamed video stream-
ing applications, ii) image/png (1812 URLs) for images,
iii) application/javascript (1395 URLs) for regular
website content, and iv) application/octet-stream
(67 URLs) for any binary data (download). We expect that
interactive content uses the larger of the two initial windows
as e.g., the play-out of a video should start as fast as possible.

Figure 9 visualizes the analysis. Our expectations are partially
met, i.e., streamed video content (MP2T) is in fact mostly
delivered with IW32, yet not exclusively. This and also the other
mime types highlight that the mime type does not determine the
initial window per se. For PNGs, Javascripts, and binary data
we observe that the majority is served via IW16, the quantity of
IW32 varies between 30 % (Javascript, binary) and 40 % (PNG).
These observations highlight that it is more likely that an IW is
not set depending on the mime type but is rather dependent on
the service class (product) that has been purchased at the CDN.
Of course, some products are designed for interactive delivery
and others not, yet, in the end, this non-strict assignment of
IWs to mime type shows that the customers decide what they
deliver through which product.
Takeaway. Different content types can benefit from different
IW sizes and our results suggest that content dependent
customizations (e.g., for interactive video streaming) exist. Yet,
they cannot be purely detected by mime type since they rather
depend on the delivery strategy selected at the CDN.

V. WORLDWIDE PERSPECTIVE ON CDN IWS

To investigate if CDNs tailor IWs to networks, we probe
the same URL from multiple vantage points. To do so, we
utilize the public VPNs listed at VPNGate [35]. As the service
lists thousands of VPNs, we concentrate on a small subset of
14 VPNs all located in different countries and ASs. For these
VPNs, we test samples of URLs (5 per IW/CDN combination)
for which we have already established an IW locally, thus
enabling to compare if other networks are subject to different
IW configurations.

Table II gives an overview of the VPN locations (as reported
by VPN Gate), networks as well as a manual classification of
their link’s nature. We classified the link type by inspecting
i) the AS and ii) the reverse DNS name of the VPN host
and check if it includes keywords such as: cable, (A)DSL,
dynamic, etc. Most of our VPNs are located in residential
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#VPN AS AS Name Country Link Type

1 AS1221 Telstra Australia Consumer
2 AS3303 Swisscom Switzerland Consumer
3 AS3326 Datagroup Ukraine ?
4 AS4766 Korea Telecom South Korea ?
5 AS7552 Viettel Vietnam Consumer
6 AS7922 Comcast USA Consumer
7 AS9198 Kaztelecom Kazakhstan Consumer
8 AS12389 Rostelecom Russia Consumer
9 AS16276 OVH France Datacenter
10 AS17534 NSK Japan ?
11 AS24560 Airtel India Consumer
12 AS24620 Riga Tech. Univ. Latvia University
13 AS28548 Cablevisión Mexico Consumer
14 AS28885 OmanTel Oman Consumer

TABLE II: Classification of VPNs used to estimate CDN IW
configurations.

access networks, with the exception of one datacenter (#9),
one university network (#12) and three links (#3, #4, #10) that
could not be classified due to missing hints.

Table III summarizes our IW estimations through these
VPNs. We were able to build classes of VPNs that perform
similarly, already indicating that many of our VPNs show a
similar performance and we see a similar IW configuration.
The first class for VPNs #1 and #9 show the largest divergence
from our campus network. Here we measured an IW of only 1
segment for all CDNs contacted via both the consumer (#1) and
the datacenter (#9) link. Especially for a datacenter link this
seems too low and does not fit the rest of our data. When more
closely inspecting both VPNs, we found that both VPNs seem
to heavily rate-limit the packet-rate. Even when performing a
regular download of the URLs, we are unable to ever get more
than two segments in a roundtrip at any time. Thus, we believe
that the IW estimation here is unable to determine the actual
IW due to the rate-limiting which highlights the challenges
when using vantage points that are out of direct control.

The second, largest class, of VPNs, paints a similar picture to
that of our local observations. We observe for all but one CDN
provider the same IWs as seen from our university network.
The only difference being Fastly, for which we have measured
IWs between 61-62, we consistently measured IWs in that
range indicating that our measurements are subject to loss. We
take this as an indication that it is likely that 62 is not the
actual IW that should have been delivered but rather a larger
IW was subject to heavy tail-loss, especially since all other
IWs are configured similarly to our local observations.

This impression continues when observing the remaining
VPNs, there the IWs for Fastly also reach up to 100 segments
(VPNs #10 and #12) but with consistent losses between multiple
measurements. For many, we observe IWs in the range of 60 to
70 segments. We take this as an indication of a service specific
configuration rather than a network-dependent one.

But we also find patterns of network-dependent configuration,
e.g., for the Highwinds CDN that we measured with an IW of
64kB locally. For VPNs #10 and #14, we consistently observe
different IWs. For VPN #10 we observe a larger IW of 83 kB
and for #14 only 58 kB. Yet, also for Highwinds, we can
observe losses at VPN #7 and #11.

VPNs Akamai Azure Cachefly Cloudf. Edgecast Fastly Highw. Level 3
16 32 30 105 kB 25 30 100 10 64 kB 32

1,9 1 1 1 1 1 1 1 1 1 1
2-6,8 16 32 30 105kB 25 30 61-62 10 64kB 32

7 16 32 20-30 105kB 25 20-30 61-63 10 20-60kB 32
10 16 32 30 105kB 25 30 1-100 10 83kB 32
11 16 32 30 105kB* 25 15-30 2-61 10 4-49kB 32
12 16 32 30 105kB 25 30 87-99 10 64kB 32
13 16 32 6-30 105kB 25 2-30 6-73 10 64kB 32
14 16 32 30 105kB 25 30 61-75 10 58kB 32

TABLE III: IW configurations observed at the VPNs. The top
row shows the CDNs with their IWs as discovered within
our campus network. Each field marks the IW we discovered
through the VPN or a range if we saw consistent losses. Results
marked with (*) experienced packet loss but no tail-loss.

Especially, VPN #11 observes the highest losses throughout
our measurements. Here, also Cachefly with the second largest
IW (equaling to 72 full-sized segments) that we observed shows
losses (which does not show any losses at other VPN).
Limitations. Even though it is likely that we see signs of
network-driven tailored behavior, we could be hitting legacy
systems that are just differently configured. Furthermore, since
we use public VPNs, other requests could affect our IW-
estimations that were done over this VPN. However, this would
actually strengthen our observations that CDNs in-fact do tailor.
Takeaway. Overall, we observe that many CDNs use the same
IWs regardless of the network and are successful in delivering
it without losses. Interestingly, we find that Level 3 and Akamai
both deliver content without loss using IW32, while others like
Edgecast and Azure experience loss over the same links despite
using a smaller IW of 30.

Motivated by these observed losses, we want to investigate
the burstiness of IWs. To this end, a recent proposal [14]
recommends using TCP pacing to evenly space out packet
delivery over the RTT when exceeding an IW of 10 segments
to be less aggressive towards queues. This has also been
proposed in [37] after idle slow-start restarts. Since Linux
Kernel 3.11 (released in September 2013), it offers pacing
support via a special packet scheduler in the traffic control
(TC)-subsystem, starting with Linux Kernel 4.13 (released in
September 2017) also directly from within the TCP stack. Thus,
we continue to investigate the temporal characteristics of the
packets transmitted in the IW to investigate the use of pacing
at CDNs.

VI. BURSTINESS OF THE CDN IWS

To investigate the use of TCP pacing by CDNs we again
focus on our university network as we require fine-grained
packet arrival times which are not preserved through the VPNs.
Traffic Shape of the Linux Pacer. Linux implements pacing
in TCP either via TC as a queuing discipline or directly
from within the TCP stack. For TC, the default queuing
discipline must be exchanged to use the TC Fair Queuing (FQ)
discipline. TCP interacts with FQ by setting an appropriate
pacing rate on the socket that is used by FQ to spread out
packets. TCP re-calculates the pacing rate with every incoming
ACK and after the initial handshake as MSS ·CWND

sRTT · RAT IO
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Fig. 10: IW burstiness for a subset of the observed CDNs and URLs (each with an RTT of 60 ms-70 ms). The arrival time of
full-sized 1500 byte packets (dots) in the entire IW is shown on the x-axis, the IW size (in kB) on the y-axis (e.g., IW10 =
15 kB). Note different axis scalings due to different IW sizes. Some CDNs seem to utilize packet pacing while others do not.

Fig. 11: Linux default traffic pattern on the left, pacing using
FQ on the right. Each marker denotes one packet. Packets
arriving in the same roundtrip have the same color. Top row
uses IW10, bottom IW20.

with maximum segment size (MSS), the congestion window
(CWND) in segments, the smoothed roundtrip time (sRTT)
and a RATIO defaulting either to 200% in slow start or 120%
during congestion avoidance. The ratio is used to accelerate the
pacer in different connection phases and can be adjusted via
sysctl parameters for both slow start and congestion avoidance.
The pacing rate defines the amount of data that can be sent and
the pacer uses this rate to calculate the departure of the next
packet such that the rate is enforced on the connection. Yet, in
addition to enforcing a bandwidth, the pacer also allows for a
certain burstiness of the traffic. This is enabled by combining
the previously discussed rate with a token bucket scheme, where
every flow is assigned a credit that is initialized by an initial
quantum, and every time a packet is dequeued and the credit
is zero or below, the packet is enqueued again and the credit is
increased by a refill quantum. Thus, new flows, i.e., at the start
of the connection, may directly burst the initial quantum and
are then subject to the rate limiter and will continue sending
bursts of packets governed by the refill quantum (assuming
enough data is available for dequeuing).

Figure 11 shows the resulting traffic pattern with the pacer’s
default values for the initial quantum, i.e., 10x MSS, and the
refill quantum, i.e., 2x MSS, for a server serving data at the
start of the connection with IW10 and IW20. We used netem to
add a delay of 100 ms at the egress of the client to simulate an
RTT of roughly 100 ms in our local network and then measured
the packet arrival. As we found that the packet coalescing of
the NIC, which reduces the interrupt-rate, causes imprecise
software timestamps of the arriving packets, we instruct our
NIC to perform hardware timestamping at packet arrival. To

illustrate the difference the left side of the figure shows the
regular, bursty behavior without packet pacing. As we can see
on the right side, the default pacer parameters are chosen in
a way to allow bursts of 10 packets, thus allowing an IW of
10 segments (i.e., the IETF-recommended value) to seamlessly
pass through the pacer, while bytes larger than IW10 are subject
to pacing as visible in the lower right plot that uses IW20.
These trains of two packets (refill quantum) correspond to
TCP’s self clocking [22] behavior when having delayed ACKs
that generate an ACK for every second segment thus causing
the release of two packets with every incoming ACK. We next
empirically probe CDNs for this pattern to detect pacing.
Measuring the Packet-Pacing. To measure if the CDNs utilize
pacing, we take a look at the packet arrival-times when
executing an IW scan. To do so, we simply record packet
traces (with tcpdump) but instruct our IW-prober to delay the
ACK following the SYN/ACK by roughly 50 ms to emulate
a larger RTT to the measured CDN. We again use hardware
timestamps for precise time keeping.

Similar to Figure 11, Figure 10 shows all packets (dots) sent
during one initial window after connection start for a selected
subset of CDNs and URLs. Their arrival time is depicted on
the x-axis and the IW size in kB on the y-axis. Please note the
different x- and y-axis scaling due to the different IW sizes.
We can visually observe two different patterns. The first, here
presented by Akamai, Highwinds, and Edgecast, shows close
to no temporal distribution of packets. The second, presented
by Cloudfront, Fastly, and Cachefly, shows a stream of packets
arriving virtually at the same time followed by a temporally
skewed train of other packets. The latter follows the expected
output of Linux’s packet pacer as described before (Figure 11).
This is best visible in the example of Cloudfront, where a burst
of ten segments is almost perfectly followed by delayed trains
of two packets. Thus, we can see that some CDNs are likely
utilizing pacing during slow start for IWs larger than IW10 as
recommended in [14].
IW-Skew by Pacing Rate. When looking at the two largest
IWs that we observed by Cachefly and Fastly2, we can see that
both pace their IWs, however, we observe that Cachefly is more
aggressive in doing so as they spread their IW over roughly
1.5x the RTT while Fastly does it over roughly 2.5x the RTT.
Yet, compared to smaller IWs like observed at Cloudfront that

2Please note that while measuring pacing, we experienced heavy tail-loss
with Fastly leading to the reduced bytes.



10

pace the IW over roughly 0.5x RTT (i.e., very close to the
Linux pacer’s default), it might not be obvious why spreading
the data transmission over more than an RTT would make sense.
We speculate it could be favorable in situations where the initial
RTT sample from the 3-way handshake is a bad estimate for
the RTT or when there is congestion on the reverse path. When
the initial RTT is lower than the RTT that is to be expected
during transmission, e.g., when there is other traffic filling
queues or one must compete for airtime in wireless setting, it
might take more time for ACKs to arrive than the initial RTT
sample predicted. Similarly, when there is loss on the reverse
path, ACKs might not arrive rendering the connection idle,
thus, in both cases prolonging the IW transmission duration
could be favorable.

Yet, this kind of pacing challenges the traditional notion of
IWs. Typically, the IW is thought of as the number of bytes
sent in the first RTT without requiring an acknowledgement.
Since traditional TCP is bursty, pacing skews this notion as the
data must not necessarily arrive within the same RTT as we
already observe for some CDNs. Thus, e.g., when an IW of
100 segments is paced over 2 RTTs, the bytes arriving at the
receiver in the first RTT are effectively half of what is received
with a bursty IW100. Therefore, depending on the pacing rate,
a paced IW100 might better compare to a bursty IW50 or even
less. Given this observation, discussing IWs and simply looking
at the number of segments is insufficient to reason about its
appropriateness. IWs should be regarded with respect to time
and rate, e.g., an IW of 100 segments paced over 2 RTTs with
an RTT of 30 ms corresponds to a rate of ∼20 MBit/s which
seems reasonable when looking at the capacity of current user
access speeds. While this does not capture the rate on a sub-
RTT level, e.g., when no pacing is used, a data rate better
captures the demand of a new connection on the network than
a fixed number of segments.
Takeaway. We find it is likely that pacing is used by some
CDNs. In fact, the two largest IWs show clear pacing patterns.
Past research suggests that pacing can help to bootstrap
new or idle connections, however, there is currently only a
limited understanding of the impact of pacing on networks
and of its benefits and drawbacks especially as current pacers
deviate from perfectly paced packet streams found in literature.
Additionally, pacing challenges the way IW values should be
regarded, we find a data rate to better capture the demand on
a network.

VII. IW PERFORMANCE WHEN COMPETING FOR TRAFFIC

While we initially investigated the theoretical advantages
and disadvantages of using larger IWs (Section II-A), these
measurements were idealized. Further, our previous CDN
measurements have shown that some CDNs utilize pacing to
distribute the initial load on the network over a longer period.
We take these observations and investigate how the parameters
affect performance in a more realistic setting, i.e., when having
to compete for bandwidth. Even though, we are not the first
to investigate the performance impact of larger IWs, other
studies often use simulations and do not rely on the actual
code and configurations that we observed in the wild. Yet,

Webserver 2

Webserver 1
Bottleneck

Linux RouterClient Switch

Packet 
Capture

Egress: Token 
Bucket Shaper

Ingress: Delay

Fig. 12: Testbed topology with the client requesting traffic from
the two webservers. Bottleneck characteristics are configured
on the dedicated bottleneck machine. Packet traces are captured
on the client machine.

there are still many possibilities to investigate this, e.g., how
do the parameters affect a congested peering link or how does
it affect performance in a data center, we opt to investigate the
effects from a user’s perspective. Even though it is known that
there are instances of persistent inter-domain congestion [38],
it is still widely believed that a lot of congestion happens
at the network edges and more specifically at the end-user’s
access link [39], i.e., the last mile. We use this setting and
investigate the performance on an emulated link where a new,
comparably short flow must compete against an elephant flow,
i.e., a bulk transfer. This reflects a typical situation at home
with a shared access link, i.e., a bulk download competes
against web traffic. We start our evaluation by describing our
testbed before continuing on with discussing our results.

A. Testbed and Parameterization

We extend the testbed used in Section II-A by implementing
a simple dumbbell topology, illustrated in Figure 12. It allows
us to reflect our end-user setting and enables us to adequately
investigate congestion control [40]. For our measurements,
the client machine to the left of the figure requests a high
volume elephant flow from Webserver 2. After it has reached
the bottleneck’s capacity, the client requests a second, small
volume flow from Webserver 1.

We again vary between four different bandwidth and three dif-
ferent delay configurations motivated by Akamai’s report [17].
Even though CDNs in general strive for low RTTs of a couple
of 10th of ms, wireless links and areas with suboptimal CDN
coverage may still face higher RTTs. Additionally, we size
the bottleneck’s queue in accordance to the bandwidth delay
product (BDP) rule of thumb. Since, we know of no studies
that investigate how router buffers are sized in the Internet,
especially at the edge, we use 0.5x BDP, the BDP itself, and
1.5x the BDP.

We configure the bandwidth and queue size using a token
bucket filter with a burst size of a single frame at our Linux-
based bottleneck machine while using a traditional drop-tail
FiFo queue. Even though Internet access links are often
asymmetrical, we disregard this fact as we are not interested
in investigating reverse path congestion and use the same
bandwidth in both directions.

To add delay to our testbed, we modify our bottleneck’s
ingress packet processing. There, we artificially redirect traffic
to an intermediate queue disc enabling us to use NetEm to add
delay before we release the packet for forwarding to the actual
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Fig. 13: Average flow completion time for a 73 kB Cubic flow (solid) and a paced Cubic flow (hatched) when competing
against a Cubic elephant flow for different RTTs (columns) and different queue sizes (rows) subject to bottleneck bandwidths
(colors) when using different IWs (x-axis), errors bars denote 95% confidence intervals over 30 measurements.

egress queue. While care needs to be taken to size the NetEm
queue to not cause artificial packet loss this approach has the
advantage that the end-host stacks are not involved in the delay
which is known to badly interfere with congestion control when
Linux detects queuing pressure (TCP small queues). To have a
symmetric delay, we add half of the configured delay to each
ingress of the bottleneck. We do not configure any artificial
jitter using NetEm as this causes packet reordering, the delay
and jitter are thus only caused by the egress queue.

All our machines are connected via Gigabit Ethernet and
use a Linux 4.13 kernel, we further make sure that initial
receive windows are large enough to not limit the IW (see
Section IV-A). Additionally, we clear all TCP metrics after
each measurement and make sure that send and receive buffers
are sizes such that the machines can fully utilize their Gigabit
Ethernet connection.

We capture traffic at the client using tcpdump to compute
the average flow completion time (AFCT) of the short flow.

B. Increasing Cubic IWs and Applying Pacing

Our first study investigates the advantages when utilizing
increased IWs as observed in our CDN measurements and the
additional implications that come with pacing. To this end, we
investigate how Cubic, the Linux default congestion control
algorithm, performs subject to larger IWs and pacing. Slightly
different to our initial investigations, we use 73 kB of data for
our short flow (to have slightly more than 50 frames) and this
time our sole focus is on the flow completion time. After the
elephant flow has started, the client requests the short flow
which then competes for bandwidth and for which we measure
the AFCT. We repeat each configuration 30 times to be able
to statistically investigate the results. Figure 13 visualizes our
study, each row showing the same measurements subject to
different bottleneck queue sizes, each column for different RTT
configurations.
Bursty TCP. We first focus on the non-paced performance
(i.e., all non-hatched bars), starting with the 30 ms column
reflecting a well connected CDN. Our first observation is best

visible at 4 MBit/s, we observe that for this low-end bottleneck
speed, increasing the IW results in decreased performance. On
average the FCT increases with increasing the IW, especially
when the queue size is small, yet regardless of the queue size,
the stability decreases as indicated by the increasing confidence
intervals. Thus, while some measurements show increased per-
formance, some show extremely worse performance indicating
the unsuitability of large IW for these network configurations.

Similarly, no real gains are observable for 7 MBit/s bot-
tlenecks, only starting with 26 MBit/s, especially for larger
queue sizes. Looking at larger RTTs things do slightly change,
at 100 ms slight IW increases to 16 or 20 segments still
yield performance increases even for low bandwidths. Yet,
we observe that IWs such as 50 or 100 cause problems at
26 MBit/s and 100 MBit/s indicated by increased variance
especially visible for short queue sizes. With an RTT of
250 ms, our measurements indicate that for small queues, again
sufficient bandwidth is required to utilize larger IWs to not
hurt performance. When increasing the queue size performance
generally decreases as in all other settings, however, we see
much clearer that the long flow hogs the queues leading to
reduced performance even when having larger bandwidths.

Paced TCP. We next shift our focus to the performance of
the paced Cubic short flow (i.e., all hatched bars). Looking at
30 ms RTT, we find that pacing, in comparison to its bursty
counterpart, enables TCP to utilize an increased IW already for
4 MBit/s bottlenecks. First, the FCT, on average is generally
lower than the bursty variant, second, at times where the IW
starts to worsen the performance in the unpaced setting, it
still improves the performance up to an IW of 32 segments.
Until then, the FCT even compares to the unpaced variant with
7 MBit/s. After that, the performance again starts to worsen,
notably with an IW of 100 segments (recall we are only
transmitting slightly more than 50 frames), the performance
notably worsens in comparison to the IW50 case. We believe
this is due to the fact that TCP uses the IW of 100 segments
to calculate the packet departure times even though much less
is transmitted leading to a smaller inter-packet gap and overall
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Fig. 14: Average flow completion time for a 73 kB paced Cubic flow with a slow start RATIO of 200% (solid) and a paced
Cubic flow with a slow start RATIO of 40% (hatched) when competing against a Cubic elephant flow for different RTTs
(columns) and different queue sizes (rows) subject to bottleneck bandwidths (colors) when using different IWs (x-axis), errors
bars denote 95% confidence intervals over 30 measurements.

shorter time frame which seem to put too much pressure on our
bottleneck. This observation carries over to larger bandwidths
as well, however, not as drastically visible. For 100 MBit/s,
we even see that the performance slightly worsens, this is
not without surprise, the last packet will depart roughly half
an RTT later in the paced variant. This especially makes a
difference when there is less congestion. Pacing’s advantages
slightly diminish over larger buffer sizes, yet, in most cases it
is still beneficial.

For larger RTTs of 100 ms and 250 ms, pacing does not
always yield an improved performance. Especially, when having
larger queue sizes that absorb bursty traffic (see 1.0x and 1.5x
BDP at 250 ms), it seems that the competing elephant flow
leaves enough buffer space during collision avoidance that the
short flow can pass through without requiring pacing. This is
in line with simulation results from related works that show
pacing’s benefits especially when having small buffers.
Takeaway. Our investigations indicate that pacing enables TCP
to utilize larger IWs when competing against an elephant flow.
These advantages are especially apparent with small buffers
and short RTTs while they diminish for larger bandwidths,
because pacing, by its principle, worsens the flow completion
time in uncongested settings.

C. Pacing Aggressiveness in Slow Start

In our CDN observations about pacing, we already saw
that some CDNs spread their IW over different fractions of
the RTT. By default, as used in the previous section, Linux’s
pacer paces over 0.5 of the RTT by setting the RATIO to
200%. Since we already observed how larger IWs that are not
utilized by application data affect the pacing performance in
the previous section, we want to more thoroughly investigate
how this agressiveness of the pacer affects the performance. To
this end, Figure 14 compares our previous paced variant with
a RATIO of 200% against one where we set the RATIO to
40%, i.e., such that the IW is paced over 2.5x the RTT, which
was the largest spread observed in our previous measurements.

For the 200% RATIO, we reuse the data from before (now
non-hatched part of the plot).

Looking at the first column (30 ms RTT), we observe
that spreading the IW over a larger time can yield a slight
performance increase for low-bandwidth settings even though
large IWs are used. We believe that the large spread leads to a
later exit of slow start even though a large IW is used, ultimately
shortening the FCT for this low bandwidth setting. When we
look at larger bandwidths, we can see that the decreased pacing
rate hurts performance especially for small IWs. Interestingly,
the reduced pacing rate is beneficial when the IW is larger
than the application data (IW 100 in this case), however, we
think it is not the correct measure to reduce the aggressiveness
of too large IWs when there is fewer application data. Rather,
the pacer should be informed about application data limitations
and use the available amount of data as the IW if it is smaller
than a preconfigured IW.

Focusing on the larger RTTs, we can clearly observe that
in nearly all tested settings the prolonged transmissions cause
significant increases in the FCT. Only for IWs of 50 or 100
segments, the prolonged transmission time seems to nearly
amortize. Thus, the ideal configuration of the pacer seems to
be very dependent on the concrete application and scenario.
Takeaway. We tested a very extreme acceleration change
of 200% down to 40%. Although a smaller RATIO, hence
longer duration, seems to be beneficial in some situations,
it is disadvantageous in most of the investigated settings.
Nevertheless, accelerating or decelerating the pacer in different
settings or over the course of the connection seems to be an
area worthwhile to further explore, a property inherent to the
BBR congestion control.

D. Increased IWs with BBR Congestion Control

For our final investigation of IW performance we switch
the congestion control algorithm. Now, we utilize the recent
BRR algorithm that is known to be used by Cloudflare and
Google. Its design is build around the idea of pacing, however,
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Fig. 15: Average flow completion time for a 73 kB paced Cubic flow with a slow start RATIO of 200% (solid) and a BBR
flow (hatched) when competing against a Cubic elephant flow for different RTTs (columns) and different queue sizes (rows)
subject to bottleneck bandwidths (colors) when using different IWs (x-axis), errors bars denote 95% confidence intervals over
30 measurements.

compared to our paced Cubic that we tested before we cannot
adjust the pacing rate in slow start which is called startup in
BBR, see [41] for an in-depth analysis of the BBR startup
parameterization. Yet, we remark that compared to paced Cubic,
BBR chooses the pacing rate and calculates the congestion
window, such that it doubles with every RTT even though not
all packets have arrived yet (due to the pacing), effectively
leading to a slightly different packet release mode than paced
Cubic.

Despite these small differences, BBR is still very similar
to paced Cubic which is why we compare our default paced
Cubic variant (200% RATIO) to BBR in Figure 15. BBR overall
compares well to our paced Cubic variant, yet, there are subtle
differences. Looking at an RTT of 30 ms, we see that for
many parameterizations BBR’s average in our experiments is
below that of paced Cubic. However, as indicated by the often
largely overlapping confidence intervals this is not necessarily
statistically significant. IW100 stands out, it seems that for
lower bandwidths, BRR is able to better scale to the actual
application demand (remember we are only sending slightly
more than 50 frames). For an RTT of 100 ms, paced Cubic and
BBR perform very similar. Looking at 250 ms, we find many
instances where BBR’s FCT is higher, especially when looking
at the larger buffer sizes. It seems that the delay brought in
by the Cubic elephant flow seems to further inflate the RTT
observed by BBR causing it so reduce its sending rate.
Takeaway. BBR’s startup compares to our paced Cubic variant.
BBR seems to have slight advantages at lower bandwidths and
especially if congestion window exceeds the actual application
demand. For large RTTs with larger buffers, it seems that our
paced Cubic variant has advantages when the IW increases.

VIII. CONCLUSION

This paper’s goal is to better understand the current config-
uration of TCP’s initial congestion window (IW). The IW is
a long-debated performance parameter. Its size is in principle
network and application dependent, where too small IWs can

add unnecessary latency and too large IWs can cause congestion
and thus loss. Yet, the IW is regarded as a static parameter
that fits all networks and applications. Its IETF-recommended
size has only changed infrequently in its history.

To this end, we utilize longitudinal IP-based scans of
IPv4 and the Alexa list to study the adoption of IETF-
recommended IW-values and find that IW10, as the current
recommended value, gains more and more track. Further,
we modify our scanner architecture to measure CDNs from
our University network and from globally distributed vantage
points. We find that CDNs are well ahead of current IETF-
standardized practices by using custom IW configurations. In
our measurement study, we observe IW configurations that
are up to ten times higher than the most recent experimental
standard. Our results suggest that CDNs do customize IWs
for different services or customers, yet while advantageous for
some content types, the content type does not enforce the IW.
On a larger scale, we survey if CDNs adjust IWs depending
on the end-user’s network. We find some CDNs for which
we can show that IWs vary depending on the network, but
not for all. Driven by losses in our measurements, we analyze
the burstiness of the IW delivery and find that some CDNs
utilize pacing to space out packets over time. We find that the
largest IWs in our study utilize this feature, which especially
challenges the notion of IWs as they must not arrive within
the first RTT, making it difficult to compare IWs just by the
number of segments. We find it reasonable to couple an IW
to a data rate, i.e., over which time is this IW transmitted, to
better understand the IW’s demand on the network.

Since our measurements do not show if pacing actually
enables these large IWs, we carry our real-world observations
to a controlled lab evaluation and investigate their impact on
flow completion time when competing against a long-lived flow.
Our testbed study indicates that pacing is a key component to
enable larger IWs, yet, it still shows that blindly increasing
the IW without regarding the actual network and application
results in lower performance.
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While our study focuses on TCP, QUIC borrows TCP’s
congestion control and startup phase including initial windows
highlighting its future relevance (also in light TCP-BPF [42]).
We thereby aim to inform standardization and academia about
current global trends and CDN practices that depart from
current knowledge and IETF-recommendations. We posit that
further research needs to be dedicated to understand the
implications of this new reality opening up the question if
these customizations need to be reflected in RFCs.
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