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Abstract—Congestion control is an indispensable component
of transport protocols to prevent congestion collapse. As such, it
distributes the available bandwidth among all competing flows,
ideally in a fair manner. However, there exists a constantly
evolving set of congestion control algorithms, each addressing
different performance needs and providing the potential for
custom parametrizations. In particular, content providers such
as CDNs are known to tune TCP stacks for performance
gains. In this paper, we thus empirically investigate if current
Internet traffic generated by content providers still adheres to
the conventional understanding of fairness. Our study compares
fairness properties of testbed hosts to actual traffic of six
major content providers subject to different bandwidths, RTTs,
queue sizes, and queueing disciplines in a home-user setting. We
find that some employed congestion control algorithms lead to
significantly asymmetric bandwidth shares, however, AQMs such
as FQ_CoDel are able to alleviate such unfairness.

I. INTRODUCTION
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The Internet has grown way beyond its original purpose of
being a research network. Today, thousands of autonomous
systems connect and exchange data. The fundamental principles
governing this data exchange are well established since decades
and defined in IETF RFCs. To this end, the current best-effort
Internet relies on CC to i) not collapse the network, and to
ii) achieve fairness for flows competing for bandwidth at a
bottleneck. For TCP, RFC 5681 [1] requires the implementation
of slow start, congestion avoidance, fast retransmit, and fast
recovery (generally known as TCP Reno). Other algorithms
improve on certain aspects of Reno, e.g., to enable higher
performance over large BDP networks. Usually, when a new
or modified CC algorithm is proposed, it is rated in terms of
TCP fairness when competing with Reno or Cubic as Linux’s
default CC algorithm. While fairness is generally a hard to
define property for Internet flows and flow-rate fairness is
a controversial metric [2], it is still widely used. In 2005,
Medina et al. [3] showed that most Internet flows halve their
congestion window on loss and are thus TCP conform, leading
to an expected flow-rate fairness [4].

Since then, the Internet landscape has drastically changed,
end-users use the Internet with increasing access speeds [5]
and content such as videos is causing a substantial fraction of
Internet traffic [6], [7]. These increasing demands have led to
a logical centralization of the content-serving Internet where
a few big players serve the majority of the content [8], [9].
In previous work [10], we have shown that CDNs specialize
in serving such content by tuning their TCP stacks beyond
RFC-recommended values in hope for higher performance and
user satisfaction. Fundamentally, such observations raise the
question of fairness, and in fact, from an economic standpoint

being unfair to a competing CP might be advantageous (e.g.,
by being able to deliver data with more than a fair bandwidth
share). While identifying a CP’s CC algorithm (e.g., via [11])
helps in understanding its principal behavior, these works do not
take into account the actual parameterization of the algorithms
which have the potential of drastically changing the fairness.
Transport protocol evolution with QUIC has the potential to
further lower the hurdle for modification in the future, given
its realization in userspace for flexible customization.

In light of these historical changes, this paper investigates the
behavior and interaction of large CPs. Thereby, we shine a light
on current practices and evaluate the question of whether actual
Internet traffic adheres to the conventional understanding of
fairness. To this end, we devise a methodology that enables us to
compare testbed results with actual Internet traffic. Specifically,
this work contributes:
• We present a testbed methodology using RTT-fairness to

study actual TCP traffic by major CPs to account for a broad
set of TCP optimizations used in practice.

• We compare fairness properties of testbed hosts to actual
traffic by six major CPs subject to different bandwidth, RTT,
queue sizes, and queueing disciplines in a home-user setting.
We find that achieving a fair bandwidth share largely depends
on the competing congestion control algorithms (Cubic vs.
BBR) and the involved network conditions.

Structure. We introduce flow-rate fairness and related works
in Section II. We then introduce our testbed methodology and
its validation in Section III. Section IV discusses the results
of our fairness study before we conclude the paper.

II. BACKGROUND AND RELATED WORK

One of the key challenges in the Internet is the decentralized
resource allocation of bandwidth. However, TCP’s initial design
only prevented overloading single end-points and did not
consider the possibility that the network itself could become
overloaded and collapse upon this congestion. As centralized
algorithms are not deployable on the Internet, decentralized
CC was soon added to TCP’s design. However, the highly
distributed nature of the Internet quickly showed that there are
scenarios where the early CC often yields less than optimal
performance which has led to a plethora of research for evolved
and optimized algorithms. With the introduction of ever more
algorithms, questions about their interaction arose challenging
how these algorithms share the available bandwidth. Research
has hence also considered these aspects by investigating fairness
of CC. Well-studied fairness measures are the intra-protocol
flow-rate fairness, i.e., how well do two instances of the same



algorithm share the available bandwidth, the RTT-fairness,
i.e., what happens if the flows have different RTTs, and the
inter-protocol fairness, where two instances of two different
algorithms are investigated.
Intra-Protocol and RTT-Fairness. For Cubic, research has
commonly found decent intra-protocol fairness and an inverse-
proportional RTT-fairness, meaning that instances with smaller
RTTs get a larger share of the overall bandwidth. These findings
have been confirmed for a large set of different network
characteristics, ranging from small (10 Mbps, e.g., [12]) to large
bottleneck bandwidths (10 Gbps, e.g., [13]) or short (16 ms,
e.g., [14], [15]) to long (324 ms, e.g., [14], [15]) RTTs.

For BBR, less research exists and the available studies partly
disagree on the properties of BBR. This is especially true for
intra-protocol fairness, as Cardwell et al. [16] claim a high
degree of fairness across the board, while Hock et al. [17]
identify scenarios where the fairness is significantly impaired.
Regarding RTT-fairness, it is commonly found that BBR has a
proportional RTT-fairness property, i.e., a flow with a larger
RTT gets a larger share of the available bandwidth [16], [18],
[19]. Hock et al. [17] generally confirm the findings but by
investigating two different bottleneck queue sizes, they find
that in scenarios with a smaller queue size (0.8× bandwidth
delay product (BDP)) flows with a smaller RTT have a slight
advantage, while in large buffer scenarios (8×BDP) the inverse
is true and flows with larger RTTs have a significant advantage.
Inter-Protocol Fairness. While the intra-protocol and RTT-
fairness of CC is important for a large scale-out of the
algorithms, the inter-protocol fairness property shines a light
on the coexisting use of different CC algorithms in the
Internet. Unfortunately, several groups of researchers have
found that BBR and Cubic do not cooperate well, as Cubic
flows dominate BBR flows in scenarios with larger buffers
(generally above 1×BDP) while the opposite is true for small
buffer scenarios [16], [17], [19].

While many studies investigate how certain algorithms affect
each other, there is missing up to date research on which are
actually used in the Internet. Moreover, many studies neglect
the parameterization and tuning potential of these algorithms
that are used in practice. To address this, this study explores
if actual Internet traffic of large content providers—which
carry the bulk of today’s Internet traffic—still adheres to the
conventional understanding of TCP fairness.

III. METHODOLOGY

CC research traditionally involves simulation or testbed
studies, which give researchers complete control over the
investigated scenarios. While this is desirable for controlled
experiments, the involved abstractions and assumptions do not
allow to completely cover real-world settings. For example,
the employed algorithms and their parameterization in real-
world systems are typically unknown. To study CC fairness in
practice, we, therefore, contact real-world Internet systems with
a testbed setup. This enables us to still control some parameters
(e.g., bottleneck bandwidth and delay) while studying the CC
algorithms as run by real systems. This way we can study
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Fig. 1: Testbed topology with testbed and online components.
Scenario a (testbed-only), Scenario b (testbed & Internet),
Scenario c (Internet-only).

if Internet traffic by CPs still adheres to the conventional
understanding of TCP flow-rate fairness.

A. Home User (Residential Access) Scenarios

The fundamental design choice of our study is to investigate
fairness from the perspective of an end-user accessing the
Internet through a home router. Even though peering links
have been identified as possible points of congestion [20], it is
still widely believed that access links form the bottlenecks and
thus congestion happens at the network edges, more specifically
at the end-user’s access link [21]. We model this scenario in
the form of a simple dumbbell topology that is the foundation
of our testbed which we illustrate in Figure 1. The user—
represented by the client—is connected to the testbed network
via a dedicated machine serving as a configurable bottleneck
(via Linux’s traffic control (TC) subsystem). In general, the
client can request traffic from all kinds of sources, from within
the testbed and from Internet sources. For our study, we focus
on three distinct scenarios.

In Scenario a (testbed only), we investigate the out-of-box
performance of CC by simultaneously requesting traffic from
two testbed machines. This, above all, establishes a baseline and
identifies potential influencing factors on the overall interaction
of CC. Building upon this baseline, Scenario b (testbed &
Internet) then replaces one of the two testbed flows with a
flow originating from the Internet. Thus, we compare how
the Internet flows interact with the out-of-box CC algorithms.
Finally, Scenario c (Internet-only) considers the case where
both flows originate from the Internet to investigate how and
whether their interactions differ from the previous scenarios.

The common goal of all three scenarios is to judge the
bandwidth sharing behavior of different CC algorithms in
different network settings for which we consider four network
characteristics. The bottleneck bandwidth and the overall RTT
hereby give hard upper bounds (in terms of available data rate)
and lower bounds (in terms of responsiveness) on the overall
performance, while the bottleneck queue, characterized by its
queue size and queuing discipline, introduces jitter, and loss.

B. Testbed Setup

The core of our testbed consists of one machine that
represents the end-user and hence serves as the client through-
out the scenarios and another machine which represents the



user’s access link and hence the bottleneck of the overall
connections. The latter is then used to model all connection-
specific properties like delay or bandwidth. For the scenarios
where we create flows from within our network, we deploy one
machine for each flow that is involved and configure server-
side parameters like the deployed CC algorithm on them. All
machines within the testbed use a Linux 4.13 kernel and they
are interconnected via Gigabit Ethernet to ensure that the
physical links never become a bottleneck.
Limiting Bandwidth. Most configurations, like rate-limiting,
are done on the bottleneck’s egress queues. Here, we configure
the bandwidth and queue size using a token bucket filter with
a burst size of a single frame while using different queue
management techniques. Even though Internet access links
are often asymmetrical, we disregard this fact as we are not
interested in investigating reverse-path congestion and use the
same bandwidth in both directions.
Ensuring RTT-Fairness. To reason about the main question
of this work, i.e., about the bandwidth sharing properties of
Internet flows, we employ the RTT-fairness property which
states that two flows should share the bandwidth equally if they
have the same RTT. This, in turn, means that we only consider
those cases where the different flows have the same RTT and
we consequently use fairness synonymously for RTT-fairness.

To add delay to our testbed, we use TC to perform ingress
packet processing at our bottleneck. There, we redirect traffic
to an intermediate queue disc enabling us to use NetEm to
add a delay before we release the packet for forwarding to the
actual egress queue. We do not configure any artificial jitter
using NetEm as this causes packet reordering; the additional
delay and jitter are thus only caused by the egress queue. To
have symmetric delays, we add half of the configured delay to
each ingress of the bottleneck. While care needs to be taken in
sizing the NetEm queue to not cause artificial packet loss, this
approach has the advantage that the end-host stacks are not
involved in the delay which is known to badly interfere with CC
when Linux detects queuing pressure (TCP small queues) [22].
Further, in Scenarios b and c we even have no control over
all end-hosts. To ensure that we can investigate RTT-fairness,
we set different delays for each flow to harmonize their RTTs.
To this end, we measure the minimum RTT through our testbed
(using TCP pings) when not using any artificial delays for each
flow. We then use each flow’s min RTT to configure delays
such that all flows experience the same artificial min RTT.
Limitations. Our testbed has several limitations that need
consideration. We must ensure that our traffic shaper is the
actual bottleneck of the path from the CP to our client.
Since we do not have full control over all involved entities,
we can only configure bandwidths that are sane given our
interconnection. Our testbed uses Gigabit Ethernet, our Institute
is then connected via 10 Gbps to our University’s backbone,
which in turn connects to the German research network
(DFN) via 40 Gbps which then peers at DE-CIX with all CPs
investigated in this study. Thus, shaping traffic for typical end-
user access links should render the bottleneck to our traffic
shaper. Further, we need to artificially bump up the RTTs at

Setting Parameter Space

Bandwidth 50 Mbps, 10 Mbps
RTT 50 ms, 100 ms
Buffer sizes 0.5× BDP, 2× BDP
Queueing discipline drop-tail, CoDel, FQ_CoDel

TABLE I: Study parameter space

least to the largest minimum RTT measured. For us, the CPs
typically show RTTs around 5 ms to 10 ms which enables us
to investigate a large range of RTTs.

Additionally, to ensure repeatability and independence, we
take several precautions to avoid undesired side-effects. First,
to investigate the interaction of CC, we must be actually limited
by the congestion window which is why we advertise an initial
flow-control receive window of 200 segments. In the same
way, we ensure that send and receive buffers are large enough
to fully utilize the available bandwidth and do not introduce
an undesired new bottleneck. Finally, we clear all TCP caches
after each measurement to ensure that cached metrics such as
ssthresh do not affect future measurements (testbed only).

C. Parameter Space

Selecting reasonable parameters for our testbed is chal-
lenging. We must adhere to the testbed’s limitations while
seeking to replicate a reasonable end-user environment. Table I
summarizes the parameter space which we discuss next.
Bandwidth. To ensure that the bottleneck link is within our
testbed, we have to set the bottleneck link bandwidth accord-
ingly. To identify the bandwidth provided by the individual
CPs, we performed a larger number of bandwidth tests to
determine which data rates are reliably offered by the different
CPs. We have found the lowest data rates to be around 60 Mbps.
Adding a safety margin, we choose 50 Mbps as our upper data
rate limit which according to Akamai [5] is representative for
mid-sized access links. Further, we choose 10Mbps as a lower
bound to represent a low-end connection.
RTTs. We choose 50 ms as the lower bound for the minimum
RTT and 100 ms as a representative for higher latencies, even
though we expect typical CPs to usually have much lower
RTTs to their customers. However, these increased RTTs make
it possible to reduce the relative error when we pad up the
RTTs to ensure RTT-fairness between connections.
Buffer Sizes. For the bottleneck buffer, we experiment with
different queue sizes since we know of no study that inves-
tigates typical last-mile buffer sizes. While the potential for
overly large buffers (bufferbloat) is known [23], less than
1% of the end-user flows were observed to experience RTT
variations larger than 1 sec by a major CDN [24]. Therefore,
we choose one overly large buffer in the order of 2×BDP
and, inspired by research advocating new buffer sizing rules
(
√
num_flows [25] and logwin_size [26]), one smaller

buffer size of 0.5×BDP which, for our investigated bandwidths
and delays, yields queue sizes between both proposed sizing
rules.
AQM. In addition to these parameters, we also change the
queuing discipline between a regular drop-tail queue and (FQ-)
CoDEL [27] to investigate the impact of AQM on fairness.



D. Fairness Metric

We rate the fairness by capturing the traffic that the client
receives for each flow. To this end, the client requests a first
flow from one machine and after 5 s a second flow from another
machine. Both flows then continue to transmit data for another
40 s before shutting down. Of the overall 45 s, we investigate
35 s starting 5 s after the second flow starts its transmission.
While this methodology is above all intended to focus on the
long term fairness between the two flows, we also examine
whether it is important which flow is started first by including
experiments with a flipped starting order. We repeat each
measurement 30 times to investigate the stability of our results.

To rate the fairness between both flows, we look at the ratio
of transmitted bytes (over the same timespan of the shorter
flow) and define our fairness measure as:

fness(a, b) =

 1− bytes(a)
bytes(b) if bytes(b) ≥ bytes(a)

−1 + bytes(b)
bytes(a) if bytes(a) > bytes(b)

Intuitively, fness(A,B) maps the fairness behavior of the two
flows into the range of [-1, 1] with zero indicating absolute
fairness, -1 that Flow A absolutely dominates Flow B and a
value of 1 the opposite. In between, the measure depicts the
ratio of bytes actually transmitted, e.g., 0.5 indicates that Flow B
transmitted twice the bytes compared to Flow A.

E. Testbed Validation

To investigate if our testbed produces meaningful results, we
seek to confirm known findings about the behavior of CC with
our testbed. Due to the fact that related work considers a wide
range of parameter settings and different variations of dumbbell
topologies, we do not aim to exactly replicate specific results
of related work, but rather general findings that are similar
throughout all related work. For this, we focus on Scenario a
(testbed-only) and test whether the performance of out-of-box
CC algorithms in our pure-testbed scenario is similar to the
findings of related work as presented in Section II, especially
regarding inter- and intra-protocol fairness.

Figure 2 visualizes this measure for a configuration with
10 Mbps and a min RTT of 50 ms for BBR, Cubic, and a
Cubic when activating pacing. We show a scatterplot of all
our measured values together with a kernel density estimate to
better visualize the location of the majority of our measured
data. For each combination of algorithms, we plot the results
when flow A starts first (yellow) side by side with the switched
setting when flow B starts first (violet). For the tests where
a CC algorithm performs against itself, switching which flow
starts first only mirrors the data at the 0-axis.

Our results show expected values as all algorithms generally
show a large degree of fairness to themselves (intra-protocol
fairness) with BBR showing a bit of a larger variance compared
to the others. When comparing the inter-protocol fairness, we
observe that BBR clearly monopolizes the bandwidth regardless
of which flow starts first. This confirms related work on BBR
in low-buffer scenarios [16], [17], [19]. An additional finding
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Fig. 2: Results from Scenario a for 10 Mbps, 50 ms and a
buffer of 0.5×BDP for different CC algorithm combinations.

is that pacing seems to decrease fairness when competing with
both paced and non-paced Cubic flows.

While these experiments validate that our testbed yields
meaningful results confirming known findings, we now investi-
gate Scenario b and Scenario c to study how CPs, and thus
possibly non-standard algorithms from the Internet, perform
against our known CC algorithms and against each other.

IV. CONGESTION CONTROL IN THE WILD

We base our evaluation of TCP fairness on actual Internet
traffic by six major CPs (Akamai, Amazon, Cloudflare, Edge-
cast, Fastly, and Google) in two settings: i) lab vs. CP and ii)
CP vs. CP in February 2019. Studying actual Internet traffic is
motivated by the observation that CC research often neglects
the complex parameterization possibilities. For example in a
previous study [10], we found that CDNs use different initial
window configurations and some utilize pacing. To this end,
we suspect that not only the initial windows might be different,
thus choose two URLs for Akamai (named AkamaiA (then
using IW32) and AkamaiE (then using IW16)) mapping to
these different settings. Furthermore, Cloudflare and Google
have both publicly announced to utilize BBR. Thus, we opt to
observe the performance of actual Internet traffic originating
from these six different CPs when competing against our testbed
flows in Scenario b and against themselves in Scenario c .

We obtain URLs generating large responses (the smallest be-
ing 25 MB) served by each CP by analyzing the HTTPArchive.
Since the responses can still be too small to cover our 45 s
measurement period, we make use of HTTP/2 multiplexing, i.e.,
we request the same resource multiple times (in parallel) over
the same connection enabling us to prolong the transmission
by a multiple of the original file size. This functionality is
already provided by the h2load tool in nghttp21.

A. Lab Traffic vs. Content Provider Traffic

We start by investigating Scenario b where traffic from our
testbed machines, i.e., BBR and Cubic flows, competes with
Internet traffic and hence the algorithms employed by our CPs.
Cubic Small Buffer. Figure 3 shows the results for 10 Mbps
and a min RTT of 50 ms when using a Cubic flow. We again
use our fairness measure to plot the measurement results; here,

1https://github.com/nghttp2/nghttp2
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Fig. 3: A Cubic flow originating from our testbed competes
with the content providers for traffic using a small buffer (top)
and a large buffer (bottom).

results < 0 indicate a dominance for our testbed flow while
results > 0 favor the CP. As observed in the top plot for
measurements with a small buffer of 0.5×BDP, Cloudflare and
Google clearly dominate the traffic in all instances giving little
bandwidth to our Cubic flow (unfair setting). Apart from these
two, Amazon and Edgecast struggle against our Cubic flow
even when their flow starts first (unfairness by our testbed
flow). In contrast, Fastly—at least when having a headstart—
is able to achieve rough fairness. The two Akamai flows
offer a different behavior with AkamaiE showing the highest
degree of fairness while AkamaiA is similar to Cloudflare
and Google in that it completely dominates our testbed Cubic
flow. This observed difference in behavior of the two Akamai
flows supports our initial guess that Akamai uses different
configuration parameters.
Cubic Large Buffer. When looking at the large buffer setting
in the plot below we observe a different picture. Now, the
Cloudflare and Google flows do not dominate anymore, the
fairness heavily depends on which flow was initiated first.
Similarly for Amazon, Edgecast, and Fastly, when the testbed
initiates the first flow, they struggle to gain enough bandwidth.
In contrast, when the CP initiates the first flow, a generally
fairer distribution is achieved. For Amazon and Fastly, we
observe a bi-modal distribution of the traffic shares, one that
more closely matches the testbed-first case and another that
tends to favor the CP. What is very interesting to see is that
both Akamai flows are completely dominated by the testbed
Cubic flow, no matter which flow is started first.
BBR Small Buffer. Things start to significantly differ when we
configure our testbed flow to utilize BBR as shown in Figure 4.
As can be seen in the upper plot, showing the fairness under
a small buffer setting, the testbed BBR flow dominates the
flows of Amazon, Edgecast, and Fastly. The same is true for
AkamaiE while AkamaiA shows an interesting behavior, as part
of the experimental iterations also show the clear dominance
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Fig. 4: A BBR flow originating from our testbed competes
with the content providers for traffic using a small buffer (top)
and a large buffer (bottom).

BBR@2BDP BBR@.5BDP Cubic@2BDP Cubic@.5BDP
QSize Retrans QSize Retrans QSize Retrans Qsize Retrans

AkamaiA 43 175 14 1244 60 22 16 80
AkamaiE 42 210 13 967 59 24 12 70
Amazon 53 468 12 836 66 30 12 31
Cloudflare 40 22 13 1319 57 40 12 166
Edgecast 53 377 12 810 64 33 12 41
Fastly 53 442 11 741 65 31 12 41
Google 40 215 15 760 55 50 14 184

TABLE II: Average queue size (QSize) and retransmissions
(Retrans) of the testbed originating flows for the 10 Mbps,
50 ms scenario with the testbed flow starting first.

of the testbed flow while about half of the iterations either
show a very fair result (when the testbed is started first) or
a dominance of the Akamai flow (when Akamai is started
first). The observed characteristics hereby seem to be stable in
that the behavior seems to switch between two distinct states.
Cloudflare shows a wide range of observed fairness ratios
from dominating the testbed flow to the opposite. For Google,
however, our testbed flow always clearly loses to the CP.
BBR Large Buffer. In the large buffer scenario, the flows of
most CPs show very similar behavior in that the testbed flow
dominates the competition. The effect is hereby most visible
when the testbed flow starts first while it is slightly ameliorated
when the CP is the first flow. The degree of unfairness is
hereby similar in most cases with Cloudflare being the only
real exception as it achieves a balanced fairness level when
the CP flow is started first.
Retransmissions. In addition to only looking at the resulting
fairness, we also consider key characteristics of the bottleneck
buffer and the participating end-hosts. In this case, we observe
the queue size of the bottleneck buffer, which we measure
using a simple eBPF program on the bottleneck machine, and
the amount of retransmissions of the testbed flow, which we
also measure using an eBPF program on the corresponding
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Fig. 5: AkamaiE, Amazon, and Cloudflare competing against the other content providers in the 10 Mbps, 50 ms setting. Amazon
performs similar to Edgecast and Fastly, Cloudflare is similar to Google. Top row shows 0.5×BDP, bottom row 2×BDP.

testbed machine, i.e., Testbed1 in Figure 1. We present these
characteristics in Table II. What can be seen is that for a
testbed Cubic flow, Cloudflare and Google cause significantly
higher retransmission counts than the other CPs. What is very
interesting is that Cloudflare induces very few retransmissions
for the BBR testbed flow in the large buffer scenario but the
most retransmissions in the small buffer scenario.

Higher RTT and Higher Bandwidth. When we investigate
our other settings with larger RTTs we observe no qualitative
difference in fairness for all but AkamaiA. AkamaiA’s bimodal
fairness distribution in the 50% BDP setting shifts towards
the testbed dominating all measurements. When increasing the
bandwidth, testbed BBR flows still dominate but the fairness
focusses for Cloudflare and Google, especially for smaller
buffer sizes; the larger buffer generally leads to a larger
distribution of the fairness. Especially, Amazon, Edgecast,
and Fastly can claim slightly more bandwidth on average.
Looking at changes for testbed Cubic flows, we observe no
significant difference when competing against Cloudflare and
Google. For the others, we observe a slight trend towards more
bandwidth for the CPs. Again, AkamaiA stands out in the small
queue setting and behaves like AkamaiE when increasing the
bandwidth. We validated AkamaiA’s behavior over several days
(repeating the same 30 measurements for the different settings)
and were able to consistently observe the same changes.

Takeaway. As indicated by our results, fairness largely depends
on the available buffer size. Generally, it seems that the CC
algorithms employed by the CPs are achieving better fairness
with off-the-shelf algorithms when more buffer size is available.
However, large buffers can cause jitter and generally inflate
the latency. Yet in small buffer settings, BBR currently claims
nearly all bandwidth and shows a large variability in fairness
and performance when competing with other BBR flows causing
unpredictable performance.

While it might seem advantageous at first glance that
algorithms like BBR claim more bandwidth, it could actually
be bad for CPs. In the web, CPs often compete with 3rd party
resources loaded on the same website. When the CP claims
all bandwidth, it may negatively affect the web page loading
behavior since they could cause reduced performance for the
competing flows of the other resources. Thus, CPs should
interact fair with their competitors which is the focus of the
next part of our study, i.e., how two CP flows interact.

B. Content Provider vs. Content Provider

For investigating the interaction between the different CPs,
we now deploy Scenario c where both flows are requested
from the CPs. The rest of the testbed configurations remain
unchanged. Figure 5 shows the results for AkamaiE, Amazon,
and Cloudflare flows competing against the other CPs in a
scenario with 10 Mbps, a min RTT of 50 ms and a small (top)
or large (bottom) buffer size. Due to the similarity of the results,
Amazon also serves as a representative for Edgecast and Fastly,
while Cloudflare also represents Google. Once more using
our fairness measure, results < 0 indicate a dominance of the
explicitly mentioned CP while results > 0 favor the competing
CP mentioned on the x-axis.
Small Buffers. Starting with the upper row, i.e., with the small
buffer scenario, we rarely observe cases where the CPs achieve
a good level of fairness. Especially Cloudflare (right) seems to
dominate most of the other CPs with the only exception being
when it is forced to compete with Google and AkamaiA. In the
former case, Google generally dominates Cloudflare when it
starts first while we observe large range fairness results when
Cloudflare is the first flow. The most interesting observation
can be made for AkamaiA as the bi-modal behavior observed
before is again visible when it is started first and forced to
compete with Cloudflare. Here, roughly half of the results
indicate significant domination by AkamaiA.
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Fig. 6: AkamaiE, Amazon, and Cloudflare competing against the other content providers in the 10 Mbps, 50 ms, 2× BDP setting
using CoDel (top) and FQ_CoDel (bottom). Amazon performs similar to Edgecast and Fastly, Cloudlfare is similar to Google.

For the scenarios where we focus on AkamaiE (left)
and Amazon (middle), it is obvious that they are massively
dominated by Cloudflare and Google. The same holds when
they compete against a first flow originating from AkamaiA,
while the behavior is much fairer when the AkamaiA flow
is started second. When interacting, Amazon, Edgecast, and
Fastly show a rather high degree of fairness. When AkamaiE
competes against Edgecast and Fastly, a large range of observed
fairness values can be seen, ranging from medium dominance
of Edgecast and Fastly to total domination of AkamaiE. The
latter, i.e., total domination of AkamaiE, is above all visible
when competing against Amazon.

Large Buffers. Things again change when we focus on the
bottom row using a larger buffer. Regarding Cloudflare (right),
we observe that the strict dominance is less profound than
in the small buffer scenario yet still favoring it. When the
Cloudflare flow starts first, there is a higher degree of fairness
when competing against Amazon, Edgecast, and Fastly, yet they
struggle when Cloudflare’s flow starts first. However, Cloudflare
does not seem to cooperate well with the two Akamai flows
or Google, as it dominates them in all these scenarios.

A generally decent amount of fairness can be observed
in several scenarios involving Amazon (middle). Especially
when competing against Cloudflare, Edgecast, and Google,
high fairness levels are achieved. In contrast to that, we can
again see very poor fairness for the Akamai flows if they are
started first, while we observe a large range of values when
they compete against an Amazon flow starting first. When the
AkamaiE flow is the first contester (left), it is dominated by the
other CPs while it seems to be able to better claim bandwidth
when it enters as the second flow.

Takeaway. As observed earlier, larger buffers seem to enable
a better level of fairness even though they are still far
from being equal in most cases. This is especially true for

Cloudflare/Google which dominate most of the other CPs in
the small buffer scenario while there are reasonable fairness
values for most CPs in the large buffer setting.

Even though a higher level of fairness can be noted for
the large buffer, it comes with the problem of larger queue
sizes and hence also with increased delays. Ideally, we would
have a scenario with a smaller queue but still the high level of
fairness. As AQMs like CoDel are designed to keep the delay
(and hence the queue) small, we are interested in whether they
can help to achieve the desired combination of small delays
and high level of fairness. This is why we investigate the effect
of AQMs on the whole situation in the following section.

C. Can CoDel Improve Fairness?

AQMs inherently change the behavior of a queue which is
why they have a significant impact on the overall performance.
Generally, they have two possible forms of feedback to which
flows might respond: i) dropping packets and ii) using ECN.
In our work, we only consider the first case of feedback, i.e.,
packet drops because it requires no end-to-end support. For
this, we repeat the experiments from before but activate CoDel
and its flow-queuing variant FQ_CoDel on the intermediate
bottleneck machine. In the following, we further concentrate
on the case with a queue size of 2×BDP because CoDel’s
effect on small queues is likely to be diminishing. Hence,
Figure 6 only shows the results for a queue size of 2×BDP in
the otherwise unchanged scenarios previously used in Figure 5,
i.e., for 10 Mbps and a min RTT of 50 ms. We again choose
AkamaiE, Amazon, and Cloudflare as the showcase CPs.
CoDel. The main observation that can be made is that
CoDel (top) seems to achieve a very high level of fairness
when Amazon competes with Edgecast and Fastly and when
Cloudflare competes with Google. Apart from that, there
are above all very bad fairness values when other CPs are



competing against Amazon or Cloudflare with tendencies
looking like the small buffered scenario with a FIFO queue.

For the AkamaiE flow, the application of CoDel comes in
hand with a clear domination of Akamai when competing
against Amazon, Edgecast, and Fastly. What is more, when it
is started first, Akamai also dominates Cloudflare and Google,
while there are again two regions of values when Cloudflare
and Google are started first; one where Akamai dominates and
one where the other two dominate. Finally, when looking at
the performance against AkamaiA, the two-regional effect is
again visible and now for both cases. AkamaiE starting first is
hereby characterized by a dominance of AkamaiE half of the
time and a fair behavior the other half, while this is the exact
opposite if AkamaiA is started first.
FQ_CoDel. Shifting towards the flow-queuing variant (bottom),
which is designed to produce a fair queuing, we observe a
tremendous increase in fairness. Now, throughout all mea-
surements, fairness is close to the equilibrium and we only
observe slight variations. When looking at AkamaiE we see the
largest variation relative to the others with AkamaiE slightly
dominating most of the others. Looking at Amazon, we see
a slight advantage that diminishes for Edgecast and Fastly. In
the Cloudflare case, Amazon, Edgecast and Fastly get slightly
less bandwidth while Google is very fair and the Akamai’s
again showing a slight bimodal pattern.
Takeaway. Combining the findings of this section with our
previous observations that Amazon, Edgecast, and Fastly use a
similar algorithm and that Cloudflare and Google use BBR, it
can be said that CoDel above all seems to improve the intra-
protocol fairness in large buffers. This is bad news for the
heterogeneous Internet, as scenarios with different algorithms
suffer from severe unfairness. Luckily, the flow-queuing variant
enables a large degree of fairness even in heterogeneous
settings. Thus, it seems to again stand that the technologies to
enable a fair and performant Internet are available and only
need to be deployed at the bottlenecks.

V. CONCLUSION

In this work, we empirically investigated the fairness of
content providers in the Internet. With the help of our testbed,
we are able to investigate actual Internet traffic subject to RTT-
fairness when competing under lab-controlled properties of a
bottleneck. Generally, we find there is only limited fairness
in the Internet today. Some content providers interact well
with each other, while others do not which is likely reflected
in their choice of congestion control algorithm. We find that
the bottleneck buffer size significantly impacts the fairness
enabling it to invert observations when going from small
to large. This demands research to shine a light on actual
configurations of bottleneck buffer sizes in the Internet to then
investigate, e.g., the impact on web performance when content
is served from a diverse set of content providers. Still, there
is a silver lining: State-of-the-art AQMs such as FQ_CoDel
put the fairness control back into the network operator’s and
possibly the end-user’s hand, however, require deployment on
millions of devices.
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