
1

Congestion Control in the Wild - Investigating
Content Provider Fairness

Ike Kunze1, Jan Rüth1, Oliver Hohlfeld2

1RWTH Aachen University, 2Brandenburg University of Technology
{kunze, rueth}@comsys.rwth-aachen.de, hohlfeld@b-tu.de

This is the author’s version. The original version appeared in IEEE Transactions on Network and Service Management, https://doi.org/10.1109/TNSM.2019.29
62607

Abstract—Congestion control (CC) is an indispensable com-
ponent of transport protocols to prevent congestion collapse
as it distributes the available bandwidth among all competing
flows, ideally in a fair manner. It thus has a large impact on
performance and there exists a constantly evolving set of CC
algorithms, each addressing different performance needs. While
the algorithms are commonly tested regarding the problems
underlying their implementation, the interaction with existing
algorithms is often not considered. Additionally considering the
fact that content providers (CPs) such as content distribution
networks (CDNs) are known to tune TCP stacks for performance
gains, the large assortment of algorithms opens the door for cus-
tom parametrization and potentially unfair bandwidth sharing.

In this paper, we thus empirically investigate if current Internet
traffic generated by CPs still adheres to the conventional under-
standing of fairness. For this, we compare fairness properties
of testbed hosts to actual traffic of six major CPs subject to
different queue sizes and queueing disciplines in a home-user
setting. Additionally, we investigate how mice and elephant flows
from the different CPs interact. We find that some employed
CC algorithms lead to significantly asymmetric bandwidth shares
and very poor flow completion times for mice flows. Fortunately,
AQMs such as FQ_CoDel are able to alleviate such unfairness.

Index Terms—TCP congestion control, Measurements, Content
distribution networks, BBR, BBR2, Cubic

I. INTRODUCTION

The Internet has grown way beyond its original purpose of
being a research network. Today, thousands of autonomous
systems connect and exchange data. The fundamental principles
governing this data exchange are well established since decades
and defined in IETF RFCs. To this end, the current best-effort
Internet relies on CC to i) not collapse the network, and to
ii) achieve fairness for flows competing for bandwidth at a
bottleneck. For TCP, RFC 5681 [1] requires the implementation
of slow start, congestion avoidance, fast retransmit, and fast
recovery (generally known as TCP Reno). Other algorithms
improve on certain aspects of Reno, e.g., to enable higher per-
formance over large bandwidth-delay product (BDP) networks.
Usually, when a new or modified CC algorithm is proposed,
it is rated in terms of TCP fairness when competing with
Reno or Cubic as Linux’s default CC algorithm. While fairness
is generally a hard to define property for Internet flows and
flow-rate fairness is a controversial metric [2], it is still widely
used. In 2005, Medina et al. [3] showed that most Internet
flows halve their congestion window on loss and are thus TCP
conform, leading to an expected flow-rate fairness [4].

Since then, the Internet landscape has drastically changed,
end-users use the Internet with increasing access speeds [5]

and content such as videos is causing a substantial fraction of
Internet traffic [6], [7]. These increasing demands have led to
a logical centralization of the content-serving Internet where
a few big players serve the majority of the content [8], [9].
In previous work [10], we have shown that CDNs specialize
in serving such content by tuning their TCP stacks beyond
RFC-recommended values in hope for higher performance and
user satisfaction. Fundamentally, such observations raise the
question of fairness, and in fact, from an economic standpoint
being unfair to a competing CP might be advantageous (e.g.,
by being able to deliver data with more than a fair bandwidth
share). While identifying a CP’s CC algorithm (e.g., via [11])
helps in understanding its principal behavior, these works do not
take into account the actual parameterization of the algorithms
which have the potential of drastically changing the fairness.
Transport protocol evolution with QUIC has the potential to
further lower the hurdle for modification in the future, given
its realization in userspace for flexible customization.

In light of these historical changes, we have already started
to investigate the interaction of large CPs regarding fairness
in our previous work [12]. More precisely, we shed light on
current practices and evaluate if actual Internet traffic adheres
to the conventional understanding of fairness. To this end,
we devise a methodology that enables us to compare testbed
results with Internet traffic. This work extends our previous
investigations and provides the following contributions:
• We present a testbed methodology using RTT-fairness to

study actual TCP traffic by major CPs to account for a broad
set of TCP optimizations used in practice.

• We repeat and extend our previous work [12] by extensive
measurements from July to September 2019.

• We compare fairness properties of testbed hosts to actual
traffic by six major CPs subject to different RTTs, queue
sizes, and queueing disciplines in a home-user setting.

• We provide a fairness evaluation of BBRv2.
• We also evaluate the performance of the CPs in a mouse vs.

elephant scenario.
• We finally show that AQMs like CoDel and FQ_CoDel can

improve fairness as well as flow completion times.
Structure. We first discuss flow-rate fairness and its importance
for the Internet in Sec. II and present related work in Sec. III.
We then introduce our testbed methodology in Sec. IV and
validate it in Sec. V. After that we describe how we investigate
CPs in the Internet in Sec. VI before discussing the results of
our fairness study in semi-controlled settings (Sec. VII) and in
the Internet (Sec. VIII). Finally, we conclude the paper.

2

II. BACKGROUND

One of the key challenges in the Internet is the decentralized
resource allocation of bandwidth. However, TCP’s initial design
only prevented overloading single end-points and did not
consider the possibility that the network itself could become
overloaded and collapse upon this congestion. As centralized
algorithms are not deployable in the Internet, decentralized CC
was soon added to TCP’s design. However, it quickly showed
that there are scenarios where the early CC often yields less than
optimal performance which has led to a plethora of research
for evolved and optimized algorithms. With more and more
algorithms, questions about their bandwidth sharing arose, and
hence, research has been investigating the fairness of CC.
Different Notions of Fairness. Most fairness investigations
base on flow-rate fairness with well-studied measures being the
intra-protocol fairness, i.e., how do two instances of the same
algorithm share the available bandwidth, the RTT-fairness, i.e.,
what happens if they have different RTTs, and the inter-protocol
fairness, where two different algorithms are investigated. While
there is a consensus in that intra- and inter-protocol fairness
should be defined such that a high level of fairness is achieved
if both flows get the same amount of bandwidth if they have
the same RTTs (refered to as same-RTT fairness in the rest
of this paper), there is a long-lasting debate regarding RTT-
fairness [13]. On the one hand, people argue that all flows
should have an equal share of bandwidth even if their RTTs
are different. Consequently, they identify significant levels of
RTT-unfairness in current CC algorithms. On the other hand,
people argue that flows with different RTTs should also have
different bandwidth shares as flows with high RTTs occupy
more resources within the network, and hence, should only get
a smaller share of the bandwidth at all intermediate hops. A
recent proposal [14] advocates the study of harm rather than
bandwidth equality when comparing CC algorithms.
RTT-fairness in Practice. Most loss-based CCs have an
inverse-proportional RTT behavior, i.e., flows with a shorter
RTT get a larger share of the bandwidth, corresponding to the
argument mentioned above of a larger resource claim within the
network. Some CC algorithms go in the opposite direction and
opt for a proportional RTT behavior, i.e., flows with a larger
RTT get a larger share of the bandwidth, which is particularly
visible in BBRv1. This behavior boils down to the optimal
operation point of TCP (which each CC targets), given by the
BDP, BDP = RTT · C with physical round-trip time (RTT)
and link bandwidth (C), and thus, directly depends on the
RTT [15]. As BBRv1 flows try to estimate the BDP, flows
with larger RTTs will naturally arrive at higher bandwidth
estimates and thus outperform flows with smaller RTTs. Which
of both behaviors is more desirable is out of scope of this work,
we just remark that both are present in today’s algorithms.
BBRv2. In 2019, BBRv1’s successor BBRv2 was pre-
sented [16], [17] but its fairness properties are not yet
known or at least not yet reported. BBRv2 incorporates a
mechanism to react to packet loss and Data Center TCP-style
Explicit Congestion Notification (ECN), setting it apart from
its predecessor. The general state machine of BBRv2 is similar
to the original BBRv1, i.e., after the startup and subsequent

drain phases, cyclic ProbeBW and ProbeRTT phases are used
to estimate the true BDP. The packet loss and ECN detections
are used as additional signifiers during the different phases.
Using an explicit loss rate target, BBRv2, e.g., leaves the initial
startup phase (slow start) if the marking or loss rate exceeds a
target threshold. There are further changes in v2, like measuring
an aggregation level (e.g., ACK compression), a maximum in-
flight estimation on long and short time-scales using loss or
markings, and less throughput variation during ProbeRTT. All
these features, should lead to a better coexistence with Reno
and Cubic flows according to the authors.
Some Thoughts on Fairness. While the bandwidth is a general
property of the bottleneck, the RTT is a highly volatile flow-
specific property which means that it naturally has to have an
impact on the achievable bandwidth share. It is thus difficult
to judge to what extent TCP variants should be fair. One could
argue that it is perfectly fine to tune a TCP implementation
to work better under various transient conditions as long as
it is fair under a reasonably good condition. Another view
on fairness does not regard the bandwidth but the congestion
that the algorithms cause. Thus, one could argue that the RTT
variation and losses should be minimized for competing flows.
Fairness becomes an even tougher notion when we regard short
flows that compete with bulk flows. Due to TCP’s probing,
many short flows never leave slow start, and thus, comparing
bandwidths is insufficient. Here it might simply be enough to
judge how fast the short flow can finish, when it is forced to
leave slow start, or how the bulk flow reduces its rate.

In the following, we discuss how related work has up to
now investigated fairness in CC and in the Internet.

III. RELATED WORK

Well-studied measures are the intra-protocol flow-rate fair-
ness, i.e., how well do two instances of the same algorithm share
the available bandwidth, the RTT-fairness, i.e., what happens if
the flows have different RTTs, and the inter-protocol fairness,
where two different algorithms are investigated.
Intra-Protocol and RTT-Fairness. For Cubic, research has
commonly found decent intra-protocol fairness and an inverse-
proportional RTT-fairness, meaning that instances with smaller
RTTs get a larger share of the overall bandwidth. These findings
have been confirmed for a large set of different network
characteristics, ranging from small (10 Mbps, e.g., [18]) to large
bottleneck bandwidths (10 Gbps, e.g., [19]) or short (16 ms,
e.g., [20], [21]) to long (324 ms, e.g., [20], [21]) RTTs.

For BBRv1, less research exists and the available studies
partly disagree on the properties of BBRv1. This is especially
true for intra-protocol fairness, as Cardwell et al. [22] claim a
high degree of fairness across the board, while Hock et al. [23]
identify scenarios where the fairness is significantly impaired.
Regarding RTT-fairness, it is commonly found that BBRv1 has
a proportional RTT-fairness property, i.e., a flow with a larger
RTT gets a larger share of the available bandwidth [22], [24],
[25]. Hock et al. [23] generally confirm the findings but by
investigating two different bottleneck queue sizes, they find
that in scenarios with a smaller queue size (0.8× BDP) flows
with a smaller RTT have a slight advantage, while in large

3

buffer scenarios (8×BDP) the inverse is true and flows with
larger RTTs have a significant advantage.
Inter-Protocol Fairness. While the intra-protocol and RTT-
fairness of CC is important for a large scale-out of the
algorithms, the inter-protocol fairness property shines a light
on the coexisting use of different CC algorithms in the
Internet. Unfortunately, several groups of researchers have
found that BBRv1 and Cubic do not cooperate well, as Cubic
flows dominate BBRv1 flows in scenarios with larger buffers
(generally above 1×BDP) while the opposite is true for small
buffer scenarios [22], [23], [25].

While many studies investigate how certain algorithms affect
each other, there is missing up to date research on which are
actually used in the Internet. Moreover, many studies neglect
the parameterization and tuning potential of these algorithms
that are used in practice. To address this, this study explores
if actual Internet traffic of large content providers—which
carry the bulk of today’s Internet traffic—still adheres to the
conventional understanding of TCP fairness.

IV. METHODOLOGY

CC research traditionally involves simulation or testbed
studies, which give researchers complete control over the
investigated scenarios. While this is desirable for controlled
experiments, the involved abstractions and assumptions do not
allow to completely cover real-world settings. For example,
the employed algorithms and their parameterization in real-
world systems are typically unknown. To study CC fairness in
practice, we, therefore, contact real-world Internet systems with
a testbed setup. This enables us to still control some parameters
(e.g., bottleneck bandwidth and delay) while studying the CC
algorithms as run by real systems. This way we can study
if Internet traffic by CPs still adheres to the conventional
understanding of TCP flow-rate fairness.

A. Home User (Residential Access) Scenarios

The fundamental design choice of our study is to investigate
fairness from the perspective of an end-user accessing the
Internet from home. Even though peering links have been
identified as possible points of congestion [26], it is still
widely believed that access links form the bottlenecks and thus
congestion happens at the network edges, more specifically
at the end-user’s access link [27]. We model this scenario in
the form of a simple dumbbell topology which we illustrate
in Fig. 1. The user—represented by the client—is connected
to the testbed network via a dedicated machine serving as
a configurable bottleneck (via Linux’s traffic control (TC)
subsystem). In general, the client can request traffic from all
kinds of sources, from within the testbed and from Internet
sources. For our study, we focus on three distinct scenarios.

In Scenario a (testbed only), we investigate the out-of-box
performance of CC by simultaneously requesting traffic from
two testbed machines. This, above all, establishes a baseline and
identifies potential influencing factors on the overall interaction
of CC. Building upon this baseline, Scenario b (testbed &
Internet) then replaces one of the two testbed flows with a
flow originating from the Internet. Thus, we compare how

Testbed2

Testbed1

CP1

Switch

CP2

a

b

c

Client Bottleneck
1

2

Fig. 1: Testbed topology. Scenario a (testbed-only), Sce-
nario b (testbed & Internet), Scenario c (Internet-only).
Ethernet 1 and Wifi 2 bottleneck connections.

the Internet flows interact with the out-of-box CC algorithms.
Finally, Scenario c (Internet-only) considers the case where
both flows originate from the Internet to investigate how and
whether their interactions differ from the previous scenarios.

The common goal of all three scenarios is to judge the
bandwidth sharing behavior of different CC algorithms in
different network settings for which we consider four network
characteristics. The bottleneck bandwidth and the overall RTT
hereby give hard upper bounds (in terms of available data rate)
and lower bounds (in terms of responsiveness) on the overall
performance, while the bottleneck queue, characterized by its
queue size and queuing discipline, introduces jitter, and loss.

B. Testbed Setup

The core of our testbed consists of one machine that
represents the end-user and hence serves as the client through-
out the scenarios and another machine which represents the
user’s access link and hence the bottleneck of the overall
connections. The latter is then used to model all connection-
specific properties like delay or bandwidth. For the scenarios
where we create flows from within our network, we deploy one
machine for each flow that is involved and configure server-
side parameters like the deployed CC algorithm on them. All
machines within the testbed use a Linux 5.2 kernel modified
by Google to support BBRv2 [28] and they are interconnected
via Gigabit Ethernet (1 in Fig. 1) to ensure that the physical
links never become a bottleneck. To account for the common
setting that end users access the Internet via a WiFi connection
to their router, we can additionally select a wireless 802.11n
link between client and bottleneck (2 in Fig. 1).
Limiting Bandwidth. Most configurations, like rate-limiting,
are done on the bottleneck’s egress queues. Here, we configure
the bandwidth and queue using a token bucket filter with a burst
size of a single frame while using different queuing techniques.
Even though Internet access links are often asymmetrical, we
disregard this fact as we are not interested in reverse-path
congestion and use the same bandwidth in both directions.
Ensuring Same-RTT Scenario. To reason about the main
question of this work, i.e., the bandwidth sharing properties of
Internet flows, we generally employ the same-RTT setting in
which intra- and inter-protocol fairness dictate that two flows
should share the bandwidth equally if they have the same RTT
(see Sec. II). We add delay to our testbed by using TC to
perform ingress packet processing at our bottleneck. There, we
redirect traffic to an intermediate queue disc enabling us to

4

Setting Parameter Space

Bandwidth 10 Mbps
RTT 50 ms, real
Buffer sizes 0.5 × BDP, 2 × BDP
Queueing discipline drop-tail, CoDel, FQ_CoDel

TABLE I: The study parameter space.

use NetEm to add a delay before we release the packet for
forwarding to the actual egress queue. We do not configure any
artificial jitter using NetEm as this causes packet reordering;
the additional delay and jitter are thus only caused by the
egress queue. To have symmetric delays, we add half of the
configured delay to each ingress of the bottleneck. While care
needs to be taken in sizing the NetEm queue to not cause
artificial packet loss, this approach has the advantage that the
end-host stacks are not involved in the delay which is known to
badly interfere with CC when Linux detects queuing pressure
(TCP small queues) [29]. Further, in Scenarios b and c
we even have no control over all end-hosts. To ensure that
we can investigate the same-RTT fairness, we set different
delays for each flow to harmonize their RTTs. To this end, we
measure the minimum RTT through our testbed (using TCP
pings) when not using any artificial delays for each flow. We
then use each flow’s min RTT to configure delays such that
all flows experience the same artificial min RTT. Note that our
measurements in Sec. VIII-B are an exception to this as we
study the CPs’ behavior using their real RTTs.
Limitations. Our testbed has several limitations that need
consideration. We must ensure that our traffic shaper is the
actual bottleneck of the path from the CP to our client.
Since we do not have full control over all involved entities,
we can only configure bandwidths that are sane given our
interconnection. Our testbed uses Gigabit Ethernet, our Institute
is then connected via 10 Gbps to our University’s backbone,
which in turn connects to the German research network
(DFN) via 40 Gbps which then peers at DE-CIX with all CPs
investigated in this study. Thus, shaping traffic for typical end-
user access links should render the bottleneck to our traffic
shaper. Further, we need to artificially bump up the RTTs at
least to the largest minimum RTT measured. For us, the CPs
typically show RTTs around 5 ms to 20 ms.

Additionally, to ensure repeatability and independence, we
take several precautions to avoid undesired side-effects. First,
to investigate the interaction of CC, we must be actually limited
by the congestion window which is why we advertise an initial
flow-control receive window of 200 segments. In the same
way, we ensure that send and receive buffers are large enough
to fully utilize the available bandwidth and do not introduce
an undesired new bottleneck. Finally, we clear all TCP caches
after each measurement to ensure that cached metrics such as
ssthresh do not affect future measurements (testbed only).

C. Parameter Space

Selecting reasonable parameters for our testbed is chal-
lenging. We must adhere to the testbed’s limitations while
seeking to replicate a reasonable end-user environment. Table I
summarizes the parameter space which we discuss next.

Bandwidth. To ensure that the bottleneck is within our testbed,
we have to set the bottleneck link bandwidth accordingly. For
this, we perform a number of bandwidth tests to determine
which data rates are reliably offered by the individual CPs and
find the lowest data rates to be around 60 Mbps. We choose
10 Mbps as a lower bound to represent a low-end connection.
RTTs. We choose 50 ms as the lower bound for the minimum
RTT even though we expect typical CPs to usually have much
lower RTTs to their customers. However, these increased RTTs
make it possible to reduce the relative error when we pad up the
RTTs to ensure the same level of delay between connections.
Additionally, we perform one experimental series where we
use the real RTTs to the CPs. In our previous work, we also
investigate the performance for bandwidths of 50 Mbps and
RTTs of 100 ms, but find qualitatively similar results [12].
Buffer Sizes. For the bottleneck buffer, we experiment with
different queue sizes since we know of no study that investigates
typical last-mile buffer sizes. While the potential for overly
large buffers (bufferbloat) is known [30], less than 1% of the
end-user flows were observed to experience RTT variations
larger than 1 sec by a major CDN [31]. Therefore, we choose
one overly large buffer in the order of 2×BDP and, inspired by
research advocating new buffer sizing rules (

√
=D<_ 5 ;>FB [32]

and logF8=_B8I4 [33]), one smaller buffer size of 0.5×BDP
which, for our investigated bandwidths and delays, yields queue
sizes between both proposed sizing rules.
AQM. In addition to these parameters, we also change the
queuing discipline between a regular drop-tail queue and (FQ-)
CoDel [34] to investigate the impact of AQM on fairness.

D. Capturing Traffic (And Measuring Retransmissions)

We rate the fairness by capturing the traffic that the client
receives for each flow and observe the queue size of the
bottleneck buffer by using a simple eBPF program on the
bottleneck machine. Additionally, we monitor the number
of retransmissions of the different flows using two distinct
mechanisms. For the flows generated in the testbed, we use an
eBPF program on the corresponding testbed machine which
directly yields the retransmission counts as reported by the TCP
stack. As this approach is not possible for traffic originating
from CPs, we deploy tcptrace [35] as an additional tool to
derive approximate retransmission counts from our general
traffic captures. More specifically, we use packets classified
as out of order as a reasonable approximation for the actual
retransmission counts. This is suitable in our special scenario,
because apart from the retransmissions we do not expect any
packet reordering as we have a close connection to the IXP and
as the CPs themselves will not induce packet reordering. Still,
using out of order packets as an indicator for retransmissions
comes with the disadvantage that tail loss, i.e., packet loss
that occurs at the end of traffic bursts cannot be detected
because the corresponding retransmissions will look like normal
transmissions at the beginning of the next traffic burst in our
captures and thus tcptrace will not detect them.

E. Traffic Scenarios

We distinguish between two different traffic scenarios.

5

Long Flow Scenario. In the first scenario (identical to our
previous work), the client requests a flow from one machine
and after 5 s a second flow from another machine. Both flows
then continue to transmit data for another 40 s before shutting
down. Of the overall 45 s, we investigate 35 s starting 5 s after
the second flow entered. While this methodology is intended
to focus on the long term fairness between the two flows, we
also examine whether it is important which flow is started first
by including experiments with a flipped starting order.
Short Flow Scenario. Our second scenario is motivated by
the fact that a significant portion of Internet traffic is relatively
short Web traffic which is often forced to compete with bulk
transfers similar to those in the first scenario. We project this
observation into our testbed in that the client first requests a
bulk transfer from one machine (similar to the first scenario)
and after 5 s a second (short) flow from another machine which
transmits 2.5 Mbyte of data. We then analyze the complete
transmission period of the second, i.e., shorter, flow as we are
particularly interested in how well the short flow can claim
bandwidth and in how well the bulk flow releases bandwidth.

In both scenarios, we repeat each measurement 30 times to
investigate the stability of our results.

F. Fairness and Performance Metrics

We employ different fairness and performance metrics to
judge the behavior of the flows in the two traffic scenarios.
To rate the fairness, we look at the ratio of transmitted bytes
(over the same timespan of the shorter flow) and define our
fairness measure as:

5 =4BB(0, 1) =

1 − 1HC4B (0)
1HC4B (1) if bytes(b) ≥ bytes(a)

−1 + 1HC4B (1)
1HC4B (0) if bytes(a) > bytes(b)

Intuitively, fness(A,B) maps the fairness behavior of the two
flows into the range of [-1, 1] with zero indicating absolute
fairness, -1 that Flow A absolutely dominates Flow B and a
value of 1 the opposite. In between, the measure depicts the
ratio of bytes actually transmitted, e.g., 0.5 indicates that Flow B
transmitted twice the bytes compared to Flow A.

While this ratio-based metric is well-suited for our long flow
scenario, we refrain from applying it to the short vs. bulk flow
scenario, because there the short flow will probably never get
to the fair share of the bottleneck as its transmission volume
is simply too small. Instead, we use the flow completion time
(FCT) of the short flow to judge the bandwidth acquisition and
release mechanisms of both the short and bulk flow. For this,
we measure the time needed by the short flow to complete its
transmission, starting with the first received fragment after the
initial handshake and ending with the last transmitted byte of
payload before the connection is terminated.

V. CC IN CONTROLLED ENVIRONMENTS

We perform the first part of our measurement campaign in
Scenario a (testbed-only). We thereby seek to validate that
our testbed produces meaningful results by testing whether
the performance of out-of-box CC algorithms in our testbed
is similar to the findings of related work (cf. Sec. III). As

A:BBRv1
B:BBRv1

A:BBRv1
B:Cubic

A:Cubic
B:Cubic

A:BBRv1
B:BBRv2

A:Cubic
B:BBRv2

A:BBRv2
B:BBRv2

Flows

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
A,
B)

QDisc=Drop-TailRTT=50ms
BW=10Mbit

Fl
ow

B
do

m
in
at
es

Fl
ow

A
do

m
in
at
es

Flow A first
Flow B first

Fig. 2: Results from Scenario a for different CC algorithm
combinations (BW: 10 Mbps, RTT: 50 ms, Buffer: 0.5×BDP).

related work considers a wide range of parameter settings and
variations of dumbbell topologies, their exact replication is
beyond the scope of our testbed validation. Further, we use our
local setting to present a study of BBRv2 fairness (Sec. V-B).
Last, we investigate the impact of a wireless connection to
the users’ bottleneck (with potentially higher error rates) on
fairness (Sec. V-C).

A. Testbed Validation

We validate our testbed in a setting with 10 Mbps, a min
RTT of 50 ms, and a buffer of 0.5×BDP with BBRv1 and
Cubic testbed flows. The left side of Fig. 2 visualizes our
corresponding fness metric in the form of a scatterplot. We
show all of our measured values together with a kernel density
estimate to better visualize the location of the majority of our
measured data. For each combination of algorithms, we plot
the results when flow A starts first (yellow) side by side with
the switched setting when flow B starts first (violet). When
a CC algorithm performs against itself, switching which flow
starts first consequently only mirrors the data at the 0-axis.

For Cubic, our results show expected values as it shows
a large degree of fairness to itself (intra-protocol fairness).
BBRv1 is also fair in most cases, although there are also very
unfair situations where the flow that is started first dominates
the other. This behavior is not visible in our previous work [12]
where we find BBRv1 to have a significantly higher level
of fairness although the high variance is also present. When
comparing the inter-protocol fairness, we observe that BBRv1
clearly monopolizes the bandwidth regardless of which flow
starts first. This confirms related work on BBRv1 in low-buffer
scenarios [22], [23], [25]. These experiments hence validate that
our testbed yields meaningful results, because they confirm
various known findings which encourages us to employ it
for real Internet flows. Before we discuss these settings in
more detail, we first use our local setting to present an early
evaluation of BBRv2 and examine if a WiFi connection to the
bottleneck has a noticeable impact on fairness for the user.

B. BBRv2

The measurement results for BBRv2 are shown on the
right side of Fig. 2 and allow us to make three interesting
observations. First, BBRv2 has the lowest level of intra-
protocol fairness of the three investigated CC algorithms.
Second, BBRv2 is dominated by the BBRv1 flow. Third,

6

BBRv1 BBRv2 Cubic

QSize Retransm. QSize Retransm. QSize Retransm.
1st 2nd 1st 2nd 1st 2nd

2n
d

flo
w BBRv1 76% 1966 1414 65% 993 254 60% 860 195

BBRv2 70% 497 1085 60% 197 80 55% 190 73
Cubic 63% 217 745 57% 122 102 61% 100 50

TABLE II: Avg. queue size (QSize) and avg. retransmissions
of first (1st, column) and second (2nd, row) flow for different
CC combinations where the second flow joins a running first
flow (BW: 10 Mbps, RTT: 50 ms, Buffer: 0.5×BDP).

BBRv2 achieves the highest level of fairness when competing
against Cubic. We suspect that the latter two observations stem
from the fact that BBRv2, in contrast to BBRv1, incorporates
features of a loss-based CC algorithm.

To better judge the impact of CC on the overall network,
we further consider key characteristics of the bottleneck buffer
and the participating end-hosts by observing the queue size of
the bottleneck buffer and the number of retransmissions of the
two flows. In this scenario, we use our eBPF-based utility to
measure the retransmissions as we have full control over all end
hosts. Table II shows these characteristics averaged over the
30 measurements. As can be seen, BBRv1 induces the highest
number of retransmissions of all investigated CC algorithms,
especially against itself. This is caused by BBRv1 slightly
overestimating the BDP for performance reasons which causes
a small standing queue and, in the small buffer scenario, already
suffices to cause packet loss [36]. BBRv2 is able to drastically
reduce the number of retransmissions, which we attribute to its
loss-based features, while Cubic as a pure loss-based algorithm
causes the fewest retransmissions.

Due to our special setting, the loss can be solely attributed
to congestion on the bottleneck link. In reality, however, a
significant portion of end-users accesses the Internet using
mobile devices like smartphones or laptops and the wireless
communication medium as such typically comes with higher
error rates. To rule out that transmission errors on the
MAC layer have an impact on the overall performance, we
additionally investigate if the use of a wireless connection to
the bottleneck influences the performance from the end-users
perspective in an office environment.

C. The Effect of WiFi on Fairness

For the investigation of the wireless link, we deploy Sce-
nario 2 in Fig. 1 switching to an 802.11n WiFi link while
leaving the rest of the parameterization as is, i.e., traffic is still
shaped but is subsequently affected by the Layer 2 medium
access and retransmissions of the wireless link.

Fig. 3 compares our earlier measurement (Fig. 2) for Ethernet
connections with those in the WiFi setting. As can be seen,
the effect of WiFi medium access on fairness is negligible
in our investigated setting as we observe almost the same
result distribution as in the wired setting. This confirms the
general intuition that the bottleneck is the defining property
of the overall connection. Additional iterations of our later
experiments also in the WiFi setting generally produce similar
results in that the WiFi connection does not seem to have a
significant effect on the fairness.

A:BBRv1
B:BBRv1

A:BBRv1
B:Cubic

A:Cubic
B:Cubic

A:BBRv1
B:BBRv2

A:Cubic
B:BBRv2

A:BBRv2
B:BBRv2

Flows

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
A,
B)

QDisc=Drop-TailRTT=50ms
BW=10Mbit

Fl
ow

B
do

m
in
at
es

Fl
ow

A
do

m
in
at
es

Flow A first
Flow B first

Fig. 3: Results from Scenario a for different CC algorithm
combinations using a WiFi connection to the bottleneck
(BW: 10 Mbps, RTT: 50 ms, Buffer: 0.5×BDP).

Takeaway. By confirming known findings, namely a high intra-
protocol fairness for Cubic and a low inter-protocol fairness
of Cubic and BBRv1, we first validate that our testbed yields
meaningful results. We further find that the loss-based features
of BBRv2 improve BBRv1’s inter-protocol fairness with Cubic
and additionally reduce the number of retransmissions as well
as the queue size caused by BBRv1 in small buffer settings.
Finally, we find that the choice of connection medium, i.e.,
either Ethernet or WiFi, to the bottleneck has a limited impact
on the level of fairness for the end-user.

We next turn to Scenarios b and c to study how CPs,
and thus possibly non-standard algorithms from the Internet,
perform against our known CC algorithms and against each
other. For this, we first describe how we select the targets for
our study in Sec. VI before we focus on the semi-controlled
settings in Sec. VII and CC in the wild in Sec. VIII.

VI. SELECTING INTERNET TARGETS

We base our evaluation of TCP fairness on actual Inter-
net traffic by six major CPs (Akamai, Amazon, Cloudflare,
Edgecast, Fastly, and Google) in two settings: i) lab vs.
CP and ii) CP vs. CP. Studying actual Internet traffic is
motivated by the observation that CC research often neglects
the complex parameterization possibilities. For example in a
previous study [10], we found that CDNs use different initial
window configurations and some utilize pacing. To this end,
we suspect that not only the initial windows might be different,
thus we choose two URLs for Akamai (named AkamaiA (then
using IW32) and AkamaiE (then using IW16)) mapping to
these different settings. Furthermore, Amazon, Cloudflare, and
Google have all publicly announced to utilize BBRv1. Thus, we
investigate the performance of actual Internet traffic originating
from these six different CPs when competing against our testbed
flows in Scenario b and against themselves in Scenario c .

For the long flow experiments, we collect target CP-hosted
URLs generating large responses (the smallest being 25 MB)
by analyzing the HTTPArchive. Since they can still be too
small to cover our 45 s measurement period, we make use
of HTTP/2 multiplexing, i.e., we request the same resource
multiple times (in parallel, on the same connection) enabling
us to prolong the transmission by a multiple of the original size.
The h2load tool in nghttp2 [37] provides this functionality.

Finding suitable URLs for the short flow experiments is
more difficult. On the one hand, the response sizes have to be

7

representative for a “typical” website; on the other hand, the
responses of the different CPs should be very similar in size
so that we can easily compare their FCTs. The HTTPArchive
reports median (average) website sizes of about 2 MB (3 MB)
in July 2019, and thus, we aim for a website size roughly in
between those two values. Also accounting for the goal that
all CPs should have about the same response size, we finally
arrive at 2.474 MB for the largest website and 2.470 MB for
the smallest website. The results in this work base on our
measurement campaign from July to September 2019; results
from February 2019 are presented in our initial paper [12].

VII. CC IN SEMI-CONTROLLED SETTINGS

We start with Scenario b where traffic from our testbed
machines (BBRv1, BBRv2, Cubic) competes with Internet
traffic, i.e., the algorithms deployed by the CPs. Using our
knowledge from Sec. V, we aim to interpret and characterize
the behavior of the CPs and group the CPs accordingly. For this,
we once again configure our testbed with 10 Mbps and a min
RTT of 50 ms and additionally vary between small (0.5×BDP)
and large (2×BDP) buffer sizes. We plot the measurements
results using our fness metric: here, results < 0 indicate a
dominance for our testbed flow while results > 0 favor the CP.

A. Cubic

Small Buffer. Fig. 4 shows the results for a local Cubic flow
over a small (top) and large (bottom) buffer. In the small
buffer scenario, Amazon1, Cloudflare, and Google clearly
dominate the traffic in all instances giving little bandwidth
to the Cubic flow (unfair setting). In contrast, Edgecast and
Fastly struggle against our Cubic flow even when their flow
starts first (unfairness by our testbed flow). The two Akamai
flows offer differing behavior as AkamaiA is similar to Amazon,
Cloudflare, and Google in that it completely dominates our
testbed Cubic flow while the local Cubic flow dominates
AkamaiE similarly to Edgecast and Fastly. This difference
in behavior of the two Akamai flows supports our initial guess
that Akamai uses different configuration parameters.
Large Buffer. When looking at the large buffer setting in
the plot below we observe a different picture. The Amazon,
Cloudflare, and Google flows do not dominate anymore and
the fairness heavily depends on which flow was initiated first.
Edgecast and Fastly also see a fairer bandwidth distribution,
at least if their flows are started first as they still struggle to
gain enough bandwidth when the testbed initiates the first flow.
What is very interesting to see is that both Akamai flows are
completely dominated by the testbed Cubic flow, no matter
which flow is started first.

B. BBRv1

Small Buffer. Things start to significantly differ when we
configure our testbed flow with BBRv1 as shown in Fig. 5. As
can be seen in the upper plot (small buffer), the testbed BBRv1
flow dominates the flows of Edgecast and Fastly as well as

1Note that Amazon behaved similarly to Edgecast and Fastly in our previous
study [12], but has since rolled out BBRv1.

AkamaiAAkamaiEAmazonCloudflareEdgecast Fastly Google

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
TB

,C
P)

QDisc=Drop-Tail
QSize=0.5×BDPTestbed CC=Cubic

RTT=50ms
BW=10Mbit

CP
do

m
in
at
es

TB
do

m
in
at
es

Testbed (TB) first
CP first

AkamaiAAkamaiEAmazonCloudflareEdgecast Fastly Google

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
TB

,C
P)

QDisc=Drop-Tail
QSize=2×BDPTestbed CC=Cubic

RTT=50ms
BW=10Mbit

CP
do

m
in
at
es

TB
do

m
in
at
es

Testbed (TB) first
CP first

Fig. 4: A testbed Cubic flow competes with the CPs for traffic
using a small buffer (top) and a large buffer (bottom).

AkamaiE. AkamaiA shows an interesting behavior, as part of
the measurements also show the clear dominance of the testbed
flow while about half of the iterations either show a much fairer
result (testbed started first) or even a dominance of the Akamai
flow (Akamai started first). The observed characteristics hereby
seem to be stable in that the behavior seems to switch between
two distinct states. Google shows a wide range of observed
fairness ratios although it dominates the testbed flow in most
cases. For Amazon and Cloudflare, we observe a high level
of fairness when the CP flows are started first and a slight
advantage for the testbed flows when they are started first.
Large Buffer. Similar to our observations for Cubic, we also
find a higher level of fairness when the local BBRv1 flow
operates over a larger buffer. Amazon, Cloudflare, and Google
hereby achieve the highest fairness values while Edgecast and
Fastly have a significantly improved fairness, although the
latter comes with larger fairness ranges. Finally, both Akamai
flows are still dominated by the local BBRv1 flow.

C. BBRv2

Small Buffer. When switching our testbed flow to BBRv2,
interesting observations can be made from our results illustrated
in Fig. 6. In the small buffer setting (top) the BBRv2 flow is
dominated by Amazon, Cloudflare, and Google as well as
AkamaiA which is similar to the behavior of our Cubic testbed
flow. At the same time, there is a high level of fairness when
competing against AkamaiE, Edgecast, and Fastly with slight
advantages for the flow that is started first. Overall, the behavior
of BBRv2 much more resembles Cubic than BBRv1 which
we trace back to the fact that BBRv2 incorporates feedback in
the form of ECN and packet loss.
Large Buffer. For larger buffers, we observe the same behavior
when competing against Edgecast and Fastly, although there is
a slightly larger variance compared to the small buffer setting.
AkamaiA and AkamaiE behave similar to each other in that
there is a very high level of fairness when the CP flows are
started first and a slight domination of the testbed if the BBRv2
flow is started first. Regarding Cloudflare and Google, one can

8

AkamaiAAkamaiEAmazonCloudflareEdgecast Fastly Google

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
TB

,C
P)

QDisc=Drop-Tail
QSize=0.5×BDPTestbed CC=BBR

RTT=50ms
BW=10Mbit

CP
do

m
in
at
es

TB
do

m
in
at
es

Testbed (TB) first
CP first

AkamaiAAkamaiEAmazonCloudflareEdgecast Fastly Google

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
TB

,C
P)

QDisc=Drop-Tail
QSize=2×BDPTestbed CC=BBR

RTT=50ms
BW=10Mbit

CP
do

m
in
at
es

TB
do

m
in
at
es

Testbed (TB) first
CP first

Fig. 5: A testbed BBRv1 flow competes with the CPs for
traffic using a small buffer (top) and a large buffer (bottom).

AkamaiAAkamaiEAmazonCloudflareEdgecast Fastly Google

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
TB

,C
P)

QDisc=Drop-Tail
QSize=0.5×BDPTestbed CC=BBR2

RTT=50ms
BW=10Mbit

CP
do

m
in
at
es

TB
do

m
in
at
es

Testbed (TB) first
CP first

AkamaiAAkamaiEAmazonCloudflareEdgecast Fastly Google

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
TB

,C
P)

QDisc=Drop-Tail
QSize=2×BDPTestbed CC=BBR2

RTT=50ms
BW=10Mbit

CP
do

m
in
at
es

TB
do

m
in
at
es

Testbed (TB) first
CP first

Fig. 6: A testbed BBRv2 flow competes with the CPs for traffic
using a small buffer (top) and a large buffer (bottom).

BBRv1@2BDP BBRv1@.5BDP BBRv2@2BDP BBRv2@.5BDP Cubic@2BDP Cubic@.5BDP

QSize Retransm. QSize Retransm. QSize Retransm. QSize Retransm. QSize Retransm. QSize Retransm.
TB CP TB CP TB CP TB CP TB CP TB CP

2n
d

flo
w

by

AkamaiA 55% 240 109 61% 1014 655 33% 54 12 71% 176 389 72% 23 13 75% 78 238
AkamaiE 56% 254 110 55% 847 254 34% 57 14 39% 113 210 71% 22 21 51% 39 147
Amazon 52% 61 64 66% 1364 1656 46% 37 189 58% 208 931 67% 39 63 59% 153 880
Cloudflare 58% 189 229 67% 1386 1759 52% 36 126 61% 208 1104 70% 38 156 60% 148 954
Edgecast 64% 326 265 56% 761 181 49% 47 290 47% 77 69 77% 34 200 57% 41 57
Fastly 64% 357 137 55% 685 217 53% 42 123 49% 75 116 78% 31 77 57% 37 125
Google 52% 31 37 69% 1026 1563 47% 43 110 58% 224 896 66% 39 49 59% 177 747

TABLE III: Average queue size (QSize) and average retransmissions of the testbed (TB, column) and of the CP (CP, row) flow
where the CP flow joins a running TB flow (BW: 10 Mbps, RTT: 50 ms).

say that the CP flows have the advantage in all settings, but
it is the most pronounced when the CP flows also start first.
Finally, for Amazon, there is a high level of fairness when the
testbed flow is started first while Amazon clearly dominates if
it is started first.

D. CC Interpretation

Based on our observations in this section and the queue
size and retransmission statistics shown in Table III we now
attempt to characterize the behavior of the different CPs. Note
that we here measure the retransmissions of both flows using
our tcptrace methodology which only gives us approximate
results although we could achieve more accurate results for
the testbed flow by using the eBPF-based tool. This, however,
would make a comparison between the retransmission counts
of the testbed and the CP flows impossible.
Group A: Amazon, Cloudflare, Google. For Amazon, Cloud-
flare, and Google, it is publicly known that they use BBRv1
and our results confirm these public announcements. First, we
can see that the three CPs dominate our local Cubic flow in
the small buffer scenario while the interaction is fairer in the
larger buffer scenario. We further find a large range of fairness
values when interacting with our local BBRv1 flow. Finally,
the three CPs induce the largest queue sizes as well as the most
retransmissions in the small buffer scenario which we have
previously seen by BBRv1 flows in our purely local testbed.

Still, differences in performance between the three CPs, e.g.,
regarding the local BBRv1 flow in the small buffer scenario,
indicate that the CPs use different configurations for their CC.

Group B: Edgecast, Fastly. Edgecast and Fastly show clear
indicators for using a loss-based CC. They are dominated by
the local BBRv1 flow and achieve a medium level of fairness
when competing against the local Cubic flow in the small
buffer scenario. Furthermore, we find comparably small queue
sizes and few retransmissions in the low buffer scenario which
suggests that they react to loss at the bottleneck.

Group C: AkamaiA, AkamaiE. The two Akamai flows are
difficult to characterize as they do not present a clear behavior
throughout all scenarios. They sometimes behave similarly e.g.,
when competing against Cubic or BBRv1 in the large buffer
setting, and sometimes differ, e.g., when AkamaiA dominates
the local Cubic flow over small buffers where AkamaiE is
dominated by Cubic. From this observation, we conclude that
the difference in configuration that we have noted in previous
work [10] indeed has an impact on the fairness behavior. We
additionally find that AkamaiA shows an interesting bi-modal
behavior when competing against BBRv1 in the small buffer
setting. This further leads us to believe that AkamaiA might in
fact also change configuration between connections. Regarding
the concrete CC variant, we speculate that both Akamai versions
might use a loss-based component as they significantly struggle
against BBRv1.

9

Akam
aiAAmaz

on
Cloud

flareEdge
castFastlyGoog

le

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
Ak

am
ai
E,
CP

)

QDisc=Drop-Tail
QSize=0.5×BDP

CP
do

m
in
at
es

Ak
am

ai
E

do
m
in
at
es

AkamaiE first
CP first

Akam
aiA
Akam

aiE
Amaz

on
Cloud

flareEdge
castGoog

le

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Fa

st
ly,
CP

) QDisc=Drop-Tail
QSize=0.5×BDP

CP
do

m
in
at
es

Fa
st
ly

do
m
in
at
es

Fastly first
CP first

Akam
aiA
Akam

aiE
Amaz

on
Edge

castFastlyGoog
le

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
Cl
ou

dfl
ar
e,
CP

)

QDisc=Drop-Tail
QSize=0.5×BDP

CP
do

m
in
at
es

Cl
ou

dfl
ar
e

do
m
in
at
es

Cloudflare first
CP first

Akam
aiAAmaz

on
Cloud

flareEdge
castFastlyGoog

le

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
Ak

am
ai
E,
CP

)

QDisc=Drop-Tail
QSize=2×BDP

CP
do

m
in
at
es

Ak
am

ai
E

do
m
in
at
es

AkamaiE first
CP first

Akam
aiA
Akam

aiE
Amaz

on
Cloud

flareEdge
castGoog

le

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Fa

st
ly,
CP

) QDisc=Drop-Tail
QSize=2×BDP

CP
do

m
in
at
es

Fa
st
ly

do
m
in
at
es

Fastly first
CP first

Akam
aiA
Akam

aiE
Amaz

on
Edge

castFastlyGoog
le

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
Cl
ou

dfl
ar
e,
CP

)

QDisc=Drop-Tail
QSize=2×BDP

CP
do

m
in
at
es

Cl
ou

dfl
ar
e

do
m
in
at
es

Cloudflare first
CP first

Fig. 7: AkamaiE (Group C), Fastly (Group B), and Cloudflare (Group A) competing against the other content providers.
(BW: 10 Mbps, RTT: 50 ms, Buffer: 0.5×BDP (top) / 2×BDP (bottom)).

Takeaway. We find some degree of heterogeneity regarding the
CC algorithms deployed by our CPs. Amazon, Cloudflare, and
Google use BBRv1, Edgecast and Fastly use some loss-based
CC and the Akamai flows use different algorithms, potentially
even on a per-connection basis. We further find that the CC
algorithms employed by the CPs generally seem to achieve
better fairness with off-the-shelf algorithms when more buffer
size is available. However, large buffers can cause jitter and
generally inflate the latency. Yet in small buffer settings, BBRv1
currently claims nearly all bandwidth and shows a large
variability in fairness when competing with other BBRv1 flows.

While it might seem advantageous at first glance that
algorithms like BBRv1 claim more bandwidth, it could actually
be bad for CPs. In the web, CPs often compete with 3rd party
resources loaded on the same website. When the CP claims
all bandwidth, it may negatively affect the web page loading
behavior since competing flows of the other resources could
suffer from reduced performance. Thus, CPs should interact
fair with their competitors which is the focus of the next part
of our study, i.e., how two CP flows interact.

VIII. CC IN THE WILD

To investigate the interaction between the different CPs,
we deploy Scenario c where both flows are requested from
the CPs. As we are interested in examining the interactions
from many angles, we vary several testbed parameters to get a
detailed picture of the influencing factors on fairness. We first
perform a baseline experimental series where we investigate
how the case of two CP flows compares to the setting with one
CP and one local flow (VIII-A). The experiments thereafter all
base on this fundamental testbed configuration and each only
varies one additional parameter. More precisely, we investigate
if and how our observations change if we no longer artificially
bump up the RTTs and instead use the CPs’ real RTTs (VIII-B),
how short and long flows of the different CPs interact (VIII-C)
and, finally, if and how AQMs can improve the observed

fairness in the different settings (VIII-D). Throughout this
section, we perform all experiments using a 10 Mbps bottleneck
link and a min RTT of 50 ms, except for Sec. VIII-B where we
use the CPs’ real RTTs. We further restrict our presentation to
the results of AkamaiE, Fastly, and Cloudflare as representatives
of the groups described in Sec. VII-D.

A. Baseline Experiments (CP vs. CP)

In our first experimental series, we are interested in how
AkamaiE, Fastly, and Cloudflare perform against the other
CPs. Fig. 7 shows the corresponding results for a scenario
with a small (top) or large (bottom) buffer size. Recall our
fairness measure, where results < 0 indicate a dominance of the
explicitly mentioned CP while results > 0 favor the competing
CP mentioned on the x-axis.
Small Buffers. Starting with the upper row, i.e., the small
buffer scenario, we observe that the CPs generally interact
as expected based on the results of the previous sections.
Cloudflare’s BBRv1 flows dominate the loss-based flows of
Group B (right) and Fastly is also dominated by the rest of
group A (middle). The BBRv1 versions of Amazon and Google
hereby seem to be more aggressive as they both dominate
Cloudflare if they are started first while there is a large fairness
range when Cloudflare is the first flow (right). Compared to
their interaction with group A, Edgecast and Fastly together
achieve a higher level of fairness although there is a large
range of fairness values when Fastly is started first (middle).
The most interesting observation can be made for AkamaiA
when it is started first and competes with the BBR flows of
Cloudflare (right), Amazon, and Google (not shown) as the
bi-modal behavior is again visible. As AkamaiE also struggles
against the flows of group A, we find another hint for our
guess that Akamai uses some loss-based CC algorithm which
detects congestion earlier than BBRv1. Finally, we observe
that there is a large range of fairness values when AkamaiE

10

AkamaiE@2BDP AkamaiE@.5BDP Fastly@2BDP Fastly@.5BDP Cloudflare@2BDP Cloudflare@.5BDP

QSize Retransm. QSize Retransm. QSize Retransm. QSize Retransm. QSize Retransm. QSize Retransm.
1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

2n
d

flo
w

by

AkamaiA 47% 2 1 50% 194 208 85% 80 110 53% 132 174 57% 51 16 58% 1052 266
AkamaiE - - - - - - 85% 78 61 69% 170 239 58% 31 21 57% 1109 222
Amazon 58% 31 154 63% 286 987 75% 149 342 63% 241 805 59% 88 80 70% 1804 1573
Cloudflare 61% 47 277 62% 289 1035 75% 133 433 62% 241 872 - - - - - -
Edgecast 75% 21 93 50% 186 76 82% 65 54 60% 132 73 69% 138 120 61% 943 184
Fastly 73% 22 20 48% 190 79 - - - - - - 71% 91 34 61% 925 182
Google 57% 43 126 69% 356 1132 75% 168 446 69% 252 1018 56% 50 37 77% 1800 1671

TABLE IV: Average queue size (QSize) and average retransmissions for the first (1st, column) and second (2nd, row) where
the second flow joins the running first flow (BW: 10 Mbps, RTT: 50 ms).

competes against the loss-based Group B, which is different
to its interaction with our out-of-the-box Cubic in Sec. VII-A.
Large Buffers. Focusing on the bottom row, i.e., the larger
buffers, we can similarly predict several interaction schemes
based on our previous observations. For the interaction between
group A and the other CPs, we find that larger buffers generally
improve the fairness which we attribute to the fact that larger
buffers create enough headroom so that BBRv1’s small standing
queue does not completely fill up the real queue. The headroom
is, e.g., used by the loss-based flows of Group B which are no
longer completely dominated by Group A (middle). A similar
observation can be made for the interaction of Cloudflare with
both, Amazon and Google. For the interaction of Group B,
we do not see a significant impact of the buffer size on the
fairness which supports our findings in Sec. VII-A where we
see a similar effect when Group B competes with Cubic. When
the two Akamai flows interact, the flow starting second always
dominates the first flow.
Retransmissions and Queue Size. Table IV shows the average
queue size (QSize) and the retransmission statistics for the case
where Flow 1 starts first, which is the CP shown in the top row
of the table and in yellow in Fig. 7. As expected, large buffers
reduce the loss rate and thus the number of retransmissions
while we generally see high retransmission counts for the
small buffer scenario. This is especially true for interactions
with flows of Group A as these cause very high retransmission
counts, both for themselves and their competitors while the loss-
based Group B causes smaller numbers of retransmissions. The
inverse is true for the queue sizes, because here Group B causes
larger queues than Group A in the large buffer setting while
they all cause quite full queues in the small buffer scenario.
What is interesting to see is that the largest queues are caused
when the loss-based CPs Edgecast and Fastly compete with
the Akamai flows. This again indicates a potential loss-based
component included in the CC of Akamai.

Combining previous findings, the fairness levels shown in
Fig. 7 and the statistics in Table IV, it can be seen that larger
buffers, in most cases, also increase fairness and reduce the
number of retransmissions for the interaction of CPs. However,
larger buffers come with the risk of higher queue delays which
is why model-based approaches like BBR try to estimate the
available BDP to not overly fill the buffer. For this, BBRv1
and BBRv2 critically depend on the RTT which, in contrast
to the bottleneck bandwidth, is a highly volatile, flow-specific
property. In this regard, our testbed abstracts from reality as
we pad the RTTs that we observe from the different CPs to the

same level so that we can properly judge fairness in the same
RTT case. In reality, however, users will experience different
RTTs to the different CPs and even in our special setting, we
observe RTTs ranging from 5 ms to 20 ms. In fact, we have an
RTT of slightly below 5 ms to all CPs except for Fastly to which
we have an RTT of around 20 ms which is explained by the fact
that the URL under investigation is actually hosted in London
and not in Frankfurt. Thus, to examine the performance of the
CPs in a more realistic setting, we loosen our RTT padding
for the following experiment.

B. Behavior with real RTTs

To investigate how the CPs interact when they are not
subject to our RTT padding, we repeat our baseline experiment
described in Sec. VIII-A but no longer artificially adjust the
RTTs. This in turn has an impact on choosing the buffer sizes
as we compute them based on the BDP and thus on the RTT. As
we no longer balance the RTTs, we no longer have a common
RTT which we can use for these computations. Instead, we
choose the highest RTT, i.e., 20 ms, for our computations to
reflect the generally assumed over buffering in the Internet.

Fig. 8 shows the measurement results for the small buffer
scenario. Starting with Fastly, it can be seen that it gets
dominated by all other CPs no matter in which order the flows
are started. This is most likely due to the already mentioned
fact that Fastly has by far the largest RTT. Apart from that we
observe expected behavior as Group A once more dominates the
competition and as Amazon and Google are more aggressive
than Cloudflare. What is interesting to see is that under real
conditions, AkamaiE achieves almost perfect fairness when
competing against AkamaiA and Edgecast.

In our experiments with larger buffers (2× BDP, results
not shown), we once again find much fairer settings and even
Fastly now achieves a rough level of fairness with all CPs and
is at most dominated by a factor of 2. Consequently, we do not
find significant differences to the investigation scenario with a
balanced RTT for most of the CPs as we have similar RTTs
to them anyway as most of them have a presence in Frankfurt.
However, we find that Fastly, which has by far the highest
RTT, is substantially dominated by the other CPs in the small
buffer scenario, but larger buffers help to ameliorate this.

While our long flow scenario is well-suited to investigate
the general interaction of different CPs as CC algorithms
take some time to negotiate appropriate sending rates and,
in fact, continuously do so, a significant portion of Internet

11

Akam
aiAAmaz

on
Cloud

flareEdge
castFastlyGoog

le

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
Ak

am
ai
E,
CP

)

QDisc=Drop-Tail
QSize=0.5×BDP

CP
do

m
in
at
es

Ak
am

ai
E

do
m
in
at
es

AkamaiE first
CP first

Akam
aiA
Akam

aiE
Amaz

on
Cloud

flareEdge
castGoog

le

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Fa

st
ly,
CP

) QDisc=Drop-Tail
QSize=0.5×BDP

CP
do

m
in
at
es

Fa
st
ly

do
m
in
at
es

Fastly first
CP first

Akam
aiA
Akam

aiE
Amaz

on
Edge

castFastlyGoog
le

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
Cl
ou

dfl
ar
e,
CP

)

QDisc=Drop-Tail
QSize=0.5×BDP

CP
do

m
in
at
es

Cl
ou

dfl
ar
e

do
m
in
at
es

Cloudflare first
CP first

Fig. 8: AkamaiE (Group C), Fastly (Group B), and Cloudflare (Group A) competing against the other content providers.
(BW: 10 Mbps, RTT: real RTT, Buffer: 0.5×BDP calculated for an RTT of 20ms).

traffic is Web traffic which is characterized by relatively short
transmissions and thus not yet captured. Hence, we next
investigate how the different CPs behave on shorter time scales.

C. The Behavior of Short Flows
In the Internet, short flows carrying small amounts of data

(mice) are often forced to compete with long-running bulk
transfers (elephants). To emulate this setting, we let a short
flow join a link that is already occupied by a bulk transfer.
Thus, the short flow has to quickly capture bandwidth while
the bulk transfer has to release it. Given the limited transfer
volume of the short flow, it is rare that they actually achieve
a fair share of the bandwidth as the transmission is typically
already completed before reaching that level. We map the
mice vs. elephant scenario to our testbed by replacing one
of the long-running CP flows with a short flow. For this, we
use URLs generating responses of around 2.47 MB; the client
consequently first requests the long-running flow, and after
5 s the short flow. We judge the behavior of the two flows by
analyzing the time needed by the short flow to complete its
transmission, i.e., its flow completion time (FCT). This metric
serves as a proxy for how well the flow can capture bandwidth
and how often the long flow gave it transmission opportunities.
Using the FCT has also been proposed as a useful metric for
CC [38] and is most suited to compare the behavior of the
short flows as there is no general notion on how to define
fairness for short flows (cf. Sec. II).

Fig. 9 shows the FCTs for the CPs competing against each
other with 0.5 (top) and 2 (bottom) × BDP buffers and
RTTs once again equalized to 50 ms. For each combination
of algorithms, we plot the results when the selected CP is
the short flow (yellow) side by side with the switched setting
where the selected CP represents the long flow (violet).
Small Buffers. As shown in the upper row of Fig. 9, short
flows of most CPs struggle against long flows of Group A,
i.e., Amazon, Cloudflare, and Google, while they finish earlier
when competing against long flows of AkamaiE, Edgecast, and
Fastly. We suspect that the latter are better at quickly releasing
bandwidth due to their loss-based features while BBRv1, and
with that Group A, generally holds the transmission rate steady
and only drastically reduces it every 10 s during the ProbeRTT
phase. Regarding their short flow behavior, Group A flows
generally seem to have the fastest FCTs, even if they compete
against other Group A long flows while the loss-based flows
especially struggle against such long flows.

Large Buffers. In most combinations, deploying larger buffers
(bottom) shortens the transmission times. The largest gain
can be identified in settings where the short flows compete
against Group A long flows as they can now finish much faster.
This might once again be explained by the fact that BBRv1
overestimates the BDP on purpose which can be enough to
degrade performance in low buffer scenarios while it leaves
larger headroom in larger buffers which can then be claimed by
the short flows. It is also a valid explanation for the observation
that interacting Group A flows have a more focused fairness
range than in the small buffer setting. On the other hand,
the FCT for interacting Group B flows deteriorates which
we attribute to our previous observation that loss-based CC
algorithms cause highest queue size in the large buffer scenario
and consequently delay the transmissions of the short flow.
Interpretation. These inferences base on the findings of the
previous sections and are backed by further statistical data
about these experiments. Table V lists the average queue size
(QSize) as well as the average number of retransmissions
for the long flow (flow in the row) and the short flow (flow
in the column) for the experiments visible in Fig. 9. A first
observation is that Group A short flows induce the highest
number of retransmissions which we believe is the reason why
they are so effective in claiming bandwidth to quickly finish
their transmissions: the retransmissions suppress loss-based
algorithms and free up bandwidth which can then be captured
by the short flows themselves. This, however, means that they
generally buy higher performance with (drastically) increased
retransmission counts. The completely opposite can be seen
for a short AkamaiE vs. a long AkamaiA and a long Google
flow as they operate completely lossless (top/bottom left of
the table) at least as long as the buffer is large enough. This,
however, also shows that few retransmissions may not go hand
in hand with a fast finish as the AkamaiE flow is about 2 times
slower when competing against Google than when competing
against AkamaiA.

In the small buffer scenario, Group A long flows cause
significant retransmissions, both to themselves and to the short
flows, which consequently suffer from longer FCTs. We can
also see that Group B long flows, by far, cause the largest queue
sizes in the large buffer scenario which thus adds significant
queueing delay to their short flows and suffices to degrade
performance when two Group B flows interact. This, above all,
nicely illustrates that larger buffers always come with the risk of
increased queue delays although they seem to improve fairness

12

AkamaiE@2BDP AkamaiE@.5BDP Fastly@2BDP Fastly@.5BDP Cloudflare@2BDP Cloudflare@.5BDP

QSize Retransm. QSize Retransm. QSize Retransm. QSize Retransm. QSize Retransm. QSize Retransm.
Short Long Short Long Short Long Short Long Short Long Short Long

L
on

g
flo

w
by

AkamaiA 31% 0 0 80% 112 197 35% 5 1 80% 45 106 41% 187 23 79% 314 219
AkamaiE - - - - - - 35% 4 2 43% 17 68 42% 227 25 49% 264 77
Amazon 44% 1 3 54% 122 514 45% 2 7 58% 92 621 49% 120 66 60% 273 623
Cloudflare 55% 12 64 57% 114 553 50% 2 46 57% 78 620 - - - - - -
Edgecast 79% 14 170 57% 76 36 78% 17 172 54% 8 24 77% 359 192 53% 297 44
Fastly 77% 49 63 57% 80 82 - - - - - - 76% 388 86 58% 255 89
Google 44% 0 0 60% 198 549 46% 2 3 60% 118 529 49% 106 67 69% 422 724

TABLE V: Average queue size (QSize) and average retransmissions for the short (columns) and long (rows) flows where the
short flow joins the running long flow (BW: 10 Mbps, RTT: 50 ms).

Akam
aiAAmaz

on
Cloud

flareEdge
castFastly Goog

le

Content provider (CP)

0
5

10
15
20
25
30

Sh
or
tF

low
FC

T
[s] QDisc=Drop-Tail

QSize=0.5×BDPAkamaiE short
CP short

Akam
aiA
Akam

aiE
Amaz

on
Cloud

flareEdge
castGoog

le

Content provider (CP)

0
5

10
15
20
25
30

Sh
or
tF

low
FC

T
[s] QDisc=Drop-Tail

QSize=0.5×BDPFastly short
CP short

Akam
aiA
Akam

aiE
Amaz

on
Edge

castFastly Goog
le

Content provider (CP)

0
5

10
15
20
25
30

Sh
or
tF

low
FC

T
[s] QDisc=Drop-Tail

QSize=0.5×BDPCloudflare short
CP short

Akam
aiAAmaz

on
Cloud

flareEdge
castFastly Goog

le

Content provider (CP)

0.0

2.5

5.0

7.5

10.0

Sh
or
tF

low
FC

T
[s] QDisc=Drop-Tail

QSize=2×BDPAkamaiE short
CP short

Akam
aiA
Akam

aiE
Amaz

on
Cloud

flareEdge
castGoog

le

Content provider (CP)

0.0

2.5

5.0

7.5

10.0

Sh
or
tF

low
FC

T
[s] QDisc=Drop-Tail

QSize=2×BDPFastly short
CP short

Akam
aiA
Akam

aiE
Amaz

on
Edge

castFastly Goog
le

Content provider (CP)

0.0

2.5

5.0

7.5

10.0

Sh
or
tF

low
FC

T
[s] QDisc=Drop-Tail

QSize=2×BDPCloudflare short
CP short

Fig. 9: Short flow scenario: AkamaiE (Group C), Fastly (Group B), and Cloudflare (Group A) competing against the other
content providers. (BW: 10 Mbps, RTT: 50 ms, Buffer: 0.5×BDP (top) / 2×BDP (bottom)).

and FCTs in most cases. Ideally, we would have a scenario
with a smaller queue but still the high level of fairness and
quick flow completions. As AQMs like CoDel are especially
designed to keep the delay (and hence the queue) small, we
are interested in whether they can help to achieve the desired
combination of small delays on one side and a high level of
fairness as well as fast FCTs on the other side. This is why we
investigate the effect of AQMs in our base setting, in the real
RTT scenario and in the short flow setting in the next section.

D. Can CoDel Improve Fairness?

AQMs inherently change the behavior of a queue which is
why they have a significant impact on the overall performance.
Generally, they have two possible forms of feedback to which
flows might respond: i) dropping packets and ii) using ECN.
In our work, we only consider the first case of feedback, i.e.,
packet drops because it requires no end-to-end support, which
is outside of our control at CPs. We repeat the experiments
from before but activate CoDel and its flow-queuing variant
FQ_CoDel on the intermediate bottleneck machine. In the
following, we further concentrate on the case with a queue
size of 2×BDP because CoDel’s effect on small queues is
likely to be diminishing. Fig. 10 exemplarily shows the fairness
results in the otherwise unchanged scenarios previously used in
Sec. VIII-A, i.e., for 10 Mbps and a min RTT of 50 ms, while
Table VI further shows the average queue size (QSize) and the

average retransmissions for both flows where the second flow
joins the first ongoing flow.

CoDel. Our main observation is that CoDel generally achieves
its goal of reducing the queue sizes. Compared to the drop-
tail case in Table IV where the queue has an occupancy of
50% to 85%, CoDel lowers the maximum average queue size
to 28%. What is interesting to see is that while in the large
buffer settings without AQM, the loss-based Group B causes
the largest queue sizes, it is now Group A using BBRv1 which
causes larger queues as their CC does not react to the intentional
loss induced by CoDel. CoDel (top of Fig. 10) further seems
to achieve a very high level of fairness when Fastly competes
with Edgecast and when Cloudflare competes with Amazon
and Google. Similarly, AkamaiA and AkamaiE interact in a fair
manner in half of the settings while they each dominate in half
of the cases when they are started first, thus once more showing
their bi-modal behavior. Consequently, one can say that CoDel
seems to achieve high fairness values in the intra-protocol
setting, i.e., when both parties use the same CC algorithm.
In the inter-protocol setting, we find very bad fairness values
when Group B competes against the remaining CPs. We thus
suspect that their CC quickly reacts to the drops of CoDel and
consequently adjusts their rates while the other CPs seem to
ignore the loss feedback. This is somewhat surprising for the
Akamai flows as we have previously speculated about potential

13

AkamaiE+CoDel AkamaiE+FQ_CoDel Fastly+CoDel Fastly+FQ_CoDel Cloudflare+CoDel Cloudflare+FQ_CoDel

QSize Retransm. QSize Retransm. QSize Retransm. QSize Retransm. QSize Retransm. QSize Retransm.
1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

2n
d

flo
w

by

AkamaiA 17% 2894 882 16% 2418 955 13% 161 2801 10% 97 2092 17% 1513 489 18% 1690 1189
AkamaiE - - - - - - 14% 152 2488 12% 90 2276 18% 1675 1273 19% 1584 1376
Amazon 19% 2705 1772 16% 2545 847 12% 142 1020 11% 84 1439 28% 1746 1555 19% 1208 870
Cloudflare 19% 2538 1754 16% 2763 859 12% 146 1122 12% 88 1511 - - - - - -
Edgecast 14% 2982 154 16% 2779 633 4% 72 58 13% 91 1411 16% 1170 132 20% 1151 771
Fastly 14% 2787 126 13% 2629 65 - - - - - - 14% 1299 126 16% 1716 85
Google 18% 2797 1439 18% 2694 712 11% 143 930 11% 88 1241 25% 1840 1296 15% 1141 716

TABLE VI: Average queue size (QSize) and average retransmissions for the first (1st, column) and second (2nd, row) where
the second flow joins the running first flow (BW: 10 Mbps, RTT: 50 ms).

Akam
aiAAmaz

on
Cloud

flareEdge
castFastlyGoog

le

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
Ak

am
ai
E,
CP

)

QDisc=CoDel
QSize=2×BDP

CP
do

m
in
at
es

Ak
am

ai
E

do
m
in
at
es

AkamaiE first
CP first

Akam
aiA
Akam

aiE
Amaz

on
Cloud

flareEdge
castGoog

le

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Fa

st
ly,
CP

) QDisc=CoDel
QSize=2×BDP

CP
do

m
in
at
es

Fa
st
ly

do
m
in
at
es

Fastly first
CP first

Akam
aiA
Akam

aiE
Amaz

on
Edge

castFastlyGoog
le

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
Cl
ou

dfl
ar
e,
CP

)

QDisc=CoDel
QSize=2×BDP

CP
do

m
in
at
es

Cl
ou

dfl
ar
e

do
m
in
at
es

Cloudflare first
CP first

Akam
aiAAmaz

on
Cloud

flareEdge
castFastlyGoog

le

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
Ak

am
ai
E,
CP

)

QDisc=FQ_CoDel
QSize=2×BDP

CP
do

m
in
at
es

Ak
am

ai
E

do
m
in
at
es

AkamaiE first
CP first

Akam
aiA
Akam

aiE
Amaz

on
Cloud

flareEdge
castGoog

le

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0fn
es
s(
Fa

st
ly,
CP

) QDisc=FQ_CoDel
QSize=2×BDP

CP
do

m
in
at
es

Fa
st
ly

do
m
in
at
es

Fastly first
CP first

Akam
aiA
Akam

aiE
Amaz

on
Edge

castFastlyGoog
le

Content provider (CP)

1.0

0.5

0.0

−0.5

−1.0

fn
es
s(
Cl
ou

dfl
ar
e,
CP

)

QDisc=FQ_CoDel
QSize=2×BDP

CP
do

m
in
at
es

Cl
ou

dfl
ar
e

do
m
in
at
es

Cloudflare first
CP first

Fig. 10: AkamaiE (Group C), Fastly (Group B), and Cloudflare (Group A) competing against the other content providers.
(BW: 10 Mbps, RTT: 50 ms, Buffer: 2×BDP, queueing discipline: CoDel (top) / FQ_CoDel (bottom)).

loss-based components. The findings here rather point to a
model- or delay-based CC.

Overall, it can be said that CoDel achieves lower queue
delays at the cost of higher retransmission counts. Moreover,
it seems to have a negative impact on the fairness between CC
algorithms using different indicators for identifying congestion
and currently disadvantages purely loss-based CC algorithms.
FQ_CoDel. Shifting towards the flow-queuing variant (bottom
of Fig. 10), which is designed to produce a fair queuing, we
observe a tremendous increase in fairness. Throughout all
measurements, fairness is close to the equilibrium and we only
observe slight variations. These variations are mostly visible
for the two Akamai flows which once again show a tendency
towards a bi-modal pattern when competing against Group A.
FQ_CoDel further reduces the queue sizes in the Group A
settings and overall achieves a much more uniform queue size
distribution as queue sizes now only range from 10% to 20%
across all investigated settings while the retransmission counts
stay roughly in the same order of magnitude.
Impact on performance. We also investigate the effects of
FQ_CoDel in the other scenarios and our results generally
confirm the high level of fairness in the real RTT setting
(results not shown). While occasional loss to keep the delay
low is certainly acceptable for long-running connections, we
have previously seen that the performance of short flows can be

degraded when they are affected by loss. We thus also revisit
the short vs. long flow scenario and find that for short flows
competing against an AkamaiE long flow, FCTs almost double
to 4-5 seconds compared to around 2.5 seconds in Fig. 9. On
the other hand, rather long FCTs, e.g., in scenarios with Group
B long flows, are now reduced to the same level. Thus, it
can be concluded that FQ_CoDel successfully builds upon the
original idea of CoDel, namely reducing delay, by adding a
component to achieve flow fairness. This fairness is not only
achieved regarding the overall throughput of long flows, but
different combinations of short and long flows all roughly
yield the same FCT. Unfortunately, FQ_CoDel still causes high
retransmission counts, especially for algorithms such as BBRv1
that ignore such loss, showing that the fairness leaves a bitter
aftertaste given the amounts of wasted bandwidth.

Takeaway. Summarizing, it can be said that the original CoDel
above all seems to improve the intra-protocol fairness as
evidenced by high fairness values for the interaction of the CPs
within their own groups. This is bad news for the heterogeneous
Internet, as scenarios with different algorithms suffer from
severe unfairness. Luckily, the flow-queuing variant enables
a large degree of fairness even in heterogeneous settings. It
also balances the expected FCT of short flows and thus, at
the cost of some CPs losing performance, creates an even
playground for all CPs in the Internet which is especially good

14

news for web content which is often distributed across several
CPs. Thus, it seems to again stand that the technologies to
enable a fair and performant Internet are available and only
need to be deployed at the bottlenecks.

IX. CONCLUSION

In this work, we empirically investigate the fairness of
content providers in the Internet to inform network management
practices. Using our testbed, we examine the behavior of actual
Internet traffic when competing under lab-controlled properties
of a bottleneck. Generally, we only find limited fairness in the
Internet today. Some content providers interact well with each
other, while others do not which is likely reflected in their
choice of CC algorithm. Customizations of the CPs hereby
seem to significantly impact the fairness and can easily help
them to get an unfair advantage. The bottleneck itself also has
a strong effect on the fairness as its buffer size often inverts
observations when going from small to large. This demands
research to shine a light on actual configurations of bottleneck
buffer sizes in the Internet and on customizations of CPs to then
investigate, e.g., the impact on web performance when content
is served from a diverse set of content providers. Still, there is
a silver lining: network management can put the fairness back
into the network operator’s hand by utilizing state-of-the-art
AQMs such as FQ_CoDel, although this requires deployment
on millions of devices at the edges of the network.
Acknowledgment. Funded by the Deutsche Forschungsgemein-
schaft (DFG) as part of project B1 within the Collaborative
Research Center (CRC) 1053 – MAKI and under Germany’s
Excellence Strategy — EXC-2023 Internet of Production —
390621612.

REFERENCES

[1] M. Allman et al., “TCP Congestion Control,” RFC 5681, 2009.
[2] B. Briscoe, “Flow Rate Fairness: Dismantling a Religion,” SIGCOMM

CCR, vol. 37, no. 2, 2007.
[3] A. Medina et al., “Measuring the Evolution of Transport Protocols in

the Internet,” SIGCOMM CCR, vol. 35, no. 2, 2005.
[4] S. Floyd et al., “Comments on the Usefulness of Simple Best-Effort

Traffic,” Internet Requests for Comments, RFC 5290, 2008.
[5] J. Thompson et al., “Q1 2017 State of the Internet - Connectivity Report,”

Akamai, Tech. Rep., 2017.
[6] M. Trevisan et al., “Five Years at the Edge: Watching Internet from the

ISP Network,” in ACM CoNEXT, 2018.
[7] J. Erman et al., “Over the Top Video: The Gorilla in Cellular Networks,”

in ACM IMC, 2011.
[8] E. Carisimo et al., “Studying the Evolution of Content Providers in the

Internet Core,” in IEEE/IFIP TMA, 2018.
[9] C. Labovitz et al., “Internet Inter-domain Traffic,” in ACM SIGCOMM,

2010.
[10] J. Rüth et al., “Demystifying TCP Initial Window Configurations of

Content Distribution Networks,” in IEEE/IFIP TMA, 2018.
[11] P. Yang et al., “TCP Congestion Avoidance Algorithm Identification,” in

IEEE ICDCS, 2011.
[12] J. Rüth et al., “An Empirical View on Content Provider Fairness,” in

IEEE/IFIP TMA, 2019.
[13] S. Floyd, “Metrics for the Evaluation of Congestion Control Mechanisms,”

Internet Requests for Comments, RFC 5166, 2008.
[14] R. Ware et al., “Beyond jain’s fairness index: Setting the bar for the

deployment of congestion control algorithms,” 2019.
[15] N. Cardwell et al., “BBR: Congestion-Based Congestion Control,” ACM

Queue, vol. 14, Sept.-Oct., 2016.
[16] N. Cardwell et al., “BBR v2 A Model-based Congestion Control,” https:

//datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-an-update-
on-bbr, 2019.

[17] N. Cardwell et al., “BBR v2: A Model-based Congestion Control IETF
105 Update,” https://datatracker.ietf.org/meeting/105/materials/slides-10
5-iccrg-bbr-v2-a-model-based-congestion-control.pdf, 2019.

[18] D. J. Leith et al., “Experimental evaluation of Cubic-TCP,” in Workshop
on PFLDNet, 2007.

[19] L. Xue et al., “A study of fairness among heterogeneous TCP variants
over 10 Gbps high-speed optical networks,” Optical Switching and
Networking, vol. 13, Jul. 2014.

[20] S. Ha et al., “CUBIC : A New TCP-Friendly High-Speed TCP Variant,”
SIGOPS Oper. Syst. Rev., vol. 42, no. 5, 2008.

[21] D. Miras et al., “Fairness of High-Speed TCP Stacks,” in IEEE AINA,
2008.

[22] N. Cardwell et al., “BBR Congestion Control,” https://www.ietf.org/pro
ceedings/97/slides/slides-97-iccrg-bbr-congestion-control-01.pdf, 2016.

[23] M. Hock et al., “Experimental Evaluation of BBR Congestion Control,”
in IEEE ICNP, 2017.

[24] S. Ma et al., “Fairness of Congestion-Based Congestion Control:
Experimental Evaluation and Analysis,” 2017. [Online]. Available:
http://arxiv.org/abs/1706.09115

[25] D. Scholz et al., “Towards a Deeper Understanding of TCP BBR
Congestion Control,” in IFIP Networking, 2018.

[26] A. Dhamdhere et al., “Inferring Persistent Interdomain Congestion,” in
ACM SIGCOMM, 2018.

[27] S. Bauer et al., “The Evolution of Internet Congestion,” in TPRC, 2009.
[28] https://github.com/google/bbr/tree/v2alpha.
[29] N. Cardwell, “BBR evaluation with netem,” https://groups.google.com/d/

msg/bbr-dev/8LYkNt17V_8/xyZZCwcnAwAJ.
[30] J. Gettys et al., “Bufferbloat: Dark Buffers in the Internet,” Communica-

tions of the ACM, vol. 55, no. 1, Jan. 2012.
[31] O. Hohlfeld et al., “A QoE Perspective on Sizing Network Buffers,” in

ACM IMC, 2014.
[32] G. Appenzeller et al., “Sizing Router Buffers,” in ACM SIGCOMM,

2004.
[33] M. Enachescu et al., “Routers with Very Small Buffers,” in IEEE Infocom,

2006.
[34] K. Nichols et al., “Controlling Queue Delay,” ACM Queue, vol. 10, no. 5,

May 2012.
[35] http://www.tcptrace.org/.
[36] Y. Cao et al., “When to use and when not to use BBR: An empirical

analysis and evaluation study,” in ACM IMC, 2019.
[37] https://github.com/nghttp2/nghttp2.
[38] N. Dukkipati et al., “Why Flow-Completion Time is the Right Metric

for Congestion Control,” ACM SIGCOMM CCR, vol. 36, no. 1, 2006.

Ike Kunze is a researcher and Ph.D. student at the
Chair of Communication and Distributed Systems
(COMSYS) at RWTH Aachen University. He re-
ceived his M.Sc. degree (with honors) in Computer
Science from RWTH Aachen University in late 2018.
His research interests include in-network computing,
transport protocols, and active queue management.

Jan Rüth received his B.Sc. and M.Sc. in Com-
puter Science from RWTH Aachen University. In
2014, he joined the Chair of Communication and
Distributed Systems at RWTH Aachen University as
a Ph.D. student and researcher. His research interests
include transport protocols, internet measurements,
and performance evaluations in general.

Oliver Hohlfeld is a professor of computer sci-
ence and heads the Chair of Computer Networks
at Brandenburg University of Technology. Before,
he was at RWTH Aachen University and at TU
Berlin / Deutsche Telekom Innovation Laboratories.
He was a visiting scholar at the group of Paul
Barford at the University of Wisconsin - Madison,
USA. He studied computer science at Darmstadt
University of Applied Sciences, Institute Eurecom
(Sophia Antipolis, France), and Darmstadt University
of Technology and holds a B.Sc. and M.Sc. degree.

He obtained a Ph.D. (Dr. rer. nat.) from TU Berlin in 2013.

