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ABSTRACT
Recent research shows many bene�ts for cloud workloads and net-
work operations when putting software functionality onto switches.
Sharing the physical resources of a programmable switch between
multiple tenants and workloads enables the widespread deploy-
ment of on-switch software functionality. Currently, changing the
program on a programmable switch incurs signi�cant switch down-
time, connectivity loss, and service interruption. We, therefore
propose a modi�cation to the common programmable switch archi-
tecture to enable hot-pluggability, the ability to insert, modify, and
remove on-path software functionality without interrupting the
network operation. With hot-pluggability, a programmable switch
can be shared between applications of di�erent on-switch lifetime
and therefore also between di�erent tenants. Such sharing requires
performance and program isolation between di�erent on-switch
functions and tenants. Our proposal makes on-switch software
functionality deployable within production networks and enables
programmable switches to be o�ered as a service tomultiple tenants
within cloud and ISP networks.

CCS CONCEPTS
• Networks → Programmable networks; In-network process-
ing; •Hardware→Networking hardware; • Security and privacy
→ Systems security.
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1 INTRODUCTION
Research has provided a multitude of examples where individual
applications bene�t from moving some application logic to pro-
grammable switches: O�oading data aggregation and �ltering to
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Figure 1: Multi-tenant programmable switch example.

switches speeds up MapReduce, machine learning, massively par-
allel databases, and string searching [19, 24, 27, 34, 35]. On-switch
support for consensus protocols greatly reduces coordination over-
head [8, 10, 21, 25]. Adding key-value caches to switches increases
throughput while also decreasing latency [22, 39]. A single stateful
on-switch load balancer can replace hundreds of software-based
load balancers [29]. Executing heavy hitter detection and monitor-
ing on switches reduces communication overhead and increases
accuracy [17, 26, 36]. Even control of industrial machinery bene�ts
from in-network aggregation and decision making [14, 15, 33].

Similar to current cloud computing, all the mentioned on-switch
functions could either be provided by the network operator as
application-speci�c services, or by allowing customers to put their
own software into the network. Datacenter operators [7] as well as
ISPs [31] are interested in integrating programmability to o�er on-
path software functionality in their networks. The virtual networks
available in clouds may be extended with on-demand in-network
computing as shown in Figure 1 or an ISPsmay provide the ability to
move functionality such as monitoring and DoS protection closer
to the source. We are convinced, that an extension of the current
programmable switch architecture is needed to enable “Programmable
Switches as a Service”, where all these functions can be concurrently
deployed in the same network.

To support a diverse range of on-switch functions, the network
must be able to concurrently execute a frequently changing set of
multiple functions while providing performance and program iso-
lation. However, existing programmable switches execute a single
program that cannot be replacedwhile providing uninterrupted con-
nectivity. Changing on-switch functions causes switch and network
outages (up to 50ms on the Barefoot To�no [3]) while reprogram-
ming the switch, which is a major obstacle to both running multiple
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functions on a single switch and to using the same switch concur-
rently for packet forwarding. For example, a downtime of 50ms
on a 64 port 100GbE switch executing an aggregation step from a
massively distributed database would lead to data loss of 37GiB.
We, therefore propose to modify the common programmable switch
architecture to allow for hot-pluggability, the ability to insert, modify,
and remove on-switch functions without a�ecting other on-switch
functions and packet forwarding.

We believe, that hot-pluggable isolated on-path software func-
tionality will bring forth many new research questions. To show
the feasibility of our proposition, we describe three di�erent ap-
proaches which require a varying amount of e�ort: 1. A switch
vendor can build a hot-pluggable switch using multiple current-
generation switching ASICs. 2. An FPGA based implementation can
be realized by researchers and industry based on readily available
hardware. 3. Programmable switching ASICs can be extended to
provide the primitives needed for hot-pluggable functions.

2 PROGRAMMABLE SWITCHES
Programmable switches, proposed as RMT (recon�gurable match
tables) [6] and implemented in e.g., the Barefoot To�no ASIC [23],
emerged to solve two shortcomings of previous SDN switches:
parsing of arbitrary headers and more universally programmable
actions. In RMT, the parser maps header �elds from variable packet
o�sets to �xed memory addresses in the header vector, which then
passes through a �xed number of match-action stages, e.g., between
10 and 20 stages on the Barefoot To�no [1], as illustrated in Figure 2.
Each stage matches some �elds of the header vector against tables
to select actions that calculate a new header vector. Additionally,
each stage has a small amount of stage-local registers, counters, and
meters which can be accessed and modi�ed by the action. Finally,
the deparser recombines the header vector into a packet header.

On a programmable switching ASIC [6], each match-action stage
processes one packet per cycle. This design gives a �xed latency and
enables a packet rate equal to the clock frequency. Therefore, func-
tionality which is expressible on such a programmable switch runs
at line-rate with only small latency. However, some programmable
switches [23] permit loops by recirculating processed packets back
into the start of the processing pipeline at the cost of reduced
throughput and increased latency. Additionally, packets can usually
be diverted to a general-purpose CPU with varying latency.

The behavior of a programmable switch is programmed and
con�gured through two di�erent mechanisms. A program written
in high-level languages such as P4 [5] describes the parser and
deparser, how to match on the header vector, and a set of avail-
able actions. As illustrated in Figure 2, these can not be changed
while processing packets. Unlike a CPU that distributes process-
ing steps over a variable amount of time, a programmable switch
performs spatial computation where individual processing steps
are assigned to distinct areas on a switching ASIC. To �t a control
program onto the �xed-size match-action pipeline, the compiler
performs optimizations such as putting independent tables onto the
same match-action stage and splitting too-large tables into multiple
stages. Memory locations, such as in the header-vector, the match
tables, and stateful stage memory are statically allocated by the
compiler. Once a P4 program is loaded onto a switch, a protocol

. . .parser deparser
o�line programmable

online recon�gurable

match action
table

match action
table

Figure 2: Current programmable switch pipeline.

like OpenFlow can be used to dynamically change the content of
match tables while processing packets.

Although this architecture seems rather limited, a range of appli-
cation functionality is expressible on these switches and can take
advantage of the throughput and latency guarantees.

3 PROGR. SWITCHES AS A SERVICE
We envision, that hot-pluggable on-path software functionality
allows a data center or network operator to e�ciently manage
their own on-switch functions, enables new network services, and
is the necessary foundation to allow customers to execute their
own functions in the provider’s switching fabric. Especially with
the ability to execute custom switch programs in someone else’s
network, there is no need to wait until the network operator o�ers
a service for a particular application that enables rapid deployment
of new on-switch functions. We see several scenarios bene�ting
from Programmable Switches as a Service.
On-switch functions in cloud networks. Most of the existing
examples of on-switch functions focus on distributed data center
applications typically found in the cloud such as massively parallel
databases, key-value caches, and distributed consensus. Providing
programmable switches as part of virtualized cloud networks en-
ables the bene�ts of on-switch functions for cloud customers. For
example, an aggregation operator in a database query could be of-
�oaded by the cloud customer to a programmable switch operated
by the cloud provider. Multi-tenancy on programmable switches
requires isolation to provide performance guarantees and to re-
strict the execution and packet access of on-switch functions to the
virtual network of the customer.
Fine-grained tra�c �ltering. IXPs are already experimenting
with o�ering �ne-grained tra�c �ltering to allow their customers
to mitigate DoS attacks [11]. Any network could o�er rich pro-
grammability to monitor and �lter abnormal tra�c by o�ering
access to their hot-plugging enabled programmable switches. A
victim of DoS attacks could deploy their own DoS protection into
a network close to the attack source, e.g., at an ISP, IXP, or tran-
sit provider, by utilizing the network provider’s programmable
switches. The network provider then places the supplied function-
ality onto appropriate switches in their own network. However, the
network provider should enforce restrictions such as executing a
function only on packets destined for the owner of the function.

On-demand instantiation of a customer program on a switch
is currently not possible without downtime and connectivity loss.
Isolated hot-pluggability will enable the concurrent use of a single
switch for multiple tenant functions and packet forwarding.
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4 REASONS FOR HOT-PLUGGABILITY
Hot-pluggability enables the e�cient use of switch resources by
instantiating functions only for the time and place they are needed
while sharing switches between multiple functions and tenants.
On-demand instantiation. Hot-pluggability enables e�cient re-
source usage for short-running tasks and enables immediate deploy-
ment of customer programs. Putting some application functionality
permanently onto switches prevents other applications from also
utilizing on-switch resources.

As an example, NetAccel [24] o�oads hash-join and group-by
operators onto switches. Whenever no database query is currently
processed, the resources for both operators remain unused, when-
ever the query planner decides to use only one of those operators
on a particular switch, the resources solely used by the other opera-
tor still remain unused. Using on-demand instantiation, a database
query planner can spawn operators on programmable switches
whenever a new query arrives and immediately tear them down
when processing is �nished.
Switch Sharing. Software functionality that requires only little
resources can share a switch with many other on-switch functional-
ities. For example, a single NOPaxos [25] instance compares a single
sequence number, thereby requiring only very few switch resources.
Using a separate switch for each NoPaxos instance leaves most
switch resources unused. By sharing a switch between a NOPaxos
instance and other functionality, switch resources can be much
more e�ciently used in comparison to having a dedicated switch
for each function.

Programmable switches provide a guaranteed packet throughput
thit is independent of the utilization of matches, table sizes, and
actions. Sharing a switch between as many software functions as
�t on the switch does therefore not in�uence the rate of processed
packets. The combination of switch sharing and on-demand instan-
tiation requires hot-pluggability since it enables to share a switch
between functionality with di�erent on-switch lifetime. A function
can then be added, modi�ed, and removed at any time without
interfering with other functionality on the same switch.
Individual customization. Hot-pluggability enables o�oading
application functionality that is better tailored to the current needs
instead of using a generalized variant. The �xed-size nature of
on-switch data structures complicates the use of variable length
values not only for aggregation [34] and caching [22]. When �lter-
ing data through string search with PPS [19], the o�oaded program
must be parameterized at compile time with the number of charac-
ters to compare in each pipeline stage. Comparing few characters
in a single match-action stage allows for many short string pat-
terns, whereas comparing many characters in each stage allows for
only a few but long patterns. A generalized variant that is perma-
nently on the switch only supports a single parameter, e.g., a �xed
number of compared characters in each match-action stage. With
hot-pluggability, the on-switch functionality can be customized for
each individual task.
Adaptive placement. Hot-pluggability enables functionality to
be moved to that switch where it is currently most useful. Aggre-
gation [27] and �ltering achieve better data reduction when being
placed closer to the data sources. Monitoring approaches such
as UnivMon [26] use integer-linear-programming to optimize the

placement of sketches in the network, which may lead to network-
wide placement changes for only small network topology changes.
Through hot-pluggability, on-switch functionality can be frequently
moved within the network.
Scaling. Hot-pluggability enables the dynamic allocation of re-
sources according to the current demand. For example, the SilkRoad
stateful load balancer [29] requires stateful switch memory for each
connection. Programmable switches lack dynamic memory man-
agement with all memory allocations happening at compile time.
Using hot-pluggability, a function can be replaced by a di�erently
sized variant. Therefore, the �ow table of a load balancer can be
enlarged when many new �ows are expected or shrunk when it
is mostly empty. Replacing a stateful function with a di�erently
sized variant requires migrating the state to the new variant. State
migration could be implemented in the function or in the switch
but is not yet provided by our approach.

Hot-pluggable on-switch functions provide many bene�ts but
are not supported by current programmable switches. We continue
with a description of requirements for supporting such functions.

5 ARCHITECTURE REQUIREMENTS
We propose a generic hot-pluggable switch architecture that cap-
tures the requirements for executing on-switch functions in a vari-
ety of scenarios. All on-switch function examples we found require
executing at most one function for each packet. We, therefore divide
the generic architecture into two parts as shown in Figure 3, the
front-end part, shown in light gray, which selects a single switch-
function for each packet from the hot-pluggable functions part,
shown in dark gray.
Switch front-end. The switch front-end is the non-hot-pluggable
part of the switch that provides regular non-function packet process-
ing and is required to steer packets to the hot-pluggable functions.
Whenever a packet arrives, the front-end inspects the outer packet
headers and decides which function, if any, to execute. For example,
in a public cloud data center, this decision could be based on the IP
destination address, a VXLAN header, or some kind of application
selection header. Although the front-end part of a switch program
does not need to be hot-pluggable, some parts need to be online
con�gurable. After adding or before removing on-switch functions,
the function selection must be con�gured to appropriately steer
packets through the switch.

The front-end may need to update the outer header based on
the function result and decide on the output port. Additionally,
regular packet processing, which may still happen on the switch,
can be applied to the packets before or after executing a function. As
shown in Figure 3, the front-end can be built upon programmable
switch building blocks such as a parser, match-action stages, and a
deparser.
Hot-Pluggable Functions.Amajor part of a hot-pluggable switch
is the online reprogrammable functions. Since di�erent application-
speci�c functions require di�erent headers, hot-pluggable func-
tions not only require online reprogrammable match-action stages,
but also an online reprogrammable parser and deparser. Some on-
switch functions also require the help of an SDN controller [29],
which can be virtualized [2] on the general-purpose CPU available
to the switch.
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Figure 3: Generic hot-pluggable switch architecture.

Performance Isolation. When sharing a switch between mul-
tiple functions or tenants, the performance impact between the
functions should be limited. Although the most important kind of
performance isolation is the ability to hot-plug a function with-
out interrupting everything else on the switch, some more switch
resources need isolation. Since packet recirculation impairs the
achievable packet rate, its use by on-switch functions should be
either forbidden or limited, to give other functions the chance to
process enough packets. The switch front-end should have the
ability to override recirculating decisions to allow for dynamic
accounting of recirculating bandwidth.
Program Isolation. When executing a function that cannot be
fully trusted, its access to switch and packet memory should be re-
stricted. For example in a multi-tenant cloud scenario, a customer’s
function should only have access to his customers packets. The
switch execution model of executing the switch program on each
individual packet �ts well with restricting access to only selected
packets. In our example, the cloud customer should additionally
not be able to change the outer VXLAN identi�er to ensure that
packets do not leak into another virtual network. Access to the
outer headers should therefore be limited by, e.g., giving only read
access or no access to the VXLAN identi�er.

Switch memory such as tables, registers, counters, and meters
of one tenant or function should not be able accessible by other
tenants or functions. A hot-pluggable switch architecture therefore
needs to limit each hot-pluggable function to its own memory. For
control-plane access to this memory an isolation layer similar to
an SDN hypervisor [4] is needed.

A programmable hot-plugging enabled multi-tenant switch has
several architectural requirements. How all these requirements are
realizable is presented in the next section.

6 REALIZATION
The previous sections propose certain architectural traits that a
new generation of programmable switches should support. Mainly
the need for uninterrupted multi-application support requires de-
cisive changes to the currently available hardware. This section
discusses di�erent possible implementations of a system that ful-
�lls the requirements outlined previously. The focus is trifold: 1.
A solution based on a concatenation of multiple switching ASCIs

to achieve interrupt free function switching. 2. An FPGA based
solution, which o�ers greater potential for recon�gurability at the
cost of raw throughput and ease-of-use. 3. Possible extensions to
existing ASICs to make them next-generation ready.

6.1 Using multiple switching ASICs
Although a single programmable switch needs to be taken o�ine
for reprogramming, interruption-free hot-pluggability can be im-
plemented by using two ASICs for hot-pluggability and a third
front-end ASIC that redirects packets from the physical switching
ports to the active hot-pluggable ASIC. While one switching ASIC
executes functions on packets, a second standby ASIC can be pro-
grammed with a di�erent set of functions. Once reprogramming
is �nished, the front-end ASIC redirects packets to the newly pro-
grammed ASIC thereby swapping the roles of active and standby
ASIC.
Program merging & isolation. This approach uses an ASIC that
runs a single program to concurrently execute multiple functions.
Therefore, a compiler is needed that not only merges multiple func-
tions into a single program but also ensures isolation between the
functions. The compiler therefore veri�es that each function only
accesses its own switch memory, adheres to the access restrictions
on the outer headers in the packet memory, and limits its use of
recirculation. To restrict control-plane access, the compiler provides
a mapping from allocated tables and switch memory to individual
functions.
State Migration. When moving from one ASIC to the other, func-
tions that are present on both keep working without interruption.
However, stateful functions also need to migrate their state to the
new ASIC. Since atomically migrating such state between ASICs
while redirecting packets is di�cult, this approach is most use-
ful for stateless functions. Integrating migration support within
the function may allow the migration for at least some stateful
functions.
Switch Ports. The front-end ASIC, which implements the front-
end part from Section 5, connects to the physical switch ports and
to the active and standby ASIC. Therefore, only some of its ports,
e.g., a third, are available as physical switch ports. When using
multiple front-end and active ASICs, the number of physical switch
ports can be increased.

Although using multiple ASICs provides hot-pluggability for
only some functions, its utilization of currently available ASICs
makes it easily realizable. It allows instantiating on-switch func-
tionality within the time it takes to compile the merged program,
followed by reprogramming the standby ASIC and changing a
forwarding rule on the front-end ASIC. On-switch functions are
atomically swapped without interruption of packet processing by
atomically changing the forwarding rules on the front-end ASIC.
Switch resource usage is however doubled by having an standby
ASIC that does not process packets.

The main limitation of this approach is the lack of switch support
for state migration. Providing hot-pluggability through multiple
switching ASICs is not suitable when executing stateful on-switch
functions that cannot migrate their state by themself. We, therefore
present two additional realization approaches that both do not
require state migration.
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6.2 Using FPGAs
FPGAs continue to gain traction in the data center world. They pro-
vide a good trade-o� between performance and energy-e�ciency
o�ering highly specialized architectures for a given workload when
the cost to produce a dedicated ASIC is too high. Another advantage
that is heavily utilized is the ability of the FPGA to be recon�gured
based on user-demand. For example, Microsoft uses FPGA based
Smart NICs to enforce SDN policies in the Azure cloud [12].

Next-generation switch architectures can be explored in FPGAs.
A wide spectrum of o�-the-shelf boards is available [41, 45] that
house varying sizes of FPGAs as well as connectors to communicate
over 10Gbit/s to 100Gbit/s Ethernet. An FPGA can easily keep up
with line rate for �ltering tasks and even more complex network
applications [9, 13, 30].

The �exibility of FPGAs comes at the price of increased devel-
opment time and the need for specialized hardware knowledge.
Tools such as Xilinx SDNet [42] alleviate some costs associated
with FPGA development by translating P4 programs to a hardware
description languages. In comparison to programmable switching
ASICs, the �exibility of FPGAs does not require to �t a P4 program
onto a �xed number of �xed-size stages and allows to extend a P4
program with custom logic expressed in a hardware description
language.

A straightforward switch design for FPGA can use SDNet di-
rectly [18]. However, in this approach, hot-pluggability is only pos-
sible by replacing the complete design on the FPGA, which leads to
packet loss as the FPGA cannot react on incoming packets during
recon�guration and leads to loss of state, which is problematic for
stateful functions.
Dynamic Partial Recon�guration. A more suitable approach
utilizes the dynamic partial recon�guration feature of modern FP-
GAs. This feature allows replacing only a part of the FPGAs fabric
with new logic, leaving the rest of the FPGA fully operational. As
illustrated in Figure 4, the FPGA is therefore divided into a �xed-
function region, shown in light gray, and multiple dynamically
recon�gurable areas, shown in dark gray. During recon�guration
of one region, the rest of the FPGA remains responsive to all re-
quests that are not targeted at the speci�c region to be replaced.

Apart from the online recon�gurable regions that house the
hot-pluggable functions, some additional infrastructure is needed
to provide interfaces to the recon�gurable regions and to perform
packet forwarding. Each packet is forwarded by the function selec-
tor, which can also be implemented in P4, to one of recon�gurable
regions.
Recon�gurable Area Allocation. The �xed division of the FPGA
into individually reprogrammable regions, imposes some limita-
tions on functions put into these regions. To allow for a single
large function to span across multiple regions, packet data can be
forwarded between neighboring regions as shown in Figure 4. The
compiler then needs to split a P4 program into multiple smaller
programs that can be �t into individual regions.
Isolation. The recon�gurable regions isolate functions by only
providing explicit interfaces between functions. Packet recircula-
tion can be implemented within the regions of a single function,
therefore not taking away bandwidth from other functions. For-
warding each packet to only the appropriate recon�gurable region

Recon�gurable Region 1

Recon�gurable Region 2

. . .

function selection

post processing

front-end.p4

online reprogrammable

o�ine programmable

Figure 4: Using the partial recon�gurability of FPGAs to pro-
vide hot-pluggable on-path software functions.

limits packet access. The outer headers can be made read-only by
keeping a copy in the front-end and can be made non-accessible by
only selectively forwarding headers to recon�gurable regions.

Utilizing partial recon�guration on FPGA can, in general, solve
all the problems described in Section 5. However, some caveats
apply. The size of the recon�gurable regions has to be predeter-
mined and chosen wisely based on the expected user applications,
since large regions waste unused FPGA area, whereas small regions
introduce overhead when splitting functions into multiple small
programs. Although a single recon�gurable region can be repro-
grammed within a fraction of a ms, FPGA bitstream generation
take minutes to hours to compile a function for a speci�c region.
Additionally, the �exibility of FPGAs comes at a price of lower raw
packet processing performance and fewer available Ethernet ports
compared to dedicated switching ASICs.

6.3 An extension to current switching ASICs
Only minor modi�cations are necessary to make current switching
ASICs hot-plugging enabled, since the biggest recon�gurable part of
the ASIC, the table entries [6, 23], are already online recon�gurable.
Online reprogrammable pipeline. The parser behavior, match-
table selection, actions, and the deparser are stored in the same
kind of memory as the tables, namely TCAM and SRAM. Although
TCAM and SRAM can easily be made online recon�gurable, it is
important to avoid inconsistent states without interrupting packet
processing.

The parser, as described by RMT [6], consists of TCAM that
holds transitions of the parser state-machine. To remove a part of
the parser during ongoing packet processing, the part must �rst be
made unreachable by removing the transition that leads to the to be
removed part. Once the part of the parser to be removed is no longer
in use, all remaining entries can be removed. After the pipeline is
drained of packets for a function, matches, actions, and match-table
entries can also be removed. Similarly, when adding a function to
the pipeline, all parts of this function should only be made reachable
once they are fully con�gured. The use of a per entry valid-bit to
allow for atomic insertion, deletion, andmovement of TCAMentries
is described in CoPTUA [40].
Program merging. When adding a function to an online repro-
grammable pipeline, parts of the pipeline are already occupied
by other functions. The P4 compiler must be made aware of the
available resources in order to �t a function into the currently unoc-
cupied parts of the pipeline. When allocating match-action stages
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Figure 5: Adding a hot-plugging enabled pipeline.

and table memory, care must be taken to avoid fragmenting the
unoccupied resources into many small ranges.
Isolation.When making the compiler aware of resources allocated
to individual functions, the isolation procedures described in Sec-
tion 6.1 can be applied.
Multiple pipelines. Current switches already include at least two
pipelines, an ingress and an egress pipeline, which are executed
before and after the selection of the output port. Using the ingress
pipeline for both function selection and function execution is dif-
�cult. Either function selection must be implemented with the
limited matching capabilities of the parser, or hot-pluggable func-
tions lose the ability to parse their own custom headers. Executing
hot-pluggable functions in the egress pipeline assigns the output
port to each packet before executing functions, therefore removing
the ability of hot-pluggable functions in�uence the output port.
We propose to add a third pipeline for hot-pluggable functions as
illustrated in Figure 5. In this way, function selection can be per-
formed in the ingress pipeline before handing packets over to the
custom parsers in the hot-pluggable pipeline while also providing
the possibility to in�uence the output port from the hot-pluggable
functions.

Adding a third pipeline is doable, since RMT [6] describes how
to share most match-action resources between logically separate
ingress and egress pipelines and some switches [1] already include
additional but non online reprogrammable pipelines for extra pro-
cessing.

Extending switching ASICs for hot-pluggability does enable on-
demand instantiation of functions running at the full switch line-
rate within a networks switching fabric. The exact cost of making
a switching ASIC online reprogrammable is not known to us since
we did not yet implement any of the presented approaches.

7 RELATED APPROACHES
Deployment problems for on-switch in-network computing have
been widely recognized [19, 24, 32]. NetAccel [24] proposes to avoid
on-demand instantiation by permanently putting generalized ag-
gregation functionality onto switches, whereas PPS [19] proposes
to use dedicated switches without forwarding duties as o�oad-
ing appliances for a single application functionality. Tokusashi
et al. [38] analyze that on-demand in-network computing can de-
crease power consumption but have not considered how to change
switch programs. Ports et al. [32] provide guidelines for on-switch
in-network computing, suggesting to put generalized functionality
onto switches to avoid deployment problems.

Hot-pluggability is possible within an active network [37] with
approaches such as tiny pack programs [20] where switch programs
are embedded into the forwarded packets. Since each packet may
carry a di�erent program, this provides perhaps the highest degree
of hot-pluggability.

Online recon�guration of match-table entries is an integral part
of SDN [28] and multiple controllers can be used with SDN hyper-
visors [4]. We want to go further in also enabling hot-pluggability
for the underlying data-plane programs.

P4Visor [44] proposes A-B Testing of P4 programs by putting
both programs onto the same switch while optimizing resource
usage throughmerging similar program parts. Although they do not
tackle the problem of interruption-free deployment, their merging
algorithm could be useful when sharing a switch between multiple
application functionality.

Hyper4 [16] and HyperVDP [43] emulate a programmable switch
within a P4 program by encoding the switch program within match-
action tables, thereby enabling hot-pluggability of P4 programs.
They, however, focus on the composition and modi�cation of vir-
tual switches in virtual networks, while we want to improve the
deployability of on-switch application functionality. Hyper4 uses
massive packet recirculation to implement a hot-pluggable parser
thereby dividing the achievable packet-rate by the number of parsed
headers, whereas HyperVDP avoids recirculation by removing the
programmable parser in only matching on �elds at �xed packet
o�sets. Hyper4 and HyperVDP need 6-13 and 6 match-action stages
to emulate a single match-action stage, which allows for only 1-3
emulated match-action stages on the 10-20 stages [1] available
in the Barefoot To�no. We propose to modify the programmable
switch architecture to enable full hot-pluggability without excessive
resource consumption. In comparison to Hyper4 and HyperVDP,
we propose to keep the programmable parser, to not decrease the
achievable packet rate, and to not decrease the number of available
match-action stages.

8 CONCLUSION
Hot-pluggability brings the deployment of on-switch programma-
bility to a new level, enabling cloud providers to o�er switch pro-
grammability to customers and even enabling ISPs to o�er some
on-path edge computing. We describe architectural requirements
as well as three approaches to realize our vision of hot-pluggable
on-path software functionality, all of which atomically add and
remove on-switch functions without interrupting packet process-
ing. Putting together multiple switching ASICs is the most simple
of the presented approaches at the cost of not supporting stateful
functions. Our FPGA based proposal uses of the shelf hardware,
but requires FPGA knowledge and supports only few switch ports.
Modifying a switch ASIC may allow cheap hot-pluggability for net-
works and data-centers, but is di�cult to implement as a researcher.
Although we did not yet implement these three proposals, we be-
lieve that all of them are feasible. Hot-pluggability is the necessary
foundation for Programmable Switches as a Service and raises many
new questions, ranging from resource allocation, placement, and
accounting, to state migration.
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