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Abstract

Large-scale cyber-physical systems such as
manufacturing lines generate vast amounts of data to
guarantee precise control of their machinery. Visions
such as the Industrial Internet of Things aim at making
this data available also to computation systems outside
the lines to increase productivity and product quality.
However, rising amounts and complexities of data and
control decisions push existing infrastructure for data
transmission, storage, and processing to its limits. In
this paper, we exemplarily study a fine blanking line
which can produce up to 6.2 Gbit/s worth of data to
showcase the extreme requirements found in modern
manufacturing. We consequently propose integrated
data processing which keeps inherently local and
small-scale tasks close to the processes while at the
same time centralizing tasks relying on more complex
decision procedures and remote data sources. Our
approach thus allows for both maintaining control
of field-level processes and leveraging the benefits of
“big data” applications.

1. Introduction

Modern manufacturing systems generate orders of
magnitude more data than actual goods. Cyber-physical
information systems aim at making these vast amounts
of data accessible, interpretable, and connected, to
derive insights and knowledge [1]. These serve as
a foundation for realizing visions variously termed
the Industrial Internet of Things, Industry 4.0,
or the Internet of Production [2]. Increasingly
digitized production processes are envisioned to
leverage data from various sources, including suppliers,
manufacturing, development steps, and product usage.
This enables highly-integrated value chains that employ
data analytics to derive insights about detailed
aspects of the production processes, yielding increased
product quality [3] and more efficient manufacturing
environments [4].

One distinct characteristic of cyber-physical
information systems in the context of production is
their ability to utilize real-time data collected during
one manufacturing process to affect this or other
processes [5], potentially integrated into larger-scale
information systems for supply chain management.
For example, a close monitoring of manufacturing
processes makes it easier to detect and react to sudden
changes, e.g., in raw material properties, environmental
conditions, or equipment failures, consequently
reducing product rejects. At the same time, it also
enables unprecedented traceability of goods: Individual
products can be traced down to the manufacturing
conditions of individual parts or materials [6], enabling
downstream producers to assess overall quality and
quickly react in cases of fluctuations in quality.

However, as the amount of data generated by
manufacturing systems continues to increase, more
pressure is put on the infrastructure transmitting,
storing, and processing this data [7]. Eventually,
existing communication infrastructure will be saturated.
Likewise, processing and storage capacities close
to manufacturing processes are typically highly
specialized, offering reactions to input signals down to
the low millisecond range but very limited potential for
scaling or adapting to increasing data rates. In contrast,
off-site computing and storage [8] can easily scale
with increasing demands but suffer from throughput
limitations and unpredictable latencies and jitter,
rendering completely remote data handling infeasible.

In this paper, we focus on the potential of
integrated data processing in large-scale cyber-physical
systems to cope with the latency and bandwidth
impacts of ever-increasing data generation. We
propose an integrated and adaptive approach which
facilitates data processing appropriate for the scopes
and complexities of the respective tasks: Local and
small-scale problems shall be solved locally, while
more complex decision processes can be handled in
increasingly centralized fashions. Consequently, we
present methods to (i) selectively preprocess data
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close to its origin to reduce network load; (ii) distribute
parts of the control logic into the network to
cater for scalability limitations of current control
equipment and increasingly tight decision time bounds
in manufacturing; and (iii) integrate off-the-field
processing capabilities to allow for the creation of
detailed process models that can help increasing
efficiency and product quality. By integrating data
processing in manufacturing systems, we pave the way
towards large-scale cyber physical information systems.

In the following, we first highlight the value of big
data in manufacturing (Section 2), before addressing
best practices in data generation, communication, and
processing in this field (Section 3). We then present a
fine blanking plant as the ideal use case to study the
future demands for data processing in manufacturing
systems (Section 4). Finally, we discuss the different
building blocks to realize our proposed integrated data
processing approach (Section 5).

2. The value of big data in manufacturing

Since its inception in the early 2000s, the term
“big data” has been used both for the fact and the
hope that ever-increasing numbers of data generated
at ever-shorter time scales can be utilized to improve
several aspects of society and business, e.g., through
personalized suggestions in online shops, improved
policy making [9], and advances in healthcare [10].

Especially in manufacturing and production
engineering, data has already become an important part
and can serve as a foundation for substantial revenue
increases [11]. Here, big data can improve aspects such
as supply chain management, marketing, and support by
harnessing readily-available or easily-obtainable “soft”
data on supply product prices, customer satisfaction,
or market analyses. A study of the McKinsey Global
Institute [11] argues that an increased use of big
data can lead to decreases of, e.g., 25 % to 50 % in
product development costs and time to market based on
crowdsourcing and advanced life cycle management.
Likewise, the study anticipates a gain in profit margins
by 2 % to 3 % based on better demand forecasting.

While these numbers already constitute substantial
gains, we, in this paper, focus on another aspect, which
is more directly related to the core of manufacturing:
The manufacturing process itself. Most data currently
generated on shop floors is discarded once a perceived
“key value” such as controlling the machinery has been
extracted [9, 12]. Why then would manufacturers, given
their large-scale, heavy machinery and thus expensive
long-term investments, want to invest into big data
processing technology also in their manufacturing lines,

especially when these lines already efficiently produce
high-quality products and when there are gains (as
above) that are probably more easily obtainable?

The answer to this question are possible competitive
advantages in production and product quality.
Following the vision of the Internet of Production,
context-aware data collected during the manufacturing
process itself shall, together with data derived during
development and product usage, be made available
in real-time to enable cross-domain collaboration
during the complete life cycle of a product [2]. As
a result, manufacturers can reduce material costs,
tool abrasion, and machine failures while improving
product quality. We study the benefits resulting from
an integrated processing of big data in a case study of
a fine blanking plant in Section 4.2, showing that also
gradually retrofitting existing machinery can result in
gains worthwhile the initial investments.

However, simply tapping into each available data
source might not yield much additional gain from a
certain point on – known as the “low value density”
of big data [13]. The value that can be created
from machinery data will strongly depend on whether
useful portions can be properly identified and processed,
requiring access to all data in the first place. We, in this
paper, thus focus on the challenge of processing vast
amounts of data. As we show in the following, current
technology and data processing prevents – or at least
severely limits – the processing of large amounts of data
in industrial settings. Data processing in cyber-physical
information systems hence needs to be fundamentally
rethought to fully embrace the value of big data.

3. Data processing in industrial scenarios

While data processing in the consumer and office
market is clearly dominated by few technological
standards such as Ethernet/IEEE 802.11, IPv4/IPv6, and
TCP/UDP, more than 20 interconnection technologies
(referred to as fieldbuses) are currently employed on the
field and process level at the bottom of the automation
pyramid in cyber-physical information systems as
shown in Figure 1 [14]. Prominent examples for
protocols at the field and process level in industrial
scenarios are the early HART developed by Rosemount,
Profibus and Profinet endorsed by Siemens, Modbus by
Schneider Electric, and EtherCAT by Beckhoff.

This high variety of technologies is rooted in
fundamentally different requirements of process and
machinery control when compared to the consumer
world: Physical processes operating at high speeds or
with hazardous materials have to be tightly controlled,
i.e., the control system needs to guarantee low and
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Figure 1. In the typical organization of industrial

systems, constraints increase towards the bottom,

while computation power increases towards the top.

predictable upper bounds on data communication and
calculation times. Otherwise, reactions to conditions
or events on the field level may arrive too late, with
potentially catastrophic consequences [15]. Consumer
equipment, such as PCs or smart TVs, in contrast, rarely
has to meet hard deadlines; misses mean inconveniences
to the users but no potential loss of control over intricate
processes. As the arrows in Figure 1 indicate, demands
with regard to time-critical handling of data decrease
towards the top of the automation pyramid in traditional
industrial systems as the upper layers increasingly
integrate humans into the decision loops, leading to
less time-critical tasks. For example, company-level
planning tools require large volumes of data to be
communicated and processed, but not in real-time.

To address determinism and reliability requirements,
vendors of control systems have adopted a
communication and computation model on the field
level as shown in Figure 2. In this regime, the central
entity is the eponymous controller, usually a so-called
Programmable Logic Controller (PLC), a ruggedized
computing system specifically designed for industrial
purposes. Readings from sensors are either transmitted
over a dedicated, per-sensor connection directly to the
controller, or via a shared communication channel in
which the controller mediates channel access.

The controller periodically computes the next
actions to take based on the current inputs and uses
similar output channels to instruct actuators on their
operation until the end of the control round, when
the new instructions are sent. Most of the employed
sensors and actuators are built with broad applicability
in mind and possess little to no internal processing logic.
Instead, they rely on the controller for the interpretation
of their readings or an adaption of their settings. The
system behavior is hence completely determined by
the software in the controller, which acts as the sole
communication partner of all sensors and actuators.

Figure 2. Physical processes enforce tight constraints

on the control loops at the field level. Vendor-specific

solutions hinder advances below the supervisory level.

The controller-centric design at the lower levels of
the automation pyramid has a number of ramifications.
First, the concentration of processing logic within the
controller reduces costs by rendering an implementation
of such functionality on the individual devices
unnecessary. Second, encapsulation overheads for data
items are reduced to a minimum as the controller
exactly knows the used data formats. Similarly, as
only a strictly defined set of devices is communicating,
only minimal addressing overhead is incurred. On the
downside, despite a rise of Ethernet / IP also on the field
level [14], the employed communication technologies
still differ between controller manufacturers, resulting in
a fragmented market and potential technology lock-ins.

Most importantly, however, the systems scale only
vertically, i.e., size and capabilities of the systems are
limited by the controllers, which are often expensive
to extend or replace. Thus, it is strenuous and
expensive to augment existing system architectures with
additional equipment and functionality, especially when
considering time-critical decision cycles in the context
of cyber-physical information systems. Furthermore,
several of the scenarios envisioned for future production
processes do not only require real-time decisions to be
also taken on higher levels of the automation pyramid
(e.g., changing field-level parameter sets based on a
large-scale model of the process), they also necessitate
increasing amounts of data to be transmitted.

Consequently, to take full advantage of the potentials
of big data, we have to integrate data processing
functionalities into the lower levels of the automation
pyramid or even rethink the pyramidal structure of
data communication and processing in general. In
the following, we present a detailed analysis of a
manufacturing line which would particularly benefit
from integrated data processing and derive the demands
that this manufacturing line poses with respect to
computation and communication.
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4. Case study: A fine blanking line

We selected a fine blanking line as use case
to study the future demands for data generation
and processing in manufacturing systems, especially
considering bandwidth and latency requirements. In a
nutshell, fine blanking is an effective and economical
precision forming process for manufacturing billions
of identical work pieces. Fine blanking reduces
costs in the production of various products such as
metal components used in automobile or aerospace
industries [16]. However, due to uncertainties prevalent
in manufacturing, manufactured pieces are not identical,
requiring cost-intensive secondary finishing steps.

A typical setting of a fine blanking line as deployed
in our shop floor is shown in Figure 3. First, a decoiler
decoils the raw material, which is usually a <1 mm
to 20 mm thick and 50 mm to 250 mm wide metal coil
which then enters the leveler [16] where the material is
as far as possible freed of its residual stresses. Since
pressing is a discontinuous process but decoiling and
leveling are continuous ones, there is a need for a
sling which acts as a buffer between both processes.
Eventually, before the actual fine blanking process can
take place in the press, a lubricant film has to be applied
on the metal sheet which is then cut by the tool of the
press. At each step in the manufacturing line, machines
and additional sensors generate data that needs to be
propagated to and processed by the other machines
involved in the process. As a simple example, the state
of the press influences the working speed of the decoiler,
leveler, and lubricator. In a manufacturing plant of a fine
blanking company the number of fine blanking lines can
vary in a range of 4 to 24. Additionally, those plants
can also contain machines used to operate secondary
operations that are required to finish work pieces.

The goal of fine blanking is to produce identical
work pieces. However, regardless of the good quality
in general, all work pieces differ in their quality features
that are the tear-off surface, fine cracks in the functional
surface, the burr and, especially, die roll [17]. The
die roll is a roundish defect at the cutting edge of the
work piece, caused by the plasticity of the material,
and it is the most important potential defect in fine
blanking as it reduces the dimensional accuracy of the
cutting edge [18]. Thus, thicker sheet metal strips and
secondary machining must be used to compensate for
the die roll and improve dimensional accuracy. There
are several process parameters that influence the die
roll size such as the design of the tool used, the work
piece geometry and thickness, material properties [19],
the cutting speed, and other process parameters that are
set during the process [20–22]. Thus, the fine blanking

Figure 3. The four main processing steps of the fine

blanking process considered in our case study are

controlled by a series of hierarchically organized PLCs.

process is an intricate process with no generic process
setup for each component produced.

In the following, we specifically study a fine
blanking line consisting of a coil system and leveler
from ARKU and a servo-mechanical Feintool XFT
2500 speed fine blanking press that achieves both
high cycle rates of 140 strokes/min and variable stroke
characteristics. As we operate our line in a research
setting, we are able to completely monitor all process
data and to attach additional sensors, such as for
important forces within the cutting process, to fully
exploit the potential of the fine blanking process in the
context of cyber-physical information systems.

4.1. Control and communication structure

To better understand how the fine blanking process
is controlled and how it can be optimized based on data,
we analyze both the data involved as well as its flow
through the machinery and control systems.

The control system follows the structure introduced
in Section 3. A simplified schematic of the wiring
is shown in the lower part of Figure 3. Sensors
and actuators of the four processing steps (decoiler,
leveler, lubricator, and press) are connected to a number
of PLCs, which form a hierarchical network that is
overseen by the PLC at the press (the so-called master
PLC; all other PLCs are referred to as slaves). The
master PLC runs the general control program of the line
and instructs its slaves. The slaves control sensors and
actuators in specific parts of the line on behalf of the
master via internal fieldbus networks (dotted gray lines).

The master PLC maintains a process image
comprising all data necessary for controlling the line.
To control the equipment attached to the slaves, a part
of the master image is conveyed towards the slaves at a
frequency of 2.5 kHz (equal to one signal every 0.4 ms);
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the slaves send select information to the master at the
same rate. As broken down in Table 1, the process image
of the master consists of 1406 individual sensor readings
and actuator control signals in the final configuration
level. Built-in signals of the machinery amount to 1333
or 94.8 % of the generated data items, with the rest
resulting from additional sensors attached or planned
in our research environment. The built-in signals are
updated at the same frequency as the process images are
exchanged, yielding a data rate of 43.12 Mbit/s.

Today, machine operators have a wealth of
experience of the processes and can sense possible
defects in the process setup or upcoming failures due
to vibration, noise, or visual effects. Hence, fully
benefiting from the advantages of big data requires to
deploy sensors in- and outside the machine. Within
the machine itself, additional internal sensors can be
deployed in the press, to measure forces in the leveler
and the press, and to detect vibrations in the press as
shown in Table 1. These sensors, however, need to be
paced at frequencies as high as 1 MHz and may produce
additional data rates of roughly 137.6 Mbit/s, 3.19×
the data rate produced by the built-in signals. Beyond
that, some of the sensors are envisioned to perform best
when paced at higher frequencies than the 2.5 kHz of
the built-in equipment. Given the current process image
distribution, it may hence become necessary to send
process images or parts thereof more often, resulting in
increases by several orders of magnitude in data rates.

Outside the machine, additional external sensors
measuring the environment, infrared temperature
sensors, and industrial cameras for monitoring the
produced work pieces may add signals with a rate of up
to 6.03 Gbit/s, resulting in an increase of two orders of
magnitude from the baseline. More sensors to monitor
influencing factors not yet covered by our setup may be
added to the system at later points, further increasing the
mass of data our infrastructure needs to handle.

Summing up our analysis, operating fine blanking
lines with additional sensors will quickly overload the
controller and network technologies at the field level.
Considering larger plants with several lines operated in
parallel, this effect will also become noticeable in the
higher levels of the automation pyramid.

4.2. Potential of integrated data processing

The fine blanking process comprises various steps
which can benefit from an increased availability of
data. In the following, we give an overview of
possible optimizations, ranging from cost reductions to
improvements in the quality of the produced pieces.
Reducing material costs. The cost of produced work
pieces in a fine blanking process is affected by material

Table 1. A fine blanking line equipped with built-in

and additional sensors produces data at a frequency

of up to 1 MHz and a data rate of 6.2 GBit/s.

Signal group Size
(Bit)

Freq.
(kHz) Count Data rate

(Mbit/s)

B
ui

lt-
in

se
ns

or
s

an
d

co
nt

ro
l

Leveler 32 2.5 36 2.88
Lubricator 32 2.5 32 2.56

Press

64 2.5 3 0.48
32 2.5 44 3.52
16 2.5 237 9.48
8 2.5 428 8.56
1 2.5 481 1.2

Other
equipment

1984 2.5 1 4.96
64 2.5 32 5.12
48 2.5 35 4.2
16 2.5 4 0.16

A
dd

iti
on

al
in

te
rn

al
se

ns
or

s

Press 32 50 9 14.4
32 20 2 1.28

Forces
in leveler 32 10 7 2.24

Forces
in press

32 50 4 6.4
32 10 4 1.28

Vibrations
in press

32 1000 2 64
24 1000 2 48

A
dd

iti
on

al
ex

-
te

rn
al

se
ns

or
s Environment 32 1 36 1.15

Infrared
temperature 2.458e6∗ 0.032 2 157

Industrial
cameras 1.68e8† 0.007 5 5880

Sum 1406 6218.87
∗ 640x480 pixels, 8 bits per pixel † 14 megapixels, 12 bits per pixel

costs to a large extent, since only material with very
high quality standards can be used for fine blanking.
Consequently, a central optimization of the fine blanking
process is to reduce the amount of used material.
Because material in the height of the die roll has to be
ground off in a secondary step to achieve dimensional
accuracy of each work piece, an effective reduction of
the die roll enables the manufacturer to buy thinner and,
thus, cheaper metal coils. It is known that process
parameters and material properties influence the die
roll [19], therefore, an analysis of data related to these
parameters and properties can result in models that
automatically adjust process parameters in real-time to
reduce the die roll, substantially reducing material costs.
Improving work piece quality. Beside the die roll,
there are several other quality features of fine blanking
work pieces, such as demolition and fine cracks in the
functional surface [17]. Because work pieces produced
by the fine blanking process are often security-critical
components, a defect in one of those measures results in
a rejected part. Hence, using the available process data
to derive an accurate process quality prediction model
for the sheared functional surface can possibly reduce
the amount of rejected pieces drastically.
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Figure 4. Our proposed architecture allows local tasks such as data preprocessing (left), emergency handling

(center left), and small control routines (center right) to be solved on off-the-shelf hardware in the field-level

network. It reduces network load and allows a tight integration of more powerful edge/cloud services (right).

Increasing tool life cycle. Another important potential
for optimization lies in the punch abrasion within the
tool used to cut the pieces. The blanking punch
within the tool is the component that actually cuts the
material. Hence, it has to be made of high-strength
material and requires complex, and thus expensive,
casting procedures [23]. However, as the coil strength
can differ drastically over the coil length [24], there
is a risk to wear off or even damage the punch tool
when using the same process parameters (e.g., forces)
for each punch. In the worst case, a complete sequence
of the coil has to be considered to be not usable due
to its inferior quality, since the cutting process could
damage the blanking punch or other components of the
tool. If we were able to monitor material properties
and the applied lubricant film in real-time, sequences
with greater thickness, higher strength, or bad lubricant
distribution could be detected and the different forces
used in the cutting process could be adjusted to avoid
abrasion. Thus, we can increase the lifetime of costly
tools and avoid interruptions due to broken tools.

Reducing machine failures. Just within the fine
blanking press itself there are more than 100 different
components, each producing control and status data. We
can use this data to create an event log of the components
in the press, lubricator, and leveler. This log can then
be utilized to derive a process-flow model representing
the complete flow of events during a fine blanking
process. Computing such a model is non-trivial and
computation-intensive but enables the manufacturer to
validate the current process state and stop the process if
it enters a state pointing towards an upcoming machine
failure with potential tool damage. The speed of the fine
blanking process (up to 140 strokes/min in the press)
requires low latency computations since some failures
can only be predicted a few strokes beforehand.

Although conceived with our distinct manufacturing
line in mind, above optimizations are general enough
to be applied to similar fine blanking lines in other

environments, emphasizing the general potential of
cyber-physical information systems in manufacturing.
However, as we have shown in Section 4.1, when
maintaining our current control and communication
structure, we will not be able to leverage this potential.

5. Integrated data processing for large-
scale cyber-physical systems

Our case study of a fine blanking line highlights
the future demands with respect to data generation and
processing in manufacturing systems. Most notably,
these demands result in huge bandwidth consumption
and low latency requirements. To enable manufacturers
to handle the ever-increasing amount of data collected in
interconnected manufacturing systems, we propose an
integrated and adaptive architecture for data processing
in large-scale cyber-physical systems as shown in
Figure 4. In a nutshell, our approach aims to solve
those problems locally that are local and small-scale
in nature while realizing processes more centrally that
require access to data from different sources and often
more complex computations. To achieve such an
integrated and adaptive architecture, we in the following
discuss approaches to (i) select, reduce, and preprocess
field-level data; (ii) allow the processing of data also in
the low-level interconnection fabrics; and (iii) offload
processing steps that cannot be performed by in-field
equipment to edge and cloud resources.

5.1. Data selection, reduction and
preprocessing

Our analysis of a fine banking plant revealed a
vast number of data points generated per second.
Indeed, if only the built-in data of a fine blanking
line’s machinery were to be recorded, e.g., to reduce
machine failures (cf. Section 4.2), this would result in
a total of approx. 19.4 GB or 12 billion (short scale)
of individual data items per hour for that line only.
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For the additional sensors, this number rises to approx.
2.78 TB or 29.41 billion items, respectively. Operating
more than one line will hence quickly overload most
current network and storage technologies, and the
pressure will become even more pronounced with
larger manufacturing lines or additional data sources.
Due to limitations in the built-in logic of the field-level
equipment (cf. Section 3), it is often impossible to
selectively transmit only specific data items, although
some of these items might yield only marginal gains in
analyses (cf. Section 2).

Consequently, it may become inevitable to allow
future networks in large-scale cyber-physical systems
to permit only those sensor values to travel through
the network which have been deemed necessary either
for the operation of the machinery or selected by
downstream processes. Considering the increasing
proliferation of Ethernet- and IP-based communication
on the field level (cf. Section 3), such functionality can
be based on software-defined networking (SDN). SDN
protocols such as OpenFlow [25] allow the installation
of fine-grained forwarding rules in routers and switches
(as shown on the bottom left of Figure 4), including
possibilities to drop packets (e.g., those not currently
needed by downstream processes) or to reroute them
(e.g., towards analyzers) without intervening with the
operation of the sensors themselves. Likewise, rate
limitation may be used match signal frequencies to a
controller’s or downstream analysis process’ periodicity.

By selecting which data to relay through the
network, we can already relieve some stress exerted
on the infrastructure. Still, recent advances in SDN
technology also allow for tackling further problems:
Considering our fine blanking case study (cf. Section 4),
we notice sensors that are organized into arrays, e.g.,
the force sensors in the press unit, which are uniformly
distributed over the punch. While this yields a finer
resolution of the forces exerted on the material, an
individual value only conveys a meaning in relation to
the other values, i.e., when it largely diverges from the
forces sensed by its counterparts. Hence, when the flow
of the force sensor values is transmitted through the
network, we can apply statistical aggregation methods,
e.g., mean or median, as well as outlier detection on the
data. We can then relay only such data items that deviate
from the rest or surpass a defined threshold, indicating
trends or changes in the operational state of the system.

Such methods have previously been successfully
applied in wireless sensor networks [26], where
the nodes suffer from comparably limited processing
abilities as devices at the bottom of the automation
pyramid. While SDN methods have not originally been
developed to perform elaborate operations on payloads

(in this case, the sensor values), techniques such as
P4 [27] enable the implementation of more elaborate
functionality including a rudimentary manipulation of
the payloads, and have recently witnessed an increase
in interest by network equipment vendors [28].

The aforementioned methods rely on a common
understanding of the involved equipment with regard to
data formats. However, the highly fragmented fieldbus
market (cf. Section 3) also resulted in a plethora of
higher-level data exchange protocols. Only very few of
these protocols are directly interoperable and we expect
that selected messages may need to be converted by the
SDN switches to interconnect previously incompatible
equipment. Some formats such as CANopen and
CIP have already seen adoptions by multiple vendors
sensors and actuators [14], so that the number of
conversions necessary will likely decrease with an
increased adoption of such standards.

5.2. Distributed and in-network processing

While data selection, reduction, and preprocessing
realizes integrated data processing for data used for
monitoring and later offline analyses, data used for
actually controlling equipment interacting with the
physical world needs to be treated such that tight
control loops can still function within the limits of their
respective time bounds. Most time-critical calculations
in manufacturing are currently performed on centralized
PLCs. Our analysis of the fine blanking line in
Section 4.1 has shown that in practice, especially
the scalability limitations of centralized controllers are
overcome by introducing a hierarchy of controllers
exchanging their process images. Since each PLC
maintains its own, centralized view of an albeit
smaller problem, this approach is both costly (PLCs
are expensive) and does not alleviate the fundamental
limitation of only vertical scalability (cf. Section 3).

We thus need to introduce methods that allow an
inherent horizontal scalability of processing on the field
level, essentially by enabling additional equipment (not
just controllers) to analyze and act upon data that is
generated on the field level, thus relieving stress from
centralized controllers. There have been first attempts
at designing controllers that are distributed within
networks. The IEC-61499 standard, e.g., addresses
the question of how to create control subroutines that
can be distributed among multiple controllers that
communicate with each other [29]. The standard
is relatively young (the first edition was published
in 2005) and has remained widely unused due to
inconsistencies in its interpretation by the forerunners
of its adoption [30], leaving plant owners unsure
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about which of the approaches to choose. However,
the standard’s general approach of allowing various
elements within the network to process data, as long as
they can meet the required time bounds, is compelling.

The most likely (since ubiquitously available)
resources for additional computations are personal
computers and their low-cost miniature counterparts
such as Raspberry Pis [31]. However, most operating
systems, including the popular Linux kernel, by
design introduce packet processing overheads due to
scheduling, context switches, and security precautions,
so that small data items – such as sensor readings – may
be hard to process in a timely fashion. Various attempts
have been made to counter these effects, ranging
from optimizing packet handling [32, 33], partially
offloading computations from the application level to the
kernel [34], or bypassing the kernels altogether [35].

These approaches are especially useful for small,
relatively static answers to specific requests, e.g., for
DNS or HTTP servers. Related work shows noticeable
gains compared to kernel-based approaches in both
response time (e.g., down to one-digit milliseconds [34])
and general throughput (more than one order of
magnitude [35]). As most sensor and actuator signals
are small, when the control laws are rather static
and straightforward, similar gains can be achieved
in cyber-physical systems. Ultimately, we can use
off-the-shelf hardware in combination with – or in place
of – traditional controllers in such situations.

While these techniques still employ general-purpose
hardware and software, more radical approaches aim
at using network hardware for the execution of
programs (as depicted in the center of Figure 4). By
employing networking programming languages such as
P4 [27] (cf. Section 5.1), we can offload generalized
match-action-based rules to switches and routers. For
example, simple reactions such as stop signals in
emergency situations (as indicated by specific sensor
readings) can be pushed directly to the network
hardware closest to the respective sensor(s), thus
reducing the reaction time to the minimum possible.

Following a different approach, the expressiveness
of programs that can be executed on network devices
can be further increased: By offloading so-called
Extended Berkeley Packet Filter (eBPF) programs,
originally developed for fast handling of network
packets in the kernel [36], to network hardware,
control algorithms can be run within the network [37,
38]. This leads to dramatic increases in the control
quality under deteriorating latency and jitter conditions.
To empirically verify that eBPF programs exhibit the
upper bound guarantees of PLCs, the runtime bounds of
in-network functions can be predicted [39]. Although

eBPF programs are not Turing complete [40], these
works show the general feasibility of realizing control
operations using in-network computation. If even
more complex computations are required, Tasklets allow
distributing small computation units to lightweight
virtual machines distributed along the communication
path under various optimization criteria [41].

The idea of distributed control constitutes a
considerable deviation from the prevailing design
space of control applications. Furthermore, the
conditions under which theoretically optimal and
tractable distributed control laws can be found is an
open question [42]. However, we did not identify
fundamental limitations pertaining distributed control
in large-scale cyber-physical systems. Hence, the
above approaches are viable options for alleviating the
scalability limitations of centralized controllers.

5.3. Handling higher-effort computations

Data selection, reduction, and processing as well
as distributed and in-network processing are beneficial
especially to operations which are somewhat confined,
e.g., because they deal only with relatively small
amounts of data at once or are of local nature.
However, the visions of the Industrial Internet of Things,
Industry 4.0, and the Internet of Production also
necessitate handling complex operations on very large
amounts of data at once. Since the sheer numbers
of generated data items exceed the capabilities of
field-level devices (cf. Section 3), we need the ability
to process data also outside the field to enable more
complex computations.

Cloud services with their virtually unlimited
scalability offer viable solutions for many use-cases that
incur massive amounts of data to be processed [8,43,44]
and can be used to store and analyze data generated at
different manufacturing sites, which may be physically
far apart. In scenarios of plants with dozens of lines
generating data, limitations in the Internet uplinks of
the plants may however ultimately limit the amount
of data items that can be transferred, even if data
reduction (cf. Section 5.1) is applied. Yet, it is not
only the quantity but also the topicality of data that
provides challenges: Many of the data items generated
by manufacturing machinery are streaming data, so that
in cases of latencies in their processing, the items may
loose value [45]. Very complex computations such as
updating a model to detect machine failures based on
current and historical data (cf. Section 4.2) might take
so long on unsuited systems that benefits are nullified.

On-premise (edge) clusters (shown on the right
of Figure 4) enable manufacturers to perform those
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analyses and model generations that cannot be
outsourced to off-premise cloud infrastructure because
of bandwidth restrictions [46]. Yet, as on-premise
clusters need to provide local data storage, this approach
quickly becomes costly and inefficient. Hybrid
cloud solutions can use on-demand data storage and
computing power to dynamically outsource computation
efforts based on resource demands [47].

To manage data processing in such distributed
systems, the lambda architecture realizes a software
stack for distributed computation on virtually arbitrary
amounts of data [48]. It consists of a streaming layer
and a batch layer, both designed to scale horizontally
with the cluster size. The task of the streaming
layer is to fulfill low latency requirements and high
throughput demands in a distributed computation model
with a built-in, non-persistent, in-memory streaming
database [49]. The batch layer, in turn, stores all
generated data in a data lake, i.e., a distributed file
system for different data formats usually realized on
relatively cheap object storage, and can use the whole
historical dataset to generate new models. For both
layers, various distributed processing models exist, all
focusing on specific optimization goals such as latency,
throughput, fault tolerance, usability, or scalability [48].

Eventually, the derived models and predictions
are persisted in non-relational “NoSQL” databases.
Classical relational databases provide atomicity,
consistency, isolation, and durability of transactions,
which however renders them hard to scale out and
vulnerable to partitioning [50]. NoSQL databases,
in contrast, target both horizontal scalability with
frequent reads and writes [51] and partition tolerance,
with the drawback of lacking either full availability
or consistency [52]. Best-effort-availability systems
and eventually consistent models and aim to mitigate
these problems [53]. The Hadoop ecosystem offers a
variety of options to implement such architectures with
open-source frameworks [54].

6. Conclusion

Large-scale cyber-physical systems such as
manufacturing lines nowadays generate massive
amounts of data, the majority of which is currently
being discarded after it has been used for controlling
the manufacturing machinery. Recent academic and
industrial trends such as the Industrial Internet of
Things, Industry 4.0, or the Internet of Production
however advocate taking advantage of the generated
data for improving productivity and product quality.

Based on the real-world use case of a fine blanking
line, we argue that the controller-centric organization of

data processing on the field level – the de-facto standard
in manufacturing for decades – will prevent further
advancements for data-driven manufacturing. Thus, we
suggest an integrated and adaptive architecture which
allows further devices in the field-level networks and
at the nearby network edges to contribute processing
power. We provide an overview of emerging
networking and distributed computing technologies that
are well-suited for realizing such an architecture.

Our approach allows for a distinction between
local, time-bound and small-scale problems solvable
in a distributed fashion as well as data-intensive,
complex decision procedures that require potentially
more centralized resources. It is hence both amenable
to a wide variety of use-cases and inherently scalable.
As such, we can realize integrated data processing in
modern manufacturing systems and thus pave the way
towards large-scale cyber physical information systems.

7. Acknowledgments

The authors would like to thank the German
Research Foundation (DFG) for the kind support
within the Cluster of Excellence “Integrative Production
Technology for High-Wage Countries” and the Priority
Programme 1914 (“Cyber-Physical Networking”).

8. References

[1] A. W. Colombo et al., “Industrial Cyberphysical
Systems: A Backbone of the Fourth Industrial
Revolution,” IEEE IEM, vol. 11, no. 1, 2017.

[2] S. Jeschke et al., “Industrial Internet of Things and
Cyber Manufacturing Systems,” in Industrial Internet of
Things: Cybermanufacturing Systems, Springer, 2017.

[3] K. Liere-Netheler et al., “Drivers of Digital
Transformation in Manufacturing,” in HICSS, 2018.

[4] L. Monostori et al., “Cyber-physical systems in
manufacturing,” CIRP Annals, vol. 65, no. 2, 2016.

[5] J. Lee et al., “Industrial big data analytics and
cyber-physical systems for future maintenance & service
innovation,” Procedia CIRP, vol. 38, 2015.

[6] G. Schuh et al., “Promoting Work-based Learning
through INDUSTRY 4.0,” Procedia CIRP, vol. 32, 2015.

[7] L. Spendla et al., “Concept of Predictive Maintenance of
Production Systems in Accordance with Industry 4.0,” in
IEEE SAMI, Jan 2017.

[8] M. Henze et al., “A Comprehensive Approach to
Privacy in the Cloud-based Internet of Things,” Future
Generation Computer Systems, vol. 56, 2016.

[9] L. Furtado et al., “Value Creation in Big Data Scenarios:
A Literature Survey,” Journal of Industrial Integration
and Management, vol. 02, no. 01, 2017.

[10] S. Yu et al., “Networking for Big Data: A Survey,” IEEE
Comm. Surv. & Tuts., vol. 19, no. 1, 2017.

[11] J. Manyika et al., “Big data: The next frontier for
innovation, competition, and productivity.” McKinsey
Global Institute, 2011.

Page 7260



[12] V. Mayer-Schönberger and K. Cukier, Big Data – A
Revolution that will Transform How We Live, Work and
Think. Houghton Mifflin Harcourt, 2013.

[13] A. Gandomi and M. Haider, “Beyond the hype: Big data
concepts, methods, and analytics,” Int. J. Inform. Mgmt.,
vol. 35, no. 2, 2015.

[14] T. Sauter, “The Three Generations of Field-Level
Networks – Evolution and Compatibility Issues,” IEEE
Trans. Ind. Electr., vol. 57, no. 11, 2010.

[15] J. Hiller et al., “Secure Low Latency Communication
for Constrained Industrial IoT Scenarios,” in IEEE LCN,
2018.

[16] F. Klocke and A. Kuchle, Manufacturing Processes.
Springer, 2009.

[17] R. Schmidt et al., Cold Forming and Fineblanking – A
handbook on cold processing steel material properties
component design. Carl Hanser, 2007.

[18] H. Voigts et al., “Dependencies of the die-roll height
during fine blanking of case hardening steel 16mncr5
without v-ring using a nesting strategy,” Int. J. Adv. Mfg.
Tech., vol. 95, no. 5-8, 2018.

[19] T. Lee et al., “Application of the Finite-Element
Deformation Method in the Fine Blanking Process,” J.
Mat. Proc. Tech., vol. 63, no. 1, 1997.

[20] J. Stanke et al., “Setup of a Parameterized FE Model for
the Die Roll Prediction in Fine Blanking using Artificial
Neural Networks,” JPCS, vol. 896, no. 1, 2017.

[21] J. D. Kim et al., “A Study on the Effect of V-Ring
Position on the Die Roll Height in Fine Blanking for
Special Automobile Seat Recliner Gear,” in ICMST,
2011.

[22] T. Kwak et al., “Finite element analysis on the effect of
die clearance on shear planes in fine blanking,” Journal
of Materials Processing Technology, vol. 130-131, 2002.

[23] F. Birzer, Forming and Fineblanking: Cost-effective
manufacture of accurate sheet metal parts. Verlag
Moderne Industrie, 1997.

[24] F. Van-Den-Berg et al., “In-line Characterisation
of Microstructure and Mechanical Properties in the
Manufacturing of Steel Strip for the Purpose of Product
Uniformity Con,” in WCNDT, 2016.

[25] N. McKeown et al., “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM CCR, vol. 38,
no. 2, 2008.

[26] Y. Zhang et al., “Outlier Detection Techniques for
Wireless Sensor Networks: A Survey,” IEEE Comm.
Surv. & Tuts., vol. 12, no. 2, 2010.

[27] P. Bosshart et al., “P4: Programming Protocol-
Independent Packet Processors,” ACM SIGCOMM CCR,
vol. 44, no. 3, 2014.

[28] Praveen Bhagwatula, Cisco Systems, “Introduction
to P4 and P4Runtime.” https://xrdocs.io/
cloud-scale-networking/blogs/2018-03-
08-introduction-to-p4-and-p4runtime/.
Last accessed 2018-08-27.

[29] IEC 61499-1 – Function blocks – Part 1: Architecture.
International Electrotechnical Commission, 2012.

[30] K. Thramboulidis, “IEC 61499: Back to the well proven
practice of IEC 61131?,” in IEEE ETFA, 2012.

[31] Raspberry Pi Foundation, “Raspberry Pi.”
https://www.raspberrypi.org/.
Last accessed 2018-08-27.

[32] T. Marian et al., “NetSlices: Scalable Multi-core Packet
Processing in User-space,” in ACM/IEEE ANCS, 2012.

[33] S. Han et al., “PacketShader: A GPU-accelerated
Software Router,” in ACM SIGCOMM, 2010.

[34] F. Schmidt et al., “Santa: Faster Packet Delivery for
Commonly Wished Replies,” in ACM SIGCOMM, 2015.

[35] L. Rizzo, “Netmap: A Novel Framework for Fast Packet
I/O,” in USENIX ATC, 2012.

[36] S. McCanne and V. Jacobson, “The BSD Packet Filter:
A New Architecture for User-level Packet Capture,” in
USENIX Winter, 1993.
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