
Towards Executing Computer Vision Functionality
on Programmable Network Devices

René Glebke
Chair of Communication and

Distributed Systems
RWTH Aachen University

glebke@comsys.rwth-aachen.de

Johannes Krude
Chair of Communication and

Distributed Systems
RWTH Aachen University

krude@comsys.rwth-aachen.de

Ike Kunze
Chair of Communication and

Distributed Systems
RWTH Aachen University

kunze@comsys.rwth-aachen.de

Jan Rüth
Chair of Communication and

Distributed Systems
RWTH Aachen University

rueth@comsys.rwth-aachen.de

Felix Senger
Chair of Communication and

Distributed Systems
RWTH Aachen University

senger@comsys.rwth-aachen.de

Klaus Wehrle
Chair of Communication and

Distributed Systems
RWTH Aachen University

wehrle@comsys.rwth-aachen.de

ABSTRACT
By offering the possibility to already perform processing as packets
traverse the network, programmable data planes open up new per-
spectives for applications suffering from strict latency and high
bandwidth requirements. Real-time Computer Vision (CV), with
its high data rates and often mission- and safety-critical roles
in the control of autonomous vehicles and industrial machinery,
could particularly benefit from executing parts of its logic within
network elements.

In this paper, we thus explore what it takes to bring CV to the
network. We present our work-in-progress efforts of implement-
ing a line-following algorithm based on convolution filters on a
P4-programmable NIC. We find that by appropriately identifying
regions of interest in the image data and by diligently distribut-
ing the necessary calculations among the various match/action
stages of the ingress- and egress pipelines of the NIC, our prototyp-
ical implementation can achieve over 19 decisions per second on
640x480 px grayscale images with filters large enough to guide a
small autonomous car through various courses.

CCS CONCEPTS
• Networks → In-network processing; Middle boxes / network
appliances; Programmable networks; •Computingmethodologies
→ Computer vision;

KEYWORDS
In-network processing; P4; computer vision; convolution filters

ACM Reference Format:
René Glebke, Johannes Krude, Ike Kunze, Jan Rüth, Felix Senger, and Klaus
Wehrle. 2019. Towards Executing Computer Vision Functionality on Pro-
grammable Network Devices. In 1st ACM CoNEXT Workshop on Emerging
in-Network Computing Paradigms (ENCP ’19), December 9, 2019, Orlando, FL,

ENCP ’19, December 9, 2019, Orlando, FL, USA
© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 1st ACM CoNEXT
Workshop on Emerging in-Network Computing Paradigms (ENCP ’19), December 9, 2019,
Orlando, FL, USA, https://doi.org/10.1145/3359993.3366646.

USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3359993.
3366646

1 INTRODUCTION
The introduction of Software-Defined Networking (SDN) and the
associated programmability of data planes [5] has rekindled the
hopes of many researchers to finally conceive solutions for sce-
narios with extremely tight latency constraints and high band-
width requirements [24]. By partially offloading processing steps
to network elements and thus avoiding overheads introduced by
multi-hop paths and network stacks of operating systems, the ap-
plicability of In-Network Processing (INP) has already been shown
to be beneficial for network management-related applications such
as load balancing [20] or the detection of heavy hitters [29] and of
DDoS attacks [16]. The possibility to reduce the overall traffic in
map-reduce and machine learning applications via in-network data
aggregation has been studied in [24, 25], as has the reduction of
latency in industrial feedback control by offloading simple control
algorithms to emulated programmable switches [23]. Further work
concerns e.g., consensus protocols [18] and key-value caching [11].

A common pattern in most of the aforementioned works is that
while the amount of data items handled in total is large (up to the
saturation point of the switching fabric in the network management
examples), the size of the individual items processed is small (fitting
into single packets) and the processing executed on each item is
not very complex (a bit of housekeeping few minor arithmetic
operations). In essence, each decision here can be taken on the data
plane at line rate, i.e., via a single pass over a single packet. As we
will describe later in this paper, the paradigms in popular data plane
programming languages such as P4 [4] are especially amenable to
such settings.

Prime examples for scenarios where the aforementioned assump-
tions on data sizes and decision complexities do not hold are pro-
cesses aided by Computer Vision (CV) functions such as edge de-
tection and object recognition in images. Involved in the control of
industrial processes [13, 32] or in finding trajectories of autonomous
cars [8] or swarms of drones [33], CV methods nowadays help op-
erating a vast variety of systems. In some cases, e.g., when used
to detect pedestrians in autonomous driving, they even provide

https://doi.org/10.1145/3359993.3366646
https://doi.org/10.1145/3359993.3366646
https://doi.org/10.1145/3359993.3366646


ENCP ’19, December 9, 2019, Orlando, FL, USA Glebke et al.

vital safety information. Executing parts of the CV logic within the
network (e.g., as inputs to industrial control systems) could fur-
ther reduce reaction times and hence improve the general behavior
and safety of such systems. However, even low-resolution camera
images are at least two orders of magnitude larger than ordinary
Ethernet packets [7], so that naïve approaches may require keeping
large states over time spans much longer than the ordinary dwelling
times of packets within network elements, resulting in potentially
prohibitive memory requirements for in-network devices. Further-
more, CV algorithms typically involve computationally complex
operations such as matrix multiplications (on these large amounts
of data), which may not be possible on current Programmable Net-
work Devices (PNDs) while sustaining line rate.
Contributions and Structure. In this paper, we explore to which
extent the processing capabilities of programmable data planes lend
themselves to the high demands of CV algorithms. To this end, we
first give a short introduction into the data processing pipelines of
current PNDs using the example of P416 [4, 31] programs (Section 2).
Next, we devise a simple line-following scenario as an example CV
application, discuss possibilities to offload parts of the necessary
computations to the network, and present details of our prototypical
INP pipeline (Section 3). Afterwards, we evaluate the applicability
and scalability of our INP-based line-following approach using
both synthetic benchmarks and a real-world testbed with a small
autonomous car (Section 4), before briefly reviewing related work
in Section 5 and concluding our paper in Section 6.

2 BACKGROUND: THE P4 PIPELINE FOR
PROGRAMMABLE DATA PLANES

While the idea of processing data as packets advance through net-
works has been repeatedly proposed in past decades [28, 30, 34],
only the fairly recent availability of PNDs (e.g., [3, 21]) called for a
joint effort by major players from industry and research to intro-
duce a common and open programming language for the data plane,
termed P4 [4]. The language introduces an abstract forwarding
model for PNDs based on the notion of Match-Action Units (MAUs),
which allows specialized hardware to process packets at a fixed
latency with a throughput of one packet per clock cycle [5].

An arriving packet is first parsed and checked against a number
of anticipated headers (e.g., TCP/IP) and enriched with metadata.
The parsed headers are then passed to a sequence of MAUs, which
first match the content of one or several header fields against ex-
pected values or ranges, often using table lookups. Upon finding a
match, the PND takes a corresponding action, such as manipulating
the content of the packet’s headers with simple arithmetic oper-
ations or marking the packet for redirection to a specific output
port. Several MAUs can be stitched together to form a processing
pipeline, and both per-packet metadata as well as metadata shared
between packets (in designated registers of the device) can be used
to pass information from one MAU to the next. P4 conceptually
distinguishes between the ingress part of the pipeline, which can
process data before the next hop of a packet has been determined,
and an egress part for checks and manipulations before the packet
is sent out again.

The expressiveness of actions in P4 depends on the target hard-
ware the program is executed on, and the language mandates only

a small number of operations [31]. It, e.g., neither defines floating-
point operations, nor the amount of individual operations an action
must at least contain and not even the number of available MAU
stages. More complex processing may hence need to be reformu-
lated according to the available functionality [23]. Some targets
may offer the possibility to re-inject packets at the beginning of
the pipeline (recirculation), allowing it to pass through the same
MAUs multiple times, which enables the implementation of longer
processing procedures. A packet traversing the pipeline once can
sustain line rate [17]. Recirculation in an ingress-egress-ingress-...
fashion in contrast causes packets to stay in the PND longer and
may potentially cause side effects such as buffer overflows on the
ingress side of the pipeline if the rate of incoming plus recirculated
packets surpasses the data plane’s capacity, yet it may be the only
possible method to implement longer processing procedures.

Thus, while P4’s pipeline is a good fit for decisions that can be
taken based on a single packet (e.g., next-hop lookups for routing),
more complex decisions or such that need a sharing of information
between several packets are, although desirable, much harder to
properly express. In the following, we give an example of a common
CV operation that, when executed within the network, suffers from
both of the above problems, and is thus an ideal subject of study
when aiming to compensate for the intricacies of P4’s data plane
programming approach.

3 A NETWORK-ASSISTED LINE-FOLLOWING
SCENARIO

Computer vision is an interdisciplinary field comprising a variety of
tasks which can be summarized as the “recognition, reconstruction
and reorganization” [19] of data to help machines gain higher-level
understandings of images and image sequences. Depending on the
task at hand, images are processed using highly individual process-
ing sequences of varying complexity (see, e.g., [22, 26, 35]). In this
section, we construct an example sequence that allows us to recog-
nize the middle of a line highly contrasting with the background,
in order to guide a small autonomous car along that line.

3.1 Scenario Overview
In our scenario, we search a specific horizontal region of images
taken by a camera mounted on a small car for a pair of edges
that are most distinguishable from a potentially noisy background
(an example image from our setup can be seen in Figure 1). We
then assume that the edges we find while searching within that
region bound a broad vertical line we intend to follow with the
car. To this end, we define both a left and a right threshold (also
visible in Figure 1). If the middle of the found edges (and thus the
middle of the assumed line) deviates so much from the middle of
the image that it passes one of these thresholds, we turn our car
into the direction of the deviation so that a subsequent forward
movement advances the car along the line again. While there exist
more sophisticated line-following methods (e.g., using multiple
scanning regions at different vertical offsets to break ties when a
horizontal line crosses one region), our simple approach allows
us to concentrate our efforts on the actual CV processing part
rather than on non-CV-related functionality. We hence only explore
the possibility of implementing the edge detection functionality



Towards Executing CV Functionality on Programmable Network Devices ENCP ’19, December 9, 2019, Orlando, FL, USA

Line to follow

Left edge Right edge

Scanning region
(bordered horizontally)

Threshold for
left turn

Threshold for
right turn

Noisy
background

Figure 1: Example image from our line-following scenario.
A PND scans a horizontal region of an image from a camera
on a small car for the edges of a sharply contrasting verti-
cal line. The edges’ positions are sent back to the car, which
turns accordingly if the positions surpass a threshold for ei-
ther side. It then advances slightly forward and sends the
next picture.

with the help of PNDs and implement the rest of the functionality
(e.g., controlling the car based on the found edge positions) in
a client application on the platform hosting the camera. In the
following, we describe an approach to the edge detection problem
which is popular in autonomous driving scenarios [22] and exhibits
properties very amenable to execution within PNDs.

3.2 Edge Detection via Convolution
While there are plenty of edge detection algorithms available, a
simple yet useful technique involves the application of two filter
matrices to an image: By convolving an image P pixel-by-pixel
with a specificm × n filter matrix F and storing the values of the
convolution operations in a result matrix R, i.e.,

R(x ,y) =
m∑
i=1

n∑
j=1

P(x − i + a,y − j + a) F (i, j)

(where a denotes the middle coordinate of F , and P(x ,y) = 0 for
coordinates outside the image), we gain entries of R that – in a
geometric interpretation – represent the dot product and hence
the similarity between the filter and the corresponding region of
the image. In grayscale images, we can, e.g., detect edges using the
so-called Prewitt operator [2], which chooses two filter matrices
F∆H and F∆V of dimension 3×3, so that the entries in R correspond
to the similarity of the respective region of an image with a sharp
horizontal (F∆H ) or vertical (F∆V ) edge; the higher the value of an
entry, the higher the resemblance of the region with an edge in the
direction of the passing of the filter. Thus, the left edge of a highly-
contrasting vertical line as in our example scenario can be found by
keeping track of the highest response of convolutions within our
scanning region with F∆V , and the right edge using a convolution
with −F∆V . The standard variant of the Prewitt operator only takes
the 1-pixel neighborhood into account to find edges, but it can be
enlarged to cover the further vicinity, and we use a method similar

to the one described in [27] to construct larger filters to better
account for the noisy background in our scenario.
Applicability on PNDs. The Prewitt operator and related convolu-
tion filters have three features that make them especially interesting
for partially offloading them to the network. First, the calculation of
the discrete convolution only needs addition, subtraction and mul-
tiplication operations of integer data (pixel intensity values), and
these are mandatory for all P4-enabled devices to implement [31].
Second, the individual entries of the result matrix are only cor-
related to a small part of an image. Thus, a PND implementing
a convolution-based CV stage does not need to wait until a full
image has been received to begin processing. Third, all entries of
the result matrix can be calculated independently. This means that
once all convolutions involving one row (or column) of pixels have
been calculated, this row (column) can be discarded by the device,
hence reducing the amount of state the device needs to hold in
memory. Convolution filters thus are highly versatile tools in the
CV domain implementable with both low arithmetic requirements
and a low memory footprint, making them promising candidates
for implementation via INP principles. We now discuss how we
can specifically offload our filter-based edge detection step to the
network in our example setup.

3.3 Bringing a Convolution-based Edge
Detection Filter to the Network

Having found a suitable candidate for edge detection on PNDs,
we now implement our line-following scenario according to the
structure presented in Section 3.1. Our client controlling the car
is implemented in Python and communicates with the PND via
standard Linux sockets, while our filter is implemented on a PND
using P416. We present details of our prototypical implementation
in the following.
Communication pattern. For each movement decision we want
to take, our client sends image data to the PND. To this end, it splits
a (grayscale) camera picture into a series of chunks of n × n pixels,
as depicted in part A○ on the left of Figure 2. It then prefixes each
chunk with the ID of the picture and the position of the chunk
within the picture (chunk ID), and then sends each prefixed chunk
to the PND in a separate UDP/IP packet in ascending order of chunk
ID. While this approach limits the achievable throughput due to the
overhead introduced by the individual packaging, it allows us to
both drastically simplify the implementation of the edge detection
filter in our prototype (as further described below) and to test our
approach with data streams of many small items which all require
individual handling by the PND. Upon packet arrival, the PND uses
P4’s ingress parser to separate picture- and chunk IDs from the
image data, and subsequently enters the beginning of the actual
convolution procedure (parts B○ through E○ of Figure 2). After the
convolution process has completed for the entire scanning region,
we send out a packet containing the found left and right edges of
the line to our client. Since we cannot create packets in P4 [31], we
rewrite the packet containing the last chunk of the scanning region
to contain our edge positions and send it back to the client.
Reduction of computation efforts. Due to the limited capacity
of PND pipelines, we first try to reduce the computation efforts for
the edge detection to a minimum. In our scenario, it is sufficient



ENCP ’19, December 9, 2019, Orlando, FL, USA Glebke et al.

Camera Picture Ingress Egress

Match (Step) Action
1 CalcColSum1
3
5

CalcColSum3
CalcColSum5

Match (Step) Action
2 CalcColSum2
4 CalcColSum4

CalcColSum5

x Σ

CalcColSum4

x Σ

Step = Step + 1

CalcColSum3

x Σ

CalcColSum1

x Σ

Chunk-wise transmission
(left to right, top to bottom)

CalcColSum2

x Σ

Registers
(shared between packets)

P F
P F

Step = Step + 1

(if Step < 5)

A B

C D E

P

Highest filter responses

Positions of highest responses

Metadata
(per packet)

Column sums

Register update if
new maximum found

Figure 2: Simplified overview of our edge detection approach on PNDs (from left to right): A○A client sends a chunked camera
picture P (here: 5 × 5 pixels) to a PND. B○ The PND uses P4 match-action stages in ingress C○ and egress D○ to apply an edge
detection filter F column-wise. E○ Registers hold information between packets.

to calculate convolutions for our scanning region. However, our
client is unaware of the exact vertical position of this region within
the picture and hence sends the entire picture to the PND. Thus, to
reserve as much of the PND’s MAU- and buffer capacity as possible,
we immediately drop any packet not containing chunks within the
scanning region. Further, we assume that our scanning region is
contained within exactly one horizontal row of chunks sent by the
client, i.e., we limit the size of our filters so that they only consider
pixels within that series of chunks. Otherwise, depending on the
size of our filter matrices (cf. Section 3.2), we may need to keep
information from several rows of chunks in the PND’s memory to
perform our convolution calculations, which would be hard given
the limited memory of PNDs. To further reduce our computation
effort, we assume that the vertical line we want to detect has a
very high contrast to the background, similar to the ones visible in
Figure 1 and on the left side of Figure 2. This allows us to assume that
the line is well detectable on any horizontal part of the picture, and,
especially, on any of the rows that constitute our scanning region.
We thus choose to calculate the convolution around the pixels in
the middle row of the scanning region only, since this should yield
sufficient results for our prototypical implementation. At last, since
the filter matrices for both edges are negative versions of each other
(again, cf. Section 3.2), we can calculate the partial sums for the two
convolutions in a unified manner, using the negative version of the
left edge’s summand also for the right edge to further reduce the
number of calculations to perform.
P4 Pipeline Organization. While we proactively drop unneeded
packets and reuse as many results of arithmetic operations as possi-
ble, depending on the architecture of the PND, a single pass through
the pipeline may not be sufficient to complete a convolution. To
make the most use of the P4 pipeline on PNDs, we implement our
edge detection as a looped program that executes calculations for
the convolution in both the ingress and the egress stages and then
recirculates the packet if more calculations are needed (part B○ in
the upper middle of Figure 2). We use a per-packet metadata field
to store the current processing step and employ two tables that

match on this field (one in ingress, one in egress) to trigger the
calculations in the corresponding actions. Our calculation steps
are organized along the horizontal axis, i.e., we first compute the
partial sums for the leftmost column of our picture chunk in the
ingress (part C○ in the lower middle of Figure 2), then the sums
for the second column in the egress (part D○), and so forth. The
sums for the columns are stored in per-packet metadata variables
(part E○), so we can calculate the final values for the filters (the
responses) once all column sums are available. We keep track of the
highest responses of our two filters over all considered chunks in
registers (also in part E○) and ultimately return the positions that
yielded these responses as the positions of the edges.

4 EVALUATION
We present the results of a preliminary evaluation of our implemen-
tation of a line-following filter on PNDs. To this end, we compile our
P4 program with a Netronome Agilio CX 2x25GbE SmartNIC [21]
as the target, using the Netronome-specific P4 compiler with default
settings. We use a second SmartNIC of the same type without a P4
program installed to send images to our program, both real images
from our test setup in Section 3.1 (with the car connected wirelessly
to the computer of the second SmartNIC) and synthetic variants
from an image generator. Note that the results of the performed
convolutions and hence the found edge positions are independent
of the platform they are calculated on as long as integer calculations
of sufficient bit length are available (our filters require signed 32-bit
integers). We thus only evaluate the scalability of our approach
regarding maximum filter size and the time our pipeline requires to
calculate the positions of the edges, yielding the number of pictures
we can analyze per second.
Maximum filter size. We first attempt to find the maximum size
of a P4 program implementing our looped filter by synthesizing
programs with increasing number of columns and rows per chunk
(and, hence, allowed filter size). For a filter size ofm × n, each pro-
gram requires n 32-bit metadata fields to store the column-wise



Towards Executing CV Functionality on Programmable Network Devices ENCP ’19, December 9, 2019, Orlando, FL, USA

convolution summands, 2 32-bit registers to store the overall high-
est responses, as well as 4 16-bit registers to store control informa-
tion. Additionally, we need 13 bit of further control-flow related
metadata per packet, including 8 bits to store the current step in
the recirculation pipeline. We are able install P4 programs with a
maximum filter size of 10 × 10 pixels on the SmartNIC; programs
with larger filter sizes do seem to compile as valid P4 code, but
the tool chain is unable to synthesize the byte code for the device.
The number of match-action stages in our looped variant remains
constant irrespective of the filter size, and we assume that the num-
ber of calculations we execute per stage surpasses the capacity
of the SmartNIC’s MAUs implementation at this size. Filter sizes
larger than of 10 × 10 pixels may appear in more elaborate object
recognition scenarios [14]. However, based on a visual inspection
of the accuracy of the edge finding process (by rendering the po-
sition of the found edges into the respective photos taken by the
camera) and the resulting behavior exhibited by our car, we find
that already when applying a filter of size 5× 5 pixels, we can guide
our car through a course with high background noise and various
sharp bends most reliably in terms of accuracy of the detected edge
positions.
Time per picture / throughput. To assess the number of pictures
we can process per second using our approach, we use our image
generator on the machine hosting the second SmartNIC to send
out images to our P4 program as quickly as possible using a Linux
socket with default settings, and measure the processing time ex-
hibited by our program, averaged over 1000 pictures. We capture
the time from the beginning of the transmission of the first chunk
of a picture until the arrival of the packet containing the positions
of the edges, and additionally use the SmartNIC’s timestamping
functionality to assess the time it takes for a single chunk to cir-
culate through our pipeline. Using the 5 × 5 filter, due to the large
overhead introduced by sending packets with a payload of essen-
tially 25 bytes (the size of the filter), we can send and analyze one
picture approx. every 50ms (stddev 3ms). Processing the last chunk
for each picture takes approx. 150 µs (stddev 1.3ms). The SmartNIC
however drops packets intermittently for this filter size; we do not
get an answer for 13.7% of our pictures. We attribute this behav-
ior to buffering problems caused by recirculating a large number
of packets several times. For the 10 × 10 filter with 800 bytes per
chunk, we experience zero drops and the achievable rate increases
to approx. one picture every 13ms (stddev 5ms), while the process-
ing time for the respective last chunk increases to approx. 187 µs
(stddev 0.6ms). These results mean that we can perform edge detec-
tion in the network on up to 19 images per second using the reliable
5 × 5 pixels filter, and on up to 77 images using the less precise
10×10 pixels filter, allowing the car to move at a considerable speed.
Yet, we still have to find the optimal trade-off between adequate
filter size and a steady achievable throughput in our prototype.

5 RELATEDWORK
The execution of CV functionality has been studied for a number of
restricted platforms. Wang et al. [33], e.g., use the example of flying
drones and apply a number of pre-processing steps on the drones to
reduce bandwidth usage when sending video streams to edge com-
puting services, whereas Denby et al. [6] adapt CV to the resources

of low-cost nanosatellites. MobileNets [9] and SqueezeNet [10] pro-
pose partitioning- and scaling methods for convolutional neural
networks to accommodate CV functionality on devices with limited
processing power, memory, or connection bandwidth. All these
approaches consider restricted CPU/GPU-based platforms, while
other works, such as the ones by Korol et al. [12] and Aguilar-
González et al. [1], target ASICs and FPGAs. To the best of our
knowledge, we are the first to show that a simple CV task can
also be performed on the match-action pipelines of modern PNDs,
and thus, as a service offered by the network, allowing restricted
platforms of varying kinds to benefit.

6 CONCLUSION
In this paper, we describe our work-in-progress efforts to execute
Computer Vision (CV) functionality on Programmable Network
Devices (PNDs). We identify convolution-based filters (which are
common steps in many CV scenarios) as promising candidates
for an execution on PNDs and implement an edge detection filter
on a PND using the P4 programming language. This allows us to
guide a small autonomous car over a variety of courses with up
to 19 decisions per second using a reliable 5 × 5 pixels filter. In
our implementation, we use the nature of P4’s processing pipeline
in combination with the packet-oriented working mechanism of
networks to our advantage, by diligently splitting up the processing
load, distributing it along the pipeline and sharing information
obtained from the processing of a single previous packet with the
packet currently in the pipeline.

Our implementation is prototypical and can be improved on in
a variety of ways. We may, e.g., be able to support even larger filter
sizes by splitting up the per-column calculations into additional
sub-stages, alleviating the problem of overfull action stages, which
currently appear as a limiting factor. To this end, we also want to
explore how we can make more use of the available table memory
on the PNDs. Our calculations for the convolution filters are cur-
rently explicit. It would thus be interesting to see whether data sent
to the devices can be structured in such a way that calculations
can be assisted via table lookups, e.g., to mitigate the problem of
intermittent drops with small filter sizes. We also made a number
of assumptions concerning the structure and the arrival pattern of
picture data at the PNDs. Most significantly, our approach is cur-
rently only able to calculate the convolution filter on a per-packet
basis, i.e., we sub-sample the horizontal region we search in. Al-
though our experimental evaluation shows that this is sufficient for
line-following scenario, we cannot deal with cases where an edge is
split up into multiple packets. We thus plan to investigate whether
it is possible to share data between packets that are processed in the
pipeline such that the convolutions can also be calculated across
packet borders. Furthermore, given its usage of recirculation and
potentially sparse global and metadata memory, we plan to evaluate
the impact of our filter on co-located [15] in-network functions.

Our initial results are promising and we believe that further CV
functionality and, more generally, other stream-based data such as
sensor values can be handled within the network using processing
pipelines similar to ours.



ENCP ’19, December 9, 2019, Orlando, FL, USA Glebke et al.

ACKNOWLEDGMENTS
The authors would like to thank the German Research Founda-
tion (DFG) for the kind support within the REFLEXES project
(ID 315171171) in Priority Programme 1914 “Cyber-Physical Net-
working”, the Collaborative Research Centre 1053 “MAKI — Multi-
Mechanisms-Adaptation for the Future Internet” (ID 210487104),
and the Cluster of Excellence “Internet of Production” (ID 390621612).

REFERENCES
[1] Abiel Aguilar-González, Miguel Arias-Estrada, Madaín Pérez-Patricio, and J. L.

Camas-Anzueto. 2019. An FPGA 2D-convolution unit based on the CAPH lan-
guage. Journal of Real-Time Image Processing 16, 2 (01 Apr 2019), 305–319.
https://doi.org/10.1007/s11554-015-0535-1

[2] I. Ahmad, I. Moon, and S. J. Shin. 2018. Color-to-Grayscale Algorithms effect on
Edge Detection – A Comparative Study. In Proceedings of the 2018 International
Conference on Electronics, Information, and Communication (ICEIC) (ICEIC ’18).
IEEE, New York, NY, USA, 1–4. https://doi.org/10.23919/ELINFOCOM.2018.
8330719

[3] Barefoot Networks. 2019. The World’s Fastest & Most Programmable
Networks. (2019). https://www.barefootnetworks.com/resources/
worlds-fastest-most-programmable-networks/

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
ACM SIGCOMM CCR 44, 3 (2014), 87–95.

[5] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:
Fast Programmable Match-action Processing in Hardware for SDN. In Proceedings
of the 2013 ACM SIGCOMM Conference (SIGCOMM ’13). ACM, New York, NY,
USA, 99–110. https://doi.org/10.1145/2486001.2486011

[6] Bradley Denby and Brandon Lucia. 2019. Orbital Edge Computing: Machine
Inference in Space. IEEE Computer Architecture Letters 18, 1 (2019), 59–62. https:
//doi.org/10.1109/LCA.2019.2907539

[7] René Glebke, Martin Henze, Klaus Wehrle, Philipp Niemietz, Daniel Trauth,
Patrick Mattfeld, and Thomas Bergs. 2019. A Case for Integrated Data Processing
in Large-Scale Cyber-Physical Systems. In Proceedings of the 52nd Hawaii Inter-
national Conference on System Sciences (HICSS) (HICSS 52). University of Hawai’i
at Manoa / AIS, Honolulu, HI, USA, 7252–7261.

[8] L. Heng, B. Choi, Z. Cui, M. Geppert, S. Hu, B. Kuan, P. Liu, R. Nguyen, Y. C.
Yeo, A. Geiger, G. H. Lee, M. Pollefeys, and T. Sattler. 2019. Project AutoVision:
Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-
Camera System. In Proceedings of the 2019 International Conference on Robotics
and Automation (ICRA) (ICRA ’19). IEEE, New York, NY, USA, 4695–4702. https:
//doi.org/10.1109/ICRA.2019.8793949

[9] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. (2017).
arXiv:arXiv:1704.04861

[10] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <0.5MB model size. (2016). arXiv:arXiv:1602.07360

[11] Xin Jin, Xiaozhou li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP ’17). ACM, New York, NY, USA, 121–136. https://doi.
org/10.1145/3132747.3132764

[12] Guilherme Korol and Fernando Gehm Moraes. 2019. A FPGA Parameterizable
Multi-layer Architecture for CNNs. In Proceedings of the 32Nd Symposium on
Integrated Circuits and Systems Design (SBCCI ’19). ACM, New York, NY, USA,
Article 30, 6 pages. https://doi.org/10.1145/3338852.3339840

[13] K. Kottari and V. Delibasis, K.and Plagianakos. 2018. Real time vision-based mea-
surements for quality control of industrial rods on amoving conveyor.Multimedia
Tools and Applications 77, 8 (01 Apr 2018), 9307–9324.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Ima-
geNet Classification with Deep Convolutional Neural Networks. In
Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger (Eds.). Curran Associates,
Inc., Red Hook, NY, USA, 1097–1105. http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[15] Johannes Krude, Jaco Hofmann, Matthias Eichholz, Klaus Wehrle, Andreas Koch,
and Mira Mezini. 2019. Online Reprogrammable Multi Tenant Switches. In 1st
ACM CoNEXT Workshop on Emerging in-Network Computing Paradigms (ENCP
’19). ACM. https://doi.org/10.1145/3359993.3366643

[16] Â. C. Lapolli, J. Adilson Marques, and L. P. Gaspary. 2019. Offloading Real-
time DDoS Attack Detection to Programmable Data Planes. In 2019 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM). IEEE, New York,
NY, USA, 19–27.

[17] Alberto Lernen, Rana Hussein, and Philippe Cudre-Maurox. 2019. The Case for
Network-Accelerated Query Processing. In 9th Biennial Conference on Innovative
Data Systems Research (CIDR ’19).

[18] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports.
2016. Just Say NO to Paxos Overhead: Replacing Consensus with Network Order-
ing. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’16). USENIX Association, 467–483.

[19] Jitendra Malik, Pablo Arbeláez, João Carreira, Katerina Fragkiadaki, Ross Gir-
shick, Georgia Gkioxari, Saurabh Gupta, Bharath Hariharan, Abhishek Kar, and
Shubham Tulsiani. 2016. The three R’s of computer vision: Recognition, re-
construction and reorganization. Pattern Recognition Letters 72 (2016), 4–14.
https://doi.org/10.1016/j.patrec.2016.01.019 Special Issue on ICPR 2014 Awarded
Papers.

[20] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing ASICs. In Proceedings of the 2017 ACM SIGCOMM Conference (SIGCOMM ’17).
ACM, New York, NY, USA, 15–28. https://doi.org/10.1145/3098822.3098824

[21] Netronome. 2019. Agilio CX SmartNICs. (2019). https://www.netronome.com/
products/agilio-cx/

[22] Thiago Rateke, Karla A. Justen, Vito F. Chiarella, Antonio C. Sobieranski, Eros
Comunello, and Aldo Von Wangenheim. 2019. Passive Vision Region-Based Road
Detection: A Literature Review. ACM Comput. Surv. 52, 2, Article 31 (March
2019), 34 pages. https://doi.org/10.1145/3311951

[23] Jan Rüth, René Glebke, Klaus Wehrle, Vedad Causevic, and Sandra Hirche. 2018.
Towards In-Network Industrial Feedback Control. In Proceedings of the ACM
SIGCOMM 2018 Morning Workshop on In-Network Computing (NetCompute ’18).
ACM, New York, NY, USA, 14–19. https://doi.org/10.1145/3229591.3229592

[24] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. 2017. In-Network Computation is a Dumb Idea Whose Time Has Come.
In Proceedings of the 16th ACMWorkshop on Hot Topics in Networks (HotNets-XVI).
ACM, New York, NY, USA, 150–156. https://doi.org/10.1145/3152434.3152461

[25] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan RK Ports, and
Peter Richtárik. 2019. Scaling Distributed Machine Learning with In-Network
Aggregation. Technical Report. KAUST. https://arxiv.org/abs/1903.06701v1

[26] Muhamad Risqi U. Saputra, Andrew Markham, and Niki Trigoni. 2018. Visual
SLAM and Structure from Motion in Dynamic Environments: A Survey. ACM
Comput. Surv. 51, 2, Article 37 (Feb. 2018), 36 pages. https://doi.org/10.1145/
3177853

[27] J. Scharcanski and A. N. Venetsanopoulos. 1997. Edge Detection of Color Images
Using Directional Operators. IEEE Transactions on Circuits and Systems for Video
Technology 7, 2 (April 1997), 397–401. https://doi.org/10.1109/76.564116

[28] Beverly Schwartz, Alden W. Jackson, W. Timothy Strayer, Wenyi Zhou, R. Dennis
Rockwell, and Craig Partridge. 2000. Smart Packets: Applying Active Networks
to Network Management. ACM Trans. Comput. Syst. 18, 1 (Feb. 2000), 67–88.
https://doi.org/10.1145/332799.332893

[29] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrish-
nan, and Jennifer Rexford. 2017. Heavy-Hitter Detection Entirely in the Data
Plane. In Proceedings of the Symposium on SDN Research (SOSR ’17). ACM, New
York, NY, USA, 164–176. https://doi.org/10.1145/3050220.3063772

[30] David L. Tennenhouse and David J. Wetherall. 1996. Towards an Active Network
Architecture. SIGCOMM Comput. Commun. Rev. 26, 2 (April 1996), 5–17. https:
//doi.org/10.1145/231699.231701

[31] The P4 Language Consortium. 2018. P416 Language Specification version 1.1.0.
(30 11 2018). https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html

[32] M. Vogelbacher, J. Matthes, H. Keller, and P. Waibel. 2019. Progression and
Evaluation of a Camera-Based Measurement System for Multifuel Burners under
Industrial Process Conditions. IEEE Transactions on Industrial Informatics 15, 10
(Oct 2019), 5466–5474. https://doi.org/10.1109/TII.2019.2899946

[33] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S. Yang, and M. Satya-
narayanan. 2018. Bandwidth-Efficient Live Video Analytics for Drones Via Edge
Computing. In Proceedings of the 2018 IEEE/ACM Symposium on Edge Computing
(SEC) (SEC ’18). IEEE, New York, NY, USA, 159–173. https://doi.org/10.1109/SEC.
2018.00019

[34] J. Zander and R. Forchheimer. 1988. The SOFTNET Project: A Retrospect. In 8th
European Conference on Electrotechnics, Conference Proceedings on Area Commu-
nication (EUROCON ’88). IEEE, New York, NY, USA, 343–345.

[35] Xin Zhang, Yee-Hong Yang, Zhiguang Han, Hui Wang, and Chao Gao. 2013.
Object Class Detection: A Survey. ACM Comput. Surv. 46, 1, Article 10 (July 2013),
53 pages. https://doi.org/10.1145/2522968.2522978

https://doi.org/10.1007/s11554-015-0535-1
https://doi.org/10.23919/ELINFOCOM.2018.8330719
https://doi.org/10.23919/ELINFOCOM.2018.8330719
https://www.barefootnetworks.com/resources/worlds-fastest-most-programmable-networks/
https://www.barefootnetworks.com/resources/worlds-fastest-most-programmable-networks/
https://doi.org/10.1145/2486001.2486011
https://doi.org/10.1109/LCA.2019.2907539
https://doi.org/10.1109/LCA.2019.2907539
https://doi.org/10.1109/ICRA.2019.8793949
https://doi.org/10.1109/ICRA.2019.8793949
http://arxiv.org/abs/arXiv:1704.04861
http://arxiv.org/abs/arXiv:1602.07360
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/3338852.3339840
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1145/3359993.3366643
https://doi.org/10.1016/j.patrec.2016.01.019
https://doi.org/10.1145/3098822.3098824
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://doi.org/10.1145/3311951
https://doi.org/10.1145/3229591.3229592
https://doi.org/10.1145/3152434.3152461
https://arxiv.org/abs/1903.06701v1
https://doi.org/10.1145/3177853
https://doi.org/10.1145/3177853
https://doi.org/10.1109/76.564116
https://doi.org/10.1145/332799.332893
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1145/231699.231701
https://doi.org/10.1145/231699.231701
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://doi.org/10.1109/TII.2019.2899946
https://doi.org/10.1109/SEC.2018.00019
https://doi.org/10.1109/SEC.2018.00019
https://doi.org/10.1145/2522968.2522978

	Abstract
	1 Introduction
	2 Background: The P4 Pipeline for Programmable Data Planes
	3 A Network-Assisted Line-Following Scenario
	3.1 Scenario Overview
	3.2 Edge Detection via Convolution
	3.3 Bringing a Convolution-based Edge Detection Filter to the Network

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

