SHIELD: A Framework for Efficient and Secure Machine
Learning Classification in Constrained Environments

Jan Henrik Ziegeldorf, Jan Metzke, Klaus Wehrle
Communication and Distributed Systems (COMSYS), RWTH Aachen University, Germany
{ziegeldorf,metzke,wehrle}@comsys.rwth-aachen.de

ABSTRACT

Machine learning classification has enabled many innovative ser-
vices, e.g., in medicine, biometrics, and finance. Current practices
of sharing sensitive input data or classification models, however,
causes privacy concerns among the users and business risk among
the providers. In this work, we resolve the conflict between privacy
and business interests using Secure Two-Party Computation. Con-
cretely, we propose SHIELD, a framework for efficient, and accurate
machine learning classification with security in the semi-honest
model. Building on SHIELD, we realize several widely used classi-
fiers and real-world use cases that compare favorably against related
work. Departing definitively from prior works, all of SHIELD’s pro-
tocols are designed from the ground up to enable secure outsourcing
to untrusted computation clouds enabling even constrained devices
to handle our most complex use cases in (milli)seconds.

ACM Reference Format:

Jan Henrik Ziegeldorf, Jan Metzke, Klaus Wehrle. 2018. SHIELD: A Frame-
work for Efficient and Secure Machine Learning Classification in Con-
strained Environments. In 2018 Annual Computer Security Applications Con-
ference (ACSAC ’18), December 3-7, 2018, San Juan, PR, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3274694.3274716

1 INTRODUCTION

With “data [...] the oil of the 21st century economy” [53], a growing
number of services employ machine learning classification to refine
it: Speech and handwriting recognition, biometric identification, or
medical diagnosis are only a few examples. These applications are
often deployed as-a-service in the cloud with access conveniently
integrated into users’ devices and applications. Users are required to
send their data to the service providers who perform classifications
using proprietary models, neglecting that users’ inputs are often
highly sensitive and must be protected. Speech recognition, e.g., not
only reveals the user’s searches to the service provider but allows
creating voice profiles to impersonate users [59, 84].

A simple solution would be to perform classifications locally on
the user’s device (if it is has enough resources). Machine learning
models are, however, expensive to train and their quality creates
competitive edge. Service providers hence treat and protect them
as their intellectual property. Data protection legislation presents

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’18, December 3—7, 2018, San Juan, PR, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6569-7/18/12...$15.00
https://doi.org/10.1145/3274694.3274716

355

a second reason why handing out models is not a viable solution.
E.g., models for a genetic disease testing service may be trained
over confidential patient records and residual risk remains that
the learned models still leak information about individual patients
[31] - sharing such models could be unlawful, e.g., according to the
U.S. Health Insurance Portability and Accountability Act of 1996.

Hence, classification services—especially those involving highly
sensitive data—face a conflict of business interests, regulatory issues,
and privacy concerns. A promising solution is Secure Two-Party
Computation (STC), which allows a user and service provider to
compute classifications under strong security and privacy guar-
antees such that neither party is able to learn the other party’s
input [85]. First yet very specialized efforts in this direction have
been made for Naive Bayes [75], Support Vector Machines (SVMs)
[81], linear classifiers [39], face recognition [34, 70] and logistic
regression [19]. Bost et al. [20] presented a first general framework
for secure classification supporting hyperplane classifiers, Naive
Bayes, and decision trees. Due to the success of deep learning, se-
cure evaluation of Artificial Neural Networks (ANNSs) has been the
focus of related works [29, 52, 66, 68], while others [4, 36, 86] tackle
secure pattern recognition with Hidden Markov Models (HMMs).

From these works, we identify three difficult challenges when de-
signing STC protocols for classification. i) Efficiency: STC involves
large numbers of cryptographic and interactive operations that may
cause infeasible overheads in real-world applications. ii) Accuracy:
many classification algorithms entail computations over very small
probabilities that cause numerical instabilities [64]-the fact that all
established STC approaches build on cryptographic primitives de-
fined over discrete algebraic structures renders numerical accuracy
even more challenging. iii) Mobility: traditional STC approaches
assume high-powered hosts connected over stable, high-bandwidth,
low-latency networks—mobile scenarios, however, typically involve
resource-constrained devices and networks.

The main thrust of previous works has been to optimize effi-
ciency while maintaining accuracy—none of them considers the out-
lined challenges posed by mobile usage scenarios such as resource
constraints, network dynamics, and connectivity. In this paper, we
introduce the SHIELD framework that allows two mutually dis-
trustful parties to securely, efficiently, and accurately compute or
outsource classifications using a range of state-of-the-art classifiers.
SHIELD thereby enables Secure Classification as a Service, conceptu-
ally complementing existing Machine Learning as a Service cloud
offers [6, 38, 54] that typically violate both the user’s and the service
provider’s privacy. The following are our main contributions:

Framework for Secure Classification. We analyze core build-
ing blocks of classification algorithms and propose efficient hybrid
STC protocols. Our building blocks provide tunable accuracy and
are flexibly composable which we demonstrate by realizing a range

https://doi.org/10.1145/3274694.3274716
https://doi.org/10.1145/3274694.3274716

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

of established classifiers with distinctly different characteristics, i.e.,
linear classifiers such as SVMs, Bayesian classifiers with discrete
and continuous features, ANNs with arbitrary activation functions,
and the Viterbi algorithm on different HMM architectures.

Performance Evaluation. We evaluate SHIELD on different
datasets and real-world use cases, e.g., bioinformatics sequence
alignments and indoor localization. Our evaluation shows that
SHIELD accurately handles large classification problems and, de-
spite being designed for wide applicability, provides competitive
performance even when compared to specialized approaches.

Secure Outsourcing. Departing significantly from related work,
all of SHIELD’s protocols are designed from the ground up to allow
securely outsourcing protocol execution to untrusted computation
clouds to cope with common resource limitations and challenges
in mobile scenarios. Our evaluation shows that overheads for out-
sourcing range only in the order of milliseconds of processing and
kilobytes of communication, rendering SHIELD applicable even for
very constrained and challenged deployment scenarios.

2 PROBLEM STATEMENT

2.1 Scenario and Requirements

We consider two parties, a service provider S who holds a trained
classification model M and a user U who holds a feature vector X.
Together, U and S want to compute F(M, X), i.e., classify X using the
model M. Due to privacy concerns, business interests, regulatory or
legal requirements, neither party is willing to share her inputs with
the other or any third party. In this paper, we thus show how U and
S can compute F(M, X) using STC without learning each other’s
inputs. This problem scenario is ubiquitous in different application
areas of classification and pattern recognition, e.g., genetic disease
testing [37], speech recognition [59, 72], biometric authentication
[34, 58, 70], and localization [87]. Surveying these and further re-
lated works, we distill core requirements and design goals for secure
classification and pattern recognition in the following.
Efficiency. Efficiency is generally of high importance in the
surveyed applications. In user-centric applications, such as speech
recognition [64] or localization [87], low latency, i.e., the time it
takes to classify a single data record, is paramount. Data mining ap-
plications [29], in contrast, require high throughput to classify large
batches of data records efficiently. While optimizing for latency
automatically increases throughput the opposite is not necessar-
ily true, e.g., when using Single-Instruction-Multiple-Data opera-
tions [29]. To ensure the wide applicability of secure classification,
we thus priorize latency over throughput where necessary.
Accuracy. Secure classification protocols should ideally com-
pute results identical to their insecure counterparts. In practice,
certain degrees of inaccuracy are tolerable, e.g., in speech recogni-
tion where one is only interested in the best matching word but
not the exact probabilities [58, 64]. Since the required numerical
accuracy depends on the actual use case, secure classification pro-
tocols should allow trading accuracy against performance, ideally
without the need to modify classification models or feature spaces.
Mobile Users and Constrained Environments. The increas-
ing number of mobile users, e.g., using speech-to-text services, poses
additional challenges to secure classification. Due to limited pro-
cessing, communication, and energy resources, mobile users may

356

Ziegeldorf et al.

not be able to execute STC protocols themselves. One of the most
promising solutions to cater to such constrained deployment and
operation scenarios is the outsourcing of costly computations from
constrained user devices to more capable (cloud) peers. Without
precluding other approaches, we hence pay special attention to the
support for outsourcing in our analysis of related work as well as
in the design of our SHIELD framework.

Security. We define the capabilities of the user, service provider,
and potential cloud peers to attack the computation by the semi-
honest model [51]. Shortly put, a semi-honest attacker correctly
follows the protocol but may try to infer additional information
from the transcript. Semi-honest behavior is not only the standard
choice in the related literature [20, 28, 66]. It is also a widely used
security model for outsourcing, arguing that cloud computation
providers must preserve their reputation and thus have a strong
interest in executing outsourced computations correctly [2, 44, 60].
Compared to security against stronger malicious adversaries, the
semi-honest model allows for much more efficient protocols while
still protecting against insiders and outsiders.

2.2 Analysis of Related Work

We analyze to which extent prior works address the stated require-
ments. We first present related work on secure classification and
pattern recognition then briefly discuss orthogonal works. A quan-
titative evaluation and comparison against related work is provided
separately for each classifier in Sections 5.1, 6.1, 7.1, and 8.1.
Secure Classification. Vaidya and Clifton [75] present a secure
Naive Bayes classifier based on Homomorphic Encryption (HE) but
evaluate neither performance nor accuracy. Yu et al. [81] present
HE-based protocols for SVMs which is restricted to binary features
and not evaluated. Graepel et al. [39] present an outsourcable secure
Fisher’s linear discriminant classifier based on Somewhat Homo-
morphic Encryption (SWHE). Different to our problem scenario,
their approach requires that the user holds all inputs and most
overheads are due to encryption on the user’s side and cannot be
outsourced. Bost et al. [20] present secure and efficient hyperplane
classifiers, discrete Naive Bayes, and decision tree based on a com-
bination of different HE schemes. Chandran et al. [24] improve
upon Bost et al. using a combination of Garbled Circuits (GCs)
and Additive Secret Sharings (ASSs). Our secure hyperplane and
Naive Bayes classifiers are improvements on these works w.r.t.
performance (up to two orders of magnitude faster), functional-
ity (e.g., continuous feature spaces), and outsourcing. A particular
focus among related works has been on secure classification us-
ing ANNs: Dowlin et al. [29] present a first Fully Homomorphic
Encryption (FHE)-based approach that is outsourceable and effi-
cient for batched classifications. Following, Chandran et al. [24],
Liu et al. [52], and Riazi et al. [66] propose hybrid protocols (com-
bining GCs, Goldreich-Micali-Wigderson (GMW), and ASS) that
greatly reduce computation and communication overheads also
for single classifications and conceptually lend themselves to out-
sourcing. Rouhani et al. [68] present a fully GC-based protocol and
an outsourcing scheme based on Boolean secret sharing. Albeit
being designed for wide applicability, SHIELD shows competitive
performance on ANNs compared to these specialized approaches.
Using an intricate combination of FHE and GCs, Juvekar et al.’s

SHIELD: Efficient and Secure Machine Learning Classification

approach [43] achieves another reduction of classification latency
by one order of magnitude but cannot be outsourced. Finally, Mo-
hassel and Zhang [55] provide GC and ASS-based protocols for the
secure learning of ANNGs.

Secure Pattern Recognition. Smaragdis et al. [72] followed
by Pathak et al. [57, 59] first considered secure HMM computa-
tions in the context of speech recognition. Their approaches are
based on HE which causes prohibitive overheads and numerical
inaccuracies for all but very small models and requires plaintext
knowledge for certain operations which prevents outsourcing. To
tackle the challenge of numerical accuracy in secure computation
over non-integers, Aliasgari et al. [5], Kamm et al. [45], and Demm-
ler et al. [27] propose secure floating-point primitives. While these
primitives could be used to implement secure HMM-based pattern
recognition (still requiring additional measures to avoid underflows
[64]), none of these works presents a concrete implementation and
the performance comparison in [27] indicates high overheads. Franz
et al. [36, 37] were first to build a secure HMM Forward algorithm
with reasonable performance and accuracy on real-world HMMs
based on HE and fixed-point precision arithmetic in logarithmic
representation. However, this approach cannot be fully outsourced
and scales poorly to long-term security levels due to the use of HE.
Aliasgari et al. [4] compute the HMM Viterbi algorithm in the two-
party setting using threshold-HE and their secure floating-point
primitives [5] (discussed above). The evaluation of their two-party
setup indicates prohibitive overheads in the order of hours even
for very small HMMs with only five states. Finally, Ziegeldorf et al.
[86] provide an efficient secure Forward algorithm based on GC
and ASS. We extend on some of their techniques and propose a
secure Viterbi algorithm that is faster than previous works by 9.6x
to 48.3x and can be used in lieu of the less efficient secure Forward
algorithm in the use cases presented in [37, 86].

Orthogonal Work. Different works consider secure training of
classifiers on horizontally or vertically partitioned data, e.g., for
Naive Bayes [76, 79] or ANNs [18]. The common assumption of
these approaches is that learned models are not privacy sensitive
and can be handed to the users who then classify locally on the
plaintext model and data. In contrast, we assume that also the clas-
sification model requires protection, e.g., due to privacy concerns,
business interests, or legal requirements. Finally, multiple other
works on secure classification and pattern recognition are highly
specialized to single use cases. Bos et al. [19] securely predict cardio-
vascular diseases based on logistic regression. The authors assume
that the classifier is public knowledge and only the user’s input
must be hidden during classification. The proposed algorithms thus
do not apply to our setting where nothing must be learned about
the model and the input other than what is implied in the com-
puted result. Barni et al. [11] securely evaluate linear branching
programs and neural networks specialized to the classification of
electrocardiograms using GCs and HE. The provided runtime esti-
mates are two order of magnitudes higher than the state of the art
and their use of HE prevents outsourcing. Finally, there have been
multiple proposals specialized to secure face recognition using HE
[34], GCs [70], or Oblivious Transfer (OT) and ASS [9]. In contrast,
we aim to implement efficient general purpose classifiers that apply
to a wide range of classification tasks.

357

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

3 CRYPTOGRAPHIC BUILDING BLOCKS

We provide a brief overview of the basic STC techniques that build
the basis of related works and our own approach.

Oblivious Transfer. OT is a protocol between a sender S and
a receiver R which allows R to choose exactly one of many secrets
held by S without S learning R’s choice and R learning S’s other
secrets. In 1-2-OT, S holds two secret bits sy and s; while R holds
a choice bit r; R obtains s, and learns nothing about s;—, while S
learns nothing about the choice r. 1-2-OT can be generalized to
l—n—OTl, where S holds n [-bit secrets and R learns only s,,r €
{1, ..., n}. A batch of m parallel OTs is denoted by 1-n-OT""*, where
R learns one secret s;,, from eachrun1 < i < m. l-n-OT;" can
be efficiently instantiated with ¢ bits symmetric security using OT
Extension from only t real 1-2-OT,, the so-called base OTs [8, 42].

Garbled Circuits. Yao’s GCs [80] were the first generic STC
protocol, allowing two parties A and B with private inputs x and
y to evaluate ¥ (x, y) without either party learning the other’s in-
put. Yao’s protocol runs in three rounds: First, the function ¥ is
represented as a Boolean circuit g, €.g., using special compilers
[27]. Party B garbles this circuit by encrypting and permuting the
truth table entries of each logic gate. Second, 8 sends the garbled
circuit 7~‘-Bool together with its own garbled input 7 to A, while
A obtains her own garbled input x from 8 via OT. This ensures
that B learns nothing about A’s input x and vice versa. Finally, A
obliviously evaluates Fo0(%, j) by decrypting the GC gate by gate.
Yao’s approach thus requires only a constant number of commu-
nication rounds such that its overheads are mainly determined by
the circuit size. Different size-efficient circuit building blocks have
been proposed in [41, 47]. Equally important are efficient garbling
and evaluation functions [14, 73, 82].

Additive Secret Sharing. ASS [15, 28] uses an arithmetic circuit
representation, i.e., ¥ is represented using addition and multipli-
cation gates over the ring Z,; (equality modulo 2! denoted by =).
To evaluate such a circuit Fopip , A and B first share their input
among each other, e.g., A with input x draws a random r €y Z,,
and sends (x)g = x — r to B keeping (x)# = r as her own share.
Since (x) 7z + (x)g = x, we call (x) = ({(x)#, (x)g) < SHARE(x)
an additive sharing of x. A and B then compute Fth ((x), (y))
using only these shares. While addition can be evaluated locally due
to commutativity of addition in Z,;, multiplication gates require
an interactive protocol between A and B, which can be sped up
using precomputed Multiplication Tripless (MTs) [12, 28]. Even-
tually, A and B obtain shares (r) 4, (r)g which they exchange
and add to obtain the final result r = (r) g + (r)g, denoted by
r < Recombine({r)). Processing and communication overheads of
ASS-based STC are dominated by the generation of the required
MTs, i.e., by the number of multiplications in %, . The round com-
plexity is determined by the multiplicative depth of the arithmetic
circuit. Efficient building blocks have been proposed in [22, 23].

Hybrid STC. GCs are based on Boolean logic and thus suit logi-
cal operations. ASS, in contrast, is based on modular arithmetic and
is more efficient for arithmetic operations. Following this observa-
tion, hybrid STC has first been proposed in Tasty [40] and since then
been significantly improved by ABY [28] and Chameleon [66]. The
common foundation of these frameworks are efficient conversion
protocols between Boolean and arithmetic representations.

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Labeled feature

vectors X X
Feature
Training
. extractlon
Feature Classification
extractlon Un\abeled feature algorithm C
vector X

Figure 1: Overview of supervised classification.

4 SHIELD FRAMEWORK

Our approach to secure classification and pattern recognition is to
abstract from specific applications and instead provide a framework
of efficient and flexibly composable building blocks upon which a
wide range of classifiers and use cases can be realized. To this end,
we first briefly survey supervised classification and pattern recogni-
tion and distill core building blocks for which we propose protocols
that are secure in the semi-honest model, efficient, accurate, and
lend themselves to outsourcing. We then build and evaluate se-
lected classifiers to showcase the applicability and flexibility of our
SHIELD framework (Sec. 5 to 8). The entirety of our secure building
blocks and secure classifiers complemented by our outsourcing
protocols (Sec. 9) makes up our SHIELD framework.

Model

Lab
reco

c(M, %)

Unlabeled
record d

4.1 Overview of Supervised Classification

Classification is the task of predicting a classlabel ¢ € C = {c1, .., ¢ }
for an unlabeled record d. In supervised machine learning (cf. Fig. 1),
a statistical model M is trained on the feature vectors X 1 XmeR?
extracted from a labeled dataset D. Using the model M, the clas-
sification algorithm C : R" — C predicts a class ¢ = C(M,X) € C
for d based on the feature vector ¥ extracted from d. This tradi-
tional classification task can be generalized to sequence labeling
where each element d; of a sequence (dy, ..., dT) should be assigned
a class. Although we can reduce this problem to a set of T indepen-
dent classifications, sequence labeling often involves (correlated)
time-series data where classification accuracy can be increased by
considering also nearby elements. Sequence labeling is a typical
task in (temporal) pattern recognition with many real-world ap-
plications, e.g., part-of-speech tagging [59], localization [87], or
sequence alignments in bioinformatics [37].

In this paper, we consider the problem of computing C(M, X) se-
curely to address scenarios where M and X are sensitive and held by
two distrusting parties. There are, of course, different approaches
to training models M, building features X, and using them for clas-
sification in C. For this work, we select four classes of approaches:
i) Hyperplane classifiers due to their ubiquity (e.g., in perceptrons,
least squares, and Fisher’s linear discriminant [17]), ii) ANNs due
to their huge success in deep learning [49], iii) Naive Bayes as a
popular baseline method [17, 20], and iv) HMMs as a representative
and widespread approach to (temporal) pattern recognition [64].
Before we provide details and secure protocols for these classifiers
(Sec. 5 to 8), we focus on their common building blocks.

4.2 Secure Building Blocks

We distill common building blocks of the selected classifiers then
introduce secure, efficient, and accurate protocols for these based
on the introduced cryptographic primitives (cf. Sec. 3). First, all

358

Ziegeldorf et al.

classifiers require handling real-valued inputs and outputs, e.g.,
probabilities or weight vectors, and we thus provide secure building
blocks for computing over non-integers (Sec. 4.2.1). A second ubiqui-
tous building block is computing the max and argmax (Sec. 4.2.2),
e.g., to select the most probable output class. Scalar products are
a third basic building block that is heavily used in linear classi-
fiers and ANNS, e.g., to compute convolutions (Sec. 4.2.3). A fourth
important building block is the evaluation of non-linear functions,
e.g., activation functions in ANNs or probability distributions in
HMMs (Sec. 4.2.4). Finally, dynamic-programming algorithms, such
as Viterbi, require backtracking to determine the optimal state se-
quence (Sec. 4.2.5). Tab. 7 in Appendix A summarizes all building
blocks and a security discussion is given in Appendix B.1.

4.2.1 Representation of Real Numbers. Cryptographic primitives
typically operate over discrete algebraic structures (cf. Sec. 3), rais-
ing the question how to handle non-integers. One approach is
secure floating-point arithmetic 3, 27, 45], another is multiplying
all non-integers v; by a large constant K such that Kv; € Z [20].
Both approaches incur high overheads (e.g., multiplying by K blows
values up to hundreds of bits in length) and often provide more
accuracy than necessary.

In SHIELD, we represent non-integers with fixed-point preci-
sion as in [23, 86]. Formally, we transform x € R to x’ € N by
F21(x, 1, s) = |25x] mod 2! (float-to-integer). This encoding pre-
serves signed integer arithmetic when decoded as 12r(x’,1,s) =
(x" = 2D/25 for x' > 2!"! and 12r(x",1,s) = x’/25 otherwise
(integer-to-float). After transforming all inputs (i.e., models and
features) using F21, all intermediate values and results are kept in
this representation. Note that the sum of two scaled values has
the same scaling and the bitlength increases by at most one, while
multiplication accumulates the scaling factor 2% and bitlengths add
up which may quickly overflow the available bitlength I. To prevent
this, we use the secure RESCALE protocol from [86] to scale down
by factor 2° before any subsequent addition or multiplication.

Since fixed-point precision introduces quantization errors we
need to carefully evaluate whether our secure classifiers remain ac-
curate. Indeed, we find that this approach is not sufficiently accurate
for HMM computations which involve extremely small probabilities.
In this context, Aliasgari et al. [3, 4] argue that full floating-point
precision is required but report runtimes in the order of hours
even for small HMMs. An alternative is to compute in logspace
as proposed in [30]. Formally, we transform p € (0,1] € R to an
integer in logspace p’ € N by p’ = r21(log(p),l, s) with the in-
verse p = exp (12F(p’, 1, 5)), denoted F2L1 and L12F. We represent
log(0) = Logzero by a sufficiently small integer.

4.2.2 Secure Max and Argmax. Given an additively shared vector
Xy = ({x1), ..., {xn)), ARGMAX (Prot. 5, Appendix A) securely com-
putes the maximum value (max) and its index (arg max). (X) is first
fed into n parallel garbled addition circuits to convert to garbled
values ;. On the garbled values, U and S efficiently select the max
and arg max using pairwise comparisons as proposed in [47]. The
garbled results X*,i* are converted back to additive shares (x*),

(i*) using the OT- based subtraction circuit proposed in [28]. Note
that computing the arg max makes up one third of the overheads
of ArRGMAX and we can leave this part out if we only need the max.

SHIELD: Efficient and Secure Machine Learning Classification

4.2.3 Secure Scalar Products. ScALARPROD (Prot. 6, Appendix A)
securely computes scalar products on additive shares in a straight-
forward manner using only ASS-based addition and multiplication
(Sec. 3) and rescaling (Sec. 4.2.1): U and S engage in n multiplica-
tions and add resulting shares locally then invoke REscALE on the
result to restore the correct scaling by factor 2° as required in our
fixed-point number representation. To improve efficiency, we batch
all messages required for the n parallel multiplications, resulting in
a total of only two rounds of communication.

4.2.4 Secure Approximation of Non-linear Functions. With the es-
tablished STC techniques (Sec. 3), we can already efficiently com-
pute many functions used in machine learning, e.g., the identity,
binary step, rectified linear, or maxout activation functions for neu-
rons in ANNs. However, a wide range of other important, especially
non-linear, functions cannot be efficiently computed, e.g., Sigmoid,
Gaussian, and SoftPlus activation functions, as well as Gaussian,
Gamma, and LaPlace probability distributions. Related works often
try to circumvent usage of these functions, e.g., Dowlin et al. [29]
construct an ANN with the Sigmoid function on the output layer
then note it is only important for training and is left out during
classification. We argue that it is generally desirable to be able to
evaluate such non-linear functions and probability distributions
securely as they are important building blocks for classification and
other machine learning algorithms [29, 69].

Generally, what we aim for is a building block that securely
computes a possibly secret function f at a possibly secret point x
and returns the result in secret-shared form. In the following, we
present three such building blocks with different characteristics:
i) a generic yet efficient approach for the evaluation of arbitrary
secret functions at secret points, ii) a more efficient approach for the
evaluation of arbitrary secret functions at evaluation points known
by one party, iii) a highly efficient protocol for the evaluation of
Gaussians with secret parameters at secret evaluation points.

Case 1: Secret arbitrary f and secret x. We approximate an
arbitrary f : R — R at point x € R by k polynomials g;(x) € R[X]
of degree d for x € [r;, rit1) with (—oo, r1) U... U[l, o0) = R where
the choice of intervals and polynomials minimizes an adequate error
measure. POLYFUNCAPPROX (Prot. 7, Appendix A) is a secure proto-
col for this task taking as input the shared evaluation point (x) and
the shared approximation parameters (P r) = ({a11), .- {aka) {r1),
wwes (1)) It transforms the inputs to garbled values using an addition
circuit, uses the circuit from [62] to select g; such thatr; < x < rj4q,
and converts the coefficients a;4, ..., ajo of g; to additive shares. To
efficiently compute (g;(x)) on (x) and (g;) = ({a;g), ..., {aio)) (de-
noted by (gi(x)) < EvaLPoLY({g;), {x))), we propose a tree-based
scheme that requires [log,(d) + 1] rounds of multiplications by
evaluating g;(x) up to azile in round i. Applying rescaling after
each round of multiplications results in a total of 2([log,(d)] + 1)
communication rounds. Finally, shares of the approximated result
(f’(x)) = EvarPory({g;), {(x)) are returned to U and S.

Case 2: Secret discrete f and known x. We treat the sce-
nario where the evaluation point x is known to one party and
the target function f is discrete, e.g., in Naive Bayes with dis-
crete features or HMMs with discrete emissions (note that a con-
tinuous function f could be easily discretized by subsampling).
In related work [37, 61], this problem is solved using HE, i.e., U

359

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

encrypts her choice x; in m selectors of which only the i*" en-
crypts a one and all others encrypt zero. S can then obtain an
encryption of f(x) by multiplying the selectors pairwise against
f(x1), ..., f(xm) and summing the results using the HE scheme, i.e.,
[= [O]elfxD]e..e[IoLf x)]e..e[0loLf (xm)] (1] de-
notes encryption, @ addition and ® multiplication on ciphertexts).
In comparison, our protocol OTFUNCAPPROX (Prot. 8, Appendix
A) is much more efficient since we substitute the expensive HE
operations by OT which can be realized using highly efficient sym-
metric cryptography primitives and one-time-pad operations (cf.
Sec. 3). At the start of OTFuNcAPPROX, U and S hold shares of
the m function values (f(X)) = ({(x1), ..., (xm)) and U holds the
evaluation point x € {x1,...,x,} in clear. In the first step, S blinds
each of its share with the same random value rs €g Z,s, i.e., com-
putes (f(x;))s + rs. Both parties then engage in 1-m-OT, on the
m blinded shares ({f(x1) + rs)s, ..., (f(x1) + rs)s) from which U
learns (f(x) + rs)s and nothing else while S learns nothing about
x;. U computes her share (f(x))y = (f(x; +rs)s + (f(xi))y while
S simply sets (f(x))s = —rs.

Case 3: Secret Gaussian f and secret x. We consider the case
where f is the popular Gaussian distribution N, » with secret
parameters p, o and secret evaluation point x. Though we could
use PoLYFUNCAPPROX, we design the special-purpose but more
efficient GAUSSIAN protocol (9, Appendix A) since the frequent use
of Gaussians justifies the additional handwork. We first transform
to log-space, i.e., log(N (i, o)(x)) = 10g((27[0'2)_1/2)+(x—/1)2/—20'2.
u, x and 1/—202 are given as normal additive shares and o is shared
in log-space. U and S then compute (x — y)?, multiply by 1/-20,
and finally subtract log(c) using only the additive shares. We drop
the term log((27[)_1/ 2y since it is constant and thus irrelevant for
classification. Apart from inexpensive local operations, GAUSSIAN
requires only two secure multiplications and rescaling operations
which is more efficient than applying PoryFuncApprox. When
high accuracy is required, GAUSSIAN is also more efficient than
running OTFUNCAPPROX on a fine-grained subsample of N (u;, o)
and also more general since x can be secret.

We note that tailoring protocols, e.g., to the special non-linearities
typically involved in neural networks as proposed in [29, 55], yields
potentially more efficient protocols. Our aim is, however, to present
a widely applicable framework rather than optimize our approach
towards a single classifier. Our first two protocols for approximation
of non-linear functions are in line with this goal, i.e., we deliberately
trade performance improvements of specific protocols against the
wider applicability of our general protocols.

4.2.5 Backtracking. Backtracking is a common step in dynamic-
programming algorithms (e.g., for determining the optimal state
sequence in the HMM Viterbi algorithm) and we propose the BAck-
TRACK (Prot. 10, Appendix A) to compute this task securely. We
assume that only U should learn the final result, the case where
S or both should learn the result being straightforward. At the
start, the state matrix M € NNXT together with the final state ST
is additively shared among U and S. First, S sends (s;) s such that
U is able to recombine s7.. Starting from ¢ = T, U then iteratively
obtains (s;_;)s = (Ms;,t)s via 1-N-OT; from S and recombines
s?_l locally. After T sequential OTs, U thus learns S$* = s;‘, s s?

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Ziegeldorf et al.

Protocol 1 Secure HYPERPLANE protocol based on ASS and GC.

U has feature vector X € R™
S has k models My = Wy, ..., Mi = wi with w; € R"
Output: Class ¢* = Cyperpiane (M1, ..., M), X)

Input:

Initialization:
U: (xj)u=r2(x;), (wji)u=0 Vi=1..n,Vj=1...k
S: (xi)s =0, (wji)s =r2(wj ;) Vi=1...n,Vj=1...k

Compute distance to each hyperplanes:

U& S: (z;j) « ScaLarProp((X), (w;)) Vj=1...k

Determine most probable class:
UsS:
UsS:

(c*) « Aremax((z1), ..., (zx))
¢* « 12F(RECOMBINE({c")))

4.3 Implementation and Evaluation Setup

To thoroughly quantify performance and accuracy of SHIELD,
we implement all classifiers, evaluate them on popular real-world
datasets from the machine learning community and compare their
performance against the fastest approaches in related work.

Implementation. We implement all secure primitives and clas-
sifiers in C++ relying on the OT extension library [33] and the
ABY framework [32] for creating and evaluating GCs as well as
ASS-based multiplication. Besides the OT extensions library and
the ABY framework, which are multithreaded, the rest of our im-
plementation realizes only obvious optimizations, e.g., batching of
trivially parallel loops in the classifiers.

Experimental Setup. We perform experiments between two
desktop machines (Ubuntu 14.04 LTS, Intel i7-4770S with 4 cores at
3.10 GHz, 16 GB RAM) connected over a 1 Gbit/s LAN. We use [=
64 bit for our fixed-point number representation (cf. Sec. 4.2.1) and
set the symmetric security level t to 128 bit for long-term security.
Our results are averaged over 30 independent runs.

5 HYPERPLANE CLASSIFIERS

Hyperplane classifiers [17] compute a linear combination of fea-
tures in ¥ with a trained weight vector w, i.e., CHyper(M,%) =
f(EL, wi - xi) = f(W - X) where the function f maps the inner
product to two classes. The classification model is thus given by
M = (w, f). We can visualize hyperplane classifiers by interpret-
ing w as the normal vector of a hyperplane w - X — b = 0 that
splits the n dimensional feature space into two parts. Hyperplane
classifiers can be generalized to non-linearly separable data using
the kernel trick [71] and to data with multiple classes through a
one-versus-all approach, i.e., training k models where model M;
decides whether a given feature vector X belongs to class ¢; € C
[20] by Cryper(Mi, ..., My, X) = arg max, cc (wj - X). With these
definitions, we can model classifiers with linear predictor functions,
such as SVMs, (multinomial) logistic regression, least squares, per-
ceptrons, and Fisher’s linear discriminant [17].

HYPERPLANE (Prot. 1) securely computes Cryper(Mi, ..., M, X)
where S holds the k models M; and the U holds the feature vector .
In the first step, the user U and service provider S initialize shares of
the weight vectors w; and feature vector ¥: Each party uses F21 to
initialize shares of its own inputs and sets shares of the other party’s
inputs to zero (we denote this as a dummy sharing since there is no

360

Security WBCD Credit HAR
levelt 1ms 40ms 1ms 40ms 1ms 40 ms
Bost et al. [20] 80 bit 0.22 0.47 0.30 0.56 0.72 1.01
EzPC [24] 128 bit 0.10 0.30 0.10 0.30 N B
HYPERPLANE (this work) 128 bit 0.02 035 0.02 039 003 073

Table 1: Comparison of runtimes [s] of secure hyperplane
classifiers on different datasets.

interaction between U and S and no values are actually shared). U
and S then compute one secure scalar product (using SCALARPROD)
for each pair wj, ¥ in parallel in one round of communication to
improve performance. U and S then invoke ARGMAX on the shared
scalar products (z;) to determine the target class ¢* € N which can
be recombined by U, S, or both. Note that ¢* is actually the index
of the target class cc+ € C and for simplicity we assume from now
on w.lo.g. C = {1, ..., k}. Security guarantees of HYPERPLANE are
discussed in Appendix B.2.

5.1 Evaluation

We compare HYPERPLANE against Bost et al. [20] and EzPC [24]
on the Wisconsin Breast Cancer Diagnostic (WBCD) dataset [78]
with 32 features 2 classes, the Credit Approval (Credit) dataset [25]
with 48 features and 2 classes, and the Human Activity Recognition
(HAR) dataset [65] with 561 features and 6 classes.

Runtime. We measure runtimes in the offline and online phase
for two different networks with Round Trip Time (RTT) of 1ms
(LAN) and 40 ms (WAN) (cf. Tab. 1). On average, HYPERPLANE is
17.02x faster than Bost et al.’s approach and 5x faster than EzPC
in the LAN setting and and only slightly slower in the WAN setting.
Notably, HYPERPLANE provides long-term security while Bost et al.
provide only an equivalent of 80 bit symmetric security which is
widely considered insecure [10]. HYPERPLANE is especially efficient
in the critical online phase improving by 21.01x (LAN) and 1.54%
(WAN) on Bost et al. affording very low latency in end-user sce-
narios where classifications are performed sporadically using idle
times for precomputations.

Communication. On all three datasets, HYPERPLANE requires
more communication than the related approaches, e.g., 256.55 kB
vs. 54.55 kB (Bost et al.) and 36.00 kB (EzPC) on the Credit dataset.
HYPERPLANE’s communication overheads are almost completely
due to the precomputation of MTs which could be reduced using
the optimized Du-Attalah protocol [66] (published and proposed in
parallel to this work). Furthermore, most of HYPERPLANE's commu-
nications falls into the offline phase while the online phase requires
only 14.16 kB compared to 41.16 kB in Bost et al.’s approach.

Accuracy. We measure the numerical accuracy of HYPERPLANE
by classifying 300 randomly selected test vectors and comparing
against a reference implementation that operates on double preci-
sion plain texts. We observe a very low average absolute numerical
error of 2.46 X 1077 (o = 2.71 X 1077) and find that HYPERPLANE
predicts exactly the same classes as the insecure reference imple-
mentation. From this, we conclude that the classification accuracy
of HYPERPLANE is thus only limited by the quality of the classifica-
tion model; tuning models is not the goal of this work.

Summary. HYPERPLANE is a simple, fast, and secure protocol for
any classifier with a linear predictor function. In the next section,
we generalize HYPERPLANE to full-fledged ANNs.

SHIELD: Efficient and Secure Machine Learning Classification

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Protocol 2 The secure ANN classifier protocol.

Input: U has feature vector X € R™
Shas ANNM = (wl, w..., wil, @', .., o)

Output: Class ¢* = Cann (M, .7?3
Precomputation:

S: Pr=(al, ..., a,id), k.. r,i) — Approx(¢', k, E) Vi=1...L
Initialize shares:

U: <‘7/,l~,i>u =0, (xi)u = F21(x;), (P1)u =0 vl i, j

St (wh s =rawh), (xi)s =0 vl i, j

(Pr)s = F21(a{1), e F21(aid), F21(rll), e FZI(r,i) Vi=1...L

Feed-forward through all layers I = 1...L:
Ue S: (el « scatarPron((7 1), (wl)) Vi=1...m
Us S: (yll) — POLYFUNCAPPROX((ef), ((pl)) Vi=1...my

Determine most probable class:
Ue S: (c*) « AreMax({y1), ..., (y5))

U&s S: ¢ « 12r(REcomMBINE({c")))

6 ARTIFICIAL NEURAL NETWORKS

ANNSs [16, 26, 69] are composed of many individual artificial neu-
rons organized in multiple layers. Any single neuron computes a
weighted sum of its inputs, the excitation level, and fires when it
exceeds a threshold. In feed-forward networks, a neuron on an in-
termediate layer [takes inputs only from neurons on the previous
layers [— 1 and passes its output on to neurons on the subsequent
layer I + 1. The classification result is then read from the output
layer | = L with one neuron per class. Feed-forward ANNs can be
modeled as a function that is composed of the activation functions
of the individual neurons [69, pp. 567-570]: The i/ neuron on layer
I > 1ismodeled by yl{ = (pl(zj"i’fl w;,i-y]l_l) = <pl(»_\3il-§l_1)where
Vvil are the synaptic weights between the i‘" neuron on the I'* layer
and all neurons on the layer [— 1, /=1 the outputs of those neu-
rons, and qol (+) the activation function for all neurons on layer I. An
ANN model is thus defined by M = (ﬁz%, »_\’/;..., v_(/ﬁ,qal, oy pF) and
the classification rule is given by Conn (M, X) = arg max jeC y]I.“ .In
its simplest form, an ANN consists of a single neuron which cor-
responds almost exactly to the previously introduced hyperplane
classifier. A single-layer perceptron, just as hyperplane classifiers, is
limited to binary classification problems and linearly separable data
[69, pp. 573-574]. Building ANNs with many neurons and multiple
hidden layers, referred to as deep learning, overcomes this limitation
and tackles much more complex classification problems.

ANN (Prot. 2) computes ANNSs securely. S holds the ANN and first
computes approximation parameters for the activation functions
¢! for use in PoLYFUNCAPPROX (cf. Sec. 4.2.4). As before for HYPER-
PLANE, U and S then dummy-share all model parameters and inputs.
On these shares, U and S first securely compute the excitation level
ef (for each layer [= 1...L and each of neuron i = 1, ..., m;) using
ScALARPROD then evaluate the (secret) activation function (pl on
the shared evaluation point (ef) using POLYFUNCAPPROX, obtaining
additive shares of the neuron’s output, i.e., (yll.). Note that we can
compute the output of all neurons on the same layer in parallel
and batch communication to increase performance. Finally, U and

361

Sec. Arbit. Out- MINST

level t act.func. sourc. 1ms 40 ms 100 ms
Cryptonets [29] 128 bit X X 297.65 297.73 297.85
DeepSecure [68] 128 bit v v 9.67 - -
SecureML [55] 0 bit X V) 4.88 - 18.37
Chameleon [66] *T 128bit v V) 2.70 - 7.90
MiniONN [52] 128bit) 1.28 - -
EzPC [24] 128bit v V) 0.60 1.60 -
Gazelle [43] 128bit v x 0.03 - -
ANN (this work) 128bit v v 0.60 4.98 12.08

Table 2: Comparison of runtimes [s] of secure ANN classi-
fiers on the MNIST dataset for different network scenarios.
* Requires a trusted third party. ¥ Similar network but uses
ReLU activation function. ¥ Slightly more complex network
with three fully-connected layers.

S invoke ARGMAX on (yf),...,(yﬁ) to determine the target class c*.
We discuss security of ANN in Appendix B.2.

6.1 Evaluation

Since code for related works is not (yet) open-source, we compare
directly against the results from the respective papers but note
that they were obtained on comparable yet different machines. To
maintain comparability as far as possible, we select only those
results obtained on the same dataset, i.e., MNIST [50], and with the
same convolutional neural network (CNN) architecture described
in the initial work of Dowlin et al. [29].

Runtime. Tab. 2 summarizes the runtimes of ANN and pre-
vious works for classification of a single image. The Cryptonets
approach [29] optimizes for throughput and allows batching up
to 4096 images into one ciphertext at no additional costs. Being
based on FHE, Cryptonets is a two-rounds protocol and thus scales
nicely to networks with higher latencies. FHE, however, puts high
load on the user which cannot be outsourced as we will discuss
further in Sec. 9. DeepSecure is a purely GCs-based approach and
shows how to securely outsource the client’s protocol part to an
untrusted third party. In comparison, ANN has a 16.1X lower classi-
fication latency. SecureML [55], Chameleon [24], and MiniONN [52]
are hybrid approaches that build on different combinations of OT,
GC, ASS, HE, and GMW. SecureML only considers linear activa-
tion functions, while Chameleon depends on a semi-trusted third
party dealer and thus provides weaker security guarantees than
the other approaches. None of these approaches explicitly presents
outsourcing protocols, although the underlying STC techniques
conceptually lend themselves to outsourcing. In comparison, ANN
is 8.1X%, 4.5%, and 2.1x faster and facilitates highly efficient secure
outsourcing (cf. Sec. 9). EzPC [24] is a competitive approach that
outperforms ANN in slower networks (while SHIELD, in turn, out-
performs EzPC on hyperplane and Naive Bayes classifiers). The
most recent approach, Gazelle [43], outperforms ANN by 20X but
cannot be outsourced due to its use of FHE.

Communication. The Cryptonets approach requires 372.20 MB
of communication to classify up to 4092 images but unfortunately
requires the same high amount for classification of a single im-
age. While no communication overheads are reported for SecureML,
DeepSecure requires even more with 791.00 MB. MiniONN, and EzPC
reduce communication to 70.00 MB and 47.60 MB, respectively, for

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

a single image. Chameleon optimizes especially for low communica-
tion and manages to reduce overheads to 8.60 MB. Using highly ef-
ficient packing and Single-Instruction-Multiple-Data (SIMD) strate-
gies, Gazelle reduces communication to 0.50 MB. With 76.36 MB,
ANN’s overheads are one and two order of magnitude higher than
Chameleon’s and Gazelle’s, but competitive w.r.t. the other ap-
proaches. As for HYPERPLANE, ANN’s communication overheads
are mostly due to MT precomputation and could be reduced by em-
ploying the improved Du-Attalah protocol [66] for precomputing
MTs which is optimized for low communication overheads. Pre-
computing MTs also renders the online phase of ANN very efficient
with only 2.20 MB of communication.

Accuracy. We measure the numerical accuracy of ANN by clas-
sifying 300 randomly selected test vectors and compare against a
reference implementation on plaintexts. We measure an average
absolute numerical error of 8.60 x 1072 (¢ = 7.42 x 10~2) which
is four orders of magnitude higher than for HYPERPLANE, but still
low enough such that ANN predicts exactly the same classes as
the reference implementation. The increase is due to the higher
multiplicative depth of ANNS, i.e., the numerical errors grow with
each layer. Networks with many more layers may thus require a
deterministic rounding strategy, e.g., as proposed in [35].

Summary. ANN is a secure protocol for feed-forward neural
networks optimized for classification latency and support for arbi-
trary (non-linear) activation functions. In the next two section, we
now focus on approaches that are based on probability theory.

7 NAIVE BAYES

A Naive Bayes classifier is a conditional probability model that
assigns probabilities P(C = ¢j|X = X) for all classes ¢; € C to all
possible feature vectors X [69, Chap. 14]. Classifications are com-
puted by selecting the most probable class, i.e., Cpayes(M, X) =
argmax cc p(cj|X). Since it is often infeasible to learn the poste-
riors p(c]"|3?) directly from the data [7], e.g., for very large or high-
dimensional feature spaces, the Bayes theorem is usually applied to
compute the posteriors from the likelihoods p(X|c;), the priors p(c;),
and the evidence p(X) which can be better learned from the train-
ing data D, naively assuming features x; € X (modeled by random
variable X;) to be conditionally independent from each other fea-
ture, i.e., P(X;, X;|C) = P(X;|C) - P(X;|C). The classification model
M is then given by the distribution of the likelihoods, priors, and
evidence, i.e., M = (P(X1]C), ..., P(X,|C), P(C), P(X)). This classi-
fier is called naive because the central assumption of conditional
independence actually does not hold for most real-world datasets.
Perhaps surprisingly, Naive Bayes classifiers have been shown to
still provide good results in real-world applications [67, 83].
NAIvEBAYES (Prot. 3) is a secure Naive Bayes classifier in logspace
representation. Since secure multiplications are expensive and in-
troduce numerical errors, we transform computations of the posteri-
ors into logspace, i.e., log(p(c;|¥) = X7, log(p(xilc;) +log(p(c))) —
log(p(x;)). The representation is advantageous since it contains
only additions which can be computed much more efficiently and
accurately over additive shares. Note that even on plaintexts, Naive
Bayes is often computed in logspace to increase the numerical sta-
bility. At the start of NAIVEBAYES, U holds the feature vector X and S

362

Ziegeldorf et al.

Protocol 3 Secure NAIVEBAYES protocol based on ASS and GC.

Input: U has feature vector ¥
S has Naive Bayes classification model M = (P(X |C), P(X), P(C))
Output: Class ¢* = CNaiveBayes (M, X
Initialize shares:
U: (p(cj))u = Logzero (p(xilcj))u = Logzero Vi, j
St (plej))s = r2ulp(cs)) (p(xilcj))s = F2(P(X; = xilcj)) Vi, j
Compute posteriors:
Ue S: (p(xilcj)) < OrFuncArprox({(P(X;|cj)), x;) Vi, j
n
U S: (p(c;1%)) = Z(ﬁ(xilcj')) +(p(cy)) vj
i=1
Determine most probable class:
U S: (c") « Aramax({p(c;|x)))
U& S: ¢ « RecoMBINE({c"))
Security WBC Nursery Audiology
levelt 1ms 40ms 1ms 40ms 1ms 40 ms
Bost et al. [20] 80 bit 0.38 0.75 0.81 1.90 3.35 5.79
EzPC [24] 128 bit - 0.10 0.40 1.50 2.90
NAIvEBAYES (this work) 128 bit 0.02 027 002 031 0.03 058

Table 3: Comparison of runtimes [s] of secure Naive Bayes
classifiers on different datasets.

has the Naive Bayes classification model consisting of the probabil-
ity mass functions P(X|C), P(X), P(C). S first transforms the priors
p(cj) and likelihoods p(x;|c;) to scores with fixed-point precisions
using F2L1 and both parties initialize shares of the priors (p(c;))
using dummy sharing. In the next step, U and S use OTFUNCAPPROX
to compute shares (p(x;|c;) of the likelihoods. Computing shares
of the posteriors (f(c;|X)) is then a simple matter of summing the
shares of the likelihoods and the shared priors. Finally, U and S
determine shares of the class that maximizes the posterior scores
using ARGMAX. Note that we drop the evidence p(x;) since it is
constant for a fixed feature vector ¥ and thus only linearly scales
the scores p(c;|X) which does not change the arg max ¢*. A security
discussion of NAIVEBAYES is given in Appendix B.2.

7.1 Evaluation

We compare NAIVEBAYES against Bost et al. [20] and EzPC [24] on
the original Wisconsin Breast Cancer (WBC) dataset [77] (9 features,
2 classes), the Nursery dataset [74] (9 features, 5 classes), and the
Audiology dataset [63] (70 features, 24 classes).

Runtime. We measure offline and online runtimes in LAN and
WAN settings (cf. Tab. 3). As for HYPERPLANE and ANN, NATVEBAYES
performs best in the fast LAN scenario where it outperforms related
works by 63.47x (Bost et al.) and 27.5x (EzPC) on average while
still achieving a notable improvement of 6.24X and 3.16X in the
WAN scenario. We observe that a large fraction of the overheads
in Bost et al.’s approach is due to onetime overheads which would
amortize over larger batches of classifications. Not considering
these onetime overheads, our NAIVEBAYES still achieves a 37.24x
and 4.11X higher throughput than Bost et al. for the LAN and WAN
scenario, respectively. NAIVEBAYES’s improvements are due to the
efficient OTFUNCAPPROX primitive for sampling probability mass
distributions and the hybrid protocol design based on ASS and GCs
in contrast to the costly HE primitives used in Bost et al.’s approach.

SHIELD: Efficient and Secure Machine Learning Classification

Communication. NAIVEBAYES requires significantly less com-
munication than the other two approaches, e.g., only 0.74 MB on the
Audiology dataset compared to 1.91 MB for Bost et al. and 37.00 MB
for EzPC. Note that communication for Bost et al. approximately
triples when using 3072 bit keys, i.e., an equivalent to the 128 bit
symmetric security of NAIVEBAYES and EzPC.

Accuracy. We measure an average absolute numerical error
of 6.37 x 1078 (¢ = 6.70 x 1078) over 300 random test cases, i.e.,
results are practically indistinguishable from a reference implemen-
tation operating with double precision on plaintexts. The reason for
the high accuracy of NAIvEBAYEs is the logspace transformation
which replaces multiplications by additions which are numerically
more accurate and stable in our number representation.

Summary. NAIVEBAYES clearly outperforms prior works due to
the use of efficient ASS-techniques in log-space. Next, we apply
these techniques to more complex problems on HMMs.

8 HIDDEN MARKOV MODELS

An HMM is defined by the tuple A = (S,A,V, B, 7). The set S =
{s1,...,sN} are the possible internal states of the HMM with A €
RNVXN the state transition matrix, i.e., aj; = p(silsj) is the probabil-
ity that the HMM moves from state s; into state s;. The states of the
HMM are hidden and cannot be observed directly but only inferred
from the emissions the HMM outputs depending on its current state.
The alphabet of emissions is defined by V = {v1, ...,vp} with B €
RN*M the emission probability matrix, i.e., bj(v;) := bij = p(vjls;)
is the probability that the HMM emits v; in state s;. Finally, the
initial state distribution m € RN defines the probabilities 7; = p(s;)
that the HMM’s initial state is s;. The output of the HMM is a se-
quence of emission symbols O = o;...07 € VI*T referred to as an
observation sequence (each o; could be viewed as a separate feature
vector ¥ in the simple classification setting).

Two main problems are associated with HMMs. Filtering asks
for the probability P(O|4) that an HMM A generated an observa-
tion sequence O. Filtering is solved using the Forward algorithm,
which i) initializes a1 (i) = 7; - bi(01), Vi, ii) recursively computes
the forward variables a;(i) = Zjlil ar-1(j) - aji - bi(or), Vt, i, and
iii) outputs P(O|1) = Zfil ar(i). Decoding, searches for the most
probable sequence of hidden states $* of the HMM A for emitting
the observation sequence O and its probability p(O, S*|A). This
problem is solved by the Viterbi algorithm, which i) initializes
ai1(i) = 7 - bi(01), Vi (as before), ii) recursively computes the for-
ward variables a;(i) = maxjj\i1 ai-1(j) - aji - bi(or),Vt,i and the
backtracking matrix v;(i) = arg maxl.\i1 at-1(j) - aji, Vt, 1, and iii)
finally outputs the optimal state sequence s;_; = v;(s}), Vt and its
probability P(O, $*|4), s} = arg maxl{\il ar(i).

In both algorithms, the probabilities (i) decrease with each
iteration which quickly causes underflows and numerical instabil-
ity [30, 64]. Rabiner [64] proposes to normalize a;(i) after each
iteration while Durbin et al. [30] propose to compute in logarithmic
space. We refer to probabilities in logspace as scores with log(p(O|A))
and log(p(O, S*|1)) the Forward and Viterbi score, respectively.

VITERBI (Prot. 4) computes the Viterbi algorithm in logspace se-
curely using EVALPROB, MAXARGMAX, and BACKTRACK as building
blocks. At the start, U holds the observation sequence O = oy, ..., 0T

363

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Protocol 4 Secure VITERBI protocol based on ASS, GC, and OT.

Input: UhasO € VIXT Shas A =(S,V, A, B, 7)

Output: Viterbi score P(O, S*|A) and Viterbi path $* € §1XT

Initialization:

Ue S: (bi(o)) « OtFuncAperox(os, B;) Vi, i
U: (#&i)u =logzero (d;;)u = Logzero Vj, i
S (fi)s =rF2u(m;) (aji)s = F2ri(aj;) Vj, i

U.S: (aa() = (bi(o)) + (i)
Recursion: For2 < ¢t <T,1<i <N
U, S: (@) = ({r-1(1) + @13, -y {@r-1(N) + ani))
Ue S: {d(i), (v(i)) — MaxAremax((a;(i)))
U.S: (i) = (i) + (bilor)
Termination:
U S: (PO, S*IA), (sT) < MaxAremax({dr(1)), ..., {&r(N)))
U&S: P(O]A) « Recomsive({P(O[A)))
U S: S « Backrrack((v), (s7))

and S holds the HMM A. In the initialization phase, U and S com-
pute shares of the emission scores I;i(ol) via EvALPROB and add
the dummy shares of the initial state scores 7; locally. The goal
of the following recursion phase is to compute the forward vari-
ables a;(i) in logspace, i.e., the probability of the optimal par-
tial state sequence given only the partial observation sequence
0102...0¢ up to time step t. Additionally, we need to keep track of
this optimal state sequence in the variables v;(i). These steps are
given in logspace by @;(i) = max;;es (@ () + aji) + 5,—(01) and
v (i) = arg max; cg (@:(j) + aji) and can be efficiently combined
in MAXARGMAX such that U and S only need to locally add (l;i(ot))
to obtain the desired additive sharing (d;(i)) of the forward scores
a;(i). Since we also obtain additive shares of the maximum argu-
ment from MAXARGMAX, we can directly set the entry v;(i) in the
backtracking matrix v. Finally, U and S first invoke MAXARGMAX
on dr(1), ..., a7(N) to compute the Viterbi score P(O, $*|1) and the
optimal end state s7., then invoke BACKTRACK on s7. and (v) to let U
reconstruct the optimal state sequence S* that led to s7.. We discuss
the security of VITERBI in Appendix B.2.

8.1 Evaluation

We evaluate VITERBI in three use cases, i) secure bioinformatics
services, ii) secure speech recognition, and iii) secure localization.

Secure Bioinformatics Services. We consider the secure bioin-
formatics service described in [37, 86] where we match a given pro-
tein sequence against the Pfam [1] database of HMMs that model
protein families (e.g., relating to certain phenotypes and diseases).
Note that Pfam contains profile HMMs that feature a special ar-
chitecture and sparsely connected state space which significantly
speeds up Forward and Viterbi computation. Since Forward and
Viterbi compute identical matches in this use case, we also consider
the Forward algorithm in our comparison. As summarized in Tab. 4,
VITERBI outperforms Franz et al.’s Forward by 14.11X and Viterbi
by 48.29x and requires 2.25X and 1.28X less communication even
despite providing higher security—using only 80 bit of security re-
duces VITERBI's overheads by another 37 %. Priward [86] is a more
efficient secure Forward algorithm that is based on ASS and GC

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Sec. SH3_1 Ras BID IDO 3HBOH

level t L=48 L=162 L=192 L=408 L=689

Franz et al. [35] (Fwd.) 80bit 22.0 298.0 449.0 - -
Franz et al. [35] (Vit) 80bit 94.0 933.0 1357.0 - -
Priward [86] (Fwd.) 128bit 134 1374 1878 8575 23106
VITERBI (this work) 128 bit 1.8 20.8 28.4 142.2 375.6

Table 4: Comparison of runtimes [s] of secure Bioinformat-
ics use case on the Pfam database. L denotes the length of a
profile HMM with a total of N = 3L + 4 states.

Security N T Runtime Comm.
Pathak et al. [59] 80bit 5 96 >785.0s -
Aliasgari et al. [4] (2PC) 80bit 6 96 > 400 min -
Aliasgari et al. [4] (MPC) 2/3honest 6 96 ~23.0s -
ViTeERBI (this work) 128 bit 10 100 2.4s 68.12MB

Table 5: Comparison of secure Viterbi protocols on fully con-
nected HMMs with N states and T observations.

similar as VITERBL Still, VITERBI is 5.67X faster and requires 4.74x
less communication by replacing Priward’s complex logsum primi-
tive by our highly efficient ARGMAX primitive. Finally, we measure
a low relative numerical error of 2.7 x 1072 % averaged over all
models and sequences.

Secure Speech Recognition. We consider the secure speech
recognition use case proposed in [4, 59] where HMMs encode short
words and the observation sequence an utterance. In contrast to
the previous use case, HMMs are now fully connected. We compare
runtimes in Tab. 5. Pathak et al. [59] securely compute Forward
and Aliasgari et al. [4] compute Viterbi in the two- and multi-party
setting on very small HMMs and only with short-term security. On
an HMM with more states (note that the complexity of the For-
ward and Viterbi algorithms is quadratic in N), considering more
observations (complexity is linear in T) and at a much higher secu-
rity level, VITERBI still outperforms these works by 327x (Pathak
etal.), 10 000 (Aliasgari et al.’s two-party setting), and 9.58x (Alias-
gari et al.’s multi-party setting). Aliasgari et al. justify the huge
overheads of their two-party protocol arguing that the HMM itself
must be hidden even from the service provider and stored only in
encrypted form using expensive threshold-HE. Notably, this is a spe-
cial case of our more general outsourcing problem scenario (cf. Fig.
2, Sec. 2.1) and is thus also be covered by VITERBI as detailed in sec-
tion 9. Since previous works [4, 59] do not evaluate communication
overheads, we cannot provide a comparison. Finally, we measure a
very low relative numerical error of 9.73 x 107° % averaged over
models and sequences with different length, i.e., N = 10, ..., 100
and T = 10, ...,100. The three order of magnitudes lower error is
due to the significantly smaller model sizes and sequence lengths
compared to the previous bioinformatics use case.

Secure Localization. In [87], users are securely tracked by
matching signal measurements against an indoor signal propaga-
tion and human movement model using a secure Viterbi algorithm.
The authors aim to provide fresh location updates every 10 s and
scale the underlying HMM accordingly to N = 160 states with
at most N’ = 5 predecessors. In contrast, VITERBI (we substitute
OTFuNCAPPROX by GAUSSIAN to compute emission probabilities
according to [87]) can compute updates at the same frequency on
much larger HMMs of N = 900 states with N’ = 90 predecessors
which greatly increases the localization accuracy as the indoor state
space can be segmented into finer parts (as we have more states N

364

Ziegeldorf et al.

Computation
Cloud Cy

Computation

3) Result computation F(M, %)
cloud Cs

2) Outsourcing 2) Outsourcing

Unconstrained Cloud Environment

Constrained Devices and Networks
~ -

.
Input X 4
[* N .

Model M
1) Preprocessing /

N
\ —
\ .
-~ Service S
L 4) Postprocessing

I
Trust /| Trust
sphere ‘I 1 sphere

Figure 2: U wishes to classify data X by S’s model M but
cannot execute STC protocols due to resource constraints.
SHIELD allows securely outsourcing these computations.

available) and the human mobility model can be much more refined
(since we may consider more predecessors N”’).

Summary. VITERBI is a highly efficient secure protocol for
HMM-based pattern recognition with applications in different do-
mains. It is feasible on very large models but may overtax mobile
users. With outsourcing, we propose a solution in the next section.

9 OUTSOURCING

Arguably, secure classification could be too costly to be executed
in constrained environments. As a solution, we show how U and S
can securely outsource computations to untrusted clouds according
to Fig. 2: 1) User U and service S engage in a short preprocessing,
2) individually outsource encrypted data to the cloud peers, 3) wait
for the cloud peers to obliviously compute the encrypted result, and
4) decrypt and postprocess the result.Besides unburdening U and S
from most overheads, outsourcing affords disruption tolerance, i.e.,
U and S need to be online and available only at the start and end of
the computation. To present a real alternative for mobile users, an
outsourcing protocol must fulfill the following requirements: First,
the preprocessing, outsourcing, and postprocessing overheads for U
or S must be minimized. Second, the overheads for cloud peers must
remain feasible. Third, outsourcing must remain secure against Cyy
and Cs which we assume to be semi-honest and non-colluding
since cloud providers typically have strong incentives to guard
their reputation [2, 44, 60].

Outsourcing Building Blocks. Most of our building blocks,
i.e., RESCALE, SCALARPROD, MAXARGMAX, POLYFUNCAPPROX, and
GAUssIAN, take only additive shares as inputs, learn nothing from
intermediate values (cf. Appendix B), and output additive shares
of the result. This renders outsourcing easy and efficient: Without
any preprocessing, U and S just send their individual shares to Cyy
and Cs which execute the protocol exactly as presented and return
the shares of the result back to U and S for postprocessing.

OTFuNncAPPROX and BACKTRACK require cleartext knowledge
of some inputs which prevents outsourcing for U. We could still
efficiently outsource both primitives using generic GCs but this
incurs significantly higher overheads on the clouds. Alternatively,
we can move the very efficient original OTFUNCAPPROX primitive
to the preprocessing phase, e.g., as we already did for VITERBI with
the goal of batching the calls to OTFUNCAPPROX into a single round.

In summary, all but the OTFuNcApPROX and BACKTRACK prim-
itives can be outsourced by providing the inputs as shares to the

jonathans
Typewriter
364

SHIELD: Efficient and Secure Machine Learning Classification

computation parties, who then compute shares of the result ac-
cording to the original protocols. We emphasize two important
points: First, sharing and recombining are very cheap operations
that require no preprocessing — computing these primitives is fea-
sible even on very constrained devices. Second, there is no need to
involve U or S in between successive executions of outsourceable
primitives — the cloud peers just keep hold of the shared outputs and
input them to the subsequent primitive, and so on. This argument
is the basis for outsourcing SHIELD’s classifiers.

Outsourcing Classifiers. Outsourcing HYPERPLANE and ANN is
straightforward, since all underlying primitives can be outsourced.
E.g., for outsourcing HYPERPLANE, U creates shares (xj)c, and
(xi)cg of F21(x;) and sends them to Cyy and Cs while S does the
same with the weights wj ;. Cy and Cs compute HYPERPLANE as
described in Prot. 1 and return (¢*)c,, and (c¢*)c, to U and S.

Outsourcing NAIVEBAYES requires to precompute all required
shares (p(x;|cj)) in the preprocessing as the employed OTFUNCAP-
PROX protocol cannot be efficiently outsourced. U and S then add
the derived shares locally and directly provide shares of the poste-
riors (p(cj|X)) to the computation peers who then only compute
ARrGMAX and provide back the shared result (¢*). While this out-
sourcing schemes is clearly less efficient in unburdening U and
S than the previous two, OTFUNCAPPROX causes only very low
overheads which are feasible even on mobile devices. In contrast,
NarveBayEes with an underlying Gaussian distribution (Prot. 9) can
be fully outsourced: U shares x; and S shares p;, o; and 1/(—20;)
to Cy and Cs which compute NAIVEBAYES and GAUSSIAN on these
shares and provide back shares of the result.

Outsourcing VITERBI also requires to precompute all invoca-
tions of OTFUNCAPPROX to compute shares of the emission scores
(l;i(ot)). In the outsourcing phase, U then distributes (l;i(o;))U to
Cy, while S provides (b;(o;))s to Cs. S further provides shares (7;)
of the prior state distribution and shares (a;;) of the transition
scores to Cy and Cg. Given these shares, Cyy and Cs can then com-
pute VITERBI as specified in Prot. 4 (only leaving out the invocation
of OTFuncArpPRrOXx). The backtracking phase cannot be outsourced
(as it requires U to know each s} in clear) and must be executed
between U and S in the postprocessing phase.

9.1 Evaluation of Outsourcing

We evaluate the overheads for user U on an LG Nexus 5 smart
phone (Android 4, 2.26 GHz CPU, 16 GB RAM) and service S on a
desktop machine (Ubuntu 14.04 LTS, Intel i7-4770S with 4 cores at
3.10 GHz, 16 GB RAM). The smart phone is connected through a
300 Mbit/s WiFi network and the server is on a 1 Gbit/s LAN. We
further assume the largest problem instance considered in our pre-
vious evaluation. We summarize the runtime and communication
overheads for U in Tab. 6 (results for S in Tab. 8 in Appendix C).
For HYPERPLANE, ANN, and NAIVEBAYES outsourcing is highly
efficient and clearly feasible on constrained mobile devices. For
VITERBI, runtimes for preprocessing and outsourcing of are clearly
feasible on mobile devices while the communication overheads of
the preprocessing phase might overtax slower networks or strain
the user’s data plan. However, we considered the largest HMM and
observation sequence from our evaluation — overheads for smaller
models range only in the order of kB to a few MB. For all classifiers,

365

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Preprocessing Outsourcing
Processing Communication Processing ~Communication
HYPERPLANE - - 0.27 ms 4.49kB
ANN - - 0.40ms 6.68kB
NAIVEBAYES 2.60ms 0.13MB 1.24ps 0.10kB
ForwARD 1.02s 113.99 MB 49.17 ms 3.80 MB
VITERBI 1.02s 113.99MB 49.17 ms 3.80 MB

Table 6: Runtime and communication for U for outsourcing
the largest considered problem instances.

we observe that the outsourcing overheads for the user are always
one or two orders of magnitude smaller than for the service provider
(cf. Appendix C). This is desired since we expect that users need
to outsource more frequently than service providers who usually
host their backends in the cloud already.

To put these numbers into relation, we shortly revisit the com-
parison against the best performing secure ANN from related work,
i.e., Gazelle [43]: In the standard setting, Gazelle outperforms ANN
by 20x but cannot be outsourced (cf. Sec. 6.1). In an outsourcing
setting, however, ANN requires 75X less computation and 5000x
less communication on the client. Here, we thus trade a higher load
on the unconstrained cloud peers against a much lower load on
the constrained client, which clearly demonstrates the benefits of
designing secure classification protocols for outsourcing.

10 CONCLUSION

We introduced SHIELD, an efficient framework for secure classifica-
tion upon which we built four different classes of classifiers. Even
though being primarily designed for generality and wide applica-
bility, our thorough evaluation shows that SHIELD has competitive
performance even compared to approaches specialized to a single
classifier such as ANNs. We noted that despite the significant im-
provements made by SHIELD and related work, processing and,
especially, communication overheads of secure classification may
still overtax constrained devices and networks. As a solution, we
designed SHIELD from the ground up to enable secure and efficient
outsourcing to untrusted clouds. The evaluation shows that our
proposed outsourcing protocols for SHIELD’s choice of classifiers
are feasible even for very constrained devices. Exciting future work
includes applying our results to different classifiers and use cases
as well as to the problem of secure training of the machine learning
models that we assumed given in this work.

ACKNOWLEDGMENTS

This work has been funded by the German Federal Ministry of
Education and Research (BMBF) under funding reference number
16KIS0443. The responsibility for the content of this publication
lies with the authors, who would also like to thank the German
Research Foundation DFG for the kind support within the Cluster
of Excellence “Integrative Production Technology for High-Wage
Countries”.

REFERENCES

[1] 2015. Pfam Database, version 29.0. http://pfam.xfam.org/.

[2] Aydin Abadi, Sotirios Terzis, and Changyu Dong. 2015. O-PSI: delegated private
set intersection on outsourced datasets. In IFIP International Information Security
Conference. Springer, 3-17.

[3] Mehrdad Aliasgari and Marina Blanton. 2013. Secure Computation of Hidden
Markov Models. In SECRYPT.

http://pfam.xfam.org/

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

=

=

[10

[11]

[12]

(13

[14]

[15

[16

=
=

(18]

[19]

[20

[21]

[22

[23]

[24

[25]
[26]

[27

[28

[29

[30

[31

[32

Mehrdad Aliasgari, Marina Blanton, and Fattaneh Bayatbabolghani. 2016. Secure
computation of hidden Markov models and secure floating-point arithmetic in
the malicious model. International Journal of Information Security (2016), 1-25.
Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. 2013. Secure
Computation on Floating Point Numbers. In NDSS.
Amazon. 2018. Machine learning on AWS.
machine-learning/.

Ton Androutsopoulos, John Koutsias, Konstantinos V. Chandrinos, and Constan-
tine D. Spyropoulos. 2000. An Experimental Comparison of Naive Bayesian
and Keyword-based Anti-spam Filtering with Personal e-Mail Messages. In Pro-
ceedings of the 23rd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR '00). ACM, New York, NY, USA,
160-167. https://doi.org/10.1145/345508.345569

Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.
More efficient oblivious transfer and extensions for faster secure computation. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 535-548.

Shai Avidan and Moshe Butman. 2006. Blind Vision. In Proceedings of the 9 th
European Conference on Computer Vision.

Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid. 2007.
Recommendation for Key Management - Part 1: General (Revised). In NIST Special
Publication 800-57. NIST.

Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and
Thomas Schneider. 2011. Privacy-preserving ECG classification with branching
programs and neural networks. IEEE Transactions on Information Forensics and
Security 6, 2 (2011), 452-468.

Donald Beaver. 1991. Efficient multiparty protocols using circuit randomization.
In Annual International Cryptology Conference. Springer, 420-432.

Donald Beaver. 1995. Precomputing oblivious transfer. In Annual International
Cryptology Conference. Springer, 97-109.

Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. 2013.
Efficient garbling from a fixed-key blockcipher. In IEEE SP. IEEE, 478-492.
Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness
Theorems for Non-cryptographic Fault-tolerant Distributed Computation. In
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing
(STOC ’88). ACM, New York, NY, USA, 1-10. https://doi.org/10.1145/62212.62213
Christopher M Bishop. 1995. Neural networks for pattern recognition. Oxford
university press.

Christopher M Bishop. 2006. Pattern recognition. Machine Learning 128 (2006),
1-58.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2016. Practi-
cal Secure Aggregation for Federated Learning on User-Held Data. arXiv preprint
arXiv:1611.04482 (2016).

Joppe W Bos, Kristin Lauter, and Michael Naehrig. 2014. Private predictive
analysis on encrypted medical data. Journal of biomedical informatics 50 (2014),
234-243.

Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2015. Machine
Learning Classification over Encrypted Data.. In NDSS.

Ran Canetti. 2000. Security and composition of multiparty cryptographic proto-
cols. Journal of CRYPTOLOGY 13, 1 (2000), 143-202.

Octavian Catrina and Sebastiaan De Hoogh. 2010. Improved Primitives for Secure
Multiparty Integer Computation. In SCN’10. Springer.

Octavian Catrina and Amitabh Saxena. 2010. Secure Computation with Fixed-
point Numbers. In FC’10. Springer.

Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul
Tripathi. 2017. EzPC: Programmable, Efficient, and Scalable Secure Two-Party
Computation. Technical Report. IACR Cryptology ePrint Archive 2017/1109.
Confidential Source. [n. d.]. Credit Approval Data Set . http://archive.ics.uci.edu/
ml/datasets/credit+approval.

ACC Coolen. 1998. A beginner’s guide to the mathematics of neural networks.
In Concepts for Neural Networks. Springer, 13-70.

Daniel Demmler, Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi,
Thomas Schneider, and Shaza Zeitouni. 2015. Automated Synthesis of Optimized
Circuits for Secure Computation. In CCS’15. ACM.

Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Frame-
work for Efficient Mixed-Protocol Secure Two-Party Computation. In NDSS.
Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International Conference on Machine
Learning ICML, Vol. 48. 201-210.

Richard Durbin, Sean R Eddy, Anders Krogh, and Graeme Mitchison. 1998. Bi-
ological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.
Cambridge University Press.

Khaled El Emam. 2011. Methods for the de-identification of electronic health
records for genomic research. Genome medicine 3, 4 (2011), 25.

EncryptoGropu. 2015. ABY — A Framework for Efficient Mixed-protocol Secure
Two-party Computation. https://github.com/encryptogroup/ABY.

https://aws.amazon.com/

366

[33

[34

[35

[36

[38

(39]

[40]

[41

[42

[43

[44]

[45

[46]

N
)

[48

[49

[50]

[51

o
5,

[53

[54

[55]

[56]

o
=

[58

[59

[60

Ziegeldorf et al.

EncryptoGroup. 2018. C++ OT extension implementation. https://github.com/
encryptogroup/OTExtension.

Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzenbeisser, Inald La-
gendijk, and Tomas Toft. 2009. Privacy-Preserving Face Recognition. In PETS,
Ian Goldberg and Mikhail]. Atallah (Eds.). LNCS, Vol. 5672. Springer, 235-253.
Martin Franz. 2011. Secure Computations on Non-integer Values. Ph.D. Dissertation.
Technische Universitdt Darmstadt.

Martin Franz, Bjérn Deiseroth, Kay Hamacher, Somesh Jha, Stefan Katzenbeisser,
and Heike Schréder. 2010. Secure computations on non-integer values. In WIFS’10.
IEEE.

Martin Franz, Bjérn Deiseroth, Kay Hamacher, Somesh Jha, Stefan Katzenbeisser,
and Heike Schroder. 2011. Towards Secure Bioinformatics Services (Short Paper).
In FC’11. Springer.

Google. 2018. Cloud Machine Learning Engine.
ml-engine/.

Thore Graepel, Kristin Lauter, and Michael Naehrig. 2012. ML confidential:
Machine learning on encrypted data. In International Conference on Information
Security and Cryptology. Springer, 1-21.

Wilko Henecka, Ahmad-Reza Sadeghi, Thomas Schneider, Inmo Wehrenberg,
et al. 2010. TASTY: tool for automating secure two-party computations. In
Proceedings of the 17th ACM conference on Computer and communications security.
ACM, 451-462.

Yan Huang, David Evans, Jonathan Katz, and Lior Malka. 2011. Faster Secure
Two-party Computation Using Garbled Circuits. In USENIX Security. USENIX.
Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending Oblivious
Transfers Efficiently. In CRYPTO 2003, Dan Boneh (Ed.). LNCS, Vol. 2729. Springer,
145-161.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
Gazelle: A Low Latency Framework for Secure Neural Network Inference. CoRR
abs/1801.05507 (2018). arXiv:1801.05507 http://arxiv.org/abs/1801.05507

Seny Kamara, Payman Mohassel, Mariana Raykova, and Saeed Sadeghian. 2014.
Scaling Private Set Intersection to Billion-Element Sets. In International Confer-
ence on Financial Cryptography and Data Security. Springer, 195-215.

Liina Kamm and Jan Willemson. 2015. Secure floating point arithmetic and
private satellite collision analysis. International Journal of Information Security
14, 6 (2015), 531-548.

Agnes Kiss and Thomas Schneider. 2016. Valiant’s universal circuit is practical. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer Berlin Heidelberg, 699-728.

Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. 2009. Im-
proved Garbled Circuit Building Blocks and Applications to Auctions and Com-
puting Minima. In CANS 2009, JuanA. Garay, Atsuko Miyaji, and Akira Otsuka
(Eds.). LNCS, Vol. 5888. Springer, 1-20.

Vladimir Kolesnikov and Thomas Schneider. 2008. A practical universal cir-
cuit construction and secure evaluation of private functions. In International
Conference on Financial Cryptography and Data Security. Springer, 83-97.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436-444.

Yann LeCun, Corinna Cortes, and Christopher Burges. 1998. The MNIST database
of handwritten digits. http://yann.lecun.com/exdb/mnist/.

Yehuda Lindell and Benny Pinkas. 2009. Secure Multiparty Computation for
Privacy-Preserving Data Mining. Journal of Privacy and Confidentiality 1, 1
(2009).

Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. 2017. Oblivious Neural Network Pre-
dictions via MiniONN Transformations. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS '17). ACM, New York,
NY, USA, 619-631. https://doi.org/10.1145/3133956.3134056

Viktor Mayer-Schonberger and Kenneth Cukier. 2013. Big Data: A Revolution
That Will Transform How We Live, Work and Think. John Murray Publishers, UK.
Microsoft. 2018. Microsoft Machine Learning Services. https://azure.microsoft.
com/en-us/services/machine-learning-services/.

P. Mohassel and Y. Zhang. 2017. SecureML: A System for Scalable Privacy-
Preserving Machine Learning. In 2017 IEEE Symposium on Security and Privacy
(SP). 19-38. https://doi.org/10.1109/SP.2017.12

Moni Naor and Benny Pinkas. 2005. Computationally Secure Oblivious Transfer.
Journal of Cryptology 18, 1 (2005), 1-35.

Manas Pathak, Shantanu Rane, Wei Sun, and Bhiksha Raj. 2011. Privacy preserv-
ing probabilistic inference with Hidden Markov Models. In ICASSP’11. IEEE.
Manas A Pathak and Bhiksha Raj. 2013. Privacy-Preserving Speaker Verification
and Identification Using Gaussian Mixture Models. IEEE Transactions on Audio,
Speech, and Language Processing 21, 2 (2013), 397-406.

Manas A Pathak, Bhiksha Raj, SD Rane, and Paris Smaragdis. 2013. Privacy-
Preserving Speech Processing: Cryptographic and String-Matching Frameworks
Show Promise. IEEE Signal Processing Magazine 30, 2 (2013), 62-74.

Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. 2015. Phas-
ing: Private Set Intersection using Permutation-based Hashing. In 24th USENIX
Security Symposium (USENIX Security 15). 515-530.

https://cloud.google.com/

https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
https://doi.org/10.1145/345508.345569
https://doi.org/10.1145/62212.62213
http://archive.ics.uci.edu/ml/datasets/credit+approval
http://archive.ics.uci.edu/ml/datasets/credit+approval
https://github.com/encryptogroup/ABY
https://github.com/encryptogroup/OTExtension
https://github.com/encryptogroup/OTExtension
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
http://arxiv.org/abs/1801.05507
http://arxiv.org/abs/1801.05507
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/3133956.3134056
https://azure.microsoft.com/en-us/services/machine-learning-services/
https://azure.microsoft.com/en-us/services/machine-learning-services/
https://doi.org/10.1109/SP.2017.12

SHIELD: Efficient and Secure Machine Learning Classification

[61] Huseyin Polat, Wenliang Du, Sahin Renckes, and Yusuf Oysal. 2010. Private

predictions on hidden Markov models. Artificial Intelligence Review 34, 1 (2010),

53-72.

José Portélo, Bhiksha Raj, and Isabel Trancoso. 2015. Logsum Using Garbled

Circuits. PLoS ONE 10, 3 (2015), 1-16.

Bruce Porter and Ross Quinlan. 1992. Audiology (Standardized) Data Set. http:

//archive.ics.uci.edu/ml/datasets/audiology+(standardized).

[64] Lawrence R Rabiner. 1989. A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. Proc. IEEE (1989).

[65] Jorge L. Reyes-Ortiz, Davide Anguita, Alessandro Ghio, Luca Oneto, and

Xavier Parra. 2012. Human Activity Recognition Using Smartphones Data

Set. http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+

Smartphones.

M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,

Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A Hybrid Secure

Computation Framework for Machine Learning Applications. In 13. ACM Asia

Conference on Information, Computer and Communications Security (ASIACCS’18).

ACM. To appear. Preliminary version: http://ia.cr/2017/1164.

Irina Rish. 2001. An empirical study of the naive Bayes classifier. In IJCAI 2001

workshop on empirical methods in artificial intelligence, Vol. 3. IBM New York,

41-46.

Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. 2018. Deepsecure:

Scalable Provably-secure Deep Learning. In Proceedings of the 55th Annual Design

Automation Conference (DAC ’18). ACM, New York, NY, USA, Article 2, 6 pages.

https://doi.org/10.1145/3195970.3196023

Stuart J. Russell and Peter Norvig. 1995. Artificial Intelligence: A Modern Approach.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. 2009. Efficient

Privacy-Preserving Face Recognition. In ICISC.

John Shawe-Taylor and Nello Cristianini. 2004. Kernel methods for pattern analysis.

Cambridge university press.

Paris Smaragdis and Madhusudana Shashanka. 2007. A framework for secure

speech recognition. Audio, Speech, and Language Processing, IEEE Transactions

on 15, 4 (2007), 1404-1413.

Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi, Thomas Schneider,

and Farinaz Koushanfar. 2015. TinyGarble: Highly Compressed and Scalable

Sequential Garbled Circuits. In IEEE SP. IEEE.

V. Rajkovic et al. 1997. Nursery Data Set. https://archive.ics.uci.edu/ml/datasets/

Nursery.

Jaideep Vaidya and Chris Clifton. 2004. Privacy preserving naive bayes classifier

for vertically partitioned data. In Proceedings of the 2004 SIAM International

Conference on Data Mining. SIAM, 522-526.

Jaideep Vaidya, Murat Kantarcioglu, and Chris Clifton. 2008. Privacy-preserving

naive bayes classification. The VLDB Journal—The International Journal on Very

Large Data Bases 17, 4 (2008), 879-898.

WIlliam H. Wolberg. 1992. Breast Cancer Wisconsin (Original) Data Set. https:

//archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original).

William H. Wolberg, W. Nick Street, and Olvi L. Mangasarian. 1995. Breast

Cancer Wisconsin (Diagnostic) Data Set. https://archive.ics.uci.edu/ml/datasets/

Breast+Cancer+Wisconsin+(Diagnostic).

Rebecca Wright and Zhigiang Yang. 2004. Privacy-preserving Bayesian network

structure computation on distributed heterogeneous data. In Proceedings of the

tenth ACM SIGKDD international conference on Knowledge discovery and data

mining. ACM, 713-718.

Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In Founda-

tions of Computer Science, 1986., 27th Annual Symposium on. IEEE, 162-167.

Hwanjo Yu, Xiaoqian Jiang, and Jaideep Vaidya. 2006. Privacy-preserving SVM

using nonlinear kernels on horizontally partitioned data. In Proceedings of the

2006 ACM symposium on Applied computing. ACM, 603-610.

Samee Zahur, Mike Rosulek, and David Evans. 2015. Two Halves Make a Whole.

In EUROCRYPT. Springer.

Harry Zhang. 2004. The Optimality of Naive Bayes.. In FLAIRS Conference,

Valerie Barr and Zdravko Markov (Eds.). AAAI Press. http://www.cs.unb.ca/

profs/hzhang/publications/FLAIRS04ZhangH.pdf

Jan Henrik Ziegeldorf, Oscar Garcia Morchon, and Klaus Wehrle. 2014. Privacy

in the Internet of Things: threats and challenges. Security and Communication

Networks 7, 12 (2014), 2728-2742.

Jan Henrik Ziegeldorf, Jan Metzke, Martin Henze, and Klaus Wehrle. 2015. Choose

wisely: a comparison of secure two-party computation frameworks. In Security

and Privacy Workshops (SPW), 2015 IEEE. IEEE, 198-205.

Jan Henrik Ziegeldorf, Jan Metzke, Jan Riith, Martin Henze, and Klaus Wehrle.

2017. Privacy-Preserving HMM Forward Computation. In Proceedings of the

Seventh ACM Conference on Data and Application Security and Privacy (CODASPY

’17). ACM, New York, NY, USA, 83-94. https://doi.org/10.1145/3029806.3029816

Jan Henrik Ziegeldorf, Nicolai Viol, Martin Henze, and Klaus Wehrle. 2014.

POSTER: Privacy-preserving Indoor Localization. WiSec’14 (2014).

[62

[63]

[66

[67

[68

[69

[70

71

[72

[73

[74]

[75

[76

[77

[78

[79

[80

(81

[82

[83

[84

[87

367

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

A DETAILED PROTOCOLS FOR SECURE
BUILDING BLOCKS

In this section, we provide the detailed protocols for our building
blocks as presented in Sec. 4.2 and summarized in Tab. 7.

A1l

Prot. 5 (presented in Sec. 4.2.2) provides the details of the MAXARGMAX
protocol which is used in all our classifiers, i.e., HYPERPLANE, ANN,
ANN, and VITERBL. GC((x), 7, z) denotes the secure evaluation of
a Boolean circuit C on secret-shared input x (U and S each input
their individual share), garbled input y (an input already held in
garbled form by the evaluator of the circuit), and clear text input z
(held by U or S in clear) using Yao’s generic GC protocol. We only
note the three steps, i) converting to GC using the garbled addition
circuit C4 44, ii) computing the garbled argmax circuit Cargmax
and iii) converting to additive shares using garbled subtraction cir-
cuit Cg,,p, separately for the sake of clarity — they are implemented
as one monolithic circuit for greater efficiency.

Max and Argmax

Protocol 5 Secure ARGMAX protocol based on GC and ASS.

Input: Additive sharing of vector (¥) = ({x1), ..., (xn))
Output: Additive sharing (x*), (i*) of

x* = max x; and i* = argmax x;
i=l...n i=1...n
U S: i, ...in < GCcyy, (1) .n (xn))
UeS: %1« GCCuymax (X1: -0 Xn)
UeS: (x"),(i") « GCcq,, (X, 1)

A.2 Scalar Products

Prot. 6 (presented in Sec. 4.2.3) provides the details of the ScALARPROD
protocol for securely computing scalar products which is heavily
used in HYPERPLANE and ANN to compute weighted sums. © de-
notes multiplication on additive shares which is implemented using
precomputed Multiplication Tripless (MTs) [12, 28]. The secure
REsCALE protocol on additive shares has been adopted from [86].

Protocol 6 Secure ScCALARPROD protocol based on ASS.

Input: Additive shares (X) and (w) of two equal sized vectors ¥ and w
Output: Additive shares (z) of the inner product z = X - w
U S: (zi)=(xi) 0 (w;) Vi=1...n
U S: (z)=XL(z:)
U S: (z) « Rescate((z))

A.3 Polynomial Approximation of Arbitrary
Functions

Prot. 7 (presented in Sec. 4.2.4) provides the details of the Pory-
FuNcApPROX protocol. As for MAXARGMAX, we only note conver-
sion steps between GC and ASS separately for the sake of clarity
while Ca44, Cselection, and Cs,,p are implemented as one mono-
lithic circuit in practice. The selected approximation polynomial

http://archive.ics.uci.edu/ml/datasets/audiology+(standardized)
http://archive.ics.uci.edu/ml/datasets/audiology+(standardized)
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://ia.cr/2017/1164
https://doi.org/10.1145/3195970.3196023
https://archive.ics.uci.edu/ml/datasets/Nursery
https://archive.ics.uci.edu/ml/datasets/Nursery
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Original)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://www.cs.unb.ca/profs/hzhang/publications/FLAIRS04ZhangH.pdf
http://www.cs.unb.ca/profs/hzhang/publications/FLAIRS04ZhangH.pdf
https://doi.org/10.1145/3029806.3029816

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Ziegeldorf et al.

Protocol Description

x' — F21(x, L, 5)
P —r2u(p, L, s)
(x*), (i*) < ARGMAX({(X))

(z) « ScALARPROD({X), (W))
(f'(xi)) < PoLYFUNCAPPROX({Pf), (x))
(f(xi)) « OtFuncArPrOX((f (X)), x)

(Nu,o(x)) « Gaussian((x), (u), (o))
S* « BACKTRACK({M), s7.)

Conversion from reals to integers with s bit precision and maximum bitlength / (inverse: 12F)
Conversion from probabilities to integers in logspace with s bit precision s and bitlength [(inverse: LI2F)
Max and argmax on secret-shared input vector with secret output

Scalar product on two equal-sized secret-shared vectors ¥, w with secret outputs

Polynomial approximation of possibly secret function f at secret point with secret output

OT-based approximation of possibly secret function f at point x known by U with secret output

Secure evaluation of Gaussian N with secret parameters 1, o at secret point x with secret output.
Backtracking through secret state matrix M from state s. known by U or S with output to U or S

Table 7: Summary of the secure building blocks of SHIELD. The protocols are provided in full detail in Appendix A.

gi(x) is evaluated using the EvALPoLY subprotocol. EvALPOLY re-

quires [log,(d)] + 1 rounds of parallel multiplications and rescal-
i-1

Yy o

ing: In round j, the terms (xzi), (xzi_lﬂ) and (ayi-1x?
(agi-2 +1x2172+1). Finally, all shares are added up locally.

Protocol 7 Secure PoLYFUNCAPPROX protocol for the evaluation
of arbitrary functions based on GC and ASS.

Shared evaluation point (x) and approximation parameters

(P) = (a10), . (aka), (r1), . (rk))

Output: Approximated result (g;(x)) withr; < x < r;

Input:

Parameter selection:

UesS: e GCc,,,((x))

UeS: P—GCc,,, (P)

U S: digs - dio — GCCq,pourion (B P)

Ue S: (gi)=(aia), --- {ai)) « GCcq,, (@ids - dio)
Ue S: (gi(x)) < EvarPory((gi), (x))

Subprotocol EvaLPory: Vi = 1, ..., [log2(d)] + 1

UeS: j=1:(x*) «— (x) 0 (x), (arx) « (a1) © (x)
J=2:(xh) — (xP) 0 (x%), (x*) « (x?) o (x),

(azx?y — (az) © (x?)
G Y (@ kT (e X
J = Mogy(d)] +1: (@zax?), (a;a1x?™"), ...
d
U, St (gi(x) =) (aixl)

Jj=0

Protocol 8 Secure OTFUNCAPPROX protocol for evaluating a prob-
ability mass function based on ASS and OT adapted from [86].

Input: Additive sharing (f(X)) = (f(x1)), ..., {f(xm)), only U has x;
Output: Additive sharing (f(x;))
St (f/X)) = f(x1) +715), ..o, (fp(xm) + rs) with rs €g Zy
UeS: (fx))u « 1-m-OT)(x;, (f'(X)))
S: {flxi))s=-rs

Protocol 9 Secure GAussIAN protocol for evaluating a Gaussian
distribution based on ASS.

Input: Additive shares (x), (i), (log(c)), (1/-25?%)

Output: Additive shares (p(x)") = (log(Ny, & (x)))

Ue S: (px))={x) & (~m)

U S: (p(x)) = Rescate({p(x)') © (p(x)'))

Ue S: (p(x)) = Rescare({p(x)) © (1/-202))
U S: (px))=(-6)) @ (p(x))

A.6 Backtracking

Prot. 10 (presented in Sec. 4.2.5) provides the details of the BAck-
TRACK protocol for secure backtracking through a secret-shared
dynamic-programming matrix. It is used in VITERBI to compute the
optimal state sequence for a given observation sequence. Adapting
the protocol such that S instead of U learns the state sequence is
straightforward by switching the roles of the two parties.

A.4 OT-based Evaluation of Discrete Functions

Prot. 8 (presented in Sec. 4.2.4) provides the details of the OTFUN-
CApPPROX protocol. We adopted this protocol from [86] and im-
proved it such that the values f(x1), ..., f(xm) can also be secret-
shared as opposed to the protocol from [86] where they need to be
known in clear by the service S.

A.5 Evaluating Gaussians

Prot. 9 (presented in Sec. 4.2.4) provides the details of the Gaussian
protocol for securely evaluating secret Gaussians N, » at secret
evaluation points x. Since we can parallelize multiplications and
rescaling, the protocol requires only two rounds of communication.

368

Protocol 10 Secure BACKTRACK protocol for backtracking through
a DP matrix based on OT and ASS.

Input: Additive shares of DP matrix (M) and final state (s7.)

Output: U obtains optimal state sequence S* = s7, ..

Ue S:
Backtracking: For T > ¢ > 2

U S: (s;_y) < 1-N-OT,(s;, ((Mis)s, ... (Mn+t)s)

U:

. s*T
sT < RECOMBINE((s}))

sy_, < RECOMBINE((s;_))

B SECURITY DISCUSSION

We show that our classifiers are secure in the semi-honest adver-
sary model. For the security proofs of the basic STC techniques
underlying our approaches we refer to [8, 56] for OT, [13, 28] for
ASS, and [14, 80] for GC.

SHIELD: Efficient and Secure Machine Learning Classification

We begin by showing that neither party learns anything in our
proposed building blocks protocols, i.e., neither from the inputs, nor
the outputs, nor any intermediate values. We then invoke Canetti’s
modular sequential composition theorem [21] to argue that our
classifier designs built on top of these primitives are secure.

B.1 Security of the Building Blocks

We discuss security individually for each of the building blocks
proposed in Sec. 4.2 and presented in detail in Appendix A.

B.1.1 Security of MAXARGMAX. All steps of MAXARGMAX are real-
ized in one monolithic GC — we emphasize that we differentiate the
three steps in our protocol description only for reasons of clarity
but implement them in one single GC which yields better perfor-
mance. Consisting of only one GC, security for these steps follows
directly from the security of GCs. The inputs and outputs are all
additively shared over both parties. Since individual shares are
perfectly random, they reveal no information to either party.

B.1.2 Security of SCALARPROD. Security of SCALARPROD (Prot. 6,
Sec. 4.2.3) follows from the security of addition and multiplication
over additive shares [28].

B.1.3 Security of PoLyFuNncApprox. For PoLYFUNCAPPROX (Prot. 7)
we show that neither party learns anything about the inputs (x) and
(#) and the output (g;(x)). We first note that all inputs are given
as additive shares and a single share is perfectly random and does
not reveal any information to its holder. The first protocol steps,
involving i) input conversion, ii) the selection of approximation
parameters, and iii) the conversion of outputs, are realized in one
monolithic GC. As for MAXARGMAX before, we only differentiate
these three steps in our protocol description for reasons of clarity
but implement them in one single GC which yields better perfor-
mance. Consisting of only one GC, security for these steps follows
directly from the security of GCs. The output of these steps (g;) is
additively shared over both parties which reveals no information
to either party holding only a single share of each output since
additive sharing implements perfect blinding over Z,;. It is also
important to note that the structure of the circuit is independent
of all parameters except for the public parameter k (the number
of approximation intervals in this context), therefore leaking no
sensitive information. In the penultimate step, we securely evalu-
ate the shared polynomial (g;) on the shared evaluation point (x).
Since this step involves only multiplication and rescaling, security
follows from the security of ASS and the security of RESCALE as
discussed in [86]. All outputs are again additively shared and reveal
no information to either party. The last step involves an addition
operation over additive shares which is executed locally and has no
security implications in the semi-honest model. Finally, the output
(gi(x)) is obtained by the two parties in shared form, where a single
share is indistinguishable from a random value and reveals no infor-
mation. In summary, security of PoLYFUNCAPPROX depends on the
security of Yao’s GCs and the RESCALE protocol. As REscALE offers
only statistical security against a semi-honest S, PoLYFUNCAPPROX
as well offers only statistical security.

369

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

B.1.4 Security of OTFUNCAPPROX. Security of the OTFUNCAPPROX
protocol (Prot. 8, Sec. 4.2.4) follows directly from the security of OT
and ASS.

B.1.5 Security of GAUSSIAN. GAUSSIAN (Prot. 9) only composes
secure additions, multiplications, and the RESCALE protocol from
[86]. We thus conclude that it is secure in the semi-honest model.
It is perfectly secure against U and offers statistical security against
S due to RescALE. By switching the roles of U and S in RESCALE, we
can flip these guarantees if desired.

B.1.6 Security of BACKTRACK. BACKTRACK (Prot. 10) inherits all
security guarantees directly from the utilized OT protocol which
ensures that U is only able to learn the optimal state sequence S*
and nothing else about the DP matrix M while S learns nothing at
all. Note that we can easily switch the roles if S should learn S*
instead of U.

B.2 Security of the Classifier Designs

The security argument is the same for all our classifier designs,
i.e., HYPERPLANE, ANN, NAIVEBAYES, and VITERBI. We argue that U
learns nothing about the involved classification model M (private
input of S), and, vice versa, S learns nothing about the feature
vector X (U’s private input), except of course for what is implied
in the final result that is learned in clear by one or both parties.
This proposition holds since any interaction between U and S in all
our secure classifiers happens only through one or multiple of the
building blocks discussed above. As we have showed in the previous
section, all of these primitives are secure in the semi-honest model
and return their output in the form of random additive shares
such that their output does not reveal anything to either party. In
other words, their use reveals no information about the inputs or
any intermediate values. This allows us to compose them and the
composition is then secure according to the modular sequential
composition theorem for semi-honest protocols [21]. All other steps
in the secure classification protocols are local operations that have
no security implications in the semi-honest model. Finally, one
or both parties learn the output by recombining the shared result
which is of course as intended.

It is important to note that the utilized STC techniques protect
the inputs (i.e., the models and feature vectors) but not the structure
of the evaluated classification function. In particular, this implies
that S learns the length of the feature vector ¥ while U learns the
dimension of the models, e.g., the total number of possible classes,
the number of layers and neurons in an ANN, or the number of
states and possible emissions in an HMM. We emphasize that this
is fully within the security model defined in Sec. 2.1. If desired this
can be prevented in all our designs by padding inputs with dummy
features or observations and models with dummy weights, neurons,
states, and so forth but this inevitably increases processing and
communication overheads. Another approach are universal circuits
that also hide the function that is being evaluated [46, 48] also
referred to as Private Function Evaluation (PFE). PFE causes orders
of magnitude higher overheads than the secure evaluation of public
functions. We argue that the costs of PFE are not justified in our
application context since our classification algorithms are publicly
known and do not require protection.

ACSAC ’18, December 3-7, 2018, San Juan, PR, USA

Preprocessing Outsourcing

Processing Communication Processing Communication

HYPERPLANE - - 0.27 ms 4.49kB
ANN - - 0.40 ms 6.68kB
NAIVEBAYES 2.57ms 0.13MB 1.24yps 0.10kB
VITERBI 1.02s 113.99 MB 786.47 ms 18.99 MB

Table 8: Runtime and communication for S for outsourcing
the largest considered problem instances.

C EVALUATION OF OUTSOURCING FOR THE
SERVICE PROVIDER

Tab. 8 summarizes the costs S for outsourcing our different classi-
fiers to an untrusted computation cloud. The results complement
our evaluation of the user’s side as discussed in Sec. 9.1.

For HYPERPLANE, ANN, and NAIVEBAYES outsourcing is clearly
highly efficient and feasible even if S is not running a powerful
server-grade machine. For VITERBI, runtimes for preprocessing
and outsourcing of are clearly feasible while the communication
overhead, especially in the preprocessing phase, might prove chal-
lenging when S is connected via networks with constrained band-
width. However, we considered the largest HMM and observation
sequence from our evaluation - overheads for smaller models range
only in the order of kB to a few MB.

370

Ziegeldorf et al.

	i01-1-mishra
	i01-2-kouwe
	Abstract
	1 Introduction
	2 Background
	2.1 Use-after-free
	2.2 Uninitialized reads
	2.3 Type safety

	3 Threat Model
	4 Overview
	5 Heap
	5.1 Typed memory allocations
	5.2 Wrapper detection and inlining

	6 Stack
	6.1 Guaranteed initialization on the safe stack
	6.2 Typed unsafe stacks

	7 Implementation
	8 Evaluation
	8.1 Security
	8.2 Type detection
	8.3 Wrapper detection and inlining
	8.4 Memory overhead
	8.5 Run-time overhead
	8.6 Firefox case study

	9 Limitations
	10 Related Work
	11 Conclusion
	References

	i01-3-farkhani
	Abstract
	1 Introduction
	2 Background and Problem Definition
	2.1 Control Flow Integrity (CFI)
	2.2 Runtime Type Checking
	2.3 Arity Checking
	2.4 Reuse Attack Protector (RAP)
	2.5 Type Collisions
	2.6 Research Questions

	3 Attack Overview
	3.1 Threat Model
	3.2 Attack Preliminaries
	3.3 Finding Gadgets
	3.4 Constraint Solving

	4 Proof-of-Concept Exploits
	4.1 Nginx Exploit
	4.2 Exim Exploit
	4.3 Summary

	5 Evaluation
	5.1 Type Collisions
	5.2 Gadget Distribution
	5.3 Libc
	5.4 Type Checking vs. Points-to Analysis

	6 Discussion
	6.1 Type Diversification
	6.2 Separate Compilation
	6.3 Mismatch types
	6.4 Support for Assembly Code

	7 Related work
	8 Conclusion
	References

	i01-4-ahmadvand
	Abstract
	1 Introduction
	2 Background & Related work
	2.1 Software integrity protection
	2.2 Nondeterministic code detection

	3 Design
	3.1 Segregation of input data/control-flow dependent instructions
	3.2 Short Range Oblivious Hashing (SROH)
	3.3 Data-Dependent Instructions (DDIs)
	3.4 Intertwined protection

	4 Implementation
	4.1 Protection process
	4.2 Input dependency detection
	4.3 Oblivious hashing (OH)
	4.4 Short Range Oblivious Hashing (SROH)
	4.5 Self-checksumming (SC)
	4.6 Response mechanism

	5 Evaluation
	5.1 Dataset
	5.2 Preparation
	5.3 Coverage
	5.4 Performance analysis
	5.5 Security analysis

	6 Discussion
	6.1 Coverage
	6.2 Implicit protection with OH/SROH
	6.3 Performance

	7 Conclusions
	References
	A A full example of OH+SROH utilization

	i02-1-liu
	Abstract
	1 Introduction
	2 Assumptions and Goals
	3 Related Work
	3.1 Traditional 2FA
	3.2 2FA with Less User-Phone Interactions

	4 Typing-Proof
	4.1 Enrollment and Login
	4.2 Similarity Score
	4.3 Usability Analysis
	4.4 Cost Analysis

	5 Evaluation
	5.1 Data Collection
	5.2 Parameters Configuration
	5.3 False Rejection Rate
	5.4 False Acceptance Rate

	6 Security Analysis
	7 User Study
	7.1 Procedure
	7.2 Usability

	8 Discussion
	9 Conclusion
	References
	A Quantitative Usability Analysis Framework
	B Prototype Implementation
	C System Usability Scale
	D Post-test Questionnaire
	E Comparison Results

	i02-2-mccully
	Abstract
	1 Introduction
	2 Related Work
	2.1 Keystroke dynamics
	2.2 Collaborative editing
	2.3 Identification vs. Authentication

	3 Study: User Identification in Collaboration Services
	3.1 The UB Data Set
	3.2 Log replay data set (LRDS)
	3.3 Feature engineering
	3.4 Random forest classification
	3.5 Model improvements
	3.6 Results

	4 Indirect Typing Biometric Attack
	4.1 Authentication service
	4.2 Forgery attack scenario
	4.3 Creating a forgery
	4.4 TypingDNA Forgery Attack

	5 Discussion
	5.1 Generalizability
	5.2 Practical implications
	5.3 Broader implications

	6 Conclusions
	References

	i02-4-lu
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Online Password Guessing Attacks
	2.2 Defenses against Online Password Attacks
	2.3 Offline Password Attacks

	3 Methodology
	3.1 Modeling Lockout Threshold and Counting Mechanism
	3.2 Black-box Tests

	4 A Measurement Study of Rate Limiting Implementations
	4.1 Experiment Setup
	4.2 Data Collection

	5 Evaluation and Analysis
	5.1 Data Analysis
	5.2 Security Analysis
	5.3 Interesting Observations
	5.4 Recommendations

	6 Limitations and Discussion
	7 Conclusion
	Acknowledgments
	References

	i03-1-copty
	Abstract
	1 Introduction
	2 An extremely abstract OS
	2.1 Implementation details
	2.2 Multiple paths

	3 Malware classification
	3.1 Features
	3.2 Experimental setup
	3.3 Experimental Results

	4 Related work
	4.1 Extreme abstraction
	4.2 Lightweight symbols
	4.3 Malware classification

	5 Future work
	6 Conclusion
	Acknowledgments
	References

	i03-2-machiry
	Abstract
	1 Introduction
	2 Threat Model
	3 Approach Overview
	3.1 Why Loops?
	3.2 Loop Characterization
	3.3 Application Classification

	4 Resilience to Feature-unaware Perturbations
	4.1 Application Transformations
	4.2 CFG Obfuscation
	4.3 Reflection
	4.4 Loop Perturbations

	5 Classification Evaluation
	5.1 Datasets
	5.2 Iterative Pruning Performance
	5.3 Malware Classification Results
	5.4 Importance of Loops and Semantic Labels
	5.5 Resilience to Feature-unaware Perturbations

	6 Discussion
	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

	i03-3-oprea
	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Enterprise Perimeter Defenses
	2.2 Problem definition and adversarial model
	2.3 System Overview
	2.4 Comparison with previous work
	2.5 Ethical considerations

	3 MADE Training
	3.1 Data Filtering and Labeling
	3.2 Feature Extraction
	3.3 Feature Selection
	3.4 Model Selection

	4 Testing and Evaluation
	4.1 MADE Testing
	4.2 Evaluation, Analysis, and Feedback
	4.3 Discussion and Limitations

	5 Related Work
	6 Conclusion
	References

	i03-4-echeverria
	Abstract
	1 Introduction
	2 Related Work
	3 Datasets
	3.1 Bot Datasets
	3.2 Aggregated Bot Dataset
	3.3 User Dataset
	3.4 Botometer Scores

	4 Methodology - The LOBO test
	5 Features for Classification
	5.1 User Features
	5.2 Tweet Features

	6 Experiments
	6.1 Subsampling
	6.2 General Classifiers
	6.3 LOBO Test I - C30K
	6.4 LOBO Test II - C500

	7 Beyond the LOBO test
	7.1 Relatively Stable Results
	7.2 Learning Rate
	7.3 TSNE plot

	8 Discussion
	8.1 Accuracy and Generalization
	8.2 Improvements with small data additions
	8.3 Scalability

	9 Conclusion
	References

	i04-1-tuveri
	Abstract
	1 Introduction
	2 Background
	2.1 SM2: Chinese Cryptography Standards
	2.2 Remote Timing Attacks
	2.3 Cache Timing Attacks
	2.4 EM Analysis
	2.5 SM2 Implementation Attacks: Previous Work

	3 SM2 in OpenSSL
	4 SM2DSA: Remote Timings
	5 SM2DSA: Cache Timings
	5.1 Scalar Multiplication
	5.2 Modular Inversion

	6 SM2PKE: EM Analysis
	7 SCA Mitigations
	7.1 Scalar Multiplication: SCA Mitigations
	7.2 Modular Inversion: SCA Mitigations
	7.3 SCA Mitigations: Evaluation

	8 Conclusion
	Acknowledgments
	References
	A Remote Timings SCA Evaluation: ECDSA

	i04-2-wichelmann
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Analysis Setup and Targeted Software

	2 Background
	2.1 Dynamic Binary Instrumentation
	2.2 Microarchitectural Leakage
	2.3 Mutual Information Analysis
	2.4 Signing Algorithms

	3 MicroWalk Analysis Technique
	3.1 Leakage Analysis Model
	3.2 Capturing Internal States
	3.3 Preparing State Variables
	3.4 Leakage Analysis
	3.5 Interpretation of MI Score

	4 MicroWalk Framework
	4.1 Investigated Binary
	4.2 Input Generation
	4.3 Trace Generation
	4.4 Trace Preprocessing
	4.5 Leakage Analysis
	4.6 Manual Inspection and Visualization

	5 Case Study I: Intel IPP
	5.1 Applying MicroWalk MI Analysis to IPP
	5.2 Discovered leakages in Intel IPP

	6 Case Study II: Microsoft CNG
	6.1 Applying MicroWalk MI Analysis to CNG
	6.2 Discovered leakages in Microsoft CNG

	7 Related Work
	8 Conclusion
	8.1 Future Work

	References

	i04-3-zhang
	Abstract
	1 Introduction
	2 Background
	2.1 Cache Side-channel Attacks
	2.2 Cache Side-channel Defenses
	2.3 Deep Neural Networks

	3 Methodology Overview
	4 Dataset Construction
	4.1 An Abstract Model
	4.2 Modeling Specific Attacks
	4.3 Modeling Defense Solutions

	5 DNN Training and Inference
	5.1 Dataset Processing
	5.2 Training
	5.3 Inference

	6 Evaluation
	6.1 Attack Strategies
	6.2 Defense Strategies

	7 Methodology Validation
	8 Related Work
	9 Conclusion
	References

	i04-4-liang
	Abstract
	1 Introduction
	2 Problem
	2.1 Side-Channel Attack over Memory Accesses
	2.2 Burdensome Obfuscation of Access Pattern
	2.3 Toward Practically Efficient Obfuscation

	3 Overview
	3.1 Motivation
	3.2 Challenge
	3.3 Methodology

	4 Design
	4.1 Architecture
	4.2 Position Map Compression
	4.3 Position Map Update

	5 Implementation
	6 Evaluation
	6.1 Memory Access Randomness
	6.2 Execution Time
	6.3 Memory Usage

	7 Discussion
	8 Conclusion
	References

	i05-1-junaid
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivating Example
	2.3 Challenges

	3 StateDroid Overview
	3.1 Architecture
	3.2 Advance Over State-of-the-Art Work

	4 API Call Detector
	4.1 Reengineering Lifecycle Models
	4.2 Deriving Event & Callback Sequences
	4.3 Detecting API Call Sequences

	5 Action Detector
	5.1 Object State Machines
	5.2 API & Action Formalization
	5.3 Generating API Call Sequences
	5.4 Constructing Object State Machines

	6 Attack Detector
	6.1 Action-Effect & Attack Formalization
	6.2 Frame Axioms

	7 Evaluation
	7.1 RQ1: Accuracy of Action Detector
	7.2 RQ2: Accuracy of Attack Detector
	7.3 RQ3: Comparison with Existing Tools
	7.4 RQ4: StateDroid's Performance

	8 Related Work
	9 Discussion
	10 Conclusion
	11 Acknowledgments
	References

	i05-2-allen
	Abstract
	1 Introduction
	2 Rethinking Contextual Awareness
	2.1 Less Effective Contextual Information
	2.2 Case Study: Identifying Informative Context Factors
	2.3 Calling for Lightweight Context Dependencies

	3 PikaDroid
	3.1 Overview
	3.2 Static Analysis Module
	3.3 Learning Module

	4 Implementation
	5 Dataset
	6 Evaluation
	6.1 Effectiveness
	6.2 Comparison with Prior Work
	6.3 Robustness
	6.4 Classification Models
	6.5 Performance

	7 Related work
	8 Conclusion
	9 Acknowledgments
	References

	i05-3-wermke
	Abstract
	1 Introduction
	2 Android Obfuscation Techniques
	3 Detecting ProGuard Obfuscation
	4 Large Scale Obfuscation Analysis
	4.1 Obfuscation Trends

	5 Developer Survey
	5.1 Results and Takeaways

	6 Obfuscation Experiment
	6.1 Results and Takeaways

	7 Discussion
	8 Threats to Validity
	9 Related Work
	10 Conclusion
	References
	A Ethical Considerations
	B Online Survey
	B.1 ProGuard Study - Exit Survey

	i05-4-chau
	Abstract
	1 Introduction
	2 Scope
	2.1 Attack Surfaces
	2.2 Platform and Test Setup
	2.3 Threat Model
	2.4 App Selection

	3 App Weaknesses & Network Attacks
	3.1 Raw Content Transfer In Clear
	3.2 Bootstrap Information Transfer in Clear
	3.3 Raw Content Transfer over TLS
	3.4 Bootstrap Information Transfer over TLS
	3.5 Threats to User Security and Privacy

	4 App Weaknesses & Local Attacks
	4.1 Log File Leakage
	4.2 Raw Content on External Storage
	4.3 Raw Encryption Key on External Storage
	4.4 Raw Content on Internal Storage
	4.5 Raw Encryption Key on Internal Storage
	4.6 Direct Content Source on Internal Storage
	4.7 Client-Side Authorization
	4.8 Raw Encryption Key in Memory

	5 Discussions
	5.1 Responsible Disclosure and Aftermath
	5.2 Possible Countermeasures and Challenges

	6 Related Work
	7 Conclusion
	References
	A APPENDIX
	A.1 Legal and Ethical Matters
	A.2 Table of Apps and CWEs

	i06-1-mani
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology & Experimental Setup
	5 Proxy Availability & Performance
	5.1 Performance
	5.2 Expected vs. Unexpected Content
	5.3 Anonymity

	6 HTML Manipulation
	7 File Manipulation
	7.1 Detailed Findings
	7.2 Network Diversity and Consistency of Malicious Proxies

	8 SSL/TLS Analysis
	9 Comparison With Tor
	10 Ethical considerations
	11 Conclusion
	Acknowledgments
	References
	A Examples of HTTP Proxy Protocols
	B Client locations
	C File Manipulation Infections

	i06-2-ramanathan
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Volumetric Attacks
	2.2 Related Work
	2.3 SENSS vs First-ISP vs Clouds

	3 SENSS
	3.1 Challenges
	3.2 SENSS Architecture
	3.3 ISP Implementation
	3.4 Client Programs
	3.5 Security and Robustness

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 2016 attack on Dyn
	4.3 Effectiveness in Sparse Deployment
	4.4 Comparison of SENSS and Cloud Defenses
	4.5 Delay, Traffic and Message Cost
	4.6 Scalability within an ISP

	5 Conclusion
	6 Acknowledgement
	References

	i06-3-baek
	Abstract
	1 Introduction
	2 Wi-Fi Calling
	2.1 Wi-Fi Calling Architecture
	2.2 Wi-Fi Calling Handshakes

	3 Security in Wi-Fi Calling
	3.1 Privacy of Users
	3.2 Availability of Services
	3.3 Attacks Originating From Victim's UE and Attacker's AP

	4 IMSI Privacy Attack
	4.1 Attack Scenario
	4.2 Attack Setup
	4.3 Results of Attacks
	4.4 Impact and Applicability

	5 DoS Attacks
	5.1 Attack Scenarios
	5.2 Attack Setup
	5.3 Results of Attacks
	5.4 Impact and Applicability

	6 Countermeasures
	6.1 IMSI Privacy Attack Countermeasures
	6.2 DoS Countermeasures

	7 Discussion
	7.1 Trade-off Between Security and Usability
	7.2 Trade-off Between Security and Deployment

	8 Related work
	9 Conclusion
	References

	i06-4-sy
	Abstract
	1 Introduction
	2 Background
	2.1 Session ID Resumption
	2.2 Session Ticket Resumption
	2.3 Session Resumption via Pre-Shared Keys
	2.4 Comparison of Session Resumption Mechanisms

	3 Privacy Problems with TLS Session Resumption
	3.1 Lifetime of Session Resumption Mechanisms
	3.2 Third-Party Tracking via Session Resumption

	4 Data Collection
	4.1 Alexa Top Million Data Set
	4.2 Browser Measurements
	4.3 DNS Data Set

	5 Evaluation
	5.1 Evaluation of Server Configurations
	5.2 Evaluation of Browser Configurations
	5.3 Evaluation of Real-World User Traffic

	6 Countermeasures
	7 Related Work
	8 Conclusion
	References

	i07-1-garmany
	Abstract
	1 Introduction
	2 Model and Assumptions
	2.1 Modern Vulnerability Exploitation

	3 Design
	3.1 Knowledge Base
	3.2 Propagating Control
	3.3 Finding Sinks
	3.4 Program Paths
	3.5 Triggering Input

	4 Implementation Details
	5 Evaluation
	5.1 Exploitation Primitive Trigger (EPT)
	5.2 Fine Tuning

	6 Discussion and Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	Appendices
	A JavaScript Code Corresponding to Running Example
	B SSA-map

	i07-2-rodriguez
	Abstract
	1 Motivation
	2 Problem Statement
	3 Methodology
	3.1 Data Collection
	3.2 Labeling
	3.3 Feature Selection
	3.4 Learning

	4 Evaluation
	4.1 Detection
	4.2 Impact on the Page Loading Time

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References
	A Theoretical Upper Bound for False Positives and Negatives
	B Additional Plots and Tables

	i07-3-xu
	Abstract
	1 Introduction
	2 Problem Statement and Related Work
	2.1 Multi-tab Threat Model
	2.2 Related work

	3 Overview of Multi-tab Attacks
	4 Dynamic Page Split
	4.1 Challenges in Identifying True Split Points
	4.2 BalanceCascade-XGBoost Algorithm

	5 Chunk-Based Page Classification
	5.1 Feature Selection
	5.2 Classifier Design

	6 Experimental Results
	6.1 Experiment Setup
	6.2 Evaluation of Multi-tab] Attacks
	6.3 Evaluation of Page Split
	6.4 Evaluation of Chunk-Based Classification
	6.5 Evaluation with More Than Two Tabs

	7 Conclusion and Future Work
	References
	A The Rest Features in Feature Set
	B Feature Selection

	i07-4-acker
	Abstract
	1 Introduction
	2 Background
	3 Mechanism design
	3.1 Overview
	3.2 Configuration structure
	3.3 Client-side application
	3.4 Misconfiguration

	4 Policy comparison and combination
	4.1 for policy comparison
	4.2 and for policy combination

	5 Prototype implementations
	5.1 Client-side enforcement
	5.2 Server-side manifest handling
	5.3 Automated manifest generation from observed traffic
	5.4 Limitations and considerations

	6 Evaluation
	6.1 Functional evaluation
	6.2 Longitudinal study
	6.3 Performance measurement

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Statistical data

	i08-1-ziegeldorf
	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Scenario and Requirements
	2.2 Analysis of Related Work

	3 Cryptographic Building Blocks
	4 SHIELD Framework
	4.1 Overview of Supervised Classification
	4.2 Secure Building Blocks
	4.3 Implementation and Evaluation Setup

	5 Hyperplane Classifiers
	5.1 Evaluation

	6 Artificial Neural Networks
	6.1 Evaluation

	7 Naive Bayes
	7.1 Evaluation

	8 Hidden Markov Models
	8.1 Evaluation

	9 Outsourcing
	9.1 Evaluation of Outsourcing

	10 Conclusion
	References
	A Detailed Protocols for Secure Building Blocks
	A.1 Max and Argmax
	A.2 Scalar Products
	A.3 Polynomial Approximation of Arbitrary Functions
	A.4 OT-based Evaluation of Discrete Functions
	A.5 Evaluating Gaussians
	A.6 Backtracking

	B Security Discussion
	B.1 Security of the Building Blocks
	B.2 Security of the Classifier Designs

	C Evaluation of Outsourcing for the service provider

	i08-2-kesarwani
	Abstract
	1 Introduction
	2 related work
	3 Problem Framework
	4 Model Extraction Warning
	4.1 Strategy 1: Providing model extraction warnings using information gain metric
	4.2 Strategy 2: Providing model extraction warnings using coverage metric

	5 Experiments
	5.1 Model extraction status for source DT Models
	5.2 Model extraction status for source NN Models

	6 Conclusion and Future Work
	References

	i08-3-fang
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Collaborative Filtering
	2.2 Attacks to Recommender Systems

	3 Problem Formulation
	3.1 Threat Model
	3.2 Attacks as an Optimization Problem

	4 Our Poisoning Attacks
	4.1 Overview
	4.2 Approximating the Optimization Problem
	4.3 Solving the Optimization Problem
	4.4 Generating Rating Scores

	5 Experiments
	5.1 Experimental Setup
	5.2 Attacking Graph-based Systems
	5.3 Transferring to Other Systems

	6 Detecting Fake Users
	7 Conclusion and Future Work
	References

	i08-4-wei
	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Overview
	5 Power Extraction
	5.1 Interference Sources
	5.2 Extraction Methods

	6 Background Detection
	6.1 Intuition
	6.2 Attack Method
	6.3 Evaluation

	7 Image Reconstruction via Power Template
	7.1 Intuition
	7.2 Attack Method
	7.3 Evaluation

	8 Related Work
	9 Conclusion
	A Preliminaries
	A.1 Convolutional Neural Network
	A.2 CNN Accelerator Design
	A.3 Basics on Power Side Channel

	B Discussion and Future Work
	C Attack results on the MNIST dataset
	References

	i09-1-proskurin
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Exception Levels
	2.2 Guest Physical Memory Architecture
	2.3 Debug Exceptions
	2.4 Translation Lookaside Buffer
	2.5 Threat Model

	3 Guest Kernel Monitoring Primitives
	3.1 Implementing Kernel Tap Points
	3.2 Novel Single-Stepping Mechanism
	3.3 Xen altp2m on ARM
	3.4 Splitting the TLBs

	4 Evaluation
	4.1 System Setup
	4.2 DRAKVUF on ARM
	4.3 Performance
	4.4 Effectiveness

	5 Discussion
	5.1 Alternative Tracing Methods
	5.2 Limitations

	6 Related Work
	7 Conclusion
	References

	i09-2-lin
	Abstract
	1 Introduction
	2 Background
	2.1 Linux Container
	2.2 Linux Kernel Security Mechanisms
	2.3 CPU Protection Mechanisms

	3 Attack Dataset Description
	3.1 Exploit Collection
	3.2 Attack Taxonomy
	3.3 Exploit Dataset

	4 Security Evaluation of Container
	4.1 Experiment Setup
	4.2 Result Overview
	4.3 Analysis of Privilege Escalation Attacks
	4.4 A Brief Summary

	5 Defeating Kernel Privilege Escalation Attacks
	5.1 Kernel Privilege Escalation Attack Model
	5.2 Countermeasures
	5.3 Effectiveness and Performance

	6 Discussion on Limitation
	7 Related work
	7.1 Container Security
	7.2 Attack Taxonomy

	8 Conclusion
	Acknowledgments
	References

	i09-3-futagami
	Abstract
	1 Introduction
	2 Out-of-band Remote Management
	3 VSBypass
	3.1 Assumptions and Threat Model
	3.2 Architecture

	4 Implementation
	4.1 Proxy VM
	4.2 I/O Interception
	4.3 Redirection of Virtual Interrupts
	4.4 Sharing VRAM
	4.5 VM Migration

	5 Experiments
	5.1 Eavesdropping on I/O data
	5.2 Performance of a Virtual Serial Console
	5.3 Performance of GUI Remote Access

	6 Related Work
	7 Conclusion
	References

	i09-4-cho
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Architecture and TrustZone
	2.2 Legitimate Channels between the Normal and Secure Worlds
	2.3 ARM Cache Architecture
	2.4 Previous Cache Attacks

	3 Assumptions and Attack Model
	4 Cross-world Covert Channels
	4.1 Prime+Count Overview
	4.2 Prime the Cache
	4.3 Count Using Cache Refill Events
	4.4 A Simple Message Encoding Method
	4.5 Cross-Core Covert Channels

	5 Implementation
	6 Evaluation
	6.1 Effectiveness of Prime+Count
	6.2 Choosing Bucket Ranges
	6.3 Capacity Measurement
	6.4 Image Transfer

	7 Discussion
	7.1 Limitations of Prime+Count
	7.2 Cross-world Covert Channels without Normal World Kernel Privileges
	7.3 Limitations of Our Experiments

	8 Related Work
	9 Conclusion
	References

	i10-1-aviv
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Study Design and Materials
	3.2 Live Simulation Setup and Coordination
	3.3 Procedure
	3.4 Recruitment

	4 Realism and Limitations
	5 Results
	5.1 Comparing Attack Rates Across Video and Live Studies
	5.2 Post-Hoc Participant Feedback

	6 Implications
	7 Conclusions
	References
	A Survey Material
	A.1 Ante Hoc Demographic Questionnaire
	A.2 Post Hoc Participant Strategies Questionnaire Questions
	A.3 Observation Forms
	A.4 Guide/Script for Administering Study

	B Visualization of Authentication
	B.1 Patterns
	B.2 PINs

	i10-2-neupane
	i10-3-wiese
	Abstract
	1 Introduction
	2 Ethical considerations
	3 Threats and Opportunities
	4 Form Factor Survey
	4.1 Materials and Methods
	4.2 Results
	4.3 Discussion
	4.4 Limitations

	5 Field Study
	5.1 Methods
	5.2 Materials

	6 Field Study Results & Discussion
	6.1 Participants and Confidants
	6.2 Recovery Rate
	6.3 Task Durations
	6.4 Security and Trust
	6.5 Sentiments and Token Handling

	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A Form Factor Study Materials
	B Results of form factor survey
	C Questionnaire 1
	D Questionnaire 2
	E Questionnaire for Confidants

	i10-4-farhang
	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Upgrades
	2.2 Software Updates
	2.3 Purchasing New Devices

	3 Methodology
	3.1 Online Survey
	3.2 Measures
	3.3 Study Procedures
	3.4 Participants

	4 Results
	4.1 To Upgrade, or Not to Upgrade?
	4.2 Perceived Usefulness and Satisfaction
	4.3 Measuring Upgrade Cost
	4.4 Security Concerns
	4.5 Free Upgrade and Notification Approach
	4.6 Purchasing New Device

	5 End of Life (EOL) and Security after EOL
	5.1 Security after EOL

	6 Discussion
	6.1 Better Communication to Address Privacy Concerns
	6.2 Better Upgrade Messaging
	6.3 Security and the Need for a Roadmap after EOL
	6.4 Reduce Perceived Cost

	7 Limitations
	8 Conclusion
	References
	A Survey Instrument
	B Code-book
	B.1 Code-book: Not Upgrade
	B.2 Code-book: Upgrade

	i11-1-jain
	Abstract
	1 Introduction
	2 Motivation
	2.1 Evolutionary Fuzzing
	2.2 Motivating Example
	2.3 Lessons learned

	3 Overview
	3.1 Input Execution and Fitness Function
	3.2 DTA and Input Type Inference
	3.3 Type Based Mutation

	4 Input Type Inference
	4.1 In-memory Data Structure Identification for Input Offsets
	4.2 Basic Data Type Identification
	4.3 Array Detection
	4.4 Precise Data Type Identification

	5 Type Inference-assisted Mutation
	5.1 Coverage-oriented Mutation
	5.2 Bug-oriented Mutation

	6 Implementation
	7 Evaluation
	7.1 LAVA-M Dataset
	7.2 MA Dataset
	7.3 Crash Analysis

	8 Related Work
	8.1 Directed Fuzzing Approaches
	8.2 Input Grammar-Based Fuzzing Approaches
	8.3 Evolutionary Fuzzing Approaches

	9 Conclusions
	References
	9.1 Mutation Cycle Algorithm
	9.2 Howard Implementation Details
	9.3 Crash Analysis Details
	9.4 Results on MA dataset for 24hr Run

	i11-2-pang
	Abstract
	1 Introduction
	2 Background
	2.1 C++ Inheritance and Cast Operations
	2.2 Type Confusion
	2.3 Defenses against Type Confusion

	3 Threat Model
	4 Bitype Design and Implementation
	4.1 Overview
	4.2 Safe Encoding Scheme
	4.3 Object Tracing
	4.4 Typecasting Verification
	4.5 Optimization
	4.6 Implementation

	5 Evaluation
	5.1 Coverage
	5.2 Performance Overhead
	5.3 Memory Overhead
	5.4 Compilation Time Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	i11-3-liu
	Abstract
	1 Introduction
	2 Related Work
	2.1 Static Analysis to Detect Concurrency Problems
	2.2 Concurrency Error Detection
	2.3 Logic-Based Methods
	2.4 Fuzz Testing

	3 Case Study of Concurrency Vulnerabilities
	3.1 Real-World Concurrency Vulnerabilities
	3.2 Characteristics of Concurrency Vulnerabilities

	4 Static Analysis
	4.1 Shared Memory Discovery
	4.2 Sensitive Operation Marking
	4.3 Data-flow Merging
	4.4 Vulnerability Categorization
	4.5 Semantic Checking

	5 Thread-Aware Fuzzing
	5.1 Interleaving Exploring Priority
	5.2 Targeted Priority
	5.3 Load Balance

	6 Implementation
	6.1 Implementation of Static Analysis
	6.2 Implementation of Thread-Aware Fuzzing

	7 Evaluation
	7.1 Benchmark Suite
	7.2 Experimental Results
	7.3 Validation of Detected Concurrency Vulnerabilities
	7.4 Analysis of Static Analysis Results
	7.5 Abnormal Time Cost of Static Analysis

	8 Limitations and Future Work
	8.1 Scalability of Static Analysis
	8.2 Capacity of AFL in Exploring Paths
	8.3 Restrictions of Manual Validation
	8.4 Additional Limitations

	9 Conclusion
	References

	i11-4-ye
	Abstract
	1 Introduction
	2 System Architecture
	3 Proposed Method
	3.1 Feature Extraction
	3.2 HIN Constructor
	3.3 snippet2vec: HIN Representation Learning
	3.4 Multi-view Fusion Classifier

	4 Experimental Results and Analysis
	4.1 Experimental Setup
	4.2 snippet2vec based on Different Sets of Meta-path Schemes
	4.3 Comparisons with Different Network Representation Learning Models
	4.4 Comparisons with Traditional Machine Learning Methods
	4.5 Evaluation of Parameter Sensitivity, Scalability, and Stability
	4.6 Case Studies

	5 Related Work
	6 Conclusion
	References

	i12-1-etigowni
	Abstract
	1 Introduction
	2 Background
	2.1 Drone Flight Dynamics
	2.2 Offline Controller Code Verification
	2.3 Limitation of Existing Solutions

	3 Overview
	3.1 Threat Model
	3.2 Crystal Architecture
	3.3 Safety Requirement Definition
	3.4 Predictive Flight Modeling
	3.5 Just-Ahead-of-Time Verification

	4 Drone Physics Modeling
	4.1 Normal Operation Mode Physical Modeling
	4.2 Failure Mode Data-Driven Modeling
	4.3 Full Flight Operation mode

	5 Cyber-Physical Security Modeling
	6 JAT Verification and Recovery
	7 Evaluations
	7.1 Evaluation on 3DR Solo Quadcopter

	8 Related Work
	9 Conclusion
	A Global safety conditions
	B normal Operation Mode Physical Modeling
	Acknowledgments
	References

	i12-2-mujeeb
	i12-3-castellanos
	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Attack points and cyber-to-physical interfaces
	3.2 Attacker profile
	3.3 Modelling a CPS as a Data Flow Graph
	3.4 White-box analysis of controller's source code
	3.5 Extracting graphs from a controller's code
	3.6 Reachability analysis
	3.7 Shortest path analysis and attack diagrams

	4 Implementation
	4.1 The testbed
	4.2 PLC code parser

	5 Evaluation
	5.1 Interactions between attack points and Cy2Phy interfaces
	5.2 Choosing suitable attack points
	5.3 Testing attack points in a real scenario

	6 Discussion
	7 Related work
	8 Conclusions and future work
	References
	A List of components in SWaT
	B Shortest path distance between attack points and Cy2Phy interfaces

	i12-4-schilling
	Abstract
	1 Introduction
	2 State of the Art and Background
	2.1 Threat Model and Attack Vector
	2.2 Error Detection Codes
	2.3 ARM Pointer Authentication

	3 Pointer Protection with Residue Codes
	3.1 Overview
	3.2 Pointer Layout and Residue-Code Selection
	3.3 Pointer Operations

	4 Evolved Memory Access Protection
	4.1 Overview
	4.2 The Linking Approach
	4.3 Memory-Mapped I/O

	5 Architecture
	5.1 New Instructions
	5.2 Hardware
	5.3 Software

	6 Evaluation
	6.1 Future Work

	7 Conclusion
	8 Acknowledgment
	References

	i13-1-wang
	Abstract
	1 Introduction
	2 Motivating Example
	3 System Overview
	4 Design and Implementation
	4.1 Library Call Tracing
	4.2 Lprov Kernel Module
	4.3 Lprov Daemon Process and Log Analysis

	5 Evaluation
	5.1 Performance Overhead
	5.2 Case Study

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Kernel Event Tracing
	A.2 Log Analysis Algorithm
	A.3 Additional Performance Evaluation

	i13-2-deGoer
	Abstract
	1 Introduction
	2 Problem
	2.1 Statement
	2.2 Notations and definitions
	2.3 Scope

	3 Approach
	3.1 Overview
	3.2 Heuristics

	4 Implementation
	4.1 Ground-truth - oracle
	4.2 Naive implementations of call detection
	4.3 Implementation details of iCi

	5 Experiments
	5.1 Methodology
	5.2 Platform
	5.3 General results
	5.4 SPEC CPU2006
	5.5 Influence of the compiler
	5.6 Discussion

	6 Applications
	7 Conclusion
	References

	i13-3-im
	Abstract
	1 Introduction
	2 Background
	2.1 Android security architecture
	2.2 Example: Location services
	2.3 SEAndroid policy rules
	2.4 The complexity of SEAndroid policy

	3 Methodologies
	3.1 The ``box'' metric
	3.2 Git repository analysis
	3.3 Our measurement tool

	4 Measurement Results
	4.1 Boxes vs. rules
	4.2 Number of boxes in a rule
	4.3 Number of rules per box
	4.4 Ratio of rule vs. box changes
	4.5 Summary

	5 An Historical Analysis
	5.1 The ``age'' of rules
	5.2 The increasing policy complexity
	5.3 The effect of multiple branches
	5.4 Case study: Stagefright
	5.5 Contributor comparison

	6 Discussion
	6.1 SEAndroid vs. Smack
	6.2 Android Treble
	6.3 Android for Work

	7 Related work
	8 Conclusion
	9 Acknowledgment
	References

	i13-4-rahman
	Abstract
	1 Introduction
	2 Background
	3 Intent-driven Access Control
	3.1 Threat Model and Assumptions
	3.2 IAC via BCI

	4 Experiment Design
	4.1 Single App Experiment
	4.2 Multiple Apps Experiment
	4.3 Experimental Procedures

	5 Data Process and Analysis
	6 Feasibility Test
	6.1 Single App Analysis
	6.2 Cross-app Portability Analysis
	6.3 Results Analysis
	6.4 Authorization Accuracy

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgment
	References

	i14-1-nikolic
	Abstract
	1 Introduction
	2 Problem
	2.1 Ethereum Smart Contracts
	2.2 Contracts with Trace Vulnerabilities
	2.3 Our Approach

	3 Trace Vulnerabilities
	3.1 EVM Semantics and Traces
	3.2 Safety Violations
	3.3 Liveness Violations

	4 The Algorithm and the Tool
	4.1 Symbolic Analysis
	4.2 Concrete Validation

	5 Evaluation
	5.1 Results
	5.2 Case Studies: True Positives
	5.3 Case Studies: False Positives
	5.4 Summary and Observations

	6 Related Work
	7 Conclusion
	References

	i14-2-torres
	Abstract
	1 Introduction
	2 Background
	2.1 The Ethereum Virtual Machine
	2.2 The Solidity Programming Language
	2.3 Integer Bugs in Ethereum Smart Contracts

	3 Methodology
	3.1 Type Inference
	3.2 Finding Integer Bugs
	3.3 Taint Analysis
	3.4 Identifying Benign Integer Bugs

	4 Osiris
	4.1 Design Overview
	4.2 Implementation

	5 Evaluation
	5.1 Empirical Analysis
	5.2 Detection of Real-World Vulnerabilities

	6 Discussion
	6.1 Causes for Integer Bugs
	6.2 Ways Towards Safe Integer Handling

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Control Flow Graph Example
	B The DAO Hack

	i14-3-greubel
	Abstract
	1 Introduction
	2 Background
	2.1 Tor Bandwidth Measurements
	2.2 Trusted Execution Environments
	2.3 Blockchain and Smart Contracts

	3 System and Adversary Model
	4 Design
	4.1 Entity Communication
	4.2 Relay Registration
	4.3 Bandwidth Measurer Registration
	4.4 Join Measurement Process
	4.5 Bandwidth Measurements
	4.6 Reporting and Aggregating Results
	4.7 Malfunction Detection

	5 Security Analysis
	5.1 Group Compromise
	5.2 Attacks from a malicious Host
	5.3 Attacks from compromised TEEs
	5.4 Attacks on the SC

	6 Implementation
	6.1 Smart Contract
	6.2 Bandwidth Measurement Script
	6.3 Bandwidth Measurement Host

	7 Evaluation
	7.1 Measurement script
	7.2 Smart Contract

	8 Related Work
	9 Conclusion and Future Work
	References
	A Intel SGX Details
	B Tor Speedracer Measurements
	C Smart Contract Implementation
	D Measurement Data

	i14-4-tran
	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Preliminaries
	2.2 Threat Model
	2.3 Scope, Assumptions, and Limitations

	3 Obscuro
	3.1 Solution Overview
	3.2 Obscuro Protocol
	3.3 Indirect Participation Mechanism
	3.4 Detection of Malicious Blockchain Forks
	3.5 Collecting Deposits

	4 Security Analysis
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Discussion
	6.1 Recipient of the Mixing Fees
	6.2 Multiple Obscuro Instances

	7 Related Work
	7.1 Existing Bitcoin Mixer Solutions
	7.2 Privacy Improvements in other Cryptocurrencies
	7.3 TEE for Cryptocurrency Applications

	8 Conclusion
	9 Acknowledgments
	References
	A Structure of the Deposit Transaction

	i15-1-continella
	Abstract
	1 Introduction
	2 Background
	2.1 Amazon S3
	2.2 Threats

	3 Methodology
	3.1 Enumeration & Data Collection
	3.2 Security Analysis

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Enumeration & Data Collection
	4.3 Scanning Results
	4.4 Vulnerable Websites

	5 Mitigation
	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

	i15-2-demoulin
	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Strawman solutions
	2.2 DeDoS solution

	3 DeDoS Design
	3.1 Minimum splittable units
	3.2 Inter-MSU communication
	3.3 Routing tables
	3.4 DeDoS runtime API
	3.5 Support for existing applications

	4 Resource Allocation
	4.1 Machine-local scheduling
	4.2 Initial MSU assignment
	4.3 Cloning and merging

	5 Implementation
	5.1 Overview
	5.2 DeDoS local runtime

	6 Case Studies
	7 Evaluation
	7.1 Overheads
	7.2 Attack mitigation

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

	i16-1-blanchard
	Abstract
	1 Introduction
	2 Method
	2.1 Word choice
	2.2 Protocol
	2.3 Design choices

	3 Demographic information
	3.1 Participant selection
	3.2 Recruitment of volunteers
	3.3 Statistics

	4 Results
	4.1 Word selection
	4.2 Memorization
	4.3 Guessing

	5 Statistical modelling
	5.1 Strategies and entropy
	5.2 Semantic aspects

	6 Limitations
	6.1 Ecological validity
	6.2 Short-term and long-term memory
	6.3 Free choice of words

	7 Discussion
	8 Conclusion
	References

	i16-2-mayer
	Abstract
	1 Introduction
	2 Related Work
	3 Development of the Awareness-Raising Material
	3.1 First Iteration - Based on Literature
	3.2 Second Iteration - Incorporation of Structured Expert Feedback
	3.3 Third Iteration - Visual Elements and Lay-User Feedback

	4 User Study Methodology
	4.1 Hypotheses
	4.2 Procedure
	4.3 Questionnaires
	4.4 Analysis

	5 Results – Pre-Treatment and Post-Treatment Questionnaires
	5.1 Assessment of Scenarios
	5.2 Password Security Ratings
	5.3 Qualitative Results

	6 Results – Retention Questionnaires
	6.1 Assessment of Scenarios
	6.2 Password Security Ratings

	7 Discussion
	7.1 Improvements Derived from the User Study
	7.2 Limitations

	8 Conclusion
	References
	A.1 Introductory Sections
	A.2 Attacks
	A.3 Technologies to Protect User Credentials

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	271.pdf
	Abstract
	1 Introduction
	2 Motivation
	2.1 Evolutionary Fuzzing
	2.2 Motivating Example
	2.3 Lessons learned

	3 Overview
	3.1 Input Execution and Fitness Function
	3.2 DTA and Input Type Inference
	3.3 Type Based Mutation

	4 Input Type Inference
	4.1 In-memory Data Structure Identification for Input Offsets
	4.2 Basic Data Type Identification
	4.3 Array Detection
	4.4 Precise Data Type Identification

	5 Type Inference-assisted Mutation
	5.1 Coverage-oriented Mutation
	5.2 Bug-oriented Mutation

	6 Implementation
	7 Evaluation
	7.1 LAVA-M Dataset
	7.2 MA Dataset
	7.3 Crash Analysis

	8 Related Work
	8.1 Directed Fuzzing Approaches
	8.2 Input Grammar-Based Fuzzing Approaches
	8.3 Evolutionary Fuzzing Approaches

	9 Conclusions
	References
	9.1 Mutation Cycle Algorithm
	9.2 Howard Implementation Details
	9.3 Crash Analysis Details
	9.4 Results on MA dataset for 24hr Run

