
26

On Automated Memoization in the Field of Simulation

Parameter Studies

MIRKO STOFFERS, DANIEL SCHEMMEL, OSCAR SORIA DUSTMANN, and

KLAUS WEHRLE, Communication and Distributed Systems, RWTH Aachen University

Processes in computer simulations tend to be highly repetitive. In particular, parameter studies further exas-

perate the situation as the same model is repeatedly executed with only partially varying parameters. Con-

sequently, computer simulations perform identical computations, with identical code, identical input, and

hence identical output. These redundant computations waste significant amounts of time and energy.

Memoization, dating back to 1968, enables the caching of such identical intermediate results, thereby sig-

nificantly speeding up those computations. However, until now, automated approaches were limited to pure

functions. At ACM SIGSIM-PADS 2016 we published, to the best of our knowledge, the first practical ap-

proach for automated memoization for impure code. In this work, we extend this approach and evaluate the

performance characteristics of a number of extensions that deal with questions posed at PADS: (1) To reduce

and bound the memory footprint, we investigate several cache eviction strategies. (2) We allow the original

and the memoized code to coexist via a runtime-switch and analyze the crossover point, thereby mitigating

memoization overhead. (3) By optionally persisting the Memoization Cache to disk, we expand the scope to

exploratory parameter studies where cached results can now be reused across multiple simulation runs.

Altogether, automated memoization for impure code is a valuable technique, the versatility of which we

explore further in this article. It sped up a case study of an OFDM network simulation by a factor of more

than 80 with an only marginal increase of memory consumption.

CCS Concepts: • Computing methodologies → Massively parallel and high-performance simula-

tions; • Software and its engineering → Preprocessors;

Additional Key Words and Phrases: Automatic memoization, accelerating parameter studies, impure

languages

ACM Reference format:

Mirko Stoffers, Daniel Schemmel, Oscar Soria Dustmann, and Klaus Wehrle. 2018. On Automated Memo-

ization in the Field of Simulation Parameter Studies. ACM Trans. Model. Comput. Simul. 28, 4, Article 26

(September 2018), 25 pages.

https://doi.org/10.1145/3186316

This research was funded by the German Research Foundation (DFG) under contract number 625799. The research lead-

ing to these results has received funding from the European Research Council under the EU’s Horizon2020 Framework

Programme/ERC Grant Agreement number 647295 (SYMBIOSYS).

Authors’ addresses: M. Stoffers, D. Schemmel, O. Soria Dustmann, and K. Wehrle, Communication and Distributed Sys-

tems, RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany; emails: {stoffers, schemmel, dustmann, wehrle}@

comsys.rwth-aachen.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1049-3301/2018/09-ART26 $15.00

https://doi.org/10.1145/3186316

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

https://doi.org/10.1145/3186316
mailto:permissions@acm.org
https://doi.org/10.1145/3186316

26:2 M. Stoffers et al.

1 INTRODUCTION

Computer simulations are programs with highly repetitive computations in which the same event
handlers are executed repeatedly, often on the same input as before. In parameter studies, this
effect is amplified further by executing multiple configurations and executing each configuration
multiple times with different random number seeds. While the seeds naturally need to be differ-
ent for each execution of any individual configuration, the repetitiousness of the whole process is
increased even more when the seeds are the same for different configurations. We conclude that,
overall, a large fraction of the computations performed are in fact redundant. The opportunity to
speed up the execution of computer software in general by avoiding such redundant computations
has already been described in 1968 [20]. Michie developed the idea of so-called memo functions
(now known as memoized functions) that reuse previously computed results. To apply this tech-
nique, two steps have to be performed: (1) The code blocks have to be identified, which are executed
redundantly and comprise computations with a complexity greater than the memoization over-
head. (2) Those code blocks have to be transformed into a variant that stores input and output of
a computation and is able to directly reproduce the correct output if the same input re-occurs. In
current practice, both steps are often applied manually.

While it would naturally be desirable to automate both steps, this article focuses on the sec-
ond step. We discuss an approach to tackle the first step in Reference [28]. Alternatively, model
developers can annotate the promising code blocks and save the effort of manually applying the
memoization transformation. The actual memoization is then performed by an automated tool. Un-
fortunately, all previously developed techniques to automated memoization are designed for pure
functions1 only. However, in most simulation models the computations heavily rely on impure
code. Hence, techniques restricted to pure functions can not be applied to a large set of simulation
models.

An approach to automated memoization for impure code can, however, significantly improve
performance of complex software with redundant operations, as common in simulation parameter
studies, without requiring much effort or advanced programming skills from the developer. In
Reference [29], we first introduced our approach to automated memoization, which does not rely
on the purity of the code to be memoized. Our implementation operates on C++ [12], which is used
to implement models for the popular open source simulation frameworks ns-3 [8] and OMNeT++
[31], and provides many features that pose challenges for memoization (such as pointers), hence
we expect that our approach can be easily adapted to other languages with a less challenging
feature set. We do not require that the computation to be memoized is pure, and in fact we allow
using arbitrarily indirect pointers to read objects or cause side effects. However, it is another result
of our work that it is necessary to pose certain restrictions on pointer usage, for example, to avoid
undecidable problems such as static aliasing analysis [14].

To apply the automated memoization, we parse the provided C++ code using Clang,2 identify
all input and output, and generate new C++ code with a memoized version of the original. This
can then be compiled by any C++14 compiler. On execution of our memoized code a lookup in
a dictionary (the Memoization Cache, MC) is performed. On success the result is applied to the
actual output; otherwise, the result is computed as in the original code, intercepted, and stored

1A pure function accesses no objects except compile-time constants, its parameters, and its local variables with automatic

storage duration. Its parameters and return type are of value type and it never throws exceptions. It inspects no pointers

and calls only pure functions.
2http://clang.llvm.org/

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

http://clang.llvm.org/

On Automated Memoization in the Field of Simulation Parameter Studies 26:3

in the MC. Hence, our approach works on pure and impure computations. A proof-of-concept
implementation is available online.3

This article builds on Reference [29] and additionally contributes the following enhancements:
(1) We apply common cache eviction strategies on the MC to reduce and bound the memory needed
by automated memoization. (2) To save even more memory and the time required to perform the
key derivation in cases where memoization cannot yield a benefit, we enable the developer to
choose whether or not to use memoization on a case-by-case basis. (3) To decrease the time until
the MC yields hits, we add an option to persist the MC to permanent storage. This is particularly
beneficial for exploratory parameter studies where each simulation run needs to be a separate
process and could therefore not reuse results from a previous run.

We evaluate the basic idea as well as the enhancements on synthetic benchmarks to characterize
overhead and potential gain. We furthermore conduct experiments with a network simulation case
study as well as random number generation to investigate the practical suitability in the area of
modeling and simulation.

The remainder of this article is structured as follows. We first analyze the problem and its chal-
lenges more thoroughly (Section 2). After that, we introduce the design of our approach (Section 3).
We demonstrate the practical feasibility by evaluation results (Section 4). We then discuss related
work (Section 5) before we conclude the article (Section 6).

2 PROBLEM ANALYSIS

The major challenge of memoization is the correct identification of input and output. While this
is an easy task for pure functions, impure functions can traverse the object graph arbitrarily and
access any element. We need to determine which values are actually input or output of the compu-
tation and which are just used to find the finally relevant object in memory, but whose own value
has no semantic meaning to the computation (e.g., a pointer that is being dereferenced to access
another object).

In this section, we first investigate adequate levels of granularity for automated memoization.
We then discuss the language constructs that can conceivably be memoized, analyze the C++ fea-
tures, and derive the implications on automated memoization.

2.1 Memoization Granularity

All previous approaches to automated memoization apply the optimization on a function level,
i.e., a function is either memoized as a whole, or not at all. As these approaches rely on the input
being solely the function parameters and the output being exactly the return value, a function level
granularity is the only viable approach. However, as we permit side effects, we need to analyze
the actual implementation anyway and the restriction to functions is no longer useful. For this
reason, we enable the memoization of (almost) arbitrary C++ compound-statements, better known
as blocks. Blocks are the most general construct that has a concept of local variables with automatic
storage duration and encapsulates them from the outer environment. Any statement that can be
wrapped in curly braces to form a block without changing the semantics of the program can also
be a memoization target. To this end, memoizing a function is performed by memoizing the block
that constitutes its body. Similarly, a complete event handler could be memoized, since an event
handler is typically a function as well.

In general, the unit to be memoized should be a logical unit of the program’s functionality.
If two computations were memoized as a single unit, then it is highly unlikely that the results
can be reused as the input of both computations must have occurred before in that combination.
However, if the memoization unit ends before a computation is complete, then several intermediate

3https://code.comsys.rwth-aachen.de/projects/memoize/

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

https://code.comsys.rwth-aachen.de/projects/memoize/

26:4 M. Stoffers et al.

results have to be retrieved rather than the final result. In simulations, an event handler can be a
good memoization target if it performs a single computation. However, a specific computation
performed inside the event handler can as well be a more promising memoization target.

The remainder of this analysis assumes that a C++ compound statement (block) shall be mem-
oized, referred to as the Memoization Unit (MU).

2.2 C++ Language Constructs

To investigate how a memoized alternative can be created from non-memoized C++ code, we need
to analyze the source language. We provide a detailed analysis in Reference [29]. Important to note
is that to determine input and output of a computation, variables used during the computation
need to be classified by their scope. We define a variable interior if it is local to the MU and has
automatic storage duration. All other variables are exterior. Changes to exterior objects can be
caused and/or perceived from outside the MU and must hence be considered input and/or output
of the computation if read and/or modified, respectively.

To correctly reflect the semantics of pointers, we use a path notation to describe an object by its
path through the object graph. For example, *p=42 modifies the object at (“p”,0). This also enables
representing arbitrarily complex pointer expressions such as (*(p+4))[3]=q[8][-5][3]: The
object at (“q”,8,-5,3) is read, the object at (“p”,4,3) is altered. Indirect addressing, such as a[x], is
also covered, since the value of x is first read, which yields a concrete value that can be used in
the path (“a”,x).

For function calls we need to differentiate between calls to functions whose code is known at
compile time and calls for which this is not the case. For the latter we need to assume unknown
side effects (such that memoization is not possible) or rely on an annotation signaling that it is safe
to memoize. We allow the user to annotate functions or function calls as transparent. We define a
transparent function as a function whose effects depend only on the parameters and are only of
the following kinds: If a parameter of pointer or reference to a non-const object type is provided
(e.g., const int *p), then the value of the object may be changed during execution of the function
(e.g., *p=42). The function may return an object or throw an exception. Other effects may occur
if the user declares them negligible. As input we treat the parameters’ values or, for arguments of
pointer or reference type, the object they point to.

Other side effects, such as terminal output, disk I/O, or memory allocation and deallocation
are not supported by our implementation as long as they cannot be neglected and annotated as
transparent. However, these effects could be covered in future implementations by adding the
opportunity to store actions like “allocate 5 bytes of memory” into the output vector.

2.3 Multi-Threading

Multi-threading is an optimization technique orthogonal to memoization. Our implementation
assumes only one thread is inside any MU at a time and no other thread relies on the order in
which this thread accesses shared data. This does not mean multi-threaded programs are fully
incompatible with the current implementation. The user can, for example, put the MU into a critical
region, such that a lock is acquired before the MU can be reached, and hence only one thread is in
the MU at a time. Other threads accessing the same data items and relying on the order in which
the data items are accessed by other threads should acquire the same lock before entering such
regions. In this context, it must be noted that, as long as no explicit counter-measures are taken,
reordering as a compiler optimization is not that restricted anyway. To conclude, multi-threading
can be used in a limited way when special care is taken.

Additionally, parallelism can be exploited by running multiple independent processes in parallel.
This lets each process apply memoization independently of the other processes. If—as is often

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

On Automated Memoization in the Field of Simulation Parameter Studies 26:5

the case when running large parameter studies—more processes need to be executed than CPUs
are available, then the MC can as well be shared between subsequently executed processes by
persisting it to disk. In this case, of course, it is again necessary to avoid data races when writing
to disk.

At this point, parallelizing memoized programs is possible to a limited extent, but the challenges
need to be analyzed in more detail before they can be solved in a broader scope. For the purpose
of demonstrating the feasibility of automated memoization in the first place, we assume that the
input program is single-threaded in this article.

2.4 Runtime and Memory Tradeoffs

The major goal of memoization is reducing the time it takes to compute the results of the pro-
gram being executed. To this end, on the first occurrence of a certain input an entry in the MC is
created. This causes additional processing overhead and increases memory consumption. To reap
any rewards, the same input needs to be given at least once more, at which point the request may
be satisfied from the MC.

Hence, we face two tradeoffs: First, the initial iteration incurs an additional processing overhead,
which might or might not pay off eventually. Second, even when overall beneficial, memoization
always trades memory consumption for processing time.

To address the first tradeoff, we provide an opportunity to decide at runtime whether to take
the memoization branch or bypass it to compute the result in the original time and memory com-
plexity. We need to emphasize that this decision poses a complex problem by itself, which we
do not address in this article. Instead, we provide the developers with the opportunity to decide
themselves which branch to take.

The time-memory tradeoff becomes an issue when limits on memory size are reached or ap-
proached close enough such that other optimizations that face time-memory tradeoffs as well
are no longer performed (e.g., memory allocation algorithms that take more time to find avail-
able memory chunks under memory pressure). Due to the fairly large size of memory available in
today’s computers this is not an issue in many cases. Nevertheless, this problem needs to be ad-
dressed, since the MC has the potential to fully fill up all memory. Hence, we show how to specify
an upper limit for the size of the MC and explore several strategies to evict entries when that limit
is reached. To this end, we demonstrate MC implementations that provide common cache eviction
strategies to keep the number of MC entries limited. Also, the aforementioned opportunity to de-
cide whether to perform memoization in the first place can be used in this context to avoid filling
the MC with rarely needed entries or to avoid thrashing.

2.5 Storage of Memoization Cache

To enable fast access to the MC, it must reside in main memory. However, in the context of model-
ing and simulation, memoization is particularly beneficial for parameter studies, which are com-
monly conducted in one of two ways: (1) All configurations are specified beforehand and a sin-
gle process is spawned that performs the complete parameter study. (2) An individual process is
spawned for each configuration. One example where this is necessary are exploratory parameter
studies, where users may evaluate previous results before defining and executing additional con-
figurations. To support both approaches, we provide an easy way of serializing and deserializing
the MC to and from permanent storage so that it can be reused by subsequent processes.

3 AUTOMATED MEMOIZATION

In this section, we describe the design of our approach striving to provide automated memoization
for pure and impure C++ code blocks using pointers in different ways to be used for avoiding

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

26:6 M. Stoffers et al.

Fig. 1. General memoization scheme.

redundant computations. We specify the goals and outline the general approach before discussing
the most important aspects in more detail.

3.1 Design Goals

As discussed in more detail in Reference [29], our approach targets three goals: First, any mem-
oization tool useful to model developers must ensure semantic equivalence. This means that the
perceivable effects and side effects of the original code and the memoized version are the same.
Second, we strive to maximize the number of supported C++ features to enable memoizing as
much code as possible. If any features that are not supported by the approach (such as certain
kinds of aliasing) are encountered, then we always ensure semantic equivalence by aborting the
memoization and simply executing the original code. Finally, we strive to generate code that runs
as fast and with as little memory as possible without violating either of the other goals.

3.2 General Approach

To use our approach to automated memoization, the developer annotates the MUs. This is the only
manual action required and can be automated by other approaches such as the one we discuss in
Reference [28]. In either case, the approach discussed here then performs the memoization auto-
matically. A code-to-code translation rewrites each MU in a memoized way. Our proof-of-concept
implementation utilizes a modified Clang to generate an abstract syntax tree as a basis for the
memoization. This eases the implementation, debugging, and verification of the generated, human-
readable C++ code. For an efficient, production-grade implementation, we recommend integration
into an actual optimizing compiler to further increase performance. However, this engineering
effort is outside the scope of this article. The transformed version performs the memoization as
illustrated in Figure 1. Figure 2 lists the code of a recursive Fibonacci implementation using point-
ers to demonstrate how our tool handles pointers. The transformed code is listed in Figure 3, only
slightly modified from the auto-generated code to fit in the article: We renamed variables, applied
indentation, changed line breaks, and removed parts not directly relevant to the memoization.

The automatic transformation identifies all read operations to exterior variables (cf. Section 2.2)
and creates code that only reads these variables into the Input Vector (IV). In the example, the only
input is the object in points to, i.e., (“in”,0). The IV is used as the key to search the entry in the

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

On Automated Memoization in the Field of Simulation Parameter Studies 26:7

Fig. 2. Recursive Fibonacci computation with pointer usage to illustrate automated memoization. The trans-

formed code is listed in Figure 3.

MC. If it is not found, then we execute a version of the original code that is slightly modified,
such that output is not only written to its location in memory but also serialized to the Output
Vector (OV). In the example, the only output is (“in”,0) as well. The IV-OV-pair is then stored in
the MC. On later execution of the same MU with the same input, the IV will be found in the MC
and the corresponding OV returned. Our memoized version of the code then skips the (expensive)
computation and directly deserializes the OV to the corresponding memory locations.

The values in the IV and OV are bitwise copies of the original values, regardless of their seman-
tics. Hence, our approach needs no special handling for floating point numbers but just performs
bitwise comparisons. To improve the performance of our transformation, we require interior or
exterior objects be only accessed via paths originating from variables of the same category. Our
implementation does not perform the memoization when the same object is accessed via multiple
different paths (e.g., the same object is read via *p and written via *q, both inside the same iteration
of the same MU). In the following, we describe the procedure and the rationale for these decisions
in more detail.

3.3 Input Vector Computation

We need to extract all reads of exterior objects from the original code and create code that does as
little as possible besides reading those values and storing them in the IV. It is essential to ensure no
writes to exterior objects be performed at this stage, as they might interfere with later stages. The
straightforward approach would be to search the code for all reads of exterior objects. However, if
a conditional occurs inside the code, we would not only overestimate the input but also potentially
crash the transformed program by dereferencing a null pointer that was originally protected by
an if-clause.

Our algorithm uses two basic ideas to tackle the IV computation. First, instead of synthesizing
completely new code to compute the IV, we slice the original code in a way that it computes the IV
without causing any other side effects and then remove as much of the code as possible. Second, we
intercept not only reads but also writes, which we then store in a Temporary Cache (TC) instead
of writing to the exterior object. Of course this means, we need to test the TC for every read as
well to prevent stale reads.

The transformation begins by adding interceptions for all accesses of exterior objects. To gen-
erate the IV, we simply store all reads on exterior objects that have not been read or written pre-
viously. Each value read is appended to the end of the IV to preserve the order. We can ignore
repeated reads, as they cannot add any new information and we can ignore reads that follow

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

26:8 M. Stoffers et al.

Fig. 3. Memoized version of the code in Figure 2. This code has been automatically generated by our tool

and then slightly edited for increased human readability and to fit the article format.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

On Automated Memoization in the Field of Simulation Parameter Studies 26:9

writes to the same location, as the value that has been written is determined solely by reads that
have been performed previously and thus been added to the IV already.

After adding the interceptions, we eliminate all code that does not eventually contribute to the
IV. Since the possibility of aliasing would prevent a lot of code from being eliminated, our dead
code elimination assumes no aliasing occurred and we ensure this property at runtime by way of
the TC. The TC provides an overlay address space that not only stores write operations during
IV computation but also recognizes whether two paths point to identical or overlapping memory,
i.e., alias. If aliasing occurs, e.g., since the same object is referenced multiple times via different
ways through a cyclic data structure, then we abort the memoization. Details on the dead code
elimination and the TC are provided in the online appendix and Reference [28].

3.4 Performing Memoization

Next, we need to determine whether the same input has occurred before. This is as trivial as
searching for the IV in a hash map. On a hit, the MC returns the corresponding OV. Before actually
applying the result, we need to finalize the aliasing check, which so far may miss locations that
are only written (via different paths). To this end we iterate over the OV and check the paths and
locations found by tracing the path of each element to the actual memory location against the TC.
If no aliases are encountered, then the deserialization of the OV is performed by iterating over the
OV again and storing the value in the object at that address. This effectively applies all side effects
of the computation without having to execute the (complex) computation itself.

Should the IV have not been found in the MC, the OV is computed, which will also perform
the original computation. The next section explains how this computation will lead to the correct
result in both presence and absence of aliases.

3.5 Output Vector Computation

Computing the OV is considerably simpler than computing the IV, as all that needs to be done is to
keep track of all writes being performed. Writes are tracked by storing tuples of paths and object
values, which can then later be deserialized by following the paths from their respective roots.
Memory writes are not completely intercepted during computation of the OV, but rather stored
in their originally intended locations as well. The advantage of using paths versus storing the
address is, among others, that it also works with dynamic variables whose actual address changes
depending on the depth of the current function stack.

Since the computation of the IV is designed to eschew as many writes as possible, its alias
detection cannot be complete. All missing alias checks are performed during the OV computation,
which necessarily performs all writes. Hence, the combined alias detection is complete. Should no
alias be detected, the OV is stored in the MC to be retrieved during future computations. It is not
necessary to immediately deserialize the OV, as the output is already stored as a side effect of the
OV computation. For the same reason, no further action is necessary if an alias has been detected
at this stage; instead, the memoization degrades gracefully, i.e., no entry is created in the MC.

3.6 Memoization Decision

As discussed in Section 2.4 we provide developers with an opportunity to decide whether memo-
ization should be applied in a certain circumstance or not. Consider the Fibonacci example shown
in Figure 2. As the original function is computationally extremely simple, the overhead of memo-
ization only pays off if the requested Fibonacci number is big enough. The actual break-even-point
can be easily determined by performance measurements and has been determined to be about 18
for our configuration. For smaller values, the original code provides better performance.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

26:10 M. Stoffers et al.

To support this, the developer can provide a macro that is evaluated at the beginning of the
transformed MU. The default implementation of this macro always issues true, hence always
opting for memoization. For the described use case, it makes sense to define this macro as the
expression *in > 18. On execution of the transformed MU, we evaluate this macro and perform
memoization exactly if it yields true.

By providing a way to tune the memoization behavior further, we hope to reduce the perfor-
mance gap between an automated general purpose transformation and a careful manual imple-
mentation. Our approach works fine without this manual effort, but performance can be improved
by proper usage of this feature.

3.7 Cache Eviction

Without evicting entries the MC grows with every new input. While this is fine in cases where
the memory usage is unproblematic—which is often the case on modern computers—we still need
a solution that copes with memory limitations. To demonstrate the versatility of our approach,
we implemented the well-known cache eviction strategies Random Replacement (RR) and Least
Recently Used (LRU). Either of them can be easily activated and configured for different MC sizes.
Additional strategies can also be implemented by the model developer.

The RR strategy randomly selects an entry to remove on insertion of a new entry into the MC
if the size exceeds the specified limit. This strategy works at least as well as the more complex
LRU scheme if the number of entries is significantly greater than the number of recently used
entries, as it becomes improbable to evict an entry too quickly. The LRU strategy selects the entry
that was least recently used on occurrence of a new entry to be evicted from the MC. Usually the
RR strategy is implemented in a way that has a smaller overhead but leads to poorer results. Due
to the difficulty of choosing a random element from an unordered map, the overhead of random
replacement is comparatively high in our case, while we managed to implement the LRU strategy
in an efficient manner by linking the entries in a doubly-linked list.

When a new entry is added to the MC, it is, by definition, the most recently used element, hence
it is always enqueued at the beginning of the list in O (1). Removing the least recently used element
is accomplished in constant time as well, since the element is found at the end of the list. When an
existing entry is used, this entry can be anywhere in the list, but is found in constant time, since
the list node is tied to the MC item as explained above. This entry then needs to be shifted to the
beginning of the list. To this end it is removed from the list structure at its current location (O (1))
and enqueued at the beginning (O (1)). Hence, the LRU strategy adds a constant time overhead
that is independent of the lookup complexity for entries in the MC, beyond the trivially necessary
singular insertion and—where necessary—deletion.

Either technique is implemented as a class template providing a thin wrapper around an un-
derlying dictionary. The underlying dictionary is provided as a type parameter and only required
to provide a subset of the ::std::unordered_map API. As our research prototype allows the de-
veloper to specify the dictionary type used for the MC themselves, usage of cache eviction only
requires providing the appropriate evicting dictionary. Additional strategies—including any that
rely on domain knowledge—may be implemented using the same faculties and require neither the
memoization transformation to be changed, nor modification of our library component.

3.8 Dictionary Serialization

The developer can provide the path to a file that the MC is written to at the end of the execution
as well as read from at the beginning (if it exists). This way we support a simple way to implement
parameter studies where each configuration is executed in a separate process. By using the same

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

On Automated Memoization in the Field of Simulation Parameter Studies 26:11

file for all iterations, the MC can thus be used to memoize across different configurations. To this
end, we implemented serialization and deserialization for our data structures.

4 EVALUATION

We evaluate our approach by first performing measurements to characterize the overhead of our
approach. We measure the overhead of the memoization itself (separately for cache hits and cache
misses) as well as the overhead of storing and retrieving the MC to and from disk. Second, we
implement the well-known Fibonacci-computation in a recursive implementation gratuitously us-
ing pointers as an illustrative example to show the feasibility of our approach on recursive and
pointer-based code and validate the performance characteristics. In addition, we use this bench-
mark to analyze the impact of coexistence and cache eviction. Third, we investigate the applica-
bility of automated memoization to random number generation, a feature used in almost every
simulation. Finally, we analyze the practical applicability of our approach in modeling and simula-
tion by way of three case-studies from different domains: (1) a case study performing a parameter
study of an OFDM (orthogonal frequency-division multiplexing) network simulated by OMNeT++
[31], (2) the 802.11p decider of the Vehicular Ad-Hoc Network (VANET) simulator Veins, and (3) a
predator-prey-model following the Arditi-Ginzburg equations. In all examples aliasing does not
occur inside the MU.

All measurements are performed on a Xeon E5 compute server with 256GB of RAM with no
swap space enabled. Each experiment is repeated 10 times, all plots depict the means and 99%
confidence intervals. The latter are hard to perceive in many cases due to the low variance of the
results. Besides the new experiments performed for this article, we repeated the ones we performed
in Reference [29] on the new evaluation platform and with all software improvements included.
This ensures that all results in this article are directly comparable.

As any optimization only makes sense if the results are not just computed quickly but also cor-
rectly, we validated the output of every model. In each experiment we compared the computational
results of the memoized version against the results of the original implementation. The results were
identical in every case. Hence, we conclude that for every experiment performed in this article the
transformation was performed correctly and maintained the semantics of the original program.

4.1 Overhead Evaluation

First, it is necessary to understand how much overhead automated memoization introduces to
be able to investigate how much gain must be yielded to benefit. Our approach induces overhead
during execution of the MU itself as well as during initialization and teardown when the MC should
be retrieved from and saved to disk.

We measure both types of overhead by means of a simple synthetic benchmark: An array of NI

8-bit numbers is read, the numbers are aggregated into a 64-bit variable, which is then xor-folded
to yield an 8-bit result. An array of NO 8-bit integers is filled with numbers calculated by adding
the array index of the respective element to the above-mentioned result. Since the computational
effort is almost negligible, the memoization cannot speed up the computation, instead allowing
the memoization overhead to be observed. Varying NI and NO directly varies the size of the IV and
OV, which are the primary influence factors for the memoization costs.

The surrounding evaluation program consists of two nested loops. The inner loop is repeated 250
times, each time with a different input. The outer loop is executed twice, such that the inner loop
is executed again for each of the 250 inputs used in the first iteration. Hence, the memoized code
adds 250 items to the MC in the first outer loop iteration while none of the lookups is successful.
In the second iteration, each result is retrieved from the MC. In the original code, both iterations
behave exactly identical.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

26:12 M. Stoffers et al.

Fig. 4. Synthetic benchmark where memoization cannot gain benefit. Used to measure the overhead.

We performed experiments while growing only NI, only NO, and growing both simultaneously.
To evaluate the runtime overhead we disabled persistence and enabled it thereafter to measure the
serialization and deserialization overhead.

Runtime Overhead. Figure 4 depicts the average runtime per inner loop iteration for each of the
two outer loop iterations. The runtime of the memoized version is decomposed into the compo-
nents of the memoization (IV computation and MC lookup for both iterations, OV computation or
application for the 1. or 2. iteration, respectively).

We observe that the MC lookup contributes very little to the total runtime (note the logarithmic
scale). In the first iteration, for large output arrays the overall runtime is almost equivalent to the
runtime of the OV computation whose cost primarily depends on NO. For smaller output arrays
additionally the IV reading becomes relevant.

Similarly, we analyze the second iteration of the outer loop: The costs of computing the IV
are the same as above, as the computation has to be performed in both cases. For the application
of the OV the overhead is linear in NO but much smaller than for the computation of the OV.
Furthermore, we observed (without figure) memory overhead linear in both NI and NO.

Serialization and Deserialization Overhead. To measure the overhead induced by storing the MC
to disk and loading it in a later program execution, we enable persistence and execute the bench-
mark twice. Hence, in the first execution the MC is stored to disk and loaded in the second execu-
tion. We note that the loading time highly depends on external circumstances beyond our control,

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

On Automated Memoization in the Field of Simulation Parameter Studies 26:13

Fig. 5. Overhead evaluation: serialization and deserialization of Memoization Cache.

in particular caused by file system caches maintained by the OS, hardware cache included in the
drive as well as storage performance itself. In this context, our benchmarks aim to mimic a com-
mon use case: In an exploratory parameter study, different experiments are conducted, results
are analyzed, and more experiments are launched. To this end, we perform the first execution of
all configurations first (creating MC in the file system), then execute the unmemoized benchmark
(causing system load that does not stem from the MC files), and, finally, execute the memoized con-
figurations again (retrieving the files from disk). It is likely that the MC files are already present
in the file system cache in our benchmark, such that actual performance might be lower if the
files have to be loaded from disk. However, for the common case of exploratory parameter studies
described above we expect the situation to be similar to our benchmark and we argue that the
actual performance of our drive is of limited general interest.

We measure the time to persist the MC to disk from the point we start serialization up to the
point the OS signals completion of the file close operation. This might not coincide with the point
the data is actually stored physically in persistent storage but coincides with the point where users
perceive completion and can continue their work.

Figure 5 depicts the measured serialization and deserialization times for persisting and retrieving
the MC with all 250 entries, with a varying number of entries. For the smallest IV and OV size of 1B
each, we observe serialization and deserialization time to be both about 0.3ms. With increasing OV
size, we observe linear runtime increase for both serialization and deserialization. The influence
of the IV size is much lesser. Up to 256B no significant increase can be observed, from 512B on we
find a linear increase, but a byte of input has orders of magnitude less influence on the runtime
than a byte of output.

This behavior can be easily explained: For the IV, the MC only stores the actual data values, the
path via which the values are to be retrieved is given by the code. For the OV, however, the result
application routine needs to know where to store the values found in the OV. Hence, for every
value (in this benchmark each value has a size of 1B) we need to store the value and the path.
This creates more data to store on disk and more complex data structures to be both serialized and
deserialized.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

26:14 M. Stoffers et al.

This observation is confirmed by investigating size and structure of the MC file (without figure):
The MC file contains an 8B header giving the number of entries in the cache. For each entry, the file
contains 8B header for the IV and 8B for the OV to specify the number of entries in the respective
vector. For an MC with 250 entries this yields 4,008B. Additionally, the IV itself cons umes 1B for
each byte of input. For the OV, however, our implementation requires 13B for each byte of output,
i.e., the output byte plus 12B to store the path. Hence, for 1B of both input and output the file size
is 7,508B. For 216B of input and 1B of output the file consumes about 16MB of disk space while it
consumes more than 200MB for 1B of input and 216B of output.

It should be noted that this format, while reasonable, is by no means optimal, and could be
improved in various ways, e.g., by compressing path representations or storing a checksum of the
MU for which the file is valid.

4.2 Recursive Fibonacci with Pointers

To demonstrate the potential benefit of memoization and the versatility of our approach, we im-
plement a common showcase for memoization. Note that though this example is not practically
relevant in the modeling and simulation domain, it is quite intuitive and facilitates understanding
the impact of different conditions on the performance of our approach. We implement a naïve
recursive function (see Figure 2) that gets an integer n and computes the nth Fibonacci Number
(Fn

..= Fn−1 + Fn−2, F0
..= 0 and F1

..= 1), or more precisely the bits of Fn that fit into an integer,
i.e., Fn mod 264. To demonstrate the viability of our approach for impure code, the function takes
a pointer to an integer that contains the actual input and stores the result in that same object.
However, the function is transparent (see Section 2.2) and annotated accordingly to memoize this
recursive function. It must be noted that, should the IV generation not be optimized well enough
(cf. Section 3.3), this function would perform the whole computation before any memoization takes
place.

In Reference [29] we observe the expected exponential runtime of the unmemoized algorithm
and the linear runtime of the memoized version until the memory limit is hit. However, we also
observe that the memoization overhead is bigger than the gain for very small Fibonacci numbers.
The techniques discussed in Section 3.6 (coexistence of and runtime-switching between original
and memoized code) as well as Section 3.7 (cache eviction) seem promising for this purpose. We
discuss their impact on this benchmark in the following.

Coexistence and Runtime Switching. The results discussed so far reveal that memoization is only
beneficial for Fibonacci numbers from approximately 18 on. As discussed in Section 3.6 we pro-
vide the opportunity to decide at runtime whether to apply memoization or not, based on arbitrary,
user-defined conditions. Defining such a condition is as easy as defining a macro that will after-
wards be evaluated in a truth context. For our benchmark, the macro we need to provide is simply
*in > 18, i.e., memoization shall be applied exactly if the requested Fibonacci number is greater
than 18.

Figure 6 depicts the results. The general shape of the performance curve is as predicted: Up to
F18, it follows the performance of the original curve, and at F18 it changes its slope and follows the
memoized performance curve. Hence, for any input it follows the lower curve and provides about
the performance of the better of the two approaches. However, we observe as well that memoiza-
tion with coexistence does not entirely reach the performance of the version without. We attribute
this to two facts, caused by the addition of a conditional and a code block that is—for the given
input—never executed: First, the conditional itself has to be evaluated, which costs about 3 cycles
on the target machine. Second, the added code poses challenges to the optimizer of the compiler
that is invoked after our source-to-source translation and causes it to generate a less efficient

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

On Automated Memoization in the Field of Simulation Parameter Studies 26:15

Fig. 6. Performance improvements achieved for recursive Fibonacci computation by activating coexistence.

Fig. 7. Performance of recursive Fibonacci computation with cache eviction.

register schedule. This roughly costs an additional 19 cycles on the target machine. Note that these
costs are cumulative in the sense that the conditional needs to be evaluated each time the function
is (recursively) called. The effect of these problems is quite significant for numbers between 18
and about 100 while the performance approaches the performance of basic memoization when the
requested Fibonacci number grows. We conclude that using the opportunity of runtime switching
is promising if each of the two versions is particularly beneficial in a significant number of cases.

Cache Eviction. Cache eviction can help limit the MC’s memory consumption. In our benchmark,
thenth Fibonacci number is computed by adding the (n − 1)th and the (n − 2)th Fibonacci number.
Hence, it is actually unnecessary to hold all previously computed Fibonacci numbers in the cache,
but at any point in time we only need three of them: Fn , Fn−1, and Fn−2. These are also the three
most recently used numbers in this experiment, so we identified LRU(3) as a promising cache
eviction strategy. Additionally, we investigate RR(1000), which has a low probability to evict one
of the required entries (hence forcing re-computation of that entry). Though the MC is somewhat
larger for RR (1000 entries instead of 3), memory requirements are still fairly low.

The results are depicted in Figure 7(a). Up to F7.5·108 , we observe the linear behavior we encoun-
tered before. We also observe some performance improvements by cache eviction, since lookups
perform faster if the MC is smaller. We attribute this to the fact that even though in theory hash
maps perform all operations we use in constant time complexity, in practice growing the MC does
have a (small) negative performance impact. Additionally, LRU performs faster than RR, which we
attribute to the fact that though RR(1000) in most cases evicts entries that are no longer required,
with every eviction operation there is a small probability to evict an entry that was required and
must be re-computed later. We also observe that the bookkeeping overhead of LRU(3) does not
pose a performance bottleneck in this particular benchmark.

For F7.6·108 , without cache eviction, the program no longer fits into memory and is terminated,
while LRU and RR keep the memory consumption in the bounds of available main memory. Fig-
ure 7(b) shows the total memory consumed: The peak resident set grows linearly until it reaches the

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

26:16 M. Stoffers et al.

Fig. 8. Performance impact of cache eviction on a benchmark that recursively computes a sequence of Fi-

bonacci numbers. Crosses: Did not finish due to insufficient memory.

physical boundary of available memory. The linear projection shows that for F7.5·108 the resident
set would grow larger if more memory was available, but the usual memory-pressure measures
ensure the program completes within the bounds of available memory. For F7.6·108 , the system can
no longer satisfy the memory requirements. However, contrary to the first expectations, for F7.7·108

we also observe the program being killed with either of the cache eviction strategies applied. We
found the reason for this behavior in the way the experiment is designed:

Starting with the requested number, the benchmark recursively computes all lower Fibonacci
numbers. While the original implementation recurses into two directions (Fn−1 and Fn−2) and
builds up a recursion tree of exponential size, memoization can avoid stepping down in both direc-
tions, but still requires to step down in one direction. Hence, it results in a recursion path of length
n, when Fn is requested. At the beginning of each function, a TC has to be created (as it stores
all reads during execution, see Section 3.3), while the MC entry is only created at the end of each
function (obviously, this can only be done after the result has been computed). Hence, while com-
puting Fn , about n TCs have to be kept in memory in addition to the already sizable stack frames,
until F1 has been reached. Then, the result of F1 is stored in the MC, followed by F2, F3, and so on.
We conclude that the memory requirements of this benchmark are in majority not caused by the
size of the MC, hence cache eviction, for this particular benchmark, is only of limited use.

Modified Benchmark: Enumerating Fibonacci Numbers. To analyze the full potential of cache evic-
tion, we modify the benchmark slightly: In the nth experiment, instead of computing only Fn , we
compute

∑
n

i=1 Fi (again in the residue class of the modulo 264), such that all Fibonacci numbers
from F1 up to Fn are computed sequentially. By not computing Fn on an empty MC, but instead
after having computed Fn−1 and Fn−2 before, we avoid the necessity to execute the entire recursion
path down to F1 as the MC already holds Fn−1 and Fn−2. Thus we expect constant time complexity
for computing a single Fibonacci number when the preceding numbers have been computed be-
fore, but—as we are computing n Fibonacci numbers this time—overall performance is again linear
in n. The number of TCs created during the execution is linear in n as well, but at any point in time
only a single TC exists in memory, significantly reducing peak memory consumption. Hence, this
benchmark captures the possible impact of cache eviction much more clearly. The unmemoized
implementation does not benefit from the fact that preceding Fibonacci numbers have been com-
puted before and performs even worse in this benchmark. For this reason, we omit a discussion of
the unmemoized implementation.

From the results depicted in Figure 8 we observe that memory consumption is significantly
decreased with and without cache eviction: In fact, even without cache eviction we find a maximum
resident set of only 93GB for computing Fibonacci numbers up to F7.7·108 . The MC then hits the
memory limits at F2.2·109 . At the same time, we observe only about 2-3MB of memory being used
by the entire process when either cache eviction strategy is active. The total memory consumption

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

On Automated Memoization in the Field of Simulation Parameter Studies 26:17

is slightly higher for RR(1000), since more entries are stored, but the amount of memory hold is
not significant in either case.

We conclude that memoization can significantly reduce the runtime of this benchmark. Coexis-
tence provides improvements in cases where memoization can not yield a benefit. The size of the
MC can be effectively kept at a very low level by means of cache eviction strategies. This prevents
excessive memory consumption, at least, if the memory consumption is in fact caused by the MC
and not by a huge number of TCs due to deep recursion.

4.3 Random Number Generation

An essential component of virtually every simulation is random number generation. To enable
randomness, but at the same time maintain repeatability, Pseudo Random Number Generators
(PRNGs) are typically used. After being seeded with a user-provided value, those PRNGs issue
a random-looking yet deterministic sequence of numbers. Internally, this works by generating a
state during seeding that only depends on the seed, and transforming this state deterministically
into a new state by a predefined function on every request of a random number. This random
number then depends only on the current PRNG state and follows a predefined distribution, which
is typically a uniform distribution over all values a certain type (e.g., uint32_t or uint64_t) can
hold. To still be able to provide other distributions (e.g., exponential distribution with a given
mean, or normal distribution with a given mean and standard deviation), one or more numbers
drawn from the PRNG are converted by another deterministic function into a number following
the desired distribution.

As random number generation is required in any stochastic simulation, it appears to be a promis-
ing target for memoization. A simulation could be sped up if the transformation of the current state
into a new one plus a random number and the conversion of the random number into a random
variable from a given distribution could be avoided. Unfortunately, the rather large states many
PRNGs maintain (e.g., 2.5KB for Mersenne Twister 19937 [16]) and the fact that the complexity
of the state transformation is, compared to the size of the state, rather low, reduce the potential
benefit. By transforming the problem slightly, memoization can yield more benefit without a ne-
cessity to modify the PRNG interface towards the simulation model: Instead of implementing the
PRNG as a function that maps a current state to a next state and a random number, we implement
it as a function that internally maintains an ID of the number generated lastly and increases this
ID by one on every execution. It then calls the PRNG to advance the state associated with the
requested stream to the state corresponding to the given ID. Without memoization applied this
always advances the PRNG from the state preceding the ID to the one corresponding to the ID,
i.e., it is equivalent to what PRNGs usually do. With memoization applied, however, only the ID
needs to be increased and the result can be returned immediately. The memoization then identifies
this ID and the stream identifier as input and emits the increased ID and the returned number as
output. Hence, when two experiments with potentially different parameters but the same PRNG
seed are run, random numbers can be retrieved from the MC.

Nevertheless, the complexity of the operations performed inside a PRNG is rather low, such
that the overhead of memoization would not pay off. By additionally including the distribution
transformation operation, the complexity is slightly increased, and memoization can pay off
in certain cases. However, speedup can only be expected if the transformation itself bears
considerable complexity.

We evaluate the performance with four different types of distributions and two different PRNGs.
We chose the PRNGs Mersenne Twister 19937 [16] and MRG32k3a [15] used by OMNeT++ and
ns-3, respectively. We use the distribution transformation code from OMNeT++ (distrib.cc) and
selected uniform (equivalent to the output of the PRNGs), exponential (essentially computing a

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

26:18 M. Stoffers et al.

Fig. 9. Performance of memoizing random number generation with different PRNGs and distributions.

logarithm), normal (using two numbers and applying logarithm, cosine, and square root), and
Student’s t distribution. The complexity of the former three is quite low and independent of the
parameterization. The complexity of the latter increases with the degrees of freedom (ν). Hence, we
selected three different parameters for Student’s t distribution. We varied the number of iterations
from 1 (no reuse possible) up to 500 (each number can be reused 499 times by memoization).

The results of our experiments are depicted in Figure 9. As expected, for the computationally
simple distributions uniform and exponential memoization cannot gain a benefit, and should not
be used to avoid slowdowns. However, for a normal distribution, which just draws two random
numbers and performs a logarithm, a cosine, and a square root on them, automated memoization
can already gain a speedup after reusing the results 10 times. The creation of MC entries causing
the computation to slow down by a factor of 3 in the first iteration, pays off if just 10 experiments
are run with the same PRNG seed. For Student’s t distribution with 3 degrees of freedom memoiza-
tion already pays off in the fifth iteration. With more degrees of freedom, Student’s t distribution
becomes a particularly computationally expensive problem and the memoization overhead in the
first iteration becomes almost negligible. Memoization then already pays off from the second iter-
ation on.

We conclude that although the low complexity of random number generation is challenging for
memoization, our approach can still yield a benefit in certain cases. However, for uniformly or ex-
ponentially distributed random numbers, memoization can only pay off if the random number gen-
eration is part of a larger MU with more computational complexity, or if less efficient random num-
ber generators are used (e.g., when using generators that provide additional security guarantees).

4.4 OFDM Wireless Network Simulation

To demonstrate the feasibility of our approach in a practical use case, we apply it to a parameter
study of wireless network simulation. The simulation model is implemented for the open source
simulation framework OMNeT++ [31] in C++. In the simulation model, a set of wireless nodes is
placed on a 1 by 1km area. A number of those nodes transmits frames in a fixed pattern. A channel
model based on the Friis path loss model [6] and a complex OFDM fading model [33] calculates
the received signal strength. In the parameter study, the total number of wireless nodes is varied

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

On Automated Memoization in the Field of Simulation Parameter Studies 26:19

Fig. 10. Performance of OFDM Model run in a single process or multiple processes with MC persistence.

in 14 steps from 1 to 50, the fraction of transmitting nodes in 9 steps from 1% to 100%, and the time
between two transmissions in 5 steps from 1μs to 10ms. Each experiment is repeated 10 times with
different random number generator seeds, hence the total parameter study consists of 6,300 runs.

We identified the fading computation as a promising candidate for memoization as it is a com-
plex operation and its input is small and repeated frequently. This fading computation heavily
uses pointers to iterate over multi-dimensional arrays. Prior approaches to automated memoiza-
tion would treat these pointers by their address and hence compute false results. However, as for
the other experiments, we compared the computational results to those of the original implemen-
tation and observed exactly the same results. As this fading computation seemed most promising,
we only tagged this block for memoization. We executed the parameter study in the original as
well as the memoized version, both with OMNeT++ 5.1.1 on the above-described hardware.

OMNeT++ allows us to specify the entire parameter study via an initialization file. If the user
does so, then OMNeT++ parses the file during program startup and executes all configurations
sequentially in a single process. Between the execution of two configurations, OMNeT++ tears
down the simulation model but does not quit the OS process. Hence, memory that is not explicitly
cleared is still available in the next configuration, and memoization can yield benefit across runs
as an entry stored in the MC is still available to the next configuration.

However, specifying the entire parameter study at the beginning might not always be applicable
for several reasons: The language might be too restricted to specify the configurations of interest
adequately, or the user might be simply not confident enough to do so and hence prefer launch-
ing the configurations individually by a script. Furthermore, this execution mode requires clean
teardown methods and is less tolerant to memory leaks as leakage sums up over the runtime of
the entire study. Our concept of automated memoization is not only designed for OMNeT++, but
as well for simulation frameworks that simply do not provide such an operation mode. Finally, in
exploratory parameter studies users decide which configurations to run next based on the results
of the previous execution, and hence it is simply not possible for them to specify the entire study
in the beginning.

If the simulation study cannot be run as a single process for any of the aforementioned reasons,
then automated memoization can still gain benefit if the MC is stored to disk after each run
and loaded at the beginning of the next run. Obviously, this introduces additional overhead but
might still gain benefit. We therefore decided to specify the study (1) by means of the OMNeT++
initialization file to be run as a single process and (2) via a shell script that launches multiple
processes sequentially. We measured the total runtime of both operation modes to compare the
speedups gained.

Single-Process Parameter Study. The results of the first mode where the parameter study is exe-
cuted as a single process are depicted in Figure 10(a) and (b). In the original implementation, each

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

26:20 M. Stoffers et al.

run took about 4-5s, resulting in a total runtime of about 8 hours. In the memoized version, we ob-
served a similar runtime for the first run, where no computations could be omitted. However, from
the second run onward, we observed significant speedups, certain runs were completed in as little
as 5ms. Completing the total parameter study then takes about 5 minutes, hence our automated
memoization yielded a speedup of more than 80×.

The MC, on the other hand, increased the memory consumption of the program by 40% from
15MB to 22MB. We feel confident asserting that a penalty of about 7MB of memory will be happily
accepted by a user who now only has to wait minutes instead of hours.

Multi-Process Parameter Study. When executing the parameter study by launching each config-
uration as its own process via a shell script (results depicted in Figure 10(c) and (d)), the runtime of
the memoized parameter study is tripled, compared to the single-process version. There are two
sources for the increase of runtime: First, the MC has to be loaded from and stored to disk at the
beginning and end of each configuration. Second, OMNeT++ itself has to be started and stopped at
the beginning and end of each configuration. While the first effect is only present in the memoized
execution, the second effect affects the original execution as well. However, the effort of starting
and stopping OMNeT++ is constant while the actual runtime of an experiment is reduced from
4-5s to 5ms, increasing the execution time of both studies by more than 10 minutes.

To determine the peak resident set of the parameter study we measured the memory footprint
of each process and selected the one consuming the most memory. The total memory footprint of
both original and memoized execution is reduced by 3MB, potentially due to memory (leakage)
that sums up during the execution of the parameter study, but is in the latter case collected by
the OS when a process ends. However, memoization still adds the same memory increase of 7MB.
Additionally, the persisted MC consumes about 2MB of disk space.

We conclude that memoization gains significant speedup for this parameter study in both single-
process and multi-process mode. In single-process mode a much higher gain is achieved as the
overhead of both starting/stopping OMNeT++ and deserializing/serializing the MC is quite signif-
icant in multi-process mode. Nevertheless, automated memoization still proves highly valuable for
exploratory parameter studies or other use cases where a multi-process mode has to be used. In
both modes, the memory footprint is increased by just 7MB and the persisted MC takes 2MB of
disk space, which we deem a very acceptable price for a runtime reduction of several hours.

4.5 Vehicular Network Simulator Veins

Vehicles in Network Simulation (Veins) [27] is a car2x communication simulation framework
for OMNeT++. It is available as on open source project, actively developed by several univer-
sities and research labs and frequently used by all kinds of institutions from academia to in-
dustry from all over the world [26]. We analyzed the source-code and identified the function
getChunkSuccessRate as a very core component: It is invoked every time a packet is received to
decide if the packet PHY header and the packet payload are successfully transmitted. The function
returns a success rate, which deterministically depends on data-rate, bandwidth, packet/header
length, and signal-to-interference-and-noise ratio (SINR). For the PHY header the former three
are always identical and only the SINR deviates. Even for payloads a high reuse can be expected,
since in a typical VANET scenario many packets have the same length and only few different data-
rates and bandwidths are used. However, since Veins is used by many projects in different ways
we focused our measurements on the settings of the PHY header, which are identical in any use
case.

We base our experiments on Veins 4.6. We wrapped the computation of the success rate depend-
ing on the modulation and coding scheme (MCS) into a compound statement and annotated this

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

On Automated Memoization in the Field of Simulation Parameter Studies 26:21

Fig. 11. Speedup achieved by memoizing the computation of the header success rate in Veins. Memoization

pays off if at least 8 packets are sent under the same SINR conditions.

block as the MU. To keep our experiments independent of concrete use cases of Veins, we created
a benchmark that calls the function getChunkSuccessRate repeatedly. The data-rate, bandwidth,
and length are set as in the PHY header (3MBit/s, 10MHz, 24Bit), for the SINR we generated uni-
formly distributed floating point numbers between 0 and 3 to include ranges in which the success
rate is 0, almost 1, and in between. We call the function 5 million times and vary the number of
different SNRs from 50,000 to 1 million, i.e., the same SNR is used 5 to 100 times. We maximize
the distance between two calls with same input to minimize positive caching effects. Thereby, we
determine how often the function need be called with the same input for memoization to pay off.

Figure 11 shows the speedup factor achieved in the different configurations. We observe that
already for a reuse factor of 8, i.e., when 8 packets are sent under the same SINR conditions, the
memoization gain is slightly higher than the overhead. When the reuse increases, the speedup
increases up to a factor of 1.5. While we measured this for the parameters used for computing the
header success rate, similar results can be expected for the payload success rate if SINR, data-rate,
bandwidth, and packet length are identical. The speedup might be even a bit higher, since the
computations are more complex for FEC 3/4 than for FEC 1/2. Compared to the first network sim-
ulation case study the speedup here is quite low, which is caused by the relatively low complexity
of the success rate computation. More detailed channel models with higher computational com-
plexity obviously maintain higher optimization potential. However, we observe that even such a
simple decision component can be sped up by memoization.

4.6 Predator-Prey Model

Predator-prey models are used to simulate the fluctuation in size of two populations where one
species feeds on the other. The first species, the prey, grows as described in a predetermined func-
tion (birth rate) if no individuals of the second species, the predators, are present. If predators
are present, then individuals of the first species are killed as determined by another function (feed
rate), hence the population shrinks if the feed rate is greater than the birth rate. Finally, the growth
rate of the predator species depends on the current size of the prey species, since predators can
only survive if enough food is available.

We created a model following the Arditi-Ginzburg equations [3]. These are a pair of differential
equations that describe the change of the two populations. The size change of the prey population
depends on the size of both populations and two functions to be determined: the “per capita rate
of increase of the prey in the absence of predation” f (N), and the “predator-dependent trophic
function” д(N , P) with the current prey population N and current predator population P . The size
change of the predator population depends on the size of both populations, a function, and a con-
stant: the “predator production per capita” h(N , P) and the constant “food-independent predator
mortality” μ.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

26:22 M. Stoffers et al.

Fig. 12. Speedup gained by memoization in an Arditi-Ginzburg-based predator-prey model. The speedup

increases linearly with increasing number of integration steps.

We define the functions and the constant as follows: f (N) = 0.3−3·10−6N ,д(N , P) = 0.82N/(N+P),
h(N , P) = 0.78д(N , P), μ = 0.5. We implement a time-step simulation, i.e., the differential equa-
tions are numerically integrated in each time step. The numerical integration has a variable step-
size and the result accuracy increases with the number of integration steps per time step. Likewise,
the computational complexity increases and hence the potential memoization gain. We memoize
the integration per time unit, i.e., the input are pointers to the populations at the beginning of each
time step, which are updated during the computation.

In our experiments we ran the simulation for 10 million units of time and varied the number
of integration steps per time unit from 10 to 100. The memoization speedup is depicted in Fig-
ure 12. For 10 integration steps the computational complexity is too low to repay the memoization
overhead. However, the memoization overhead stays constant and the speedup factor increases
linear with an increasing number of integration steps. For 20 integration steps the speedup is al-
ready almost twofold, for 100 steps it is almost eightfold. We expect similar performance for other
simulations based on numerical integration and even higher gains if the underlying differential
equation system is more complex than the rather simple one used here. We conclude that memo-
ization provides speedups in simulations of very different domains.

5 RELATED WORK

Memoization was first introduced by Michie [19, 20] and implemented in a framework by Popple-
stone [23] in 1967. Though the framework provides an interface and assists the user, the challeng-
ing parts have to be realized completely manually. In particular, the user needs to implement a
function deciding whether two inputs are equal, i.e., the user has to determine the input. Mostow
and Cohen [21] provide an in-depth analysis of the memoization idea and the resulting challenges
such as side effects. They propose to display a list of side effects to the user and ask for permission
to memoize, ignoring the side effects. This might be possible in certain cases, however, recognizing
and applying side effects correctly makes our approach by far more generally applicable.

Several approaches to automated memoization have been proposed, e.g., the ones by Norvig [22],
Hall et al. [7, 17, 18], and Hinze [9]. They base on Haskell and Lisp, but also C++. In the functional
language Haskell every function is by definition pure, hence input and output is given by the func-
tion definition. Though Lisp supports imperative programming with functions modifying global
state, i.e., inducing side effects, the approaches explicitly restrict themselves to pure functions.
This also holds for the C++ implementation [18], which effectively adopts the Lisp approach from
Reference [17]. Hence, input may only be provided in function parameters, only the return value
may be output, and pointers are handled like integers, i.e., pointers to the same address are treated
equally even if the value at that address has changed, which inevitably introduces errors if that
object is actually input. In logic programming languages the concept of tabling is used to mem-
oize results of previously evaluated (by definition pure) rules [35]. To the best of our knowledge,

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

On Automated Memoization in the Field of Simulation Parameter Studies 26:23

no generic approach to automated memoization without restriction to pure functions has been
proposed previously.

A central element of memoization for impure code is the identification of input and output, i.e.,
relevant data items have to be identified in the memory map and distinguished from irrelevant
ones. A similar problem exists in transparent incremental state saving [4, 24, 34] as well as au-
tomatic generation of reversible code [25]. While it seems promising on the first glance to adopt
those techniques to identify input and output of the MU, there is a major difference in the as-
sumptions that can be made with respect to pointers: An object found at address a during state
saving or forward computation can and needs to be restored at address a during rollback, meaning
it is identified by its memory location. For automated memoization, however, memory location is
neither sufficient nor required to ensure equality. Furthermore, self-adjusting computation [1, 2]
faces similar problems. However, these approaches do not operate on existing code (since tracking
the dependencies is too expensive for their purposes) but rather require the user to use so-called
modifiable references, whose reading and writing is to be explicitly notified by additional code. For
this reason, we developed a new approach to identify input and output and decided to take the
approach to describe an object by its path through the object graph as discussed in Section 2.2.

Our source-to-source transformation realizes the opportunity to switch between memoized and
non-memoized versions of the same code at runtime via a straightforward conditional provided by
the developer. Dual-coding [32] should be mentioned as an alternative that adds this feature during
binary translation and aims at reducing the overhead by minimizing the number of branches. This
is particularly beneficial in the use case dual-coding has been developed for where a branch would
be induced on every memory access. However, in our use case we branch only once at the entry
of the MU, which also provides the user with maximum flexibility when deciding whether to use
memoization or not on each execution of the MU.

Tsumura et al. [13, 30] propose to integrate memoization functionality directly into the pro-
cessor hardware. While this is probably the most promising approach to speed up any software
independently of the programming language and paradigm, the proposed hardware is not avail-
able to most users, i.e., software implementations are essential for wide applicability. To this end,
we provide an approach implemented in software and able to cope with impure code in impure
languages to be practically applicable in the modeling and simulation domain.

To avoid unnecessary computations in simulation parameter studies, simulation cloning [10,
11] and updateable simulations [5] should be mentioned. Both techniques share the motivation
of our approach. However, simulation cloning clones any affected “virtual logical process” of the
simulation as soon as the state of that process deviates. Hence, later-occurring re-computations,
which base only on parts of the state of that process, cannot be avoided. Updateable simulations
can avoid a large set of re-computations. However, the major limitation of that approach is the
requirement to implement update functions realizing the necessary functionality to compute the
differences between two runs. Like manual memoization this is a labor-intense, error-prone effort
that needs to be carried out by the model developer.

6 CONCLUSION

To avoid redundant re-computations of intermediate results in simulation parameter studies by
means of memoization, two major steps have to be approached. First, promising code blocks have
to be identified whose effort can be saved using memoization. Second, the code blocks have to be
rewritten in a way that the results are cached and can be retrieved from that cache instead of being
re-computed.

In this article, we focus on automating the second step of this procedure and describe our ap-
proach for impure languages, realized in a proof-of-concept implementation for C++, and first

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

26:24 M. Stoffers et al.

discussed in Reference [29]. Our approach provides an automated transformation of a user anno-
tated code block into an equivalent, memoized version. Additionally, the original code is included
and the user is provided an opportunity to select at runtime which version to use. To keep the
size of the MC maintainable, the number of entries can be limited and common cache eviction
strategies applied. Furthermore, the MC can be serialized to disk and reloaded in a later execution
to enable reusing computation results across multiple executions.

Our evaluation shows the practical feasibility of the approach. In general, the approach is
promising if the memoized computation is complex enough and executed several times on the
same input. Detailed overhead measurements are provided in Section 4.1. In a simulation param-
eter study we observed a more than 80× speedup while only increasing memory consumption by
about 7MB. Additionally, we demonstrate the feasibility to implement extensions like cache evic-
tion to tune the memoization for a given situation. We conclude that automated memoization can
significantly help reducing the time developers have to wait for their results with minimal manual
effort.

Future efforts should address the automatic identification of promising computations, such that
annotation by the user is no longer required. Furthermore, our approach needs to cope with multi-
threaded software, enabling multiple threads to concurrently and cooperatively utilize a common
MC, which is by now only possible to a limited extent. This will combine the power of both PDES
and memoization to benefit from both. Finally, the performance of the proof-of-concept imple-
mentation can still be improved to reduce the overhead and make memoization promising for
computations of less complexity. Nevertheless, our approach already demonstrates the feasibil-
ity of automated memoization for impure languages as used by many simulation tools and yields
promising speedups even with computations of rather low complexity.

REFERENCES

[1] Umut A. Acar. 2009. Self-adjusting computation: (An overview). In Proceedings of the 2009 ACM SIGPLAN Workshop

on Partial Evaluation and Program Manipulation. 1–6.

[2] Umut A. Acar, Amal Ahmed, and Matthias Blume. 2008. Imperative self-adjusting computation. In Proceedings of the

35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 309–322.

[3] Roger Arditi and Lev R. Ginzburg. 1989. Coupling in predator-prey dynamics: Ratio-dependence. J. Theoret. Biol. 139,

3 (1989), 311–326.

[4] Davide Cingolani, Alessandro Pellegrini, and Francesco Quaglia. 2015. Transparently mixing undo logs and software

reversibility for state recovery in optimistic PDES. In Proceedings of the 3rd ACM SIGSIM Conference on Principles of

Advanced Discrete Simulation. 211–222.

[5] Steve Ferenci, Richard Fujimoto, Mostafa Ammar, Kalyan Perumalla, and George Riley. 2002. Updateable simulation

of communication networks. In Proceedings of the 16th Workshop on Parallel and Distributed Simulation. 107–114.

[6] Harald Friis. 1946. A note on a simple transmission formula. Proc. Inst. Radio Eng. 34, 5 (1946), 254–256.

[7] Marty Hall and James Mayfield. 1993. Improving the performance of AI software: Payoffs and pitfalls in using auto-

matic memoization. In Proceedings of the 6th International Symposium on Artificial Intelligence.

[8] Thomas Henderson, Sumit Roy, Sally Floyd, and George Riley. 2006. ns-3 project goals. In Proceedings of the 1st

Workshop on ns-2: The IP Network Simulator.

[9] Ralf Hinze. 2000. Memo functions, polytypically! In Proceedings of the 2nd Workshop on Generic Programming. 17–32.

[10] Maria Hybinette and Richard Fujimoto. 1997. Cloning: A novel method for interactive parallel simulation. In Proceed-

ings of the 29th Winter Simulation Conference. 444–451.

[11] Maria Hybinette and Richard Fujimoto. 2001. Cloning parallel simulations. ACM Trans. Model. Comput. Simul. 11, 4

(2001), 378–407.

[12] ISO. 2014. ISO/IEC 14882:2014 Information Technology — Programming Languages — C++. International Organization

for Standardization, Geneva, Switzerland. 1358 pages.

[13] Kazutaka Kamimura, Ryosuke Oda, Tatsuhiro Yamada, Tomoaki Tsumura, Hiroshi Matsuo, and Yasuhiko Nakashima.

2012. A speed-up technique for an auto-memoization processor by reusing partial results of instruction regions. In

Proceedings of the 3rd International Conference on Networking and Computing. 49–57.

[14] William Landi. 1992. Undecidability of static analysis. ACM Lett. Prog. Lang. Syst. 1, 4 (1992), 323–337.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

On Automated Memoization in the Field of Simulation Parameter Studies 26:25

[15] Pierre L’Ecuyer. 1999. Good parameters and implementations for combined multiple recursive random number gen-

erators. Operat. Res. 47, 1 (1999), 159–164.

[16] Makoto Matsumoto and Takuji Nishimura. 1998. Mersenne Twister: A 623-dimensionally equidistributed uniform

pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8, 1 (1998), 3–30.

[17] James Mayfield, Tim Finin, and Marty Hall. 1995. Using automatic memoization as a software engineering tool in

real-world AI systems. In Proceedings of the 11th Conference on Artificial Intelligence for Applications. 87–93.

[18] Paul McNamee and Marty Hall. 1998. Developing a tool for memoizing functions in C++. ACM SIGPLAN Not. 33, 8

(1998), 17–22.

[19] Donald Michie. 1967. Memo Functions: A Language Feature with “Rote-Learning” Properties. Technical Report.

Edinburgh University, Dept. of Machine Intelligence and Perception.

[20] Donald Michie. 1968. Memo functions and machine learning. Nature 218, 5136 (1968), 19–22.

[21] Jack Mostow and Donald Cohen. 1985. Automating program speedup by deciding what to cache. In Proceedings of

the 9th International Joint Conference on Artificial Intelligence. 165–172.

[22] Peter Norvig. 1991. Techniques for automatic memoization with applications to context-free parsing. Computational

Linguistics 17, 1 (1991), 91–98.

[23] Robin Popplestone. 1967. Memo Functions and the POP-2 Language. Technical Report. Edinburgh University, Dept. of

Machine Intelligence and Perception.

[24] Robert Rönngren, Michael Liljenstam, and Johan Montagnat. 1996. Transparent incremental state saving in time warp

PDES. In Proceedings of the 10th Workshop on Parallel and Distributed Simulation. 70–77.

[25] Markus Schordan, Thomas Oppelstrup, David Jefferson, and Peter Barnes. 2016. Automatic generation of reversible

C++ code and its performance in a scalable kinetic Monte-Carlo application. In Proceedings of the 4th ACM SIGSIM

Conference on Principles of Advanced Discrete Simulation. 111–122.

[26] Christoph Sommer. 2017. Veins. (23 June 2017). veins.car2x.org, retrieved Aug 17, 2017.

[27] Christoph Sommer, Reinhard German, and Falko Dressler. 2011. Bidirectionally coupled network and road traffic

simulation for improved IVC analysis. IEEE Trans. Mobile Comput. 10, 1 (2011), 3–15.

[28] Mirko Stoffers, Ralf Bettermann, and Klaus Wehrle. 2017. Automated memoization: Automatically identifying mem-

oization units in simulation parameter studies. In Proceedings of the 21st IEEE/ACM International Symposium on Dis-

tributed Simulation and Real Time Applications.

[29] Mirko Stoffers, Daniel Schemmel, Oscar Soria Dustmann, and Klaus Wehrle. 2016. Automated memoization for pa-

rameter studies implemented in impure languages. In Proceedings of the 4th ACM SIGSIM Conference on Principles of

Advanced Discrete Simulation. 221–232.

[30] Tomoaki Tsumura, Ikuma Suzuki, Yasuki Ikeuchi, Hiroshi Matsuo, Hiroshi Nakashima, and Yasuhiko Nakashima.

2007. Design and evaluation of an auto-memoization processor. In Proceedings of the 25th International Multi-

Conference on Parallel and Distributed Computing and Networks. 230–235.

[31] Andràs Varga. 2001. The OMNeT++ discrete event simulation system. In Proceedings of the 15th European Simulation

MC.

[32] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. 2010. Autonomic Log/restore for advanced optimistic

simulation systems. In Proceedings of the 18th Symposium on Modeling, Analysis and Simulation of Comp. and Telecom-

munication Systems. 319–327.

[33] Cheng-Xiang Wang, Matthias Pätzold, and Qi Yao. 2007. Stochastic modeling and simulation of frequency-correlated

wideband fading channels. IEEE Trans. Vehic. Tech. 56, 3 (2007), 1050–1063.

[34] Darrin West and Kiran Panesar. 1996. Automatic incremental state saving. In Proceedings of the 10th Workshop on

Parallel and Distributed Simulation. 78–85.

[35] Neng-Fa Zhou and Taisuke Sato. 2003. Efficient fixpoint computation in linear tabling. In Proceedings of the 5th ACM

SIGPLAN International Conference on Principles and Practice of Declarative Programming. 275–283.

Received November 2016; revised August 2017; accepted February 2018

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

http://veins.car2x.org

Online Appendix to:

On Automated Memoization in the Field of Simulation

Parameter Studies

MIRKO STOFFERS, DANIEL SCHEMMEL, OSCAR SORIA DUSTMANN, and
KLAUS WEHRLE, Communication and Distributed Systems, RWTH Aachen University

A INPUT VECTOR COMPUTATION DETAILS

This appendix cites additional details on the Input Vector (IV) computation from our PADS paper,

namely how the adapted dead code elimination works and how the Temporary Cache (TC) is

implemented and helps detecting aliases.

A.1 Adapted Dead Code Elimination

It is essential to avoid complex operations during IV reading. To this end, we use a transformation

derived from standard dead code elimination, which we extend for this purpose. As opposed to

simpler analyses, this is capable of efficiently dealing with complex IV calculations. One interesting

class of cases in which this is especially important is that of reading zero-terminated arrays, as the

last part of the IV may be read only very close to the end of the computation.

To this end, we apply a very broad definition of dead code in the attempt to create a program

slice that is narrowly defined by its purpose to generate the IV. The basic premise of the proposed

technique is to consider everything expendable but reads from exterior objects that have not been

read from or written to before. Most importantly, this also includes writes to external objects that

are never read afterwards. By applying common dead code elimination techniques, operations that

are no longer necessary are successively removed. For example, if a value x is stored in an exterior

variable, which is never read afterwards, then we remove the write and subsequently all the code

that computes x up to (but excluding) the point were its input was read.

The effectiveness of this analysis depends on our ability to distinguish internal from external

objects, which is problematic when considering not only scalar variables but also pointers. Deter-

mining whether an object that is the result of a pointer expression is interior or exterior is not

trivial. If the base pointer is interior, then in most cases the final object will be interior as well.

However, after creating a pointer locally, it might still be assigned the address of an exterior object.

A similar problem occurs if an exterior pointer is assigned the address of an interior object.

In general, static code analysis is insufficient to reliably deduce which object a pointer will point

to in a given expression, as the decision whether it will point to an internal or an external object

may depend on runtime conditions. A dynamic check could be performed, e.g., by determining

whether the pointer points into the stack segment holding the local variables of the Memoization

Unit (MU). However, the C++ standard does not guarantee the correctness of such an approach;

instead, it depends on the implementation of the compiler that later on translates the memoized

version into executable code. Furthermore—and arguably more importantly—the runtime checks

would introduce considerable overhead.

© 2018 Association for Computing Machinery.

1049-3301/2018/09-ART26 $15.00

https://doi.org/10.1145/3186316

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

App-2 M. Stoffers et al.

Fig. 1. Alias detection: inserting (“x”,2).

To be able to apply an efficient, standard-compliant solution, we restrict the usage of pointers

inside an MU: An interior pointer must not store an address to an exterior object and vice versa.

Note that this property can easily be checked statically. This constraint enables us to determine

whether an object reached by (X , . . .) references an interior or exterior object just by checking

whether the symbol X itself is interior. Hence, we determine the input of an execution of the

code block as a set I = {(X , . . .) |X read ∧ Xnot interior} and the output asO = {(X , . . .) |Xwritten ∧
Xnot interior}.

However, another requirement exists to ensure correctness: Since, in general, the same object

may be reached via multiple different paths, we had to assume that any write may change the result

of any subsequent read, which would significantly inhibit the power of the dead code analysis.

Instead, we perform the dead code elimination and read the IV as if aliasing would never happen.

Although this tradeoff increases the potency of the dead code elimination, it also requires us to

add another analysis that will ensure that no errors are introduced accidentally when attempting

to memoize code that does indeed encounter aliased objects as discussed in the following.

In summary, our adapted dead code elimination leaves only the code to establish the IV as well

as code that calculates what to include in the IV. It requires that objects are only ever accessed

through a single path, a property that cannot be established at compile time. The Temporary Cache

(TC) discussed in the next section provides a way to detect aliasing and gracefully degrade to

unmemoized execution in that case.

A.2 The Temporary Cache

At the most basic level, the Temporary Cache (TC) is a dictionary that maps memory addresses1

to paths, object values, and the length of objects. If a read or write causes a memory access that

is not already in the TC, then an entry is immediately inserted into the TC, which will satisfy all

subsequent reads and writes. By using the TC to establish an overlay address space, all writes can

be effectively prevented from being outwardly visible, while still being easily located when written

objects are subsequently read again.

While, at first glance, the TC also seems to run into problems with aliasing, it is designed this

way exactly to detect different paths leading to the same exterior object. Any possible alias falls

into one of three categories: (1) The simplest case is that in which the alias is an exact match,

as a simple lookup in the TC identifies the alias by comparing the stored path with the current

one. (2) The current memory access begins in the range of a previously accessed object without

matching exactly. To identify that case, it is only necessary to find the entry immediately preceding

the target address, and check its end against the start of the current one. (3) The current memory

1We assume a flat memory model and that reinterpreting data pointers to ::std::uintptr_t values has the obvious

implementation, which is valid for the x86_64 platform and all our target compilers.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

On Automated Memoization in the Field of Simulation Parameter Studies App-3

access ends in the range of a previously accessed object without matching exactly. That is the case

when the start address of the entry following the target address falls before the end address of

the current memory access. A visualization of how the TC is used to detect aliases can be seen in

Figure 1, where the cross at the left hand of each element represents the base address and the line

shows its size. Additionally, the TC contains a simple flag that tracks whether any alias has been

found.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 26. Publication date: September 2018.

