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ABSTRACT
Symbolic execution is an effective program analysis technique
whose scalability largely depends on the ability to quickly solve
large numbers of first-order logic queries. We propose an effective
general technique for speeding up the solving of queries in the
theory of arrays and bit-vectors with a specific structure, while
otherwise falling back to a complete solver.

The technique has two stages: a learning stage that determines
the solution sets of each symbolic variable, and a decision stage
that uses this information to quickly determine the satisfiability
of certain types of queries. The main challenges involve deciding
which operators to support and precisely dealing with integer type
casts and arithmetic underflow and overflow.

We implemented this technique in an incomplete solver called
PARTI (“PARtial Theory solver for Intervals”), directly integrating
it into the popular KLEE symbolic execution engine. We applied
KLEEwith PARTI and a state-of-the-art SMT solver to synthetic and
real-world benchmarks. We found that PARTI practically does not
hurt performance while many times achieving order-of-magnitude
speedups.

CCS CONCEPTS
• Theory of computation → Constraint and logic program-
ming; • Software and its engineering→ Software testing and
debugging;
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1 INTRODUCTION
Symbolic execution is a popular testing and analysis technique
which has the ability to explore multiple paths in the program under
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testing with the goal of detecting software errors [1, 7, 8, 17, 18]. At
a high level, symbolic execution runs the program on symbolic input,
which is initially not constrained to any particular value. Whenever
execution reaches a branch that depends—directly or indirectly—on
the symbolic input, execution may be split in two: on the then path,
the input is constrained to satisfy the branch condition (e. g., x > 2),
while on the else path it is constrained to satisfy the negation of the
branch condition (e. g., x ≤ 2). On each path, a constraint solver is
used to determine whether the current conjunction of constraints
collected at each branch—called the path condition—is satisfiable. If
it is not, that path is terminated as it is infeasible. Finally, when a
path finishes execution, a constraint solver can provide a solution
for the path condition, which represents a test input that can be
used to replay the corresponding path, e. g., for debugging purposes.

The effectiveness of symbolic execution depends directly on the
effectiveness of the underlying constraint solver, as often more
than 90% of the total execution time of a symbolic execution en-
gine is spent in the solver [26]. Modern symbolic execution tools
rely on existing Satisfiability Modulo Theory (SMT) solvers, which
can answer satisfiability problems in a given theory, e. g., linear
arithmetic. Perhaps the most popular theory employed by modern
symbolic execution engines is that of Quantifier Free Arrays and
Bit-Vectors (QF_ABV), as it can be used [1, 6, 16, 18, 25] to precisely
model the semantics of popular programming languages such as C,
C++ or Java, and we will therefore consider only this theory in the
remainder of this paper.

State-of-the-art SMT solvers, such as Boolector [4], STP [16],
and Z3 [11], generally start with a pre-processing and optimisa-
tion stage, in which an instance of QF_ABV is simplified using
various strategies, followed by a bit-blasting stage, in which the
query is translated from the level of the theory to that of a boolean
satisfiability (SAT) problem. While the pre-processing and optimi-
sation stage tries to exploit the characteristics of the theory, it is
oblivious to those of the queries generated during symbolic exe-
cution. As a result, symbolic execution engines perform their own
pre-processing and optimisation stage before invoking the under-
lying SMT solver. Examples include performing simple arithmetic
simplifications [6, 7], caching solutions [7, 33, 34], exploiting logical
implications [6, 24] and rewriting complex array constraints [27].

In this paper, we introduce a new constraint solving optimisation
technique for symbolic execution, implemented in an incomplete
solver called PARTI (“PARtial Theory solver for Intervals”), which
aims to exploit constraint solving queries whose solutions can be ex-
pressed as the union of a small number of intervals. Hence, PARTI
provides a mechanism to solve only a subset of SMT problems
fast and resorts to an off-the-shelf solver for other queries. For
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instance, such queries are generated by inequality conditions in-
volving a symbolic input and a constant value, and are prevalent in
real programs as indicated by our evaluation (cf. §4). Furthermore,
they often occur in some symbolic execution implementations in
the pointer resolution stage, when determining valid objects of a
symbolic pointer value.

At a high-level, when deciding a query, PARTI keeps track of
all possible values for each symbolic variable. For instance, the
solution set of an unsigned 8-bit integer symbolic variable x could
be [1, 3] ∪ [120, 140]. If later x is constrained to be greater than 5
by following the then side of the branch if (x > 5), its solution
set becomes just [120, 140], as none of the values in [1, 3] satisfy
x > 5. With an efficient representation of the solution set, PARTI
can quickly solve certain types of queries and bypass the more
expensive complete solver. E. g., it can quickly determine that the
query x > 200 is unsatisfiable, since the values for x are in [120, 140].

The first challenge is to precisely deal with integer type casts
and arithmetic underflow and overflow. To better understand this
challenge, consider our previous example where valid solutions
are x ∈ [120, 140]. If x is now type-cast to a signed 8-bit variable y
(with a range of [−128, 127]), the solution set for y is [120, 127] ∪
[−128,−116] as some values in [120, 140] overflow.

The second challenge is the selection of supported operands and
an efficient representation of the solution set in order to balance ap-
plicability and performance: The sketched approach clearly cannot
efficiently solve every single SMT query as the explicit derivation of
the solution set of all variables is impossible in the general case and
even when possible, it may lead to exponential blowup depending
on the representation of the solution set.

Our contribution is firstly a scheme for effectively reasoning
about such interval queries in the context of symbolic execution,
together with a comprehensive analysis of the operations that we
decide to handle, secondly an implementation of the presented
technique and a thorough evaluation of the performance gains it
can achieve.

2 PRELIMINARIES
We denote a QF_ABV SMT query q as a pair (e,C), where e is a
query expression whose satisfiability we try to determine and C is
the set of constraints that are known to hold. For example, the query
(Eq (a, 3) , {Ule (1,a) , Ule (a, 5)}) is an SMT query that is satisfiable
but not a tautology (cf. Table 1). If the solution set for a variable x
is independent from other variables, we denote its solutions as JxK,
e. g., JaK = {1, 2, 3, 4, 5}.

Each expression has a bit-width. E. g., e and all expressions in C
have bit-width 1, i. e. they are boolean expressions. We represent
an expression by an Abstract Syntax Tree (AST). This tree consists
of (1) internal vertices, representing operators combining one or
more sub-expressions, e. g., Add, and, (2) leaf vertices, representing
either a constant, e. g., Const (42), or a read from a free variable,
e. g., Read (x). For readability, we may omit explicitly specifying
the Read and Const operators. Note that there may be several reads
with different offsets and bit-widths from a free variable in one
AST, but we restrict PARTI to such queries that have no partially
overlapping reads for any given variable.

Table 1: The relevant QF_ABV operators for this paper. Full
SMT encompasses a longer list, including, e. g., modulo.

Operator Children Semantics

Const 0 leaf: constant value
Read 0 leaf: free variable
LShr 1 logical right-shift
Not 1 negation
ZExt, SExt 1 unsigned/signed type conversion
Add, Sub 2 addition/subtraction
Eq 2 equality
Mul 2 multiplication
Ule, Sle 2 unsigned/signed less-than-or-equal-to
Ult, Slt 2 unsigned/signed less-than

The list of relevant operators discussed in this paper is depicted
in Table 1. Note that all queries are assumed to be normalised
to exclude operators such as ‘not-equal’ as these can be trivially
lowered to the given operators.

3 CORE DESIGN
PARTI has been designed to enable very fast solving of a subset
of SMT queries with a structure that many programs produce fre-
quently during symbolic execution. That is, PARTI attempts to solve
a query but may give up at any timewhile processing the expression
or the constraints. This will be communicated to a complete SMT
solver which acts as a fall-back. We distinguish between complete
solvers, that, given enough resources, can solve all SMT queries, and
incomplete solvers, such as PARTI, that can only solve (efficiently) a
subset of SMT. In this section, we characterise the subset supported
by our incomplete solver and describe its operation in detail.

3.1 Overview
We assume that the solver is presented with a query q consisting of
an expression and a set of constraints, as defined in §2. The result of
the solver can either be [1, 1] (‘always-true’), [0, 0] (‘always-false’),
[0, 1] (‘true-or-false’) or ⊥ (‘unknown’). If ⊥ is returned, the query
could not be solved and a complete solver must be consulted.

As PARTI is an incomplete solver by design, it has some limi-
tations as to which queries it can answer. This is reflected in the
operators it can process. For instance, the modulo operator is en-
tirely unsupported, while other operators may be supported only
in some cases. Hence, at any moment, when we encounter a part
of the query that cannot be processed, PARTI immediately aborts
processing the query and returns ⊥.

The operation of PARTI is divided into two stages: learning and
decision. Before we discuss the individual steps in detail in §3.3 and
§3.4, we first illustrate the general idea of these stages by processing
the following example query:

(Eq (Add (x , 2) ,y) ,
{ Ule (x , 7) , Ule (4,x) , Ule (Sub (y, 3) , 7) } )
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Ule← [1, 1]

Sub

y 3

7 ⇝ Sub← [0, 7]

y 3 ⇝ y ← [3, 10]

Figure 1: Processing the constraint Ule (Sub (y, 3)) in the
learning stage, where constraints are processed top-down in
order to derive information about the solution sets of vari-
ables (y in this case.)

Eq

Add

x 2

y

⇝ Eq

Add

[4, 7] 2

y

⇝ Eq

[6, 9] y

Figure 2: Two steps in evaluating the query expression in
the decision stage. The expression will eventually evaluate
to [0, 1]. As opposed to the learning stage (cf. Figure 1), an
expression is processed bottom-up in the decision stage.

3.1.1 Learning Stage. During the learning stage, PARTI extracts
information about all involved symbolic variables from the con-
straints. We assign to each variable x a structure ⟨|x |⟩, which repre-
sents an approximation of the solution set JxK. With each processed
constraint, ⟨|x |⟩ is refined, reaching an exact representation of the
admissible values for x once all constraints have been processed.
Hence, until all constraints have been processed, ⟨|x |⟩ remains an
approximation of x ’s solutions JxK.

For the subset of constraints {Ule (x , 7) , Ule (4,x)}, we have
JxK = [4, 7]. While learning the first constraint, we would record
⟨|x |⟩ = [0, 7]. Then, when processing the second constraint this
approximation would be refined to ⟨|x |⟩ = [4, max]∩ [0, 7] = [4, 7] =
JxK, where max corresponds to the maximal value of x ’s type.

Each constraint is processed top-down, that is, the initial implicit
truth value of the expression is recursively pushed down along the
AST: As illustrated in Figure 1, the expression Ule (Sub (y, 3) , 7)
must evaluate to [1, 1], as the constraint is known to be true. There-
fore, it can be reasoned that its left operand Sub (y, 3)must evaluate
to [0, 7]. This in turn implies that y must evaluate to [3, 10]. As y is
a leaf expression that cannot be taken apart any further, we have
learnt that ⟨|y |⟩ = [3, 10] and necessarily JyK = [3, 10].

The result of the learning stage is an exact solution set for all
relevant variables.

3.1.2 Decision Stage. In the second stage, all occurrences of
variables in the query expression are substituted with their solution
set and the tree is subsequently collapsed, as depicted in Figure 2.
Given the constraints over x and y learned above, the expression
Eq (Add (x , 2) ,y) is first substituted with Eq (Add ([4, 7], 2) ,y). Af-
terwards, by evaluating the solution sets of the Add expression and
substituting y, we obtain Eq ([6, 9], [3, 10]) which in turn may be
true as [6, 9] and [3, 10] have a non-empty intersection (e. g., 8)
or false as we can choose different representatives from each of
the sets (e. g., 6 and 10). This leaves us with the solution set [0, 1],
meaning that the query expression can be both true or false. In
summary, we fold vertices in the AST in a bottom-up fashion, until
the top-most operator is evaluated. A simple linear-time post-order
walk through the AST is sufficient to decide the given expression.

The result of the decision stage and the overall result of PARTI
is a value in {[0, 0], [1, 1], [0, 1],⊥}, as discussed above.

3.2 Representation of Solution Sets
After having presented the general overview of the solving algo-
rithm, we now motivate the design of its primary data structure,

multi-intervals, by studying the requirements that arise when trying
to represent a simple solution set.

3.2.1 Signedness. In our setting, symbolic variables are untyped
with regard to their signedness and have a fixed bit-width (cf. §2).
Hence, their semantic value depends on the operator using them
or their sub-expressions and might therefore implicitly change
depending on the context. Assume for instance a one-byte sym-
bolic variable with a solution set with the bit-vector representation
{11111111b, 00000000b}. When used in a signed context this can
be expressed with the interval [−1, 0] as 11111111b is interpreted
as −1 and 00000000b as 0 and we have −1 ≤ 0 and no integer
between −1 and 0. However, if in an unsigned context, 11111111b
would be interpreted as 255 for which holds that 255 > 0 and thus
the interval [255, 0] would be ill-formed, while [0, 255] would be
incorrect. In an unsigned context, the same solution set cannot
be represented as a single interval. The same problem can arise
analogously when casting from unsigned to signed.

3.2.2 Multi-Intervals. We observe that keeping a single interval
is insufficient even for very simple problems. As shown above, sign
conversion alone is sufficient to illustrate this limitation, but it
also applies to all operators that can result in integer overflows.
For instance, the operation Add (x ,y) for JxK = {253, 254, 255} and
JyK = {1} results in JAdd (x ,y)K = {0, 254, 255} for 8-bit variables
in an unsigned context.

A sufficiently expressive representation is to, rather than us-
ing a single interval, keep a set of intervals for each variable: a
multi-interval. However, this representation allows for exponential
blowup if the set of supported operations is not chosen carefully.
For this reason, we add some further restrictions in the design of the
algorithm, and choose to explicitly not implement some operators
that in theory could be represented by this data structure.

We encode multi-intervals as sorted sets of pairs of integers such
that the individual intervals never overlap. For instance, the un-
signed addition depicted above would result in the multi-interval
⟨[0, 0], [254, 255]⟩u8. Note that multi-intervals may be typed:We de-
note the type as subscript, e. g., u8, as in this example, indicating an
8-bit unsigned integer. Analogously, an s indicates a signed integer.
We omit annotating the type if it is inconsequential. The cardinal-
ity |H | of a multi-interval H , denotes the number of intervals it
contains, for example |⟨[10, 50], [100, 200]⟩| = 2. We use the previ-
ously introduced ⟨|x |⟩ notation in order to refer to x ’s multi-interval〈
[ξ1,0, ξ1,1], . . . , [ξn,0, ξn,1]

〉
.

In the following, we present all supported operators in the learn-
ing stage (§3.3) and the decision stage (§3.4), discussing both the
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Table 2: Cost incurred while processing each supported
operator. In the learning stage, we process an expression
Op (e, c) ← v, with n the cardinality of the multi-interval
representing v andm the cardinality of the current solution
set. In the decision stage, ni is the cardinality of the multi-
interval for the ith argument. Operations marked with an
asterisk are only partially supported.

Section Operator Output size Computation

Learning Stage
§3.3.1 Eq, Not ≤ 2 O (1)
§3.3.2 Ult, Slt, Ule, Sle 1 O (1)
§3.3.3 Add, Sub ≤ n + 1 O (n)
§3.3.4 Mul ≤ n O (n)
§3.3.5 ZExt*, SExt* ≤ n O (n)
§3.3.6 Read* ≤ max (n,m) O (n +m)

Decision Stage
§3.4.1 Eq 1 O (n1 + n2)
§3.4.2 Not 1 O (1)
§3.4.3 Ult, Slt, Ule, Sle 1 O (1)
§3.4.4 ZExt, SExt ≤ n1 + 1 O (n1)
§3.4.5 Add, Sub ≤ n1 · n2 + 1 O (n1 · n2)
§3.4.6 LShr*, Div* ≤ max (n1,n2) O (n1 + n2)
§3.4.7 Mul* ≤ max (n1,n2) O (n1 + n2)

computational complexity of each operator and the sizes of the
resulting multi-intervals. We summarise all operators in Table 2.
In §3.5 we end our analysis with an overview of the algorithm’s
limitations.

3.3 Operations for the Learning Stage
To obtain the admissible multi-interval for each symbolic variable,
we extract it from all constraints during the learning stage. Here,
each constraint is processed independently, refining the previous ap-
proximation. After the last constraint is successfully processed, the
extracted multi-interval will exactly, as opposed to approximately,
reflect the solution set.

The top-down approach presented here is restricted to binary
caterpillar trees [21] containing a single Read. Such binary cater-
pillar trees, i. e. trees where each branch has one side with depth 1,
occur often in practice, as shown in our evaluation. However, if any
constraint with a different type of tree is encountered, the learning
stage will be aborted and ⊥ returned.

While we descend such a tree, for each binary operator Op we
always have a constant side c and a side with an arbitrary expression
e , as well as an assignment of a valuev , denoted as Op (e, c) ← v . We
derive the admissible values for e by inspecting c ,v , and Op. Initially,
every constraint is implicitly true at the top-most level, therefore
it is of the form Op0 (Op1 (e, c1) , c0) ← v0 with v0 = [1, 1]. From
c0 we can then derive a new value v1 depending on the semantics
of Op0 and recursively process Op1 (e, c1) ← v1. Finally, we have
e ← v2 with v2 derived from v1, c1 and the semantics of Op1.

3.3.1 Equality and Logical Negation. Consider, w. l. o. g., Eq (e, c)
← v , wherev may be either [0, 0], [1, 1], or [0, 1]. Forv = [0, 1], the

remainder of the constraint can be ignored as it is irrelevant whether
it holds or not. If v is [1, 1], we can simply continue recursively
with e ← c . If v is [0, 0], the solution set is c̄ , i. e. a multi-interval
containing exactly all values that c does not contain. As the multi-
interval ⟨|c |⟩ must be of the form ⟨[c, c]⟩, this set-minus operation
can be computed in constant time and its size is bound by 2.

The logical negation Not (e) ← v can be lowered to Eq (e,v) ←
[0, 0], as e and v must be one-bit values. Thus, if Not (e) is assigned
v , then this is equivalent to e not being equal to v , which in turn is
expressed by assigning [0, 0] to Eq (e,v). The same bounds as for
Eq apply.

3.3.2 Comparison. Assume a comparison L (e, c) ← v with L ∈
{Ult, Ule, Slt, Sle}. The inverse case L (c, e) ← v is analogous.
Again, v = [0, 1] may be disregarded as the expression would be
a tautology. If we have v = [1, 1], we may recursively continue
by learning e ← [a,b] where a is the minimum of the respective
data type of L, e. g., −128 for an 8-bit signed type. This is because
the constraint L (e, c) only imposes some upper bound c on the
sub-expression e , while not imposing any lower-bound. For the
same reason, b is either c or c − 1 depending on whether or not
the operation is a less-than or less-than-or-equal-to operation. So,
[a,b] is the interval matching the type of L and indicating that e’s
upper bound is c . The size of the resulting multi-interval is trivially
exactly 1 and is computed in constant time.

3.3.3 Addition and Subtraction. The subtraction operator is
analogous to the addition operator, so we will only investigate
Add (e, c) ← v . Observe that now v is not limited to a boolean
value but may be an arbitrarily complex multi-interval. In order to
continue the recursion with e ← w we must determine a suitable
w . Logically, we have e + c = v ⇒ e = v − c = w , sow follows as
the difference between the multi-interval representingv and c . As c
is still limited to a constant, the operation v − c can be computed in
linear time, by subtracting c from all intervals in v . This may cause
at most one interval to span the underflow point and hence be split
into two. All other intervals [a,b] in v can trivially be transformed
to [a − c,b − c]. The expression is then continued to be processed
recursively: e ← w = v − c . Hence, the resulting multi-intervalw
is computed in linear time and is bound by |v | + 1.

3.3.4 Multiplication. By the same logic as with addition and
subtraction operators, Mul (e, c) ← v is resolved by a division of v
by c . Due to the nature of multiplication, some intervals may be
merged or dropped, leading to the resulting multi-interval having
|⟨|w |⟩ | ≤ |⟨|v |⟩ |. As with Add, Mul has linear complexity.

On the other hand, a Div (e, c) ← v removes information from e .
Hence, this operation cannot be reversed efficiently in this context,
as representing all correct solutions in a multi-interval would po-
tentially lead to a large number of intervals, so Div is not supported
by PARTI.

3.3.5 Type Conversion. There are two kinds of type conversions,
a sign cast changing the signedness of an expression and a type
cast changing the bit-width of an expression. For each of these, we
distinguish two cases. For a sign cast, we can be casting from signed
to unsigned or vice-versa, while for a type cast we might be casting
down, that is reducing the number of bits, or casting up, that is
extending the number of bits. W. l. o. g. we only discuss unsigned
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type casts as signed type casts are analogous and can be lowered to
unsigned type casts. Hence we assume an operation ZExt (e) ← v ,
where the expression ZExt (e) has size k and e has size k ′.
• In the case of an upcast, the operator extends the number of bits.
When traversing it backwards, the argument v ′ of the recursive
call e ← v ′ is restricted in the number of bits, i. e. k ′ < k . This
can be easily computed by truncating the intervals that exceed
2k
′
such that they are bound by 2k

′
. The resulting multi-interval

v ′ is computed in linear time and |v ′ | had an upper bound of |v |.
• In the case of a downcast, the operator would remove informa-
tion. Therefore, the multi-interval that would correspond to e
cannot be computed from the multi-interval that corresponds to
ZExt (e) without risking an exponential blowup. As an illustrat-
ing example, from the information that an expression e of type
u16 satisfies Eq (ZExtu8 (e) , 42), we can derive the solution set
{42, 298, 554, . . . , 65322}, which cannot be efficiently represented
by a multi-interval. Hence this operation is not supported.

3.3.6 Leaf Operators. Once the tree has been descended to the
one non-constant leaf, we have an operation of the form Read (x) ←
v with v guaranteed to match the width of the read as type casts
are always explicit. Hence, if this is the first processed constraint
touching variable x , the multi-interval ofv can be directly recorded
as ⟨|x |⟩, the current approximation of the solution set of x . In case
x has already been read by a previously processed constraint, we
ensure that the offset and size of the previous read(s) either match
the new read’s offset and size exactly or read disjoint bytes (cf. §2).

Any partial solution set cannot be extended by future constraints,
but only restricted. The result of applying the information from
the new multi-interval corresponds to the intersection of the cur-
rent solution set with the new multi-interval. As a multi-interval
is a sorted sequence of intervals, the intersection of two can be
computed in linear time.

3.4 Operations for the Decision Stage
We next describe the operations that are employed during the
bottom-up decision stage, after the learning stage has finished.
A summary of all operators supported in the decision stage, to-
gether with the size of the output multi-interval and the associated
computational cost is given in the bottom part of Table 2.

3.4.1 Equality. When two symbolic variables a,b are compared
for equality, Eq (a,b), it is insufficient for them to merely share
the exact same solution set to return [1, 1]. They must both have
the same singleton solution set, as otherwise they might evaluate
to differing values. Hence, only if both multi-intervals are of the
form ⟨[k,k]⟩ (for some constant k) the result is [1, 1]. Conversely,
if their non-singleton solution sets have a non-empty intersection,
the equality is satisfiable, but not a tautology, and the result is [0, 1].
Finally, if they have no solution in common, the result is [0, 0].

3.4.2 Logical Negation. The logical negation ⟨|r |⟩ = ⟨|Not (a)|⟩
of a multi-interval ⟨|a |⟩ can be computed by inverting the respective
truth values. That is, if ⟨|a |⟩ contains 0, then ⟨|r |⟩ must contain 1.
And if ⟨|a |⟩ contains 1, then ⟨|r |⟩ must contain 0. This implies that if
⟨|a |⟩ = [0, 1], then Not is idempotent and the result is ⟨|r |⟩ = [0, 1].
As a must have width 1, no value outside of [0, 1] can be contained
in ⟨|a |⟩. Clearly, |⟨|r |⟩ | = 1.

3.4.3 Comparison. For a comparison L (a,b) with L ∈ {Ult,
Ule, Slt, Sle}, we must determine if indeed for all α ∈ JaK and
all β ∈ JbK, we have L (α , β). To solve this problem efficiently,
we rely on the representation of multi-intervals and extract the
closure cl (⟨|a |⟩) = [αmin,αmax] of ⟨|a |⟩ and the closure cl (⟨|b |⟩) =
[βmin, βmax] of ⟨|b |⟩. The closure cl (⟨|x |⟩) of a non-empty multi-
interval ⟨|x |⟩ =

〈
[ξ1,0, ξ1,1], . . . , [ξn,0, ξn,1]

〉
can be computed in

constant time by extracting the lower bound of the first interval
and the upper bound of the last interval: cl (⟨|x |⟩) = [ξ1,0, ξn,1].
Then L (a,b) evaluates to [1, 1] if L (αmin, βmax), to [0, 0] if we have
¬L (αmax, βmin) and to [0, 1] if both conditions are satisfied.

3.4.4 Type Conversion. An extending type cast from the multi-
interval ⟨|a |⟩ =

〈
[α1,0,α1,1], . . . , [αk,0,αk,1]

〉
mi for m ∈ {u, s} to

⟨|r |⟩ =
〈
[ϱ1,0, ϱ1,1], . . . , [ϱl,0, ϱl,1]

〉
mj with j > i is trivial, as none

of the intervals are affected and we have |⟨|r |⟩ | = l = k = |⟨|a |⟩ |
with all intervals being identical. For j < i , the resulting solution
set is bound to some ⟨[min,max]⟩ and those intervals [αi,0,αi,1]
with αi,1 < min ormax < αi,0 are dropped from ⟨|r |⟩. Any inter-
vals including the min or max bound are truncated to fit inside
[min,max]. As each interval is either shrunk or dropped we have
|⟨|r |⟩ | ≤ |⟨|a |⟩ |.

A sign cast must comply with two’s-complement semantics: For
an unsigned-to-signed cast, every interval strictly smaller than
the boundary h = 2i−1 is preserved, while every interval strictly
greater than or equal to h is also preserved but moved left in the
sorted list of intervals, to preserve the strict order. Finally, if there
exists an interval that includes both h and h − 1, it is split in two,
one with the upper bound h − 1 and one with the lower bound
h. A signed-to-unsigned cast is performed analogously, while the
boundary h is set at h = 0 and intervals are moved to the right, not
the left. As up to one interval might be split in two and every other
interval is preserved, we have |⟨|r |⟩ | ≤ |⟨|a |⟩ | + 1.

3.4.5 Addition and Subtraction. The plus operator Add (a,b) is
implemented by successively adding individual intervals of b to
a akin to a cross product. For this algorithm, we break down the
operation to adding two intervals [α0,α1]+ [β0, β1] = [α0+β0,α1+
β1] = s . If s happens to overflow or underflow, it is split in two
as described in §3.4.4. Finally, all resulting intervals are merged
into one multi-interval. For each pair of intervals from ⟨|a |⟩ and
⟨|b |⟩ we may get up to two intervals. However, as all intervals that
lead to an underflow or overflow will be merged, we have in total
|⟨|r |⟩ | ≤ |⟨|a |⟩ | · |⟨|b |⟩ | + 1. Subtraction is analogous to addition.

3.4.6 Non-Rotating Shift. From the two potential shift operators,
left-shift and right-shift, the left-shift operator behaves analogously
to a multiplication, which we discuss in §3.4.7. A right-shift with a
non-constant shift amount may lead to exponential blow-up and
thus is not supported. A right-shift by a constant, ⟨|r |⟩ = LShr (a, c),
potentially condenses the multi-interval, i. e. |⟨|r |⟩ | ≤ |⟨|a |⟩ |, so we
support it. For instance, the right-shift by 2 of the multi-interval
⟨[0, 9], [11, 20], [30, 40]⟩u8 results in the first two intervals merging:
⟨[0, 5], [7, 10]⟩u8.

3.4.7 Multiplication. Left shift, and by extension integer mul-
tiplication, presents us with a potential exponential blow-up. For
instance, consider the multi-interval ⟨[0, 42]⟩u8. A left-shift of 1 or
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a multiplication with 21 would result in a solution set containing
all the even integers from 0 to 84, i. e., it would have the form
⟨[0, 0], [2, 2], [4, 4], . . . , [84, 84]⟩u8. However, our problem analy-
sis shows that multiplication with constants of the form 2i are
very common, especially stemming from pointer resolution logic
(see §4.1.1). Therefore, we extend multi-intervals in the decision
stage to carry a left-shift attribute (LSA). That is, the operation
Mul (⟨[0, 42]⟩u8 , 2) will result in the multi-interval ⟨[0, 42]⟩u7 with
an LSA of 1. In the general case, this gives us |⟨|r |⟩ | ≤ |⟨|a |⟩ |. Subse-
quent binary operations like Add will then still abort if presented
with two operands with differing LSAs, but may succeed when the
LSAs are the same. Similarly, inequality operators can apply the
LSA when computing the closure without incurring blow-up.

3.5 Limitations
By design, our approach has some limitations. In the learning stage,
we cannot process constraints with more than one Read as we need
to descend on the central path from the root to the singular variable.
(On the other hand, we can process multiple reads in the decision
stage.) In both stages, some operators are not supported, as they
may lead to an exponential blowup.

For every query, PARTI decides on-the-fly whether it can con-
tinue to process it or has to abort. This results in an overall com-
plexity that is at worst quadratic in the size of the entire query and
exponential in the number of Add/Sub operators in the expression
(cf. Table 2).

4 EVALUATION
We evaluate our approach by comparing a complete state-of-the-art
SMT solver, namely Z3, with PARTI in conjunction with the same
complete solver. We first validate PARTI’s results with those of
Z3, finding no discrepancy over the entire course of our several
CPU-weeks long evaluation. Hence, the remainder of this section
will assess the performance of PARTI.

We implemented the PARTI algorithm directly in the KLEE sym-
bolic execution engine [6] in version 1.4.0, intercepting queries
before they are being handed to the back-end solver. This is fa-
cilitated by the solver chain of KLEE, which allows to inject an
incomplete solver and then automatically consult the next solver
in the chain once the injected solver fails to solve the given query.
By default, KLEE also invokes the final, complete solver by forking
the current process. This is done to enforce the solver timeout,
i. e., to terminate the solver, should it consume too much time. We
deactivate this mechanism, as forking would create a substantial
overhead and bias the evaluation in favour of PARTI. However, that
results in solver failures of Z3, which occur quite infrequently, to be
propagated up to KLEE, requiring one rerun every approximately
1000 runs.

We choose Z3 as it has finer time-out control built in than KLEE’s
default SMT solver STP. Running the latter would incur the over-
head stemming from process forking or make it impossible to reli-
ably measure the solver time due to extremely long-running queries
being prevalent in many runs. However, we also compare the per-
formance of PARTI under both solvers on a smaller benchmark
which does not produce such time-out breaking queries in §4.2.3.

Our evaluation was run on an Intel Xeon [23] with 12 threads
at 3.4 GHz with 0.25 TB RAM and with hyper-threading disabled.
We ran no more than 11 processes in parallel and no swapping
occurred during any run.

We structure the evaluation into two main parts: A functional
analysis (§4.1) and a performance evaluation (§4.2).

In both cases, each experiment is repeated several times as time
measurements always result in noisy data. The exact number of
repetitions and the semantics of the depicted confidence intervals
is denoted on each figure where it applies. To also minimise noise
as much as possible, we use the DFS deterministic searcher, which
descends on one execution path, only pursuing other paths after the
current one terminates. As this will generate both short and long,
simple and complex queries, it provides a good collection of queries.
We also deactivated query caches in KLEE to enhance determinism.

4.1 Functional Analysis
As a means of obtaining an insight into the strengths and limita-
tions of PARTI, we first perform a functional analysis of mostly
synthetic test programs. Here, we evaluate the termination time for
a complete coverage of the input program, imposing no timeout for
KLEE. Each run is repeated manifold with PARTI+Z3 and with Z3.

4.1.1 Object Resolution. In KLEE, object resolution for symbolic
pointers (including array indexes) depends on a series of compar-
isons, checking if the pointer value could point inside each of the
memory objects on the current path. For instance, when KLEE
encounters the access a[i], where i is an unconstrained symbolic
index (which could thus refer to other arrays, too), it compares
the symbolic value a + i against the bounds of all possible objects
on that path. This causes a large number of comparison queries,
slowing down such operations to the extent that users of KLEE
repeatedly complain about this shortcoming.

We analyse this scenario with respect to different array types and
lengths in Figure 3. The performance here heavily depends on the
support of multiplication in the decision stage: In this scenario, we
can identify most queries to have the form L

(
b, Mul

(
x , 2i

) )
where

b and i are constants, and x is a symbolic pointer. If we deactivate
the support for LSAs (cf. §3.4.7), everything but the speedup for the
8 bit runs drops to 1. With LSAs we observe a huge speedup well
above a factor of 200x for all array types—as to be expected, the
array size (horizontal axis) has no influence on the execution time.
As our example only performs the indexing operation, no query is
produced that cannot be solved by PARTI directly.

4.1.2 Worst Case Scenario. We analyse PARTI’s behaviour in a
worst case scenario. To create an adversarial program, we heavily
exploit the multi-interval explosion introduced by an Add operation
during the decision stage. First, we create a series of N variables vi
and constrain their solution set to the values

{
0, 2i

}
for i = 1, . . . ,N .

Second, we compute the sum over all vi and multiply with an
additional variable with the solution set {0, 1}. This creates a value
with the solution set

{
0, 2, 4, 6, . . . , 2N+1 − 2

}
, which is correctly

represented by PARTI but incurs an exponential blowup. Finally,
PARTI has to abort computation because of the unsupported non-
constant multiplication. For a control experiment, we omit the
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Figure 5: Peak residentmemory for sym-
bolic execution of the worst case and
control programs. PARTI performs well
up to a number of 16 Add expressions,
when the number of individual intervals
in one multi-interval surpasses 216.

multiplication, allowing PARTI to succeed instead of having to
additionally invoke Z3.

Note that we only analyse one path in this experiment, artificially
constraining the solution set of vi . In a real setting, we would
experience path explosion of the magnitude 4i , with most of the
paths not incurring worst case queries in PARTI.

Figure 4 shows absolute runtimes of KLEE for an execution of this
worst case program for different values of N , while Figure 5 depicts
the peak resident memory for the same experiment. With a small
number of symbolic values, the control run shows a noticeable
speed up, while the worst case run shows that PARTI can only
decide the queries generated while still adding constraints. Around
17 variables, the overhead begins to overtake the speedup and the
exponential blowup dominates the overall performance of KLEE,
both in the control as well as in the worst case. A very similar
behaviour can be observed for the memory consumption.

This also means that while the cardinality of all involved multi-
intervals remains below 216, the overhead of PARTI remains negli-
gible compared to that of KLEE and Z3.

4.1.3 Sorting Algorithms. To get an insight into the efficacy of
PARTI in specific scenarios, we investigate its behaviour on a suite
of classical sorting algorithms, such as merge sort and quick sort.
Our test function sorts an array of concrete data and a fixed number
of symbolic entries, placed at random positions within the array.
For each of six sorting algorithms, we measure the time until KLEE
explores all paths and terminates on its own. Depending on the
number of symbolic array entries and the tested algorithm, the
time-to-finish may range from fractions of a second up to over an
hour. Figures 6 and 7 show that depending on the settings, differ-
ent algorithms produce more favourable queries for PARTI: For
instance, when analysing a single symbolic entry, both the merge
and heap sort algorithms show a speedup of around 10x, slowly
declining with larger input arrays, while selection sort achieves
speedups well above 40.

When analysing the same algorithms with two symbolic entries,
instead of one, the speedup drops significantly for all algorithms.

While the variance is greatly increased for three algorithms, we
still measure speedups ranging from 1.5x to 10x. The different per-
formance in Figure 7 is due to the order in which these algorithms
compare the data-to-sort. When an algorithm such as bubble sort
touches the first two entries in its very first comparison and they
are both symbolic, in the second query there will already be a con-
straint that contains reads from more than one symbolic value,
barring PARTI from processing any subsequent query on that path.
Hence, no subsequent query can be answered by PARTI as it will
abort each time during the learning stage. So, the speedup depends
on the algorithm’s memory access patterns and the positions of the
symbolic entries.

This demonstrates that the success of PARTI is heavily depen-
dent on the nature of the queries generated by the target program.
For instance, if there is only one symbolic value present, the gen-
erated constraints will have the structure of a binary caterpillar
tree with only one symbolic read, such that the learning phase can
succeed. In the second scenario, the symbolic execution introduces
a comparison between two symbolic values in every path at some
point. Therefore, PARTI can be applied only for a portion of the
queries, as can be seen by the starkly reduced speedup in Figure 7
(approx. 1.5x to 10x) compared to Figure 6 (approx. 10x to 50x).

4.2 Performance Evaluation
We evaluate PARTI’s performance on a number of real-world pro-
grams, to understand the speedup we would see in the wild. Again,
we run each experiment with PARTI+Z3 and with Z3.

4.2.1 Coreutils. The GNU Coreutils [15] are widely used for the
analysis of the efficacy and efficiency of symbolic execution. We
run the Coreutils suite version 8.29, using 98 individual programs
as a benchmark set with a configuration corresponding to [31].

To compare the runtime of KLEE configured with PARTI+Z3
versus just Z3, we first ran the respective utility, e. g., sum, for a
fixed amount of time, e. g., 900 s and logged the number of instruc-
tions, I , KLEE managed to process in that time. Then, we rerun
the experiment, without an imposed time-out, but instruct KLEE
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Z3 alone. Compared to Figure 7, this experiment offers sig-
nificantly more opportunities for our solver as there is no
comparison between two symbolic values.
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Figure 9: Speedup when executing 17 Binutils tools. The leg-
end shows those tools with the highest and lowest speedup.
We observe that the variance is significantly higher than for
the Coreutils experiments and PARTI achieves little to no
overall speedup.

to terminate after processing I instructions. We then record the
time KLEE takes to terminate when using PARTI+Z3 versus Z3
alone. Due to non-determinism in KLEE (cf. [26]) the variance of
the measured times can vary greatly, especially since we decided
to include all Coreutils. Hence, some results may exhibit higher
variance and therefore show larger confidence intervals.

Figure 8 shows the measured speedup of PARTI+Z3 versus just
Z3. It shows that many programs benefit from a speedup up to 2x,
while only seldom falling slightly below the neutral mark of 1x.

Around ten programs run at least twice as fast with PARTI, while
two, namely dirname and printenv, even climb above a speedup
of 20x. So, while in many cases only moderate speedup can be
achieved, in some instances KLEE’s performance can be improved
drastically, from an hour down to a few minutes.

4.2.2 Binutils. For a set of programs with different characteris-
tics, we analyse GNU Binutils [14]—a suite of tools for manipulation
and creation of binary files. We use the Binutils suite version 2.28,
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including 17 individual programs. We measure the time for the pro-
cessing of a pre-determined set of instructions, as with the Coreutils
evaluation (cf. §4.2.1).

As depicted in Figure 9, there is no significant speedup for the
Binutils suite. The number of exploitable queries here is smaller, as
PARTI does not support bitwise operators. These aremore prevalent
when processing binary data and hence to be expected in greater
number in the Binutils suite compared to the Coreutils suite.

This indicates that although PARTI can often result in an advan-
tage, as could be observed with the Coreutils evaluation, where a
number of programs experience a speedup of well over 2x, other
program structures are less suited for our choice of supported oper-
ators. Furthermore, we see a greater variance of execution times in
this suite, such that we can only state that there is never a slowdown
worse that 1.5x and never a speedup better than 3x.

4.2.3 GNU sort. We analysed GNU sort from Coreutils in more
detail. We pass a partially symbolic file and instruct sort to check
whether the file is already sorted. Attempts to actually sort a sym-
bolic file with KLEE, whether with or without PARTI, resulted in
hundreds of GB of RAM being used within minutes, preventing a
proper investigation of anything but the most trivial cases.

We tested sort -C on a file with a total of N alternating sym-
bolic and random concrete lines of uniform lengthm, showing our
findings in Figure 11 for values ofm = 4, 8, 12, 16.

Note that the complexity of the generated queries grows with the
length of the symbolic lines, as more bytes need to be compared. In
this experiment, we observe that the more complicated the queries
are for different values ofm, the better PARTI performs relative to
Z3. In addition, the more queries generated by symbolic execution,
the more queries are sped up, yielding an approximately linear
speedup, as all queries can be solved by PARTI in this setup. There-
fore, especially in settings with a significant amount of queries,
PARTI’s ability to quickly resolve some queries results in a high

1 2 3 4 5 6 7 8

Total number of input lines (N) with length m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

K
L

E
E

sp
ee

d
u

p
(0

.9
9

co
n

f.
@

10
re

p
s.

)

m=4 (STP)

m=4 (Z3)

m=8 (STP)

m=8 (Z3)

m=12 (STP)

m=12 (Z3)

m=16 (STP)

m=16 (Z3)

Figure 11: Completing GNU sort -C and N alternating con-
crete and symbolic input lines of fixed length m. The
speedup grows both with the length of lines and with the
number of lines.

overall speedup. Further, the overall speedup increases with the
length of the file’s lines, as the complexity of the queries increases.

For this experiment, we also investigated the performance gains
between using Z3 and STP as the baseline solver. The results show
that with .99 confidence no difference can be identified between the
two solvers, even though the plotted average appears to indicate a
slight advantage for STP.

4.2.4 Success Rate. The total execution time is most relevant
to the user of a constraint solver or symbolic execution engine.
However, it provides no information about the ratio of queries that
can be answered by PARTI. Figure 10 shows the distribution of the
success rate on the Coreutils and Binutils suites with respect to the
total number of queries issued by the respective tool.

This distribution matches the speedup we see in §4.2.1 and §4.2.2,
seeing a significantly smaller success rate for most of the Binutils
tools and a wide spread for the Coreutils tools. Additionally, we can
observe that there appears to be no significant relation between
the number of Coreutils queries and the success rate of solving
them. However, the negative correlation for the Binutils explains
the ineffectiveness on that suite: With more queries and a more
complex program issuing unsupported operations, fewer queries
fall in the supported set, and only short runs are sped up. The
success rate of the GNU sort evaluation in §4.2.3 is not included in
Figure 10 as it reaches 1 for all runs.

5 RELATEDWORK
As discussed in the introduction, our approach is similar in spirit
to other constraint solving optimisations employed by modern
symbolic execution engines. For instance, prior work has used
caching of satisfiability queries [7] and counterexamples [6, 33,
34], expression simplifications [7], logical implications [6, 24] or
rewriting of complex array constraints [27] to either avoid calling
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the SMT solver or call it with simpler queries. Similar to these
approaches, PARTI aims to speed up a certain class of constraint
solving queries.

Many SMT solvers for QF_ABV are built on top of SAT solvers,
and may perform theory-specific optimizations before bit-blasting
the query into a SAT formula. For instance, the STP solver [16] per-
forms optimizations such as arithmetic expression simplifications
and array-based refinement before bit-blasting the formula to SAT.
Solvers like Z3 [10, 11] or Yices [12, 13] also use a conjunction of
various theory solvers together with the SAT solver.

Lazy solvers have also been proposed by Bruttomesso et al. [5],
which proposes a layered solver design, MathSAT. It uses various
rewriting rules to simplify a given query, applying faster passes
which support a smaller set of problems before resorting to more
complex ones. The second layer is similar to PARTI, as it employs
a number of deduction rules pertaining to the properties of various
operators. Contrary to PARTI, however, these apply to relations
between different variables, such as the transitivity of <, and yields
not a definite solution but a simplified query. Similar simplifications
are also part of KLEE’s internal query optimisation.

Hadarean et al. [20] discuss a staged solver that leverages equal-
ity, inequality, and bit-blasting theories with a core solver. Similarly
to PARTI, all solvers in this chain are incomplete with respect to
SMT but can solve subsets in polynomial time and are called in
order of their complexity, beginning with the fastest. The theory
solvers are called repeatedly from the main solver loop and some,
such as the bit-blasting theory solver, may employ a SAT solver.

Approaches like StratEVO [28] concern themselves with the
adjustment and selection of solving strategies within a solver such
as Z3 [11]. Here, genetic algorithms are employed to evolve the
selection process towards the fastest strategies. Conversely, the
multi-solver version of KLEE presented in [26] proposes to run a
collection of complete SMT solvers in parallel such that differences
in their performance can be exploited.

Interval Arithmetic (IA) has been employed for several decades
now [2, 3, 19, 22]. IA operates in the domain of real numbers (R),
represented by IEEE floating-point machine numbers and was in
its infancy applied to provide a better means of avoiding floating-
point rounding errors in Prolog [2, 9]. It solves the task of finding
the solution set, represented as an interval, of a list of variables
given a finite number of constraints. To this end, it repeatedly
attempts to approach the solution set by an enclosing of cartesian
products of intervals. This is quite different from the approach
presented in this paper, as PARTI represents the solution set of
each variable as a set of intervals, while IA represents the total
solution set as a set of products of singular intervals. This makes
the representation more powerful, but also its computation more
complex. Additionally, IA’s aim is to tackle non-linear problems
on floating-point numbers. Although it has been applied to non-
negative integral numbers, it is not designed for the behaviour of
two’s complement integer arithmetic. Solvers like iSAT3 [29, 30]
and raSAT [32] employ IA and constraint propagation techniques
to sharpen approximations of solution sets. These operate similar
to the merging step in the learning stage and the procedure of the
decision stage, but as optimisations on approximations of real-value
sets lacking multiplication-gaps and overflows.

6 CONCLUSION
In this paper, we approached the challenge presented by the reliance
of symbolic execution on SMT solvers and the corresponding bottle-
neck. The fundamental complexity of the underlyingNP-complete
problem severely impacts the efficacy with which symbolic execu-
tion can analyse programs and detect defects.We demonstrated how
our approach improves the performance of solving SMT queries in
the context of symbolic execution.

By designing a lightweight incomplete solver, PARTI, we are
capable of exploiting the structure of many queries that can be
solved efficiently, leaving the remainder for a complete solver to
handle. We discussed the theoretical complexity of our solver, and
verified empirically that its overhead is negligible. Hence, the overall
solver performance is not impaired, while often being improved
significantly, exhibiting order-of-magnitude speedups in several
cases. For instance, tools from the Binutils suite, such as sysinfo,
experience no speedup, while tools from the Coreutils suite, such
as dirname and printenv, are sped up by more than 20x.

Our solver relies on a two stage approach, first extracting infor-
mation about symbolic variables from the given constraints, and
second substituting reads from these variables with the extracted
information. We find our proposed multi-interval data structure
to be a suitable representation of this information as it lends itself
to an efficient manipulation of results while consuming very little
memory.

Experimental results indicate the viability of this approach in
quickly answering queries that can be solved efficiently by our
solver, but would require more time to be solved by a complete,
state-of-the-art, SMT solver such as STP or Z3. For some Coreutils
tools, we observe that practically every single query can be an-
swered by PARTI, yielding a high speedup. In general, while we
can observe a number of examples without significant speedups,
we often measure consistent and reproducible speedups well above
a factor of 2x and up to a factor of 20x.
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