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ABSTRACT
The proliferation of the Internet of Things (IoT) in the context
of smart homes entails new security risks threatening the
privacy and safety of end users. In this paper, we explore the
design space of in-network security for smart home networks,
which automatically complements existing security mech-
anisms with a rule-based approach, i. e., every IoT device
provides a specification of the required communication to
fulfill the desired services. In our approach, the home router
as the central network component then enforces these com-
munication rules with traffic filtering and anomaly detection
to dynamically react to threats. We show that in-network
security can be easily integrated into smart home networks
based on existing approaches and thus provides additional
protection for heterogeneous IoT devices and protocols. Fur-
thermore, in-network security relieves users of difficult home
network configurations, since it automatically adapts to the
connected devices and services.
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1 INTRODUCTION
With the proliferation of the Internet of Things (IoT) [2],
all sorts of Internet-connected devices, ranging from simple
sensors to more complex controllers and home appliances,
find their way into private homes [14]. For the convenience
of their users, these IoT devices are either directly or indi-
rectly (via a bridge) connected to the home network enabling
continuous monitoring and control through the Internet.
This trend, referred to as smart homes, encompasses home
appliances, smartphones, heating and cooling, and alarm
systems [33]. As a result, users benefit from a streamlined
automation of daily tasks, enhanced monitoring and alarm
capabilities, and even reduced energy consumption. These
benefits have led to the unabated success of smart home de-
ployments, e. g., Gartner predicts that 20 billion devices will
be connected to the Internet by 2020, where consumer de-
vices will represent the largest group with around 13 billion
anticipated devices [20].

Besides these benefits, however, smart homes introduce se-
rious security challenges [6, 12, 15, 24], which mainly result
from the unrestricted interconnection of IoT devices among
each other and with the Internet [16]. Since the local commu-
nication of IoT devices is often unencrypted [7], devices rely
on well-known standard passwords [31], or enable remote
access, e. g., via telnet, an attacker can exploit these secu-
rity flaws to gain unauthorized (root) access to devices [29].
Once the attacker gained access, further attacks are possible,
such as eavesdropping on network traffic to access sensi-
tive information, manipulating devices, e. g., deactivating
an alarm system, or even installing ransomware [43]. As a
result, a single compromised device in a home network, e. g.,
a malware-laden smartphone [36], often suffices to gain ac-
cess to other devices in this network. Considering currently
deployed IoT devices, an Internet-wide analysis of reach-
able IoT devices shows that the vulnerability rate strongly
depends on the device type, varying between 0.44 % and
40% [31]. Recent attacks, such as Mirai [1], showed that se-
curity flaws of IoT devices have far-reaching consequences,
since these devices can be turned into a powerful botnet
performing Distributed Denial-of-Service (DDoS) attacks on
vital online services.
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We observe that these security risks are often exacerbated
by the methodology of underlying home network deploy-
ments where, once a device is connected to the home net-
work, there are no mechanisms on the network layer that
restrict the communication capabilities of this device to the
bare minimum required for the intended functionality. For
example, if a smart home device such as a web radio gets
infected by malicious software, it can establish new con-
nections and attack other devices and servers without lim-
itations. However, conceptually there is no need to allow
communication of a web radio with other devices to real-
ize the intended functionality, i.e., streaming audio from a
distinct number of Internet hosts. From a different perspec-
tive, typical users of IoT devices are often overwhelmed with
securely configuring their smart home network. The new
possibilities enabled by a large variety of IoT devices and
services invites users to connect devices with often lenient
default security configuration to their home network, with-
out thinking about the consequences, or simply because they
do not know about the potentially involved risks.
In this paper, we address these security risks that are im-

minent to the current deployment model of smart homes and
IoT devices in home networks. To this end, we argue that se-
curity in smart homes must be addressed automatically and
within the local network in addition to the security mech-
anisms already deployed directly at the device or service
side. Notably, our proposed approach of in-network security
offers orthogonal protection to the security mechanisms im-
plemented on the devices by monitoring the local network,
detecting suspicious traffic, and preventing attacks from and
to IoT devices connected to the home network.

In contrast to the state-the-art in this area [4, 8, 18, 34, 35,
37], we believe that the communication of IoT devices must
be restricted to the bare minimum required for the intended
functionality to proactively prevent security breaches. To
this end, we propose to equip each IoT device with a specifi-
cation of the required communication to fulfill its services.
Consequently, all other traffic is blocked and a device’s com-
munication is monitored for non specification-compliant
behavior. Our approach thus differs from existing network
security approaches such as intrusion detection [28], as it
builds upon explicit permissions to prevent unauthorized
network traffic instead of generously allowing all communi-
cation first and then trying to detect anomalous behavior.
In particular, our contributions lie in a thorough descrip-

tion of the security threats in current smart homes as well
as a clear motivation for in-network security in such deploy-
ments (Sec. 2). Based on our analysis, we propose three main
components for realizing in-network security:
(1) Specification of network compliant behavior for indi-

vidual IoT devices in smart home networks (Sec. 3);

(2) IoT traffic filtering to enforce compliance with the
specified communication behavior (Sec. 4); and

(3) anomaly detection to be able to dynamically counter
attacks within the smart home network (Sec. 5).

In the following, we explore the design space for each of these
components by focusing on existing as well as promising
future approaches to realize individual parts of in-network se-
curity, before we point out future research challenges (Sec. 6).

2 PROBLEM ANALYSIS
The main challenges for securing smart home networks arise
from the heterogeneity of IoT devices regarding their capa-
bilities, modes of operation, and applications [19]. With an
increasing number of IoT devices, users are overburdened
with configuring and maintaining each device in a secure
manner [17]. Typically, it is often unclear what kind of net-
work permissions a specific device should have. As a result,
users tend to blindly trust the IoT devices they connect to
their home network. In the following, we illustrate the poten-
tial security threats in smart homes and derive the necessity
for an in-network solution to mitigate these threats.

2.1 Security Threats in Smart Homes
Smart homes introduce serious security threats ranging from
exposing sensitive information to unauthorized third par-
ties [15] over hacked devices that are used to launch DDoS
attacks against innocent bystanders [1, 3] to physical harm,
e. g., by manipulating a smart lock to break into a home [11].
In response, the research community invested enormous
efforts to identify, describe, and categorize these security
threats [6, 8, 21, 24, 25]. We provide an overview of the most
important security threats in smart homes, especially with
respect to network communication, alongside an example
scenario in the following.
In our (fictitious) example, a user buys an IP camera to

monitor the drive way in front of her home. To quickly con-
figure the camera, she uses her smartphone to connect to the
camera via Bluetooth. Once the connection is established,
the configuration menu of the camera allows the user to
select her home network from a list of nearbyWiFi networks
and subsequently to enter the corresponding password. The
IP camera is now connected to her home network and has
full access to the local network and to the Internet, just like
any other connected IoT device. To allow the user to access
her camera remotely, the camera automatically and unknow-
ingly to the user opens a port in the firewall of the user’s
router, e. g., using Universal Plug and Play (UPnP).
It is, however, unknown to the user that the camera is

globally reachable and that the current firmware image in-
cludes several security flaws, e. g., well-known standard pass-
words [31] or the potential for remote code execution which
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(a) An attacker gains access due to
security flaws in the IP camera.

(b) The infected IP camera attacks
other devices in the home network.

Figure 1: Attack scenario in which an infected IoT de-
vice attacks other devices within the same network.

can be exploited to gain unauthorized (root) access to the
camera [41]. These security flaws enable an attacker to gain
access to the IP camera from outside, and even to install mal-
ware on the camera. In our example, depicted in Fig. 1, the
malware then takes advantage from the fact that many other
devices are connected to the same home network without
any restrictions w.r.t. their permitted communication behav-
ior. The malware on the camera thus scans the local network
for other, potentially vulnerable devices and intends to get
access to them, e. g., by exploiting other well-known security
flaws, to install further copies of the same or a different mal-
ware. Once the infected devices are under the control of the
malware, they may not only cause harm in the smart home
network itself, e.g., by exposing private information, but also
perform other malicious activities such as contributing to
DDoS attacks [3] or manipulating services.

Although this is only a single example of a possible attack
vector against a smart home, it, nonetheless, illustrates the
fundamental weaknesses of current smart home network con-
figurations, which can be exploited in numerous ways [12].
Notably, to perform such attacks, it is not even necessary that
a vulnerable device is directly reachable from the Internet
(as in our above example). Recent research shows, e.g., that
a malware-laden smartphone can be exploited to attack de-
vices in an otherwise secured home network [36]. As a result,
typical protection mechanisms at the network layer, e. g., a
firewall, that aim at blocking unauthorized network traffic
from the outside are no longer sufficient to protect devices in
smart home deployments. As soon as one device in a home
network is under the control of malicious software, there
are nowadays practically no security measures to prevent
attacks towards other devices and services originating from
the infected device.

2.2 The Need for In-Network Security
To augment security in smart homes, we thus require an
in-network approach that automatically adapts to the het-
erogeneity of smart home networks by restricting the com-
munication capabilities of IoT devices without limiting their
desired functionality. To this end, we propose a new approach
to network security that restricts both internal communica-
tion (i.e., with other devices in the same home network) and
external communication (i.e., with Internet- and cloud-based
services) of individual IoT devices to the extent necessary for
delivering their intended functionality. That is, depending
on the purpose of the IoT device in the smart home network,
we allow certain incoming and outgoing connections of the
device that are necessary for its intended functionality, while
blocking all other connections.
Introducing this new network security approach serves

several purposes. First of all, the unauthorized access to IoT
devices that are connected to the Internet is prevented by
blocking such connection attempts. Moreover, in the case
that an attacker still gained access to an IoT device, e. g., by
exploiting a security flaw, the unauthorized access to other
devices within the network should be impeded. Existing net-
work security mechanisms, e. g., a firewall, typically operate
on the home router protecting the network from unautho-
rized access from outside. In turn, for connections within
the home network such security mechanisms do not take
effect, which allows infected devices to easily attack other
devices within the network. Therefore, our proposed com-
munication approach only permits those connections within
the network that are necessary such that the IoT devices can
fulfill their tasks. Hence, we significantly reduce the attack
vector of rogue devices within the home network. Finally,
unauthorized connections from the home network to other
networks are also blocked, e. g., to prevent infected devices
to perform a DDoS attack or expose sensitive information
that should not leave the home network.

To turn our vision of a new communication approach for
in-network security of smart homes into reality, we require
three main components as illustrated in Fig. 2: 1 a specifi-
cation of network compliant behavior for each IoT device to
derive what kind of communication has to be performed to
deliver the desired functionality, 2 a centralized network
component, e. g., the home router, that filters IoT traffic ac-
cording to the specified intended communication behavior
to prevent attacks from and to IoT devices, and 3 an anom-
aly detection system that enables us to dynamically react
to attacks within the smart home network by evolving the
specified intended communication behavior.

Our approach is based on the assumption that all commu-
nication traffic is routed through a central network router,
which is the typical setting in today’s home networks. This,
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Service Type Description Source Destination Traffic Type Max. Packet Size Max. Data Rate

audio stream requests & ACKs *.*.*.*:* example.org:80 periodic 200 Bytes 8 kbit/s
AAC data example.org:80 *.*.*.*:* periodic ∗ 128 kbit/s

station info requests & ACKs *.*.*.*:* example.org:80 bursty 200 Bytes ∗
XML data example.org:80 *.*.*.*:* bursty ∗ ∗

firmware update requests & ACKs *.*.*.*:* 203.0.113.10:21 periodic 200 Bytes 8 kbit/s
binary data 203.0.113.10:21 *.*.*.*:* bulk ∗ ∗

remote config https cloud.example.org:* *.*.*.*:443 bursty 600 Bytes ∗
https *.*.*.*:443 cloud.example.org:* bursty 600 Bytes ∗

Table 1: Example of a service description for a web radio.
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Figure 2: Overview of in-network security: 1 The
communication rules of each device are installed at
the home router. 2 These rules are used to filter ma-
licious traffic. 3 Moreover, anomaly detection is used
to detect new attack vectors.

however, implies that attacks occurring in separated net-
works, e. g., via Bluetooth, can only be detected by our ap-
proach when they also affect the network managed by the
home router. Furthermore we assume that the soft- and hard-
ware of the home router has not been compromised and that
(external) attackers perform large scale attacks instead of
targeting specific users or networks.

In the remainder of this paper, we detail these three com-
ponents and discuss how they can be realized based on prior
work of the research community as well as promising future
approaches.

3 SPECIFICATION OF NETWORK
COMPLIANT BEHAVIOR

An essential design component of our envisioned smart home
in-network security approach is the specification of network
compliant behavior for each IoT device to distinguish mali-
cious from harmless, i.e., intended, network traffic. As stated
before, compliant behavior of an IoT device entails the mini-
mum required communication to fulfill the desired services.
We depict an example for the provided services and required
communication of a web radio in Table 1.

To leverage knowledge of network compliant behavior as
a foundation to realize in-network security for smart homes,
we propose to specify this behavior in the form of communi-
cation rules. Communication rules specify the IP addresses
(or hostnames) as well as port numbers and communication
direction that need to be permitted to realize the intended
functionality of a specific IoT device, similar to, e.g., rules for
firewalls. Furthermore and in contrast to such simple firewall
rules, communication rules also define other essential char-
acteristics of network communication such as packet sizes,
packet interarrival times, number of parallel connections,
and consumed bandwidth. Each device can have multiple
communication rules to account for different intended func-
tionality of a single device, e. g., a web radio (cf. Table 1)
typically receives audio streams at a bandwidth of 128 kbit/s
but occasionally also needs to download new station lists
or firmware updates. Moreover, the user may configure her
web radio via a cloud service that interacts with the device
via https.

In its easiest form, such communication rules specifying
network compliant behavior are directly provided by the
manufacturer of the respective device. To account for legacy
devices already deployed in smart homes today or manu-
facturers that refrain from publishing communication rules
for their devices, users can rely on a certification agency
or the open-source community to provide communication
rules, or even provide them by themselves [42]. To this end,
recent research shows that IoT devices can be automatically
identified by passively observing network traffic [27]. Such
fingerprinting techniques can be used to retrieve the respec-
tive communication rules from a trusted third party, e. g., a
certification agency or an open-source repository, given that
the manufacturer does not provide a description of network
compliant behavior in the first place.
Besides identifying individual IoT devices, we can also

classify devices into groups based on their communication
behavior. As a result, we can provide certain default rules
to a whole group of devices with similar communication
behavior. For example, when a new IoT device, for which no
communication rules are available (not even from a trusted
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third party), connects to the home network, this device can be
automatically matched to an existing communication class,
e. g., permit only local communication or permit only commu-
nication to cloud services. This enables more specified default
rules for unknown devices, which can be gradually adapted
over time when more traffic data becomes available.

Especially if the communication behavior of a new device
does not closely match one of the default classes, it might
be necessary to automatically derive the communication
rules of this device. To this end, we propose to observe the
communication of the new device during a learning phase
and create communication rules based on the initial behavior
of this device. Here, it is important to cover the different
aspects of the device’s functionality (see above) to reduce
the overhead for adapting communication rules later on.
Once we have obtained the communication rules for an

IoT device through one of the above channels, these rules are
centrally installed at the home router that bridges the home
network with the Internet. In the case that such a description
is not available yet, e. g., because we first need to classify the
IoT device based on its communication behavior, we apply a
default set of rules. As such, the device is, e. g., not allowed
to open a connection to another device or server unless the
user explicitly grants permission at the home router.

For a practical realization of such a system, we expect it to
be challenging to implement the real-time traffic filtering on
commercial off-the-shelf router hardware. Nevertheless, as
shown in the following section, there are existing approaches
that target efficient traffic filtering. For future work, we thus
aim at adapting these approaches to fit the requirements and
limitations of the smart home use-case.

4 IOT TRAFFIC FILTERING
Based on the communication rules that specify network com-
pliant behavior for each IoT device, we propose proactive
in-network security that aims at minimizing the risk of at-
tacks within the smart home network. This not only includes
attacks from outside but also attacks from inside, e. g., by
infected IoT devices connected to the smart home network.
In the following, we describe how we envision the realiza-
tion of in-network security based on a Software-Defined
Networking (SDN) and flexible packet matching approach
that efficiently enforces the communication rules in a het-
erogeneous environment with evolving attack vectors.

4.1 SDN-Based Attack Prevention
Software-Defined Networking (SDN) realizes central net-
work management, which separates the data plane from the
control plane [23]. This facilitates the change of network pro-
tocols and policies in existing networks, since only the soft-
ware of the central controller needs to be adapted. Especially

large networks, e.g., in data centers and companies, benefit
from SDN due to the reduced complexity and overhead for
deployment and maintenance. However, the advantages of
SDN have been also considered for automating the security
of home networks [10] and thus to relieve users of complex
security management tasks.
In alignment with previous research efforts [34, 37] we

therefore propose to follow an SDN approach in smart home
networks to enforce network compliant behavior as defined
by our communication rules (cf. Sec. 3). This approach does
not require additional hardware, since the SDN controller
can be centrally located at the (programmable) home router.
As a first step for IoT traffic filtering, the communication
rules for each IoT device need to be converted to flow-table
entries for the forwarding tables, specifying for each data
flow how it is matched and which actions have to be taken.
If, for example, the communication rules for a smart lighting
system specify only local communication within the home
network, then all packets originating from the lighting sys-
tem with a destination IP that does not lie within the home
network address range are dropped. Besides dropping pack-
ets, other actions according to the communication rules are
possible, e. g., limiting the traffic rate of an IoT device.
The flexibility of SDN allows to dynamically adapt the

communication rules, e. g., when new devices are connected
with the home network or the functionality of existing de-
vices is extended. Even further, the enforcement of such rules
can be realized on the IoT devices themselves and on the
smartphones that interact with these devices [8]. Thus, we
can filtermalicious network traffic either directly at its source
or at least close to its origin. However, the main challenge to
realize this SDN-based approach is to correctly filter network
packets according to the communication rules of individual
devices, which we further elaborate in the following.

4.2 Flexible Packet Matching
The de facto standard protocol for configuring SDN deploy-
ments is OpenFlow [38]. However, its inflexible packetmatch-
ing based on hard-coded header fields makes it unsuitable
for quickly evolving protocols [5]. For smart home networks
with a broad range of (unknown) IoT devices and protocols,
the traditional OpenFlow deployment model needs to be
evolved to enable dynamic packet matching. In the follow-
ing, we shortly present two distinct approaches that enable
flexible packet matching in SDN and thus are well-suited for
enforcing security rules in smart home networks.

P4. To enable flexible packet matching, Bosshart et al. [5]
propose Programming Protocol-independent Packet Proces-
sors (P4), a high-level language that allows to specify the be-
havior of a network switch. More specifically, P4 can be used
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to describe, independently of the target hardware, a parse-
match-action pipeline, i. e., a description of packet matching
sequences, packet processing, and actions, which can all be
modified during run time. Therefore, the P4 compiler first
translates the P4 program into multiple match+action tables,
which are then analyzed against dependencies with the help
of table dependency graphs to enable sequential and parallel
execution. Afterwards, the compiler adapts this represen-
tation for the target soft- and hardware. P4 thus allows to
specify match+action rules independently of the hardware
and, more importantly, to flexibly adapt to evolving proto-
cols and security threats. For in-network security in smart
homes, each IoT device can thus specify its communication
rules for network compliant behavior in a small P4 program
including the required headers, parsers, tables, and actions.
Subsequently, this program is used to filter the traffic of the
IoT device to permit only network compliant behavior.

eBPF. Berkeley Packet Filters (BPF) were originally speci-
fied for efficient packet filtering in the Linux kernel already
in 1993 [26]. Until today, BPF evolved to a powerful tool for
network monitoring, engineering, and security; especially
since its major revision known as extended BPF (eBPF) [13]
has been included into the Linux kernel in 2014. More specif-
ically, eBPF allows to specify small filter programs, which
are executed in a virtual machine in the operating system
kernel, close to the actual hardware. Since running user code
in the kernel poses certain risks, eBPF includes a verifier
that performs several security and stability checks before
loading an eBPF program [32]. Due to its efficiency and pow-
erfulness, Jouet et al. [22] propose to use eBPF for flexible
packet matching in OpenFlow. Similarly to P4, eBPF allows
to match packets independently of any protocol implemen-
tation and is therefore well-suited for the heterogeneous IoT
landscape. Furthermore, Jouet et al. show that eBPF reduces
the number of flow entries and achieves efficient packet fil-
tering at line-rate. In contrast to P4, changes in the eBPF
program specification do not entail a recompilation of the
target switch software [39]. For our approach of in-network
security for smart homes, eBPF thus allows to easily imple-
ment and modify communication rules of network compliant
behavior during operation. Such updates become necessary
when new IoT devices are connected with the home network,
or in the case of anomalous behavior, e. g., when a device
gets infected and intents to attack other devices. We detail
our discussion on the need to detect and react to anomalies
in the communication behavior in the next section.

5 ANOMALY DETECTION
So far, we described how our proposed approach for in-
network security realizes communication rules for network
compliant behavior (cf. Sec. 3) and enforces these rules in the

smart home network based on the principle of SDN (cf. Sec. 4).
However, taking into account the heterogeneity and the vast
growth of the number of IoT devices, it is possible that new
attack vectors evolve that were not considered in the existing
set of communication rules. Furthermore, the provided com-
munication rules might be incomplete and contain errors or
still allow for exploiting unforeseen attacks. The proposed
proactive security mechanisms of our approach therefore
must be complemented with a reactive approach that dynam-
ically adapts the current smart home configuration. To this
end, we propose an efficient network monitoring system as
well as anomaly detection based on machine learning.

5.1 Monitoring IoT Devices
A prerequisite for network-level anomaly detection is an
efficient monitoring of the network traffic. In the context
of smart home networks we expect, on the one hand, an
increasing number of IoT devices and consequently increas-
ing network traffic. On the other hand, typical networking
hardware for domestic use, e. g., routers and switches, has
limited computational resources. As a result, the monitoring
approach can only focus on essential packet characteristics,
such as packet headers, lengths, and periodicity, instead of
performing deep packet inspection, i.e., analyzing the pay-
load of individual network packets [18]. Still, such essential
packet characteristics can be used to identify traffic patterns
of IoT devices and thus to compare these patterns against
known malicious behavior. To even further reduce the costs
of monitoring in smart home networks, Sivanathan et al. [35]
propose to monitor the network traffic at flow-level granular-
ity, where not all packets of a data flow are analyzed in detail
to keep the processing overhead low. Consequently, we pro-
pose to first analyze the initial packets of a new unknown
data flow to quickly assess whether this flow is suspicious or
not and to adapt the monitoring accordingly. Furthermore,
we use the collected data post factum [40], e. g., to isolate
a culprit device with the help of the recorded data once an
attack has been detected.

5.2 Machine Learning Techniques
Besides detecting anomalies in the smart home network
based on known traffic patterns, a more dynamic approach
consists in using machine learning to classify data flows [30].
An advantage of using machine learning for anomaly detec-
tion is the possibility to detect unknown attacks, which were
not considered in the system yet. A disadvantage is, however,
the risk of misclassification leading to a too restrictive net-
work configuration with reduced functionality. Therefore,
a machine learning approach should only complement the
aforementioned rule-based approach, e. g., by adapting exist-
ing communication rules or reacting on imminent attacks.
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As proposed in [4], a learning module can be trained for
each data flow during run time based on the monitored traffic
(cf. Sec. 5.1). Additionally, known attack patterns, e. g., TCP
SYN flooding attacks, can be fed into the learning module as
training data [9]. A classification module then classifies data
flows based on the input of the learning module, e. g., using
decision trees, neural networks, random forests, or support
vector machines [9]. In case an anomaly has been detected,
the corresponding communication rules are adapted to pre-
vent further risks to the smart home network.

6 CONCLUSION AND FUTURE
RESEARCH CHALLENGES

In this paper, we propose automatic in-network security for
smart homes to tackle the security challenges introduced
by heterogeneous IoT devices and protocols, and to relieve
users of complicated security configuration of their home
networks. Therefore, we are convinced that each IoT device
should describe the communication required to realize its
functionality, such that these communication rules can be
enforced in the smart home network to realize network com-
pliant behavior. Based on existing SDN-based approaches
and efficient packet matching engines, we explore the design
space for realizing such a system in the context of smart
homes. Furthermore, network compliance behavior-driven
in-network security can be complemented with machine-
learning techniques to dynamically react to imminent attacks
and to adapt communication rules during operation.
For future work, we aim at a prototypical realization of

in-network security for smart homes to empirically mea-
sure its performance and to show the security benefits of
this approach. We are particularly interested in achieving
a balanced definition of communication rules, which does
not limit the functionality of the IoT device and at the same
time achieves a strong level of security for the smart home
network. In this context, the automatic classification of IoT
devices into different groups based on their initial traffic is
of special interest to support legacy devices, where no com-
munication rules are available. Furthermore, we expect that
integrating machine learning techniques into the rule-based
system will significantly improve the detection rate of mali-
cious network traffic, compared to systems that exclusively
apply machine learning without any domain knowledge.
Finally, we consider it promising to extend the concepts of
in-network security to related but yet different environments,
such as the Industrial Internet of Things (IIoT).
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