
Towards Benchmark Optimization by
Automated Equivalence Detection

Daniel Schemmel, René Glebke, Mirko Stoffers and Klaus Wehrle
Communication and Distributed Systems

RWTH Aachen University, Germany
Email: firstname.lastname@comsys.rwth-aachen.de

Abstract—Especially in the case of Cyber-Physical Systems
(CPSs), testbed validations and benchmarks, while necessary,
incur significant setup and operation costs. Optimized benchmark
sets reduce the number of tests that need to be performed,
which ultimately reduces costs. In this paper, we propose a
new methodology to provide automated assistance for optimizing
existing benchmarks or for creating new ones from scratch.

The proposed methodology is based on complete Symbolic
Execution of a single control loop iteration, optionally expanded
with a Nondeterministic Finite Automaton (NFA) model that
represents possible changes in the environment or the system
in between control loop iterations. This enables us to compute a
stress number that represents the computational burden put upon
the controller by a respective benchmark. By iteratively searching
for benchmarks with high stress numbers and automatically
detecting and pruning benchmarks that induce the same path
through the controller code, we can ultimately create a minimal
set of relevant benchmarks for a CPS.

I. INTRODUCTION

Testbeds, while very useful to perform meaningful bench-
marks in, are expensive to not only set up but also maintain—
for Cyber-Physical Systems (CPSs) especially so. Benchmarks
are often based on expensive prototypes and under conditions
resulting in much more than the usual wear and tear. Expend-
able supplies for not (yet) batch-produced tools are major
cost drivers. In addition to tools and materials, personnel is
required to install, supervise, reset, reconfigure, and reposition
the physical components of the system. Concluding, each and
every benchmark can cost considerable amounts of money.
An optimized benchmark set containing fewer cases therefore
directly equates to not only time, but also cost savings.

However, such an optimization must not result in miss-
ing important benchmarks. The key challenge in creating
an optimized benchmark set therefore is to choose it as
small as possible without sacrificing precision. We propose a
methodology that will assist the developer by reasoning about
equivalence classes of benchmarks. Performing just a single
benchmark of an equivalence class enables reasoning about
all other benchmarks in the same class without performing
additional benchmarks. For example, choosing an extremum of
parameters from such an equivalence class provides an upper
or lower bound on the possible responses. Choosing the other
extremum in a second benchmark fully confines the response
function to a bounded interval. If additional knowledge such
as linearity is available, the entire function can be derived for
that interval. By additionally estimating the input-dependent

complexity of the computations that the controller needs to
perform (which we refer to as stress numbers), we can identify
benchmarks that cause certain computation times.

To derive the equivalence classes and stress numbers reason-
ably, it is of utmost importance to identify a reliable source of
information. In particular, we strictly avoid additional domain
knowledge provided by users as an ultimate requirement,
which would not only pose additional manual effort but also
introduce a potential source of error. Instead, we use the
real code that is used to operate the control loops commonly
found in systems that interact with the physical world. We
utilize exhaustive Symbolic Execution – a complete, dynamic
code analysis method – to fully capture the behavior of one
control loop iteration. Additionally, we retrieve expressions
(so called path constraints) for the different paths that the
execution of the program may follow, which enables us to
derive input equivalence classes. A Nondeterministic Finite
Automaton (NFA) model of the behavior of the environment
or the controlled system may be additionally provided in order
to reduce the search space during symbolic execution. This
model need by no means be complete nor accurate; it should
rather exclude strictly impossible behavior to lower the number
of possible equivalence classes.

Based on the conducted analyses, we can issue the minimal
benchmark set necessary to rigorously evaluate a given CPS.
Our proposed methodology can be employed in very different
scenarios, such as:

• validation and correctness testing of control programs,
• derivation of benchmarks of certain complexity (e.g.,

best-case or worst-case), both for the controller itself and,
using model-based testing, of the whole system,

• derivation of equivalence classes of behavior of the
controller or the system,

• optimization of existing benchmark suites by showing up
opportunities for reduction of the benchmark set.

A. Structure

Section II details related work in this area and Section III
gives some background on Symbolic Execution. Section IV
presents our approach in more detail and Section V elaborates
on the main challenges that our approach faces. We conclude
in Section VI.



II. RELATED WORK

The field of CPSs is extremely diversified, ranging from
small, passive sensor networks to large-scale industrial appli-
ances. Yet, common challenges arise based on the fact that
the systems directly interact with the physical environment.
Input from sensors can constantly change and may not always
provide predictable or even useful values (e.g., in cases of
electromagnetic disturbances). Likewise, output signals sent
towards actuators such as motors or heating elements must
not necessarily result in the intended behavior to actually be
observable, e.g., in cases of mechanical failures. Another par-
ticularity of CPSs is that they do not necessarily always start
off with a clean slate; battery-backed subsystems may cause
non-default inputs to be supplied to the control programs even
when they are restarted [1]. Furthermore, Programmable Logic
Controllers (PLCs), used to control assembly line machinery
and industrial robots, employ a so-called cyclic scanning

mode, which means that programs or parts of them need to
be repeatedly executed within bound, short periods of time
in order to account for changes in the input signals. Failure
to properly account for these idiosyncrasies in the control
programs may lead to physical damage of equipment or, in
the extreme, even loss of human lives. Testing the compliance
of the employed programs to the expected behavior or their
level of adherence to standards is hence one of the paramount
objectives when evaluating CPSs. Due to their particular
importance in industrial settings and hence the severeness of
consequences in cases of faults, we in the following mainly
concentrate on techniques applied to PLCs. However, the ideas
presented in the following are generally similarly applicable
also to non-PLC systems such as sensor nodes and PCs.

One early approach towards statically analyzing compliance
in CPSs was presented by Moon in 1994 [2]. Control programs
written in a precursor of the IEC 61131-3 languages nowadays
used for programming PLCs [3] are rewritten as inputs to a
model checker. The desired behavior of the programs can be
expressed in the form of temporal logic propositions over the
relations between input signals (sensor readings and internal
state variables) and outputs (target operation values for con-
trolled equipment and new internal states). The model checker
then formally either proves adherence to the specifications
or provides counterexamples, i.e., variable combinations that
contradict the expressed desired behavior and hence point
to paths in the program execution that require modification
in order to ensure proper operation of the CPS. This form
of analysis has since seen further development in the CPS
domain, including adoption to both the peculiarities of micro-
controllers [4] and the inclusion of multiple IEC 61131-
3 languages into a single tool [5]. The inherent soundness
and completeness of this approach (a model checker will
always provide a correct assessment regarding the desired
behavior of the program), however, comes at the price of
potentially prohibitively high time and memory requirements
when applied to real-world programs [6].

When complete coverage of all possible combinations of

bool ok = true;

{ }

if(x < 5)

ok = false;

if(x >= 100)

{x < 5}

if(x >= 100)

{x ≥ 5}

ok = false;

return ok;

{x < 5, x ≥ 100}

return ok;

{x < 5, x < 100}

ok = false;

return ok;

{x ≥ 5, x ≥ 100}

return ok;

{x ≥ 5, x < 100}

1

2

3

4

5

6

bool ok = true;
if(x < 5)
ok = false;

if(x >= 100)
ok = false;

return ok;

1

2

3

4

5

6

Figure 1. Symbolic Execution of a simple interval test. The variable x is
assigned a symbolic value, which causes three paths through the code to be
reachable. One of the four depicted cases is not reachable (denoted by the
dotted lines), as x cannot be both, smaller than 5 and larger or equal to 100.

variable states is not an option, the search space can also be
sampled. In [7], a variation of the meta-heuristic hill-climbing
algorithm is used to enhance the stochastic probing in a search-
based testing approach applied to parts of a train control soft-
ware. More systematic approaches can automatically generate
test cases, for example from line- or branch coverage metrics
[8]. The resulting variable combinations necessary to reach a
certain line or branch may then be used in unit or regression
tests.

Static analysis methods may also be employed to estimate
Worst-Case Execution Times (WCETs) for control programs
and their respective cycles (e.g., [9]–[11]), although the gen-
eral problem is undecidable for arbitrary control flows (includ-
ing loops) [12].

In contrast to the approaches presented so far, dynamic

analysis techniques do not analyze the code of programs to be
evaluated but directly execute the programs themselves and
reason from their run-time behavior. For example, in [13],
Biere et al. use Symbolic Execution to increase the precision
of a WCET analysis.

While these approaches have only recently gained attention
also in the CPS domain, few promising application fields have
already been shown. Kormann and Vogel-Heuser for example
propose coupling PLC programs with simulated physical sys-
tems, which then allows the simulation of hardware faults and
the generation of software test cases for such situations without
having to manipulate the programs or an actual physical
system [14].

Building on their previous developments in [5], the authors
of [6] propose a methodology that is perhaps most similar
to our approach. Using a mixture of Symbolic Execution (cf.
Section III) and a concretization of selected variables during
run time, their concolic execution engine allows the automatic
generation of test cases for PLC programs during execution.
The concretization of variables yields under-approximations
which may increase coverage at the cost of completeness.
Thereby, they showed an increase in branch coverage for a
vendor-specific implementation of a library of standardized
safety functions, while at the same time reducing test case
generation times significantly.



III. BACKGROUND ON SYMBOLIC EXECUTION

Symbolic Execution has become a popular dynamic analysis
technique whose primary domain is automated test case gener-
ation and bug detection [15]–[21]. The primary intent behind
Symbolic Execution is to improve upon exhaustive testing by
symbolically constraining inputs instead of iterating over all
possible values.

Figure 1 illustrates the principle of Symbolic Execution.
It shows the execution tree that results from executing a C
snippet testing x for inclusion in the range [5, 100), where x
is set to an unconstrained symbolic value, i.e., x can take
any value. The first constraint on x is added in line two:
the execution forks into two different paths as x < 5 could
evaluate to true as well as false. A similar situation
follows in line three, except that x >= 100 cannot become
true if x < 5 was previously true. If no model exists
satisfying all constraints along the path, that branch is not
explored as it cannot occur during (ordinary) execution. This
step is decided with a Satisfiability Modulo Theories (SMT)

solver that answers queries in the theories of (quantifier free)
bit-vectors, floating point numbers1, and arrays thereof. Thus,
Symbolic Execution can derive this execution tree efficiently,
i.e., without brute-forcing every possible x.

The major limitation of Symbolic Execution is scalability
due to two different root causes:

1) SMT solving is NP-complete for the required theories2.
While solvers exist that can answer most queries occur-
ring in the wild in reasonable time, counter-examples
must exist unless P = NP . Practically speaking, this
occurs most heavily in cryptographic computations and
is usually circumvented by aborting queries exceeding a
preset amount of computation time, thereby causing the
analysis to become incomplete.

2) As execution needs to fork every time it might possibly
take different paths, the number of paths that the Sym-
bolic Execution engine needs to consider becomes very
large for many real-world programs. This is referred to
as the path explosion problem.

Both problems are significantly mitigated by the target do-
main: single iterations of control loops usually neither con-
struct complex queries, nor is their control flow of significant
complexity.

IV. BENCHMARK OPTIMIZATION

In this section we propose our methodology for deriving
an optimized benchmark set for CPSs. By executing only
a single iteration of a control loop we can already reason
about properties of the implementation of the control loop like
correctness or computational costs of that iteration. To capture
the full behavior, however, multiple iterations of the control
loop need to be executed.

1Floating point support for Symbolic Execution is still evolving and
currently limited in practice [22].

2Bitblasting [23] provides a polynomial-time reduction to the Boolean
Satisfiability (SAT) problem for the used theories.

The most simple example that our methodology can be ap-
plied to is a control system consisting of a sensor, a controller,
and an actuator. When we execute the control loop once we
reason about any possible sensor input. For multiple iterations
we need to assume some interaction between the actuator
and the sensor, e.g., an actuator that turns on a heater such
that a temperature sensor eventually provides higher values.
If no or only very rudimentary models of the environment
or the controlled system are available, possible inputs by
the sensor and reactions by the actuator to control signals
(e.g., actual state vs. target state) may be nearly unrestricted
from the Symbolic Execution engine’s point of view, i.e., the
inputs to the control loop are considered wholly uncorrelated.
Rudimentary models hence allow us to provide a correct and
complete set of benchmarks. More precise models can, in turn,
be used to narrow down the set of possible input/output values
in the system, e.g., by specifying the range of values sent by
the temperature sensor.

In the following, we discuss in more detail how our ap-
proach executes a single control loop iteration and how it
operates with multiple iterations. After that, we sketch how
the results are deduced.

A. Single-Iteration Mode

Deriving equivalence classes of benchmarks can be easily
achieved by virtue of the origins of Symbolic Execution.
Errors are detected owing to automatically performed checks,
such as for division by zero, and any additional assertions,
which allows for semantic testing. For small and simple
programs, such as single iterations of a control loop, it is rather
likely that the Symbolic Execution will complete without
pruning any paths. In that case, it is guaranteed that all bugs
that could be detected have been detected.

During the Symbolic Execution, we trace the instructions
along each path. For the kind of hardware platforms used
in CPSs, this often enables a fairly precise measure of the
execution time with little additional post-processing, by just
adding up the costs of the individual instructions. Using a more
complicated analysis, it is also possible to provide accurate
timing predictions for much more sophisticated platforms [24].

To optimize a benchmark suite, or to generate an optimized
benchmark suite from scratch, the resulting test cases are
grouped by their execution time to discover how to put the
most (or the least) stress on the control loop. If no further
information exists, inputs from the most computation intensive
category are preferred. This is, however, less than satisfactory,
as the full behavior of a CPS is hardly captured by a single
iteration of its control loop.

B. Multiple-Iterations Mode

To escape this dilemma, we need to identify possible
variations in the input after each state. To this end, we utilize
a model that describes possible transitions in the environment.
As detailed above such a model can be of arbitrary degree of
abstraction from completely unrestricted to precisely specified.
Multiple models might also be useful to represent different



operating environments, hardware faults (e.g., a faulty temper-
ature sensor might read 7 K as the current room temperature)
or equipment configurations.

Both the model and the Symbolic Execution Tree can
now be described as an NFA. The model describing the
environment could, for example, encode temperature change
from one state to another by having multiple transitions to new
possible temperatures. This is even simpler for the Symbolic
Execution Tree, which already is a graph with points from
which multiple different decisions can be made. By joining
these two NFAs at their decision points, we can generate a
combined NFA3

On the combined NFA, we perform an iterative search
for a sequence of loop iterations that have a high chance
of requiring significant computational effort. The expected
computational effort is then represented as a stress number.
Therefore, the search effectively attempts to find benchmarks
with a maximum stress number.

As the control loop will usually not terminate, but rather
continue running, the analysis must stop at some point without
considering the entire (infinite) sequence of iterations. While
it is of course beneficial to analyze as long a sequence as
possible, the time required for the analysis must also be taken
into account. For a given analysis time, sequence length and
variety of sequences are in conflict, and must be balanced for
an optimal result.

C. Deducing Results

Our approach provides two major benefits over naïve Sym-
bolic Execution:

1) By categorizing the leaves of the Symbolic Execution
tree by the costs of the instructions consumed (i.e.,
their stress), we can effectively perform state-merging

to derive temporally equivalent benchmarks, i.e., those
of similar computational complexity. State-merging is
commonly used in Symbolic Execution to reduce the
path explosion.

2) As the individual loop iteration is analyzed as exactly
as possible before the iterative search begins, the danger
of choosing sub-optimal branches for exploration is
significantly reduced. Any distinctive paths are found
before the search, and can be prioritized during the
search.

Using the equivalence classes provided by the Symbolic
Execution, we are now able to suggest optimized benchmark
suites by including all those benchmarks into the suite whose
behavior is not equivalent to other benchmarks in our model.
Depending on the use case we can focus on behavioral or
temporal equivalence. For the temporal equivalence we can
employ the stress numbers. Note that behaviorally equivalent
benchmarks also have the same stress number by construction.

If the optimization of an existing benchmark suite is re-
quested instead of the creation of a wholly new suite, we

3The combined NFA may be very large, but does not need to be explicitly
represented in memory.

can guide the search for sequences of loop iterations by
means of the benchmarks provided by the user. We determine
behavioral and temporal equivalence of the input benchmarks.
By constraining the inputs to the user provided data we can
increase the performance of the Symbolic Execution as many
unreachable paths can be avoided. We issue the benchmarks
we determined as equivalent and suggest removing all but
one of any equivalence class. We shall note that, especially
for hand-written benchmarks, there may however be intent
inherent in the old benchmark suite that is not captured by
the provided model, or otherwise invisible to our analysis
(e.g., repeated movements of actuators over mechanical failure
points). For this reason, the developer should carefully choose
the benchmarks to exclude.

V. CHALLENGES

We acknowledge that complete Symbolic Execution is ut-
terly infeasible for any significant program. With this work we
attempt to provide an alternative to premature concretization
by completely and rigorously analyzing a smaller piece of
code, and then creatively stitching it together with a model
of how the physical portion of the CPS acts. While this
already tackles the problem from multiple angles by enabling
selective state space analysis and implicit state merging, the
computational complexity of the analysis warrants further
research and consideration.

A related challenge is how the model can be built in a
manner that is at the same time useful, automated and easy
to analyze. A base model which allows nearly unrestricted
transitions, for example, is extremely easy to generate auto-
matically, but neither easy to analyze nor very close to the
physical reality.

As the state space can easily become excessively large,
the search strategy suggested in Section IV-B is of utmost
import for the performance of the whole approach. To enhance
precision, a tradeoff between width and depth of the search
has to be made – neither narrow and deep, nor wide but
shallow searches promise to cover the possible state space to
a large degree. The strategies that already exist for Symbolic
Execution itself might serve as useful building blocks here,
but will need to be augmented to consider the combined state
space.

VI. SUMMARY

In this paper, we presented work towards a new methodol-
ogy to optimize and generate benchmark suites for CPSs. We
described how Symbolic Execution can be utilized to analyze
a single iteration of a control loop with high precision, and
how the results of the Symbolic Execution can then be used as
input for an iterative search for benchmarks with a high stress
number. Finally, the categories established by the Symbolic
Execution can be used to detect benchmarks with equivalent
behavior (w.r.t. the provided model) and suggest them for
pruning.

It is our hope that this approach to benchmark optimization
by automated equivalence detection paves the way to more



cheaper and more more meaningful benchmarks in the realm
of Cyber-Physical Systems.

ACKNOWLEDGEMENTS

This research is supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 Research
and Innovation Programme (grant agreement №. 647295
(SYMBIOSYS)) and by the German Science Foundation
(DFG) within the Priority Programme 1914 (“Cyber-Physical
Networking”).

REFERENCES

[1] S. Hauck-Stattelmann, S. Biallas, B. Schlich, S. Kowalewski, and R. Jet-
ley, “Analyzing the Restart Behavior of Industrial Control Applications,”
in FM 2015: Formal Methods, N. Bjørner and F. de Boer, Eds. Cham:
Springer International Publishing, 2015, pp. 585–588.

[2] I. Moon, “Modeling Programmable Logic Controllers for Logic Veri-
fication,” IEEE Control Systems Magazine, vol. 14, no. 2, pp. 53–59,
April 1994.

[3] IEC 61131-3:2013 – Programmable Controllers - Part 3: Programming

Languages, International Electrotechnical Commission Std., 02 2013.
[Online]. Available: https://webstore.iec.ch/publication/4552

[4] B. Schlich and S. Kowalewski, “Model checking C source code for
embedded systems,” International Journal on Software Tools for Tech-

nology Transfer, vol. 11, no. 3, pp. 187–202, Jul 2009.
[5] S. Biallas, J. Brauer, and S. Kowalewski, “Arcade.PLC: A Verification

Platform for Programmable Logic Controllers,” in Proceedings of the

27th IEEE/ACM International Conference on Automated Software En-

gineering (ASE’12), Sep. 2012, pp. 338–341.
[6] D. Bohlender, H. Simon, N. Friedrich, S. Kowalewski, and S. Hauck-

Stattelmann, “Concolic Test Generation for PLC Programs using Cov-
erage Metrics,” in 2016 13th International Workshop on Discrete Event

Systems (WODES’16), May 2016, pp. 432–437.
[7] K. Doganay, M. Bohlin, and O. Sellin, “Search based testing of

embedded systems implemented in iec 61131-3: An industrial case
study,” in 2013 IEEE Sixth International Conference on Software Testing,

Verification and Validation Workshops, March 2013, pp. 425–432.
[8] H. Simon, N. Friedrich, S. Biallas, S. Hauck-Stattelmann, B. Schlich,

and S. Kowalewski, “Automatic Test Case Generation for PLC programs
using Coverage Metrics,” in 2015 IEEE 20th Conference on Emerging

Technologies Factory Automation (ETFA’15), Sept 2015, pp. 1–4.
[9] K. Koo and W. H. Kwon, “Predicting Execution Time of Relay Ladder

Logic for Programmable Logic Controllers,” in Proceedings of the 1996

IEEE Conference on Emerging Technologies and Factory Automation,

1996, Nov 1996, pp. 670–676.
[10] J. Henry, M. Asavoae, D. Monniaux, and C. Maïza, “How to Compute

Worst-case Execution Time by Optimization Modulo Theory and a
Clever Encoding of Program Semantics,” in Proceedings of the 2014

SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for

Embedded Systems, Jun 2014, pp. 43–52.
[11] J. Wan, A. Canedo, and M. Al Faruque, “Model-based Design of Time-

triggered Real-time Embedded Systems for Digital Manufacturing,” in
Proceedings of the 18th International Conference on Hybrid Systems:

Computation and Control, April 2015, pp. 295–296.
[12] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-

ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The Worst-case
Execution-time Problem – Overview of Methods and Survey of Tools,”
ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, pp. 36:1–36:53, May
2008.

[13] A. Biere, J. Knoop, L. Kovács, and J. Zwirchmayr, “The Auspicious
Couple: Symbolic Execution and WCET Analysis,” in 13th International

Workshop on Worst-Case Execution Time Analysis, ser. OpenAccess
Series in Informatics (OASIcs), C. Maiza, Ed., vol. 30. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013,
pp. 53–63. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/
2013/4122

[14] B. Kormann and B. Vogel-Heuser, “Automated test case generation
approach for plc control software exception handling using fault injec-
tion,” in IECON 2011 - 37th Annual Conference of the IEEE Industrial

Electronics Society, Nov 2011, pp. 365–372.

[15] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs,”
in Proceedings of the 8th USENIX Symposium on Operating Systems

Design and Implementation (OSDI’08), Dec. 2008.
[16] C. Cadar and K. Sen, “Symbolic Execution for Software Testing: Three

Decades Later,” Communications of the ACM, vol. 56, no. 2, pp. 82–90,
2013.

[17] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed Automated
Random Testing,” in Proceedings of the Conference on Programming

Language Design and Implementation (PLDI’05), vol. 40, no. 6, Jun.
2005, pp. 213–223.

[18] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit Testing
Engine for C,” in Proceedings of the Conference on Programming

Language Design and Implementation (PLDI’05), vol. 30, no. 5, Jun.
2005, pp. 263–272.

[19] N. Tillmann and J. De Halleux, “Pex–White Box Test Generation for
.NET,” in Proceedings of the 2nd International Conference on Tests and

Proofs (TAP’08), Apr. 2008, pp. 134–153.
[20] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,

“EXE: Automatically Generating Inputs of Death,” ACM Transactions

on Information and System Security, vol. 12, no. 2, p. 10, 2008.
[21] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for

In Vivo Multi-Path Analysis of Software Systems,” in Proceedings

of the 16th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS’11), Mar.
2011.

[22] D. Liew, D. Schemmel, C. Cadar, A. F. Donaldson, R. Zähl, and
K. Wehrle, “Floating-Point Symbolic Execution: A Case Study in N-
Version Programming,” in Proceedings of the 32nd IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE’17), Oct.-
Nov. 2017, pp. 601–612.

[23] V. Ganesh and D. L. Dill, “A Decision Procedure for Bit-Vectors
and Arrays,” in Proceedings of the 19th International Conference on

Computer-Aided Verification (CAV’07), Jul. 2007, pp. 519–531.
[24] F. Rath, J. Krude, J. Rüth, D. Schemmel, O. Hohlfeld, J. Á. Bitsch,

and K. Wehrle, “Symperf: Predicting network function performance,” in
Proceedings of the SIGCOMM Posters and Demos. ACM, 2017, pp.
34–36.

https://webstore.iec.ch/publication/4552
http://drops.dagstuhl.de/opus/volltexte/2013/4122
http://drops.dagstuhl.de/opus/volltexte/2013/4122

	Introduction
	Structure

	Related Work
	Background on Symbolic Execution
	Benchmark Optimization
	Single-Iteration Mode
	Multiple-Iterations Mode
	Deducing Results

	Challenges
	Summary
	References

