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ABSTRACT
Controlling physical machinery and processes is at the core of
production automation. However, challenged by inflexibility, au-
tomation and control is evaluating to outsource this control to
resourceful cloud environments. While this enables to derive bet-
ter control through a plethora of measurements, it challenges the
control quality through delay introduced through networks.

In this paper, we show how to unify control and communication
by offloading delay sensitive control tasks from the cloud to local
network elements — a previously unexplored area for in-network
processing — enabling both, ultra-high quality-of-control and scal-
able orchestration through cloud environments. Our implementa-
tion demonstrates how we combine state of the art control with
communication. We achieve this by expressing the control and
the datapath in P4 which we synthesize to BPF programs that we
execute in XDP environments on Netronome SmartNICs. Further,
we highlight the demands of control towards communication to
build more involved and complex in-network controllers.

CCS CONCEPTS
• Networks → In-network processing; Middle boxes / network
appliances; Cyber-physical networks;
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1 INTRODUCTION
The automation and control of industrial machinery is governed
by carefully designed control processes and algorithms [19]. Com-
monly known non-industrial control processes range from self-
stabilizing Segways or drones to vehicular cruise controls or house
heating systems. In industry, these processes are at the core of
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Figure 1: To utilize the resources of cloud computing, pro-
cess control can offload delay sensitive control tasks to net-
work elements overcomingunpredictable andhigh latencies
of Internet communication.

robotic automation but they carry through all aspects of mod-
ern production. However, driven by increased demands in flex-
ibility and manageability of production sites, control theory is
evaluating the softwarization of their field, i.e., the outsourcing
of highly localized control processes to general purpose cloud en-
vironments [23, 24, 26, 27]. In that regard, control e.g., hopes to
utilize the elastic computing and storage of cloud environments
to synthesize advanced controllers, e.g., accounting for wear and
tear of machinery through the constant collection of sensory data
and the application of machine learning. However, even though
Network Control Systems (NCS) describe the general combination
of networking and controlling, they are inherently challenged by
delay and jitter [2, 29]. These uncertainties are currently tackled
by incorporating worst-case roundtrip times into the control de-
sign [10], leading to reduced control performance, e.g., motors can
only be controlled with lower speeds slowing down production.

To this end, this paper demonstrates the applicability of in-
network processing for control — a previously unexplored area —
by offloading small but critical control tasks into network elements
managed and organized through remote (cloud) environments. Fig-
ure 1 visualizes the orchestration of a factory network from a distant
cloud environment enabling to utilize the ultra-low latencies of
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local communication. The controller can offload parts of the control
to (different) network elements, thereby bypassing unpredictable
and high latencies of Internet communication and only latencies
within the controlling network affect control. Usually, these net-
works are under the control of the operator, thus, a precise control
over resources and thereby latency can be guaranteed. Further, by
offloading functionality to the network, we pave the way for col-
laborative in-network control, i.e., multiple individual controllers
that share parts of their state on different (as in Figure 1 Switch
L/R) or the same physical machine. Thus, we enable to combine the
advantages of localized in-network processing with the resourceful
cloud. Specifically, we synthesize control algorithms with a P4 [4]
dataplane that we compile to BPF programs and offload to XDP
environments as well as onto Netronome Agilio SmartNICs. By
building upon the flexibility of P4, we enable to express control de-
mands into the communication path, e.g., we can create lightweight
encapsulating protocols that can meet the demand of control for
guaranteeing correct, duplicate-free, and fresh data. Further, we
can easily control the data flow from sensors through in-network
control elements to actuators by directing the respective packets.
Specifically, our work makes the following contributions:
• We demonstrate the applicability of in-network control to a new

and yet unexplored problem space — network control systems.
• Our evaluation uncovers the deep coupling between delay and

quality-of-control showing that in-network processing can be
a solution to combine resourceful computing with low-latency
processing.

• We show that state of the art control can be offloaded to network
elements with today’s technologies.

• Our analyses further highlight the challenges and demands of
control to be applied in a comprehensive manner by in-network
processing.

Structure. Section 2 introduces fundamental concepts of control
that are relevant for this paper. Following, Section 3 describes our
approach in unifying low latency control and cloud computing
through in-network processing. We highlight the feasibility of our
approach in Section 4 by showing the advantages of in-network
processing at the example of an LQR controller. Section 5 discusses
future challenges of in-network processing for control tasks. We
review related work in Section 6 and conclude the paper in Section 7.

2 NETWORK FEEDBACK CONTROL
Before we begin to explain our approach, we briefly introduce
the challenges and the typical approach to controlling physical
machinery through networks.

A network control system (NCS) consists of at least three entities,
i.e., the system to be controlled which is typically called plant, the
network, and the controller. The plant is periodically sampled using
sensors which in turn transmit the samples data over the network to
the controller. The controller then takes these inputs and calculates
a control output with regard to a certain goal that is preprogrammed
in the controller and sends it back to the plant such that actuators
can modify the physical state of the system. As the control output
is subject to inaccuracies, these steps are repeated over and over
again, therefore, these systems are typically referred to as feedback
control systems.

sense 
angle

0 0.25 0.5 0.75 1.0-0.25-0.5-0.75-1.0

sense 
position

Figure 2: A pendulum on a stiff rod is balanced on top of a
cart bymoving the cart horizontally. Angle and position can
be sampled periodically through sensors.

The textbook example of such a system is an inverted pendulum
as shown in Figure 2 which we will also referrer to in our evaluation
(Section 4.1). Here a pendulum on a stiff rod is installed on a cart
that can only move in horizontal direction. The goal of this system
is to balance the pendulum in an upright position such that it does
not fall over or rotate below the center of the cart. Here one would
sample the location of the cart, as well as the angle of the pen-
dulum. The aim of control theory is to design optimal controllers
that fulfill this goal. Typically, this is a two-stage process. First, the
physical system is modeled as closely as possible using mathemati-
cal formulas. This system model is then discretized and finally, a
controller is synthesized such that it modifies the system to the de-
sired state, e.g., the pendulum being upright and the cart being at a
certain position. There are multiple classes of these controllers, e.g.,
proportional-integral-derivative (PID) controllers, linear-quadratic
regulator (LQR) controllers, or even neural networks. The outcome
of this process is typically a set of matrices or vectors that enable
to calculate a control output given the sampled input data, i.e., in
contrast to the control design which can take long time, the second
phase is typically only a matrix multiplication. A challenge of these
controllers is delay and jitter. Control theory typically regards the
network as a black box with a certain delay and jitter. To account
for these, the control design is modified such that the controller
can deal with the delay; this is typically done by accounting for
the maximum of the expected delay and jitter. Yet, this leads to
decreased control performance, e.g., it takes longer to stabilize the
pendulum.

3 IN-NETWORK FEEDBACK CONTROL
Ever growing demands in flexibility challenge classical control ap-
proaches. To this end, control theory evaluates the feasibility of
moving control into cloud environments, a challenge that intro-
duces delay and jitter in the communication path. Our approach
introduces a middle-ground between local and cloud-facilitated
control by pushing some control logic back from the cloud into the
local network. This way, we are able to reduce latencies but still
utilize the resourcefulness of the cloud.

We utilize the already existing split in control, i.e., we leave
the control synthesis in the cloud, this way it can utilize elastic
computation power as well as optimize controllers from a plethora
of collected measurements (as e.g., in [6]) of the system that is to be
controlled. Yet, we outsource the actual control to the network, i.e.,
we calculate the actual control output directly on-path, e.g., in the
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switches of the local network saving on latencies, enabling more
aggressive controllers that increase the quality-of-control.

Thereby, we pave the way for more flexible production sites. On
the one hand, we can outsource the classic control problems into
resourceful environments, and on the other hand, our approach
enables new means of reliability for cloud-facilitated network con-
trol. For example, when the uplink to the Internet fails, causing the
cloud not to be reachable anymore, the local network can still con-
trol machinery. Further, safety-critical emergency routines can be
offloaded into the network. Imagine a human interacting with one
or more machines. In order to avoid physical injuries, an emergency
stop could then be offloaded into the network such that machines
can be halted with high reliability when humans are in too close
proximity.

We continue by explaining how we implement such a system
that can run on real hardware and the problems that come when
doing so.

3.1 In-Network Processing for Control
To evaluate the feasibility of in-network control, we offload the con-
trol matrix multiplication to network elements. To this end, we tar-
get to utilize the extended Berkeley Packet Filter (eBPF). eBPF (BPF
for the remainder) is the evolution of the classical Berkeley Packet
Filter (cBPF) that is for example at the core of tcpdump’s packet
filter. BPF is a pseudo-virtual machine instruction set, specifically
designed to meet the requirements for efficient packet processing.
It is usually just-in-time compiled to the executing machine’s in-
struction set. BPF programs can be injected into various parts of
the Linux kernel or even onto SmartNICs to process packets. Its ap-
plicability has shown tremendous success for variable firewalls [5]
or custom forwarding planes [1, 13, 21]. The most promising entry
point for BPF programs is the express datapath (XDP) which en-
ables to hook directly into the network card’s driver even before
packet control structures are allocated thus saving on general pur-
pose processing. Utilizing XDP enables to create custom protocols
that are purpose driven for a certain control problem and it further
paves the way for transparent hardware offloading.

Yet, instead of reinventing the wheel, we make use of P4 [4] to
describe the datapath. P4 offers great flexibility and has already
shown its potential for general purpose switching applications
(e.g., [8, 12, 17, 18]). To this end, we utilize the XDP-P4 backend [25]
to compile a P4 datapath description to C code that in turn can be
compiled using clang and LLVM to BPF bytecode. Thus, we can
profit from the streamlined P4 dataplane description but are highly
flexible in the way we can deploy using BPF. That is, we can offload
our controller into P4-capable switches, Linux switches, or even into
regular Linux hosts that reside in the network without requiring
real-time kernels bypassing the regular Linux networking stack.
We continue by describing our datapath and especially, how we
embed an LQR-controller, a prominent class of optimal controllers,
in P4.

3.2 LQR Control in P4
An LQR controller output is rather simple to compute. The whole
controller is described by a vector K which is multiplied by the

current system state vector x (over the reals or using signed floating-
point numbers, respectively). This yields the output u to apply next
to the plant:

u = −KT · x
We implement a switch in P4 that is able to perform this sim-

ple multiplication for a state vector x that is transmitted in UDP
datagrams. To this end, our implementation parses each incoming
packet and looks for UDP datagrams of the correct length starting
with a certain magic string. In case such a header is found, we apply
a P4 table trying to match the source IP and port as well as the
destination IP and port, and look up the control vector K in the
table, similar to looking up destinations in a routing process. We
then calculate the desired LQR output u using K and x and send
a packet with the new output back to the plant by replacing the
original payload of the packet with u.

As it turns out, this is not necessarily as straight forward as
one would imagine. First of all, P4 and also BPF have no support
for floating point arithmetics which however are used in many
control problems. This is not a real problem as many real-world
sensors only operate on integers in the first place and other floating
point systems can be transformed to integers using fixed-point
arithmetics. Yet, when assuming fixed-point arithmetics, our LQR-
control computation effectively scales the output by the square of
the fix-point. K and x are both scaled by the fix-point, thus the
product of both is scaled by the square of the fix-point. Thus, we
are required to divide the output of the multiplication by the fix-
point to scale the value to the original fix-point again. However,
the most recent P4 standard does not define divisions on signed
numbers requiring to first convert negative numbers to positive
ones, perform divisions and finally negate them again. Even though
BPF would allow signed divisions, we strive for P4 compatibility.
Furthermore, multiplying fix-points further requires performing
the calculations with larger bit-depth such that integers do not
overflow, a requirement that could also not be met on different
platforms according to the P4 documentation.

After having transformed the input to an output value we fix up
checksums and length fields and we apply another table that looks
up destination IPs to Ethernet next hop addresses and we rewrite
the MAC header accordingly. Finally, P4 de-parses the packet, yet,
our UDP payload changed such that we construct a different header
for the UDP payload than that we previously parsed.

4 INVERTED PENDULUM IN-NETWORK
CONTROL

To investigate the effectiveness of in-network control, we imple-
ment a real-time simulation of the inverted pendulum problem (cf.
Figure 2). The system state (cart position, first derivative of the
cart’s position, pendulum angle, first derivative of pendulum angle)
is periodically sampled and transmitted using UDP to a controller
that is attached to a mininet. We extend mininet such that XDP pro-
grams can be attached to the virtual interfaces of a mininet switch.
This way, we can easily test our implementation fully virtualized
or we only use it to emulate delay and attach the XDP program
to a PC equipped with a Netronome Agilio CX to which we can
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(a) Local control not subject to delay. The smooth lines in-
dicate a stable control that reaches its equilibrium after
roughly 4 s.
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(b) Control as in (a)when introducing 5msRTT. Thewob-
bling lines indicate an unstable control, further, the con-
troller is not able to reach the equilibrium indicated by
the repeating error pattern.
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(c) Control accounting for 20ms RTT at 20ms RTT. The
controller is able to eventually stabilize the pendulum at
the equilibrium, however initially, the pendulum oscil-
lates round the equilibrium. Further we observe a con-
stant imprecision in the angle visible by the slight wob-
ble in the top plot.
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(d) Control accounting for 20ms RTT and initial oscil-
lation. The controller stabilizes the pendulum without
the initial oscillation, however, even though the angle
reaches its position it still wobbles and the cart’s posi-
tion does not reach the target position in the same time
as before.

Figure 3: Controlling the pendulum over a network. (a) the control is directly connected to the pendulum. (b) control breaks
down when we introduce only 5ms of RTT. (c) adjusting the controller design to account for delay, and, (d) adjusting the
control design while guaranteeing no initial oscillation.

also offload the BPF program1. In the end, this results in a simple
linear topology, with the XDP-enabled switch connected to the
real-time simulation and to the mininet hosting the controller that
would normally be executed in the cloud. The XDP-enabled switch
provides interfaces to populate the P4 tables, thus by inserting a
control vector K with a corresponding flow four-tuple we can acti-
vate and deactivate the switch performing LQR-control for certain
flows.

4.1 Evaluation
To investigate the effectiveness of our approach, we must evaluate
the control performance when offloading control to in-network
elements. Control performance can be evaluated under various
aspects. At the example of the pendulum, typical evaluation metrics
are: how fast does the controller reach its goal, what is the amplitude
of the pendulum when it is moved, does the pendulum oscillate
around the equilibrium? To answer these questions, we setup the
real-time simulation such that the cart is positioned left to the

1Netronome supplied us with an alpha version of their upcoming BPF-capable
firmware.

center (x = −0.5) and the pendulum is tilted to the right (θ = 20◦)
of the upright position (θ = 0◦). Thus, when control does not apply
a force to the cart moving it to the right, the pendulum will fall
over (and will continue rotating below the cart). We setup the LQR
controller such that its goal is to balance the pendulum at the center
(x = 0) in the upright position (θ = 0◦). To measure the quality-of-
control that we can achieve, i.e., answering the previous questions,
we investigate the distance from the system’s state to the desired
equilibrium at (x = 0, θ = 0◦).
Baseline. To set a baseline, we first evaluate the classic scenario,
i.e., the control is local to the pendulum and is not outsourced
to a cloud environment. Figure 3a depicts the achievable quality-
of-control. The upper subplot depicts the absolute difference to
the equilibrium for the cart’s position (left axis, blue line) and the
pendulum’s angle (right axis, red line). Below, we show the relative
error given the horizontal bound of -1.0 . . . 1.0 and at most 180°
distance from the upright position. We observe that the controller
is swift in correcting the angle: After roughly 4 s, the controller has
reached the equilibrium. Furthermore, we observe no oscillations
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in the pendulum’s angle or the cart’s position attesting a smooth
control.
Introducing Delay. When we start to outsource the control to a
distant controller, e.g., located in some factory cloud or in a dat-
acenter, delay is introduced into the communication path. Even
when assuming low latencies on an Internet scale, i.e., through an
IXP, with an RTT of 5 ms, the same control starts to break as shown
in Figure 3b. When looking at the first second of the control, we
can see that the controller is able to move the system towards the
equilibrium. Yet, we can already observe that the system starts to
oscillate. Continuing, the oscillations—caused by measurements as
well as control signals arriving too late—become to severe such that
the system becomes completely unstable. Indicated by the angle of
the pendulum, the pendulum starts to rotate by 360° applying force
(and thereby movement) onto the cart that the controller is unable
to manage.

In summary, these first results show the high correlation of delay
and control quality.

As stated earlier, control is of course able to account for delays.
We incorporate up to 20 ms RTT into the controller design allowing
for jitter and delay. As shown in Figure 3c this re-enables control
to finally stabilize the pendulum in the upright position. However,
we observe that the pendulum is now subject to severe oscillations
as indicated by the angle of the pendulum swinging back and forth
in the first second. The feedback control is able to stabilize the
pendulum by adjusting the force on the cart as indicated by the
change in the cart’s position. Yet finally, control is again able to
reach the equilibrium after roughly 4 s.

However, depending on the actual control goal such a back and
forth might be undesired, e.g., imagine a controller governing the
transport of liquids without causing disturbance or sloshing. We
can adjust control further to also incorporate this as shown in
Figure 3d. Now, we have eliminated an initial oscillating, however,
as indicated by the relative error to the equilibrium, control had to
slow down the cart movement to achieve the desired goal. Thus,
from another perspective the quality-of-control is still suboptimal,
e.g., leading to increased production times. While this shows that
delay can be incorporated to a certain degree, this incorporation
often leads to some sort of control degradation.
Using In-Network Control. However, when we utilize our ap-
proach of in-network control, we can restore the original con-
trol quality. Figure 4 shows the quality-of-control using our XDP-
offloaded LQR control. We observe that in-network processing
enables to utilize the ultra-low latencies of local communication as
the pendulum can be moved into stable position as if we were using
a controller directly attached to the pendulum as in Figure 3a. This
also highlights that the latencies of locally connected devices that
are typically orders of magnitude lower than the sampling rates of
sensors do not influence the control.

5 FUTURE CHALLENGES
While this work highlights that a common class of control problems
can be offloaded to network elements, there are still technical and
conceptual challenges. First, we assume that it is rarely required to
account for delay when control is outsourced to the local network,
yet, it raises some conceptual questions if it is still required. When
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Figure 4: Outsourcing control to the network enables to re-
store the original quality-of-control while maintaining cen-
tral management in the distance. The performance is visu-
ally indistinguishable from the original controller in Fig-
ure 3a.

accounting for delay during the controller design, one has to bloat
the state-space to include past control outputs and keep them local
to the control process. One has to keep the last n control outputs
to account for n times the sampling rate of the sensor data, i.e., to
account for 20ms of delay when sampling with 500 Hz, one has
to keep the last ten computed values. Currently, P4 is not able to
store such values computed on the datapath even though the P416
standard acknowledges that future versions might support this. In
contrast, BPF programs can store these values, even though when
offloaded to our SmartNIC, storing values from the datapath is also
currently not possible, future version are planned to include atomic
add operations to store statistics, yet these would not be enough.

When looking at other control problems, P4 and BPF can be
further limiting: P4 first completely parses a packet to memory, in
case of BPF, this is challenging as the BPF stack is limited to 512 byte
which is also shared with other local variables. Assuming, e.g., audio
data capturing machine vibrations on which signal detection and
subsequent actuation should be performed, 1 ms of 16-bit PCM
audio is already 88 byte, several milliseconds of audio can easily
overflow BPF’s stack. Visual processing, e.g., tracking or detecting
objects, even in ultra-low resolution images might require both, per
flow storage that outlives a single packet, as well as being able to
process larger packets.

6 RELATEDWORK
In-network processing has been repeatedly discussed throughout
the last decades for various purposes. Traditional approaches en-
able packets to carry programs to be executed during transit, either
aimed at network management or flow control as in [11, 15], or at
arbitrary programs as in [20, 28]. By directly installing programs
on devices and not “annotating” packets with rules to be executed
during transit, our approach introduces no overhead during trans-
mission.

Utilizing cloud computing in industrial automation has likewise
been proposed before. Works such as those in [23, 24, 26, 27] how-
ever usually target higher level functionality such as monitoring,
configuration and maintenance, not the latency-critical control-
and field level [9]. Jitter and delay in cloud controller settings have
gained further attention [7, 14], with the work in [14] suggesting
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an adaption of the controllers or state prediction techniques for
mitigation. We, in contrast, analyze and partially offload existing
controllers into network hardware. By utilizing SDN- and packet
processing-specific languages (P4 and BPF), our approach reduces
jitter and delay to a minimum by design.

Our approach relates to the edge computing paradigm in which
computations are also offloaded [16, 22]. In line with aforemen-
tioned works, the large-scale survey [3] reveals only little concrete
work regarding edge computing for industrial control. Hence, to
the best of our knowledge, our work is among the first to adapt
the concept of SDN and in-network processing and apply them to
challenges in automation and control.

7 CONCLUSION
This paper introduces networked control as a new application do-
main for in-network processing. By combining control and commu-
nication, a new flexibility for automation and control is introduced
that enables to outsource and thereby optimize control to distant,
resourceful environments. Our implementation of control and com-
munication in P4 highlights the applicability of today’s technologies.
However, we also show its limitations for more involved problems
that demand more than is currently offered. Further, by synthesiz-
ing P4 to BPF running in XDP on SmartNICs or general purpose
hardware we further gain flexibility in deployment. Our evaluation
highlights how control is challenged by even small amounts of
delay and that in-network processing is a solution worth exploring.
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