
Demo Abstract: Towards In-Network Processing
for Low-Latency Industrial Control

Jan Rüth, René Glebke, Tanja Ulmen, Klaus Wehrle
Communication and Distributed Systems, RWTH Aachen University

{rueth,glebke,ulmen,wehrle}@comsys.rwth-aachen.de

Abstract—Traditional Networked Control Systems control
physical machinery in factories and production environments
via centralized on-site network controllers. This architecture is
increasingly challenged by rising amounts of sensory and actuator
control data and reconfigurable, highly dynamic production
sites. A recent trend in Network Control tries to move control
algorithms towards remote environments such as the cloud rather
than closer to the controlled machinery. While this may satisfy the
growing demand for computation resources in industrial settings,
simply moving logic into the cloud introduces unpredictable
latency and jitter that may break intricate control loops. In
this demo, we present an approach that offloads latency-critical
parts of the control logic to in-network elements. We combine
the P4 network programming language with industrial control
algorithms and execute both in eBPF virtual environments on
the in-network elements. This technique enables to lower latency
and jitter in production environments, providing a significantly
higher quality of control even in adverse conditions.

I. INTRODUCTION

c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. This is the author’s version, the final publication appeared in IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications Workshops and is available online at https://doi.org/10.1109/INFCOMW.2018.8406844

For years, communication research has focused on provi-
sioning ever more bandwidth to meet the growing demands of
users and applications. However, the recent advent of Cyber-
Physical Systems (CPSs) has brought a set of requirements into
focus that traditional communication and control architectures
cannot meet: Modern production sites are envisioned to consist
of a large number of sensors and actuators that generate
context information and manipulate the physical environment.
Software-based controllers running in cloud entities then
orchestrate the operation of the components via networks. In
such scenarios, devices and networks have to handle ever-
increasing amounts of data and may change their configuration
and requirements frequently during operation. On the other
hand, controlling physical processes via Networked Control
Systems (NCSs) requires a verifiable and highly reliable
behavior of all components. High latencies or jitter in the
signaling path between sensors and controllers can cause the
control algorithms to work on data which is already outdated
the moment it arrives, yielding false assumptions about the
current status of a so-called System Under Control (SUC) [1].
Likewise, actuator control signals from controllers have to
arrive in a timely and reliable fashion at the SUC to guarantee
the desired operations to be fulfilled and to prevent physical
damage in emergency situations.

Network latency and jitter are challenged by uncertainties
in packet processing in two regards. First, the traditional
abstraction between layers adds a vertical overhead as every
signal needs to traverse the network stacks of the affected

P4-eBPF Switch

Cart control
Pendulum & 

cart status

LQR

Controller

Node

Switch

Forwarding

P4

Real-time 

control logic

C Modified C/P4-

to-eBPF

compilers

eBPF programs for

 Forwarding control

 Control matrix calculation

O
fflin

e
 p

ro
c
e
d
u
re

s

(d
a
s
h
e
d

lin
e
s
)

R
e

a
l-tim

e
 s

y
s
te

m
s

(s
im

u
la

tio
n
s
; s

o
lid

 lin
e
s
)

Fig. 1. Overview of our system demo. We compile P4 forwarding rules and a
C version of the online control algorithm for an inverted pendulum to an eBPF
program and install it as a switch. The switch then controls the pendulum in
real-time. Our contributions are marked in gray.

devices. Second, each hop that a signal needs to take in a
network adds a natural horizontal overhead by physical distance
and queuing on the intermediary network elements.

In this demo1, we show how we can reduce both vertical and
horizontal overheads in NCSs with remote (cloud) controllers
by partly removing the abstraction induced by the layering
concept and by moving control functionality into the network.
Our approach is to combine switching functionality expressed
using the P4 network programming language [2] with industrial
control algorithms and executing both in Extended Berkeley
Packet Filter (eBPF) virtual environments [3] on in-network
elements. We explain our approach in Section II and then
discuss our demo setup and first evaluation results in Section III,
before concluding in Section IV.

II. APPROACH AND EXAMPLE USE-CASE

We explain our approach for reducing horizontal and vertical
overhead along Figure 1. The top part of the figure shows an
exemplary NCS, consisting of at least one controller node,
a network of several switches, and at least one SUC, in our
example case, an inverted pendulum. The goal is keeping the
pendulum in an upright position by moving the cart on which it
is mounted. For this, information on the status of the pendulum
and the cart are sent to the controller node via the switched
network in the form of a state vector. The controller node
runs an instance of a two-phase control algorithm. The first,
computationally heavy phase is offline and uses the physical

1Video: https://www.comsys.rwth-aachen.de/short/infocom18-demo



Fig. 2. Screenshot of the pendulum and network control visible in the demo.

properties of the SUC to derive a Linear Quadratic Regulator
(LQR) expressed as control matrices. In the second phase,
these matrices are used and multiplied with the state vector
yielding a cart control vector that is then sent back to the cart
to counteract the tilting of the pendulum in real-time.

The lower and gray parts of Fig. 1 show our modifications
to the initial setup in order to counteract the effects of the
two kinds of overheads. Our core idea is the following: We
leverage the control design’s split and leave the computationally
heavy first phase in the resourceful cloud but outsource the
second phase to in-network elements. In our example, we move
the LQR’s matrix multiplication. Once moved, we instruct
the network to redirect all required inputs (the state vector)
through this network element while leaving the remainder of the
information flow between SUC and the controller unchanged.

In our implementation, we use the P4 network programming
language [2] to express forwarding logic (bottom right of
Fig. 1). While P4 is well suited for forwarding, we found
that it is not expressive enough to handle various control
functions. Hence, in order to express the LQR’s online phase,
we combine P4 forwarding with a C version of the matrix
multiplication by compiling both to a single eBPF program
that is flexibly configurable with control matrices further
allowing to selectively apply the control matrices to matching
traffic. eBPF execution environments are currently available for
Linux and recently, programmable network hardware [4]. Once
installed on a capable in-network element, the controller can
install matrices in the network element similar to the network
controller installing forwarding rules. The eBPF program then
applies the LQR control to configured and matching flows and
immediately sends new control instructions back to the cart.

We next give a description of our demo setup and show the
benefits of our approach by providing first experimental results
for our inverted pendulum.

III. DEMO SETUP AND INITIAL RESULTS

Our demo (see Fig. 2) modifies a freely available simulation
of an inverted pendulum [5] as our SUC. Afterward, we use
Mininet [6] to instantiate a virtual network on our demonstration
machine that resembles the network depicted in Fig. 1. Once
the matrices are generated, we install them in the eBPF
network element through its southbound API. The unmodified
pendulum controller runs as one process on our machine and
communicates with the pendulum simulation in another process
through a UDP traversing the new virtual network. Our demo
allows to flexibly add delay and jitter on the link between the
two switches using netem (see Fig. 2). The blue line in Fig. 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

0

20

40

60

80

100

Fo
rc
e
er
ro
r[
%
] Remote control

In-network control

Fig. 3. Force error and standard deviation (area) in our demo setup (Fig. 1).
Without in-network control, the system cannot be stabilized. With in-network
control activated on the gray switch, the system stabilizes after roughly 0.5 s.

shows the effect of the overhead to the quality of control in
terms of the mean force error, i.e. the difference between the
desired force exerted on the cart as calculated by an optimal
control and the actual force (in percent). The light area around
the line shows the standard deviation of the force error over
30 repeated runs. The system constantly oscillates and the
controller is unable to bring the pendulum into an upright
position. The lower red line in Fig. 3 shows the new quality
of control that we can achieve using our approach: Since the
real-time critical part is now executed on the gray switch, the
costly hop on the link between the switches on the path to the
controller node can be omitted and the pendulum is stabilized
after roughly 0.5 s, with no noticeable deviations. Since we left
the remainder of the communication between controller and
SUC intact, non real-time critical functionality of the controller
can still be executed on the controller node, thus not impairing
the general functionality of the controller or the network.

IV. CONCLUSION AND FUTURE WORK

Our demo shows that by moving real-time critical parts
of machine controllers to in-network elements for execution
as eBPF programs, we can significantly reduce the impact
of latency and jitter that signals to and from the controller
experience. This results in a significantly higher quality of
control in conditions which are likely to occur when parts
of the controllers are offloaded to remote environments. As
future work, we would like to study the applicability of our
approach to more difficult problems than our inverted pendulum
example, as well as the possibility of investigating the impact
of feedback mechanisms between the offloaded parts of the
control algorithms and the remaining controller nodes.

ACKNOWLEDGMENT

This work has been partially supported by DFG within
Priority Programme 1914 Project REFLEXES.

REFERENCES

[1] Goldschmidt et al., “Cloud-Based Control: A Multi-tenant, Horizontally
Scalable Soft-PLC,” in IEEE CLOUD, 2015.

[2] Bosshart et al., “P4: Programming Protocol-independent Packet Processors,”
SIGCOMM CCR, Jul. 2014.

[3] Steven McCanne and Van Jacobson, “The BSD Packet Filter: A New
Architecture for User-level Packet Capture,” in USENIX, 1993.

[4] Netronome, “Agilio CX SmartNICs.” [Online]. Available: https:
//www.netronome.com/products/agilio-cx/

[5] Todd Sifleet, “Inverted Pendulum.” [Online]. Available: http://www.
toddsifleet.com/projects/inverted-pendulum

[6] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-defined Networks,” in SIGCOMM Hotnets, 2010.


