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ABSTRACT

The main reason for the standardization of network protocols,
like QUIC, is to ensure interoperability between implementations,
which poses a challenging task. Manual tests are currently used to
test the different existing implementations for interoperability, but
given the complex nature of network protocols, it is hard to cover
all possible edge cases.

State-of-the-art automated software testing techniques, such as
Symbolic Execution (SymEx), have proven themselves capable of
analyzing complex real-world software and finding hard to detect
bugs. We present a SymEx-based method for finding interoperabil-
ity issues in QUIC implementations, and explore its merit in a case
study that analyzes the interoperability of picoquic and QUANT.

We find that, while SymEx is able to analyze deep interactions
between different implementations and uncovers several bugs, in
order to enable efficient interoperability testing, implementations
need to provide additional information about their current protocol
state.
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1 INTRODUCTION

The emergence of new, modern protocols for the Internet promises
a solution to long-standing issues that can only be solved by chang-
ing core parts of the current protocol stack. Such new protocols
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and their implementations must meet the highest requirements:
They will have to reliably function at similar levels of maturity as
what they aim to replace. This includes aspects such as reliability,
security, performance and, prominently, interoperability between
implementations.

Ensuring interoperability is the main reason for standardizing
QUIC as a protocol, and the IETF standardization process goes
to great lengths, such as requiring multiple independent imple-
mentations, to make sure this is achievable. Thus, better methods
and tools that assist with the difficult challenge of interoperability
testing are highly desirable.

Automated testing techniques, such as Symbolic Execution (SymEx),
have proven themselves to be capable of analyzing complex real
world software, usually focused on finding low-level safety viola-
tions [4], and SymEx has also proven its worth in the networking
domain in various other ways [7, 14, 16ś18, 22, 24, 25].

This paper explores the potential of SymEx for checking the
interoperability of QUIC implementations. It does so by present-
ing a SymEx-based method to detect interoperability issues, and
demonstrates its potential in a case study of two existing QUIC
implementations, picoquic and QUANT. We discover that, while
our method is able to successfully analyze nontrivial interactions
between different implementations, implementations need to dis-
close more protocol-level information to truly enable deep semantic
interoperability testing.

1.1 Key Contributions and Outline

The key contributions of this paper are as follows:

• We describe a method that uses Symbolic Execution (SymEx)
to test QUIC implementations for interoperability, and dis-
cuss how additional information from implementations about
their current protocol state could be leveraged for semanti-
cally deeper testing.

• We then present our case study in which we symbolically
test picoquic and QUANT for interoperability, and discuss
the abstraction layers that are necessary to enable SymEx
for QUIC implementations.

• The final key contribution is the evaluation of our imple-
mentation, testing picoquic and QUANT, in which we report
on the performance of our method as well as on defects we
discovered.

We begin by giving background on SymEx in Sect. 2, followed
by a discussion of related work in Sect. 3. We then present our
method in Sect. 4, and describe its implementation and the setup of
the case study in Sect. 5. This is followed by an evaluation of our
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if(x < 5)
{ }

if(x >= 100)

{x < 5}

if(x >= 100)

{x ≥ 5}

return ok

{x < 5, x ≥ 100}

return ok

{x < 5, x < 100}

return ok

{x ≥ 5, x ≥ 100}

return ok

{x ≥ 5, x < 100}

2 if(x < 5) ok = false;
1 bool ok = true;

3 if(x >= 100) ok = false;

4 return ok;

Figure 1: Symbolic Execution (SymEx) of a small example program. Constraints encountered in branching statements are

recorded in the path constraints of the corresponding explored paths. By checking new branching conditions for satisfiability

on each path, exactly all reachable paths through the program are explored.

results in Sect. 6, before we shortly discuss future work in Sect. 7
and conclude in Sect. 8.

2 SYMBOLIC EXECUTION (SYMEX)

Given a program that takes some input (e.g., command line argu-
ments, files, network packets, etc.), SymEx systematically explores
the program by executing all reachable paths. It does so by assigning
symbolic values instead of concrete ones to its input, which allows
the SymEx engine to fork execution at a branch-statement (i.e., if)
when both branches are feasible. If this is the case, the condition
that caused the fork (i.e., the condition inside the if statement) is
remembered on the execution path following the true-branch as an
additional constraint. On the other execution path, which follows
the false-branch, the negation of the condition is remembered as a
constraint instead. To determine the reachability given the current
constraints, an SMT solver, such as Z3 [5], is queried. SMT solvers
are the backbone of every SymEx engine, and their performance
and completeness directly influence the efficiency of the symbolic
analysis, and they ensure that only feasible paths are explored.

Continuing in this fashion a SymEx engine will explore all reach-
able paths through the program. Whenever a path terminates, ei-
ther regularly or because an error was encountered, the engine will
query the SMT solver using the collected path constraints to get
concrete values for each symbolic input value. These values will
then be recorded in the form of a test case, which can then be run
again later to exercise the same path through the program. If a bug
was encountered, the generated test case will be able to reproduce
the taken path for further debugging and introspection.

Figure 1 shows a small example program that performs opera-
tions depending on the value of a symbolic input variable x. The
program contains two conditional branches that have to be tra-
versed before the return in line 4 is reached. On the right, all paths
explored by SymEx are shown.

In the beginning, x is unconstrained, but, as SymEx progresses,
a path for each side of the first branch is explored. For each side, a
corresponding constraint (either x < 5 or x ≥ 5) is added to the path
constraints. When the second branch is reached, only three paths
need to be explored further: The constraint set {x < 5, x ≥ 100}
is not satisfiable, and therefore this path will never be reachable
during execution. In the end, SymEx will query the SMT solver for
concrete values for x for each path to generate a suite of concrete
test cases that cover all reachable paths of the program.

3 RELATED WORK

Formal methods have long been used to analyze network proto-
cols [10, 11, 13, 21, 23], often with a focus on security. However,
even if the formal analysis of a network protocol has successfully
proven a property, be it related to correctness or security, it is
by no means guaranteed that this property will also hold for an
implementation of said protocol.

Programs have also been analyzed with formal methods, such
as SymEx, to test for obvious problems like memory safety and
assertion violations [3, 4] and for less easily checked properties,
such as liveness violations [19] and authentication bypass flaws
in firmware binaries [20]. One of the main problems encountered
when formally analyzing real-world code is the penchant of the
state-space to grow infeasibly largeÐa problem also known as state
explosion. Many different approaches to tame the state explosion
problem inherent in SymEx have been proposed in the past: state
merging [6], targeted search strategies [9] and pruning of provably
equivalent paths [2], to name a few.

As the the state explosion problem grows exponentially with
the number of programs considered at the same time, approaches
explicitly targeting distributed programs have been developed. For
example, KleeNet [17, 18] exploits the independence of networked
programs by delaying codependent path forks until messages are
received at each node that require the fork to be actualized.

Testing protocols and programs independently is ś however
worthwhile ś not enough. To this end, approaches have been de-
signed that test implementations for protocol compliance using
many different testing and verification methodologies, ranging
from fuzzing [1, 26] over SymEx [22] to model checking [12, 13].
Validating that a given implementation fulfills a specification or
standard does, however, require a formalized representation to be
available, which effectively constitutes another implementation of
the specification.

One way to circumvent this chicken-egg problem is to exploit
the fact that any relevant standard will have multiple implemen-
tations, which enables the substitution of compliance testing with
that of interoperability testing. While it is possible that neither
implementation is technically compliant with the standard, it be-
comes more and more improbable that the standard is captured
incorrectly by many different people in exactly the same manner.
Due to the inherent state-explosion problem of interoperability test-
ing (multiple different, or even all possible programs are considered
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at once), multiple approaches to specialized [7] and general [14, 22]
interoperability testing have been proposed in the past.

4 METHOD OUTLINE

SymEx engines such as KLEE [3], which our cases study utilizes,
usually expect their input to be a program. However, protocol
implementations are naturally libraries, and as such lack an implicit
singular entry point. Although ways to analyze libraries directly
have been proposed [15], they suffer from a lack of insight into
what constitutes a sensible use of the library. Instead, we propose
to analyze programs that utilize the libraries and execute different
test scenarios. One way to choose the test scenarios for this would
be to use existing applications that already implement real-world
application logic. This is currently difficult to do for QUIC, as there
are only very few applications built on top of QUIC, and is further
complicated by their use of only a small set of different QUIC
implementations.

Instead, we follow the current best-practice in compliance testing
by designing test scenarios based on primitives defined in the QUIC
standard. Unlike common, concrete compliance testing suites, we
formulate symbolic testing scenarios that perform large families
of related tests in one go. These describe the involved endpoints
(e.g., clients and servers) and the communication that takes place
between them, for example, which connections are established,
which streams are opened, what is sent on those streams, and so on.
Such scenarios can be defined in both high-level as well as low-level
terms. A more low-level scenario describes individual packets and
effects such as loss or reordering instead of focusing on connections
and streams.

Independently of the test scenarios, we need to define what we
categorize as actual errors, so that the SymEx engine can actually
detect which paths exhibit erroneous behavior. We present two
categories of errors here, one focused on interoperability, and one
focused on robustness.

4.1 Testing Interoperability

Generally speaking, whenever there is a conflict between what the
communication partners believe the state of their connection to be,
an interoperability violation exists. In the case of networked pro-
grams, it is important to quantify the belief state of each endpoint
in a way that is neither too constrained (e.g., if the server believes
that a data connection is open, but the client has already sent a
shutdown request, there is no conflict), nor too open (otherwise
error detection becomes impossible). Such issues can cause the
communication to continue without exhibiting low-level errors,
but the result of the execution to differ from what was expected.
For example, if the amount of application data sent by one end-
point differs from the amount of data received by the other after a
finished transmission, this is an error, as the two endpoints hold
different beliefs about the correct state of the connection.

To be able to detect such bugs, it is necessary to have a way to
extract the current belief state of each endpoint in a way that can be
compared to that of the other endpoints. Here, standardization can
help: A definition of what exactly is part of the (belief) state of a
QUIC connection could be used by implementations to provide this
information to analysis tools. Such information could then be used

by testing and verification tools to great effect, enabling stronger
and more semantically meaningful analyses.

4.2 Testing Robustness

Robustness can be defined as the ability of an implementation to
deal correctly with unexpected events, such as packet loss, reorder-
ing or packets crafted with malicious intent. Here, errors usually
manifest in the form of, e.g., out-of-bound memory accesses, use-
after-free violations, assertion errors, etc. When using a SymEx
engine, the engine will provide the capability to test for such viola-
tions out-of-the-box, already providing valuable testing feedback
without needing to define additional error conditions.

4.3 Generality of the Method

This method is, in its core, protocol independent, and can be applied
to other protocols than QUIC. However, its application to QUIC
shows the effort required to implement it for non-trivial, real world
protocols, as well as its suitability for such protocols. The question
in this case is scalability: While it is usually straight-forward to
apply any method to simple examples, we are interested in whether
the method scales to implementations of complex protocols, such
as QUIC, and also to see the requirements for such protocols in
regards to automated testing.

5 CASE STUDY: PICOQUIC AND QUANT

For our case study we implemented our method for picoquic1 and
QUANT2. These implementations were chosen because they are
written in C, and could therefore be analyzed by KLEE, our SymEx
engine of choice, out-of-the-box. It has successfully been shown that
SymEx can also be applied to programs written in other languages,
like C++ [8], so this is not a limitation of the general approach.

We defined multiple test scenarios, and developed simple clients
for each library that execute the defined scenarios. An additional
challenge is that the KLEE SymEx engine [3] only works on single
programs, which caused us to implement a single program that
instantiates all communication partners and advances them in tan-
dem for each test scenario. This means that one endpoint (e.g., client
or server) is executed until it can make no more progress (i.e., it
blocks waiting for a response) at which point execution switches
to the next endpoint. This continues until either the scenario is
finished, or one endpoint reports an error.

In the following sections we describe our test scenarios and
present which library-specific adaptations were necessary, as well
as which library-independent abstractions we implemented that
can be re-used for other libraries in the future.

5.1 Test Scenarios

We decided upon three test scenarios that exercise some of the
core features of QUIC: In the first scenario, a client establishes a
connectionwith a server, then closes it again. In the second scenario,
we establish a connection just as before, but the client also opens
a stream and sends a simple HTTP request (GET /index.html),
which the server then closes without responding. Finally, the third
scenario builds upon the second one, but the server also responds

1https://github.com/private-octopus/picoquic
2https://github.com/NTAP/quant
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QUANT
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Picoquic

(client)

Libev Mock

OpenSSL Mock
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Figure 2: Case study setup: A QUANT server and a picoquic

client communicate via a channel that symbolically drops

and modifies packets.

with a one-byte response. We define as interoperability issues any
case in which a run ends without the underlying scenario being
fulfilled, e.g., because a connection could not be established, or
because one of the endpoints timed out during the process.

For each library we implemented a frontend which provides
functions that create a client or a server for one of the scenarios, a
function that advances a client or server (executing it until it has
reached the next stage in the scenario or is blocked on network
input), and a function that checks whether a client or server is
finished with the scenario. In our evaluation, we focused on the
scenarios being executed with a picoquic client communicating
with a QUANT server, but our implementation also supports the
other cases (QUANT client and picoquic server or both from the
same library).

5.2 Library-Independent Abstractions

In order symbolically execute the test scenarios, we had to imple-
ment abstractions for various functionalities, such as blocking and
non-blocking network operations, as well as cryptographic opera-
tions. Figure 2 shows an overview of the test setup, including the
layers we replaced with abstractions, such as communication via
UDP.
UNIX Sockets. To enable KLEE to correctly route network data, we
explicitly modeled the network environment by providing simple
custom implementations of functions such as socket, connect,
sendto, and so forth.

Note that we implemented only those parts of the POSIX socket
API necessary for executing the two implementations, as the whole
API surface covers extensive functionality. These parts where straight-
forward to implement, and we used a simple linked-list structure
for sent packets and otherwise tracked additional information per
socket, and only implemented UDP functionality.
Symbolic Values. We also used our abstraction to model some of
the properties of UDP-based communication, such as unreliability.
To model packet drops, we used a symbolic variable that decides
whether or not to drop each packet. The result of this is that we
will for each packet explore a path in which this packet was lost.

Additionally, we also implemented the possibility tomake certain
bytes of a sent packet symbolic instead of simply delivering the
packet. This allows testing the receiver of each packet with regards
to robustness, within the current state of the communication.

While this is enough for QUIC implementations that rely on
blocking communication, such as picoquic, others rely on asynchro-
nous event notifications. For the case of QUANT, this is provided
by libev.
Libev. Libev is a library that provides an event loop for asynchro-
nous applications. We implemented a mock version of libev that
fulfilled our requirements of being easy to integrate into QUANT
and our final test scenario binaries, as well as being simple to eval-
uate with KLEE.
OpenSSL. SymEx is not able to reverse constraints that are based
on cryptographic operations (encryption, decryption, hashing, etc.),
as otherwise the underlying cryptography would be broken. As
QUIC heavily relies on cryptographic operations, we needed to
make these operations transparent, for which we implemented an
OpenSSL abstraction that always performs null-encryption. This
means we implemented most of the functions used by picoquic and
QUANT in a very bare-bones fashion, often nothing more than a
no-op, and implemented encryption and decryption basically as a
memcpy.

With regards to hash-functions, we decided to use actual imple-
mentations of these hashes instead of, e.g., hashing all values to the
same hash value. This had certain implications for our evaluation:
On one hand, it makes our implementation more correct, as differ-
ent messages will correctly hash to different values. On the other
hand, whenever our SymEx engine had to reverse the result of such
a hash-function, it would not be able to do so, possibly preventing
the exploration of certain parts of the libraries.
Library-Independence. All of these mocks are implemented in-
dependently of the QUIC library under test, and are reusable for
future interoperability tests. Thus, our work lays the foundation
for testing a larger set of implementations.

5.3 Picoquic

For picoquic, a frontend that can execute our test scenarios was
straightforward to implement, due to the fact that an example client
and an example server were available. We replaced blocking reads
in the client and server with points at which execution would return
to the test harness, so the next communication partner would be
able to make progress.

This was made easy by the fact that the picoquic API itself only
prepares packets for sending, and leaves the actual sending to the
application. This means that we could implement the communica-
tion handover inside of our frontend library, and did not need to
implement it inside of picoquic itself, requiring no changes to the
library.

5.4 QUANT

The changes needed for QUANT were more extensive, as QUANT
internally uses a libev-based event loop, which we needed to in-
tercept in order to be able to return execution to the test harness
when the event loop would block waiting for new data. To do so,
in addition to implementing a simple variant of libev as described
before, we modified the top-level API functions of QUANT. These
expected blocking behavior of the underlying event loop, but in-
stead we changed them to return control to the test harness when
entering the event loop would block.
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Configuration Instrs/s Time[h] ICov[%] BCov[%] TSolver[%] MaxMem[GB] Unique errors

sym-stream 1725742 0:01 38.96 24.81 0.06 0.16 2
sym-version 232139 0:25 38.87 24.83 83.83 0.15 1
sym-drop 432753 8:00 38.85 25.31 0.02 11.97 1
sym-mod-1 380751 8:00 41.10 27.04 0.79 32.44 0
sym-mod-5 241116 7:00 40.11 26.11 8.35 33.02 0
sym-mod-10 4118 8:01 32.11 18.79 78.78 5.34 1

Table 1: Results of our evaluation after running each configuration with a time limit of 8 hours. Together all configurations

discovered 5 unique errors. Instrs/s: Executed instructions per second. Time[h]: Time after which the execution terminated.

ICov[%]: Achieved instruction coverage in percent. BCov[%]: Achieved branch coverage in percent. TSolver[%]: Time of the

execution that was spent solving SMT queries. MaxMem[GB]: Maximummemory usage in GB. Unique errors: Errors reported

that were not reported by other runs.

Additionally, QUANT made use of global variables, which lead
to corrupt behavior when, e.g., trying to instantiate a QUANT
server and client in the same binary. To circumvent this, we per-
formed a simple renaming of all defined symbols on the LLVM IR
of QUANT. This prefixes all functions, such as q_connect, with
a prefix of our choice, resulting in, e.g., client__q_connect and
server__q_connect. Since this also renamed all global variables,
this allowed us to test QUANT clients and servers in the same
binary.

As only a single QUANT instance is contained, our case study
did not require this additional renaming. However, since global
variables are a common feature in programs, it is necessary that
this is also supported by our approach.

6 EVALUATION

For our evaluation we considered six different combinations of
scenarios and symbolic input. All configurations were executed in
KLEE with Z3 [5] as the underlying SMT solver, with a time limit of
8 hours and a memory limit of 32 GB on a system with two E5-2643
v4 processors providing a total of 12 physical cores and 256GB
main memory. We additionally added timeouts of 10 seconds per
instruction and per query, to prevent the analysis from being stuck
on too hard queries.

We chose picoquic and QUANT for our case study as both are
written in C, which is supported by KLEE. Both of these libraries
also implement the newest version of the QUIC standard at the
time of writing (draft 14).

6.1 Configurations

We tested six configurations and provide the results of their sym-
bolic execution in Table 1.
Sym-stream. This configuration combines all three described sce-
narios. We added symbolic input that chooses which of these to
execute, resulting in the execution of all three, as SymEx explores
all possible paths. This is the same as executing all three scenarios
concretely without further symbolic values. This configuration ter-
minated in about a minute after exploring all three reachable paths
through the test binary, and reported two bugs.

The first error is an interoperability bug that we originally found
during the development of our implementation. This bug occurs
in the second scenario, when the stream is closed by the server

without sending any data. In this case, the QUANT server silently
closes the stream on its end, not notifying the client. The client
then times out and closes the connection prematurely.

The second error occurs because certain resources are freed
which might still be in use inside of libev. This bug was discovered
because our libev-abstraction touched the freed value, which was
discovered by KLEE. In practice, this kind of bug is hard to check:
As it occurred in a shared library, concrete execution with a tool
like ASAN would not detect this bug, and this is exactly the kind
of bug that can cause rare, random crashes. We reported both bugs
in the QUANT library, and both were verified and later fixed34.

This configuration also gives a good baseline for instruction and
branch coverage, as the other configurations explore the third sce-
nario, which covers the most API surface, with different symbolic
values. The values for instruction and branch coverage include dead
code, and thus their absolute values need to be treated with care.
However, they can be used to compare against the other configura-
tions.
Sym-version. This configuration is built upon the third scenario
(connection establishment, new stream, response), but makes the
version proposed by the picoquic client to the server symbolic. We
chose this configuration because setting the proposed version is an
option of the picoquic library.

This configuration terminates after only 25 minutes, with most
of the time spent inside the solver. The reason for this is that this
configuration resulted early on in the generation of constraints that
were not solvable by the SMT solver in the given timeout, thus
terminating all paths early on. Nevertheless, this configuration also
found an error that prevented the establishment of a connection.

This error occurswhen the proposed version is set to 0xbabababa.
As the current QUIC draft reserves all versions of the form 0x?a?a?a?a

for version negotiation, it seems plausible that this version by itself
could not lead to a successfully established connection. We cate-
gorize this bug as very mild, as it is obviously only a small API
problem.
Sym-drop. For this configuration we symbolically dropped every
packet. This is the first configuration that needed more than a
few hundred MB of memory, and also the first that explored a
large number of paths through the program. We see that only little

3https://github.com/NTAP/quant/issues/16
4https://github.com/NTAP/quant/issues/17
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time was spent solving constraints, which makes sense, since no
symbolic data was actually touched by either of the libraries (either
a packet was delivered as-is or it was dropped).

Most interestingly, this is also the first configuration that found
a bug which only occurred after multiple exchanged packets, and
would not be easily found during manual testing. The reported test
case drops the 4th, 5th and 7th packet exchanged between the two
endpoints, which triggers a segfault due to a null-pointer in the
QUANT server when the 9th packet is received.

We verified that this bug also occurs when running concretely
with regular OpenSSL instead of our abstraction. This is a robust-
ness bug, but it might also be an interoperability bug, as other
implementations might not trigger it.
Sym-mod-X. In these configurations, the first X bytes of every sent
packet are made symbolic, in order to test the robustness of the
receiving endpoint. This category includes the two configurations
that reached the highest instruction and branch coverages, but it
also includes the configuration that achieved the lowest coverages.
A trend can be seen here: More symbolic bytes cause more work
for the SymEx engine due to state explosion, resulting in more time
spent inside the SMT solver, resulting in slower progress overall.

However, the run that achieved the lowest coverage uncovered
an additional bug in QUANT’s packet receiving code. The generated
test case triggers the bug by replacing the first 10 bytes of the first
packet sent by picoquic with the concrete values [0xff, 0x01,

0x01, 0x01, 0x01, 0x67, 0xff, 0xff, 0xff, 0xff], which
leads to a null-pointer dereference in the server. We verified this
bug as well while running without our OpenSSL abstraction.

7 FUTUREWORK

While our case study shows the usefulness of automated testing
techniques such as SymEx for analyzing QUIC implementations,
there is still much that can be done. A first and important step is the
definition of the kinds of belief state QUIC implementations should
be able to report on. In a second step, such a model can then be
used for testing implementations for state divergence regarding the
belief states of the different endpoints. Most of the effort to achieve
this should be in defining a common ground for the definition of
the belief state. We expect then extracting the belief state from im-
plementations to require manageable effort, since implementations
must already be keeping track of the state of each connection.

This could be realized in the form of standardized testing and
verification interfaces for protocol implementations, which would
enable high levels of accessibility for new analysis approaches. This
in turn would lead to high-quality implementations, increasing
stability, robustness and performance in a field where all of these
are important.

Our test scenario only dropped packets or made some of the
bytes symbolic, but did not take the specific structure of QUIC
packets into account. Here, a layer that reads the packets that are
sent and performs symbolic mutations based on the semantics
of the protocol, e.g., symbolic ACK numbers, could lead to more
thorough and scalable testing. The need for such a method becomes
obvious when looking at the sym-mod-10 configuration, which
already caused a visible slowdown of the SymEx engine due to
state explosion.

Furthermore, to analyze more parts of protocol implementations,
additional test scenarios that excercise so-far uncovered protocol
functionality are required. One way to achieve this would be to
create more test scenarios based on the QUIC standard. However,
it might also be possible to automatically derive test scenarios,
either from a model of the standard, or from the implementations
themselves. For this, knowing which API call caused which state
change could help choosing possible next API calls.

To extend test scenarios to more than two endpoints, it might
be favorable to utilize SymEx techniques that target distributed
systems, such as KleeNet [17, 18]. While doing so, it might also
become relevant to investigate symbolic time, since behavior in
network protocols is often dependent on timing, most notably due
to timeouts.

8 CONCLUSION

We presented an interoperability-guided method to test QUIC im-
plementations and demonstrated its potential in a case study. Our
method consists of testing implementations in pre-defined scenar-
ios, but enriched with additional symbolic input, such as packet
drops and symbolic modifications.

In our case study we showed that, in order to symbolically ex-
ecute and test implementations, it is required that underlying li-
braries are abstracted in a way that is sensible for testing. On one
hand, kernel code such as UNIX sockets can otherwise not be exe-
cuted and analyzed, but also to, e.g., turn encryption transparent in
order to enable any analysis at all.

We were able to uncover several bugs with varying levels of
severity. While two were simple API issues that could easily be
found through manual testing, two of the other three would be hard
to find without some kind of automated testing approach, as they
occur only in very specific situations: The right packets in a long
chain of packets have to be dropped, or a very specific first packet
has to be sent. The last bug was only detected due to abstracting
libev, but does not necessarily require SymEx to uncover.

In summary, most of these bugs are robustness bugs. To detect
deeper semantic interoperability bugs, support in implementations
that provides information about the current belief state of endpoints
is required. We appeal to the authors of QUIC implementations,
as well as to the members of the IETF working group, to develop
a common understanding of what information makes up the be-
lief state of a QUIC connection, and to extend implementations
with ways to report this information for the sake of deep semantic
interoperability testing.
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