
Giving Customers Control over Their Data:
Integrating a Policy Language into the Cloud

Jens Hiller∗, Maël Kimmerlin†, Max Plauth‡, Seppo Heikkilä§,
Stefan Klauck‡, Ville Lindfors¶, Felix Eberhardt‡, Dariusz Bursztynowski‖,

Jesus Llorente Santos†, Oliver Hohlfeld∗, Klaus Wehrle∗
∗Communication and Distributed Systems, RWTH Aachen University, Germany

†School of Electrical Engineering, Aalto University, Finland
‡Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany

§Helsinki Institute of Physics, CERN, Geneva, Switzerland
¶F-Secure Oyj, Finland ‖Orange Polska S.A., Poland equal contribution

firstname.lastname@{comsys.rwth-aachen.de, aalto.fi, hpi.uni-potsdam.de, cern.ch, f-secure.com, orange.com}

Abstract—Cloud computing offers the potential to store, man-
age, and process data in highly available, scalable, and elastic
environments. Yet, these environments still provide very limited
and inflexible means for customers to control their data. For
example, customers can neither specify security of inter-cloud
communication bearing the risk of information leakage, nor
comply with laws requiring data to be kept in the originating
jurisdiction, nor control sharing of data with third parties on
a fine-granular basis. This lack of control can hinder cloud
adoption for data that falls under regulations. In this paper, we
show in six use cases how cloud environments can be enriched
with policy language support to give customers control over
cloud data. Our use cases are based on realizing policy language
support in all three cloud environment layers, i.e., IaaS, PaaS, and
SaaS. Specifically, we present policy-aware resource management
(with OpenStack) and dynamic network configuration. With
CERN’s big data storage and the in-memory database Hyrise,
we show realization for storage and further exemplify policy-
aware cloud processing by network function virtualization which
enables Orange to offload customer home gateways to the cloud.
Finally, we discuss benefits of policy support in F-Secure’s
Security Cloud. These use cases show the feasibility of realizing
customer control with policy support in the cloud. Thus, our work
enables customers with regulated data to tap cloud benefits and
significantly broadens the market for cloud providers.

I. INTRODUCTION

Cloud computing drastically changed the IT landscape
by providing means to (rapidly) offload functionality to
highly available, scalable, and elastic cloud environments.
This offloaded functionality ranges from data storage and
processing tasks up to complete applications (e.g., network
function virtualization). The offered flexibility thus enables
rapid prototyping of IT products and the adaptive scaling of
IT resources.

Despite the offered benefits and the current wide adoption
of cloud computing, its further growth is severely hindered by
the limited control of customers over offloaded data. That is,
it is currently not (always) transparent to cloud users where
offloaded data is stored and processed. This is particularly
challenging for federated cloud scenarios in which data is
offloaded to one cloud but processed by multiple clouds in the

Customer

Cloud	Federation

customer
control
§III Storage

(Hyrise, XRootD)
Processing

(NFV)

Applications
(F-Secure Security Cloud)

Resource mgmt
(OpenStack)Networking

PaaS
§V

SaaS
§VI

IaaS
§IV

Figure 1. We put customers back into control of data that they offloaded to
the cloud. Therefore, we show realization of policy support across all layers
of the cloud (from IaaS up to SaaS) by enabling it for representative services.

background. This lack of control is highlighted in a survey by
the Intel IT Center, where 78% of 800 IT professionals need
to comply with regulations that affect cloud usage and 78%
are concerned that public clouds cannot meet corresponding
requirements [1]. As a consequence, 57% refrain from using
the cloud and 55% especially reported lack of control over
data among the three major security concerns regarding cloud
usage [1]. Respective regulations affect personal data of
customers but also apply to financial, communication, and
governmental data [2]. The lack of control is caused by
the use of cloud provider selected, static policies to specify
data handling, enabling only limited control by cloud users.
Consequently, cloud customers cannot sufficiently negotiate
their own requirements and lack fine-grained, data specific
control [3], [4]. Thus, enabling control over cloud data is a
major challenge to tap cloud benefits for many business cases.

Leveraging cloud benefits for regulated data requires enabling
the negotiation of data handling requirements between cloud
provider and customer. Demands for control range from
location of storage and processing over guaranteed data deletion,
up to enforcing communication or storage security levels.
Realizing these demands is addressed by first academic attempts
to design policy languages [3]–[11], each providing means to
express data handling requirements to cloud providers. Yet,
these languages vary in their expressiveness and lack experience
in realizing concrete deployments.

In this paper, we close this gap by applying CPPL, a
recent policy language that is specifically tailored to cloud



scenarios [4], to realize a wide spectrum of industry-driven
cloud use cases covering all layers of a cloud stack, i.e.,
Iaas, PaaS, and SaaS. We show an overview of our use
cases in Figure 1, including realization of policy-aware IaaS
with policy language support in OpenStack as state-of-the-art
cloud resource management middleware and policy-controllable
network connection configuration (§IV). We further realize
policy language support in CERN’s big data storage (XRootD),
in Hyrise as major in-memory database system, and Or-
ange Poland’s telco NFV deployment to enable policy-aware
PaaS (§V). Finally, we exemplify compliance with policies
on the SaaS layer based on F-Secure’s Security Cloud (§VI).
Our use-case realizations show that the chosen policy language
CPPL is widely applicable to cover a wide spectrum of use-
cases, whose implementation requires only minimal to medium
changes to the target system. Beyond the state of the art of
policy languages, we further introduce policy decision points
to realize compliance with policies that limit the set of cloud
servers that are allowed to receive data, e.g., due to location
regulations (§III). The contributed policy decision points can
be further used to realize policy-awareness in federated cloud
scenarios, which is not supported by current policy languages.
By showing how easily existing architectures can be made
policy-aware, we aim to pave the way for bringing policy-
aware cloud computing into practice.

II. RELATED WORK

Regarding related work, we distinguish policy negotiation
and realization of compliance with policies in cloud ecosystems.
Policy Negotiation. S4P [5] focuses on matching of user ex-
pectations and provider policies thereby neglecting performance
requirements. XACML [6] is an XML based access control
policy language. PPL [7] extends it with user expectations and
the A4Cloud project adds accountability with A-PPL [8], [9].
However, large memory footprints of these XML-based policies
increase overhead especially for fine-grained per data policies.
A4Cloud also surveyed requirements and further tools for an
accountable cloud [12], [13]. C2L [10] limits its policies to
control placement and migration of virtual machines and thus
cannot cover all layers of the cloud. CES [11] focuses on end-to-
end communication enabling transparent policy negotiations via
broker gateways. FLAVOR [14] introduces the idea to specify
actions for the case of policy breaches. Finally, CPPL [4] is a
recent policy language specifically tailored to the demands of
cloud computing environments. It thus provides a promising
building block to realize customer control over cloud data.
We further extend CPPL with policy decision points and use
it to realize a wide spectrum of industry-driven use cases to
contribute experience in realizing concrete deployments.
Policy Support. PRADA [3] realizes policies for the distributed
storage system Cassandra. However, the mere focus on storage
does not provide policy support for all cloud layers. CryptDB
[15] realizes database queries on encrypted data to enable
customers to offload a limited set of tasks to the cloud. Similarly,
BLOOM [16] uses homomorphic encryption to securely offload
search for specific genome sequences to the cloud. However,

Customer

Server

PDP

Standards	body

expectation

data

definition

policy

Figure 2. CPPL considers customer expectations and provider policies to
derive instructions that enable handling of regulated data in the cloud. Policy
decision points (PDPs) realize policies that limit suitable service end-points.

approaches that realize general processing on encrypted data
are not yet feasible [16] and even those limited to specific use
cases add substantial performance overheads. Furthermore,
regulations such as restrictions on location or guaranteed
deletion cannot be achieved with encryption and require further
negotiation. Henze et al. survey possibilities for privacy-aware
cloud usage when handling data gathered by cyber-physical
systems [17]. Betgé-Brezetz et al. [18] present policy support
restricted to IaaS and limited to policies that do not require
integration into services. We show strategies to realize efficient
and comprehensive policy support across all cloud layers
also including service specific policies. MIP [19] provides
efficient and accurate real-time cloud security assessment and
thus enables comparison of security levels of different cloud
providers. To check actions taken by cloud services, Anisetti et
al. propose a certification framework which they exemplify for
OpenStack [20]. Alternatively, several approaches [21]–[24]
employ trusted computing, e.g., Intel SGX or ARM TrustZone,
to enable attestation of server behavior which cloud providers
could employ to prove their adherence to negotiated policies.

III. NEGOTIATION OF CUSTOMER EXPECTATIONS

To realize compliance with customer policies, customers
must be enabled to express their expectations to the cloud. To
enable this negotiation, we adopt the recent Compact Privacy
Policy Language (CPPL) [4], which is specifically tailored
for cloud use cases. CPPL (i) enables cloud customers to
express their expectations on data handling towards the cloud.
To incorporate cloud server abilities and policies of cloud
providers, CPPL (ii) provides an automated process to match
the customer expectations with cloud provider policies, i.e.,
checks if the cloud server is able and the provider is willing to
adhere to the expectations. As result of this matching procedure,
CPPL (iii) provides the cloud with concrete instructions for
data handling, e.g., to delete data after three months.

The available expressions that make up customer expecta-
tions and provider policies are specified in policy definitions.
Experts use domain knowledge to create and tailor policy defini-
tions to specific domains. This enables CPPL to (i) express data
handling requirements for various domains (expressibility) and
even adapt to future, yet unforeseen data handling requirements
and cloud services (extensibility). Furthermore, pre-distribution
of policy definitions enables (ii) efficient compression of
(human readable) expectations to reduce costs for transfer and
storage and, thus, enables fine-grained policies per data item
or network packet. Finally, an efficient parsing and evaluation



methodology based on policy definition information enables
(iii) fast matching of customer expectations and provider
policies.

The general procedure for handling regulated data in the
cloud is depicted in Figure 2. In an initial deployment step
(gray dashed lines), customers as well as providers receive
the policy definitions relevant for their use cases, e.g., from a
standardization body. A customer expresses her expectations
based on the policy definition and compresses it for efficient
later use. Similarly, for each cloud server, cloud providers
create a policy that specifies which expressible expectations the
system is able, and the cloud provider is willing, to fulfill. The
expectations can range from restricted location over guaranteed
data deletion and notification instructions up to configuration
of security properties for storage or network connections.

Given this initial setup, a customer attaches the compressed
expectations as data annotation to regulated data that she sends
to the cloud (black line). The cloud service checks the received
expectations against its policy. The result of this matching
can be negative, i.e., if the service cannot comply with the
expectations, it does not handle the request. Otherwise, the
service obtains instructions on how to handle the data, e.g., to
delete it after three months. We demonstrated the applicability
of this negotiation in a detailed performance analysis [4].
Still, after negotiation, the cloud service must handle the data
according to the derived instructions. In this paper, we present
realization strategies for all cloud layers to show feasibility of
such a comprehensive policy support in the cloud.
Policy Decision Point. Yet, CPPL does not consider that some
expectations must be evaluated before data reaches the service
end-points, e.g., location requirements must be checked before
data travels to forbidden places. To address this challenge,
we introduce policy decision points (PDPs) which evaluate
such expectations at the edge of the cloud (cf. Figure 2). Upon
reception of data, a PDP selects a service that is able to comply
with the requested expectations. To this end, PDPs regularly
retrieve policies from cloud services and match them with
received expectations1. Thus, PDPs enable customers, e.g., to
offload location regulated tax information [2], but also enable
controlled sharing with third parties, e.g., in federated clouds.

Still, most customer expectations (likewise denoted as
policies in the following) must be addressed at the service
end-points itself, e.g., data deletion. In the following sections,
we thus show strategies to comprehensively realize this policy
support at all cloud layers based on representative services.

IV. PROVIDING POLICY-AWARE INFRASTRUCTURE

As outlined in Figure 1, the IaaS layer requires measures
to realize policy-aware resource management. For example,
it realizes location restrictions during server bootstrapping
or ensures availability of requested hardware features such as
trusted computing or computational power. Similarly, customers
need control over network connections that transmit regulated

1Customers check the PDP’s compliance with their expectations by retrieving
the PDP’s policy for local matching, prior to sending data to the cloud.

M
id

dl
ew

ar
e 

#1

ke
ys

to
ne

m
id

dl
ew

ar
e

po
lic

ym
id

dl
ew

ar
e

M
id

dl
ew

ar
e 

#n

GET /servers HTTP/1.1

X-GET /servers HTTP/1.1
X-Auth-Token: 1nv4l1d

GET /servers HTTP/1.1
X-Auth-Token: 809d57a

GET /servers HTTP/1.1
X-Auth-Token: 809d57a
X_USER_ID: 3f729
X_USER_NAME: admin

GET /servers HTTP/1.1
X-Auth-Token: 809d57a
X_USER_ID: 3f729
X_USER_NAME: admin
X_POLICY: ABfBAILHRY1o

Se
rv

ic
e

Request
Valid

Request
Invalid

Figure 3. As keystonemiddleware, the policymiddleware transparently
annotates requests with policy information to make them available to all
components.

data, e.g., to control connection security among cloud servers
or across clouds in cloud federations. In the following, we
exemplify policy-aware resource management by our modifica-
tions to OpenStack and present a mechanism for policy-aware
network connection setup and packet routing.

A. Realizing Customer Control on Resource Management

One primary benefit of policy-aware resource management
is the provision of elasticity for regulated data: Many policies
restrict the set of systems allowed to handle the affected data,
e.g., location or hardware security requirements. Consequently,
systems that fulfill often requested but rarely offered attributes
face high load [3]. Policy-aware resource management ad-
dresses this challenge by enabling clouds to elastically bootstrap
new instances with specific attributes, e.g., based on statistics on
used policies (gathered by PDPs) and current load of services.
OpenStack integration. To exemplify policy-aware resource
management, we integrated policy-support in OpenStack.
Specifically, we enabled customers to control the location for
a new virtualized machine, support configuration of volume
encryption with policies, and enable control on replication
strategies. This required us to make customer expectations
available to all components that contribute to resource man-
agement. Our approach comprises two major components, the
policymiddleware and the policyextension-framework. With a
detailed documentation being available [25], brief descriptions
are provided hereinafter.
Policymiddleware-Component. To make policy information
transparently available to arbitrary OpenStack components, we
introduce a new middleware component called policymiddle-
ware, which is based on the general concepts of the keystone-
middleware component (see Figure 3). The policymiddleware
validates incoming CPPL annotations and deposits the policy
information in Keystone, from where the policyextension-
framework can retrieve it.
Policyextension-Framework. As a second component, we
introduce the policyextension-framework, which enables devel-
opers to implement policy support through PolicyExtensions,
which inject their logic through monkey patching mechanisms
to not rely on potentially missing extension facilities.

To implement new PolicyExtensions, developers create a new
class containing a list of functions to be modified alongside



Key Exchange

version, lifetime,
encryption, integrity,
Diffie-Hellman

IPSec

lifetime,
encryption, integrity,
Diffie-Hellman

Traffic Flow Template

{ 3-tuple (IPsrc, IPdst, Ipproto), 
5-tuple (IPsrc, IPdst, IPproto, Portsrc, Portdst),

n-tuple (n-match) }

Figure 4. Controllable security parameters and available traffic flow patterns.

with the methods implementing the modifications. The poli-
cyextension-framework handles the entire patching process and
provides convenience methods for accessing the arguments of
the original function and makes policy annotations available
from arbitrary locations in the service implementations. With
external requests to OpenStack APIs resulting in a large number
of internal requests among the individual services, the compact
representation of CPPL evades any bloating effects caused by
annotating all internal requests with policy information.

Based on the two introduced components, our design
demonstrates the versatile applicability of CPPL by enabling
policy-aware resource management and thus realizing, e.g.,
elasticity for regulated data in the cloud.

B. Enabling Policy-Aware Network Connection Setup

Beyond policy-aware resource management with OpenStack,
clouds with multiple datacenters and especially federated clouds
require control on network connection, e.g., to fulfill user-
defined encryption requirements for inter-cloud communication.
Current technologies do not offer frameworks to define security
policies for such traffic. As cloud providers may not encrypt
inter-cloud or inter-datacenter traffic if they have a dedicated
connection, this opens possibilities of eavesdropping [26] in
case of low security or misconfigurations from the users.
Mitigating this risk, policy support enables customers to
express their security requirements with a flow granularity. The
particular challenge to realize such a fine-grained control lies
in associating specific traffic patterns with their corresponding
security policies. In the following, we tackle this challenge by
introducing a policy-aware traffic classification mechanism.

In previous work [27], we presented a cloud federation
agent for OpenStack, which is configured by the system
administrator. The agent enables the expansion of tenant virtual
networks across federated clouds, providing isolation and
encryption. If the links between the federated clouds are not
secured, IPSec tunnels could be established to ensure that
tenant traffic never leaves the cloud unprotected. However, we
lacked the granularity of parallel IPSec tunnels and mapping of
tenant traffic with a specific tunnel. In this work, we enhance
the capabilities of our system by supporting parallel tunnels
together with fine-grained classification and mapping of tenant
traffic. A tenant can now define its own CPPL-based security
policy for traffic, i.e., express required connection security on
a per-flow granularity.

To realize transmission over IPSec tunnels that comply with
the traffic’s policy, we (i) need to map traffic to its CPPL policy
and (ii) must identify the tunnels that comply with the policy.

Figure 5. Packet Pipeline Classification.

To address the first challenge, i.e., map traffic to policies, we
bundle each CPPL policy with a traffic flow template (TFT).
A TFT identifies traffic with an n-tuple iptables match and
thus specifies to which traffic the bundled policy applies. The
policy is used to specify parameters for key exchanges and the
corresponding IPSec tunnels, and thus allows tenants to control
the level of security, e.g., by selection of available ciphers,
interval until re-keying, and suitable key length. To set up a
TFT and its CPPL policy, the cloud federation agent offers
tenants a REST API. The currently available parameters for
CPPL policies and TFTs (cf. Figure 4) are derived from the
strongSwan reference configuration [28]. This enables sanity
checks of user input.

When receiving a TFT and its CPPL policy, the cloud
federation agent needs to identify IPSec tunnels that comply
with the policy (cf. requirement (ii)). To this end, it checks for
each tunnel if it complies with the received policy using efficient
CPPL matching (cf. Section III). Being able to identify suitable
tunnels, we now only need efficient traffic classification based
on TFTs to send corresponding traffic through the identified
tunnels, which we detail in the following.
Traffic classification. We devise a traffic classification subsys-
tem that is plugged in the standard OpenStack OpenvSwitch
(OvS) integration bridge, benefiting from the underlying MAC
learning capabilities of the switching fabric. This method allows
for transparent bridging with the remote clouds. Additional
network namespaces are used for enforcing the TFT rules,
which perform the packet classification for later IPSec policy
matching. An overview is depicted in Figure 5.

A tenant virtual network is identified within an OpenStack
host by a unique VLAN id. From the OvS integration bridge
it is straightforward to divert traffic to the respective tenant
namespace via an internal port. The namespace contains a
Linux bridge with the corresponding iptables rules defined by
the TFT. Traffic classification is performed upon matching on
these rules and carried with the packets. Afterwards, packets
leave the namespace and continue towards the OvS cloud
interconnection bridge. The classification metadata is translated
before the tenant traffic is encapsulated by the tunneling ports.
The unique VLAN id is mapped to a unique network id and
carried in the encapsulated tunnel id. The encapsulation process
maintains the translated classification metadata intact, which is
later used for finding the corresponding IPSec XFRM policy.
Classified packets are assured at least the requested level of
security, whereas the unclassified packets are assigned a default
security policy. Furthermore, the use of network namespaces
allows us to establish resource limitations via cgroups.



no
classify

compatible
mode

enhanced
mode

0.000

0.002

0.004

0.006

0.008

0.010

0.012

L
at

en
cy

[m
s]

no
classify

compatible
mode

enhanced
mode

0
20
40
60
80

100
120
140
160

T
hr

ou
gh

pu
t[

G
B

ps
]

Figure 6. Traffic classification performance: The enhanced mode offers
customers controllable networking with almost no impact on performance.

We have implemented two variants for traffic classification:
compatible and enhanced modes. Our compatible mode uses
a virtual ethernet pair, resembling a network pipe. The
classification metadata is carried within each packet, encoded
in the VLAN PCP (priority code point - 3 bits) field. This
is achieved with a combination of iptables rules using the
CLASSIFY target and Linux Traffic Control (tc) classfull
and hierarchical queuing disciplines with VLAN rewriting.
However, this requires complex tc rules and filters to perform
this rewriting, with a strong performance impact. The received
PCP value is further translated into the packet mark upon
reception by the cloud interconnection OvS bridge. This
operation mode is supported across BSD and Linux OSes.

The Enhanced mode uses an OvS Internal Port instead of
virtual ethernet pair. The classification metadata is carried
alongside each packet as the packet mark (32 bit integer).
This is achieved using a combination of iptables rules with
the MARK target. The advantage of this method consists on
the skb packet mark not being scrubbed while traversing the
network namespace. This constitutes the most straightforward
operation, albeit it is only available from OvS 2.5.x versions.
Performance evaluation. To evaluate our design, we set up an
OpenStack replica of the virtual networking for a single tenant,
enabled traffic classification and, in view of high traffic load
handled by the connections, evaluate the network performance
by means of throughput and latency following the scenario
depicted in Figure 5.

We obtained throughput performance using 100 iterations
of iperf (-t 10 -P 8) and measured latency with 100 iter-
ations of ping (-f -c 100000). Figure 6 shows the results
of our measurements. The performance degradation seen in
the compatible mode is due to the inherent complexity of
the hierarchical queuing disciplines and filters required by
tc. In contrast, the enhanced mode benefits from the least
computational requirements needed for traffic classification
yielding similar performance as without classification, i.e.,
without policy support. The enhanced mode thus enables
efficient CPPL-based control of network connection properties
for traffic flows without latency or throughput overhead.

As our design applies to any system interconnection, it also
covers intra-cloud communication. We thus enable customers
to control communication security between datacenters and
across clouds in a federation, hence, enabling customers to
prohibit transfer of sensitive data over unsecured links, and
achieve this without additional cost.

standard cppl cppl + log
+ delete setup

0
2
4
6
8

10
12
14
16

up
lo

ad
tim

e
[s

]

standard cppl cppl + log

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

do
w

nl
oa

d
tim

e
[s

]

Figure 7. Performance of policy-aware XRootD: Our results show
negligible overhead for policy negotiation as well as accompanied actions.

V. CONTROLLABLE PAAS: TAPPING CLOUD BENEFITS FOR
REGULATED USE CASES

The PaaS layer needs to address expectations that affect
storage as well as processing of services. A major challenge
to be addressed at this layer is compliance with location
restrictions for storage as well as processing. In contrast to
IaaS, services are already running and data must not reach
forbidden locations which is ensured by our policy decision
points (cf. Section III), to which cloud servers report their
location properties. Still, also the services must be aware of
location restrictions as they often interact with services in
other locations. Another challenge is the realization of reporting
mechanisms, e.g., cloud customers can negotiate that file access
is logged for later analysis. Furthermore, requesting secure
network connection usage is vital to ensure data privacy when
data is passed among different services. Finally, especially
storage services face the need for guaranteed data deletion to
set customers into control of the lifetime of data in the cloud,
e.g., privacy regulations often require deletion of data after
specific time periods. In the following, we discuss policy-aware
storage and processing by means of big data management at
CERN, the Hyrise in-memory research database, and Orange’s
use of network function virtualization to virtualize and offload
customer premise equipment (e.g., residential home gateways).

A. Policies Simplify Big Data Management at CERN

To exemplify policy-aware storage, we integrated policy-
support to XRootD which is used to enable big data analysis at
CERN. Specifically, XRootD is used to store data from high-
energy particle collisions to study the nature of elementary
particles. These collisions produce petabytes of data, which
has to be accessible by researchers spread around the world.
High energy physics (HEP) is thus a data intensive field of
science and consequently storage and retrieval of data objects
is one of the core tasks. To provide this data access, HEP data
objects are stored in large ROOT files, which are accessed
through data servers such as XRootD. Typically, HEP analysis
jobs read small parts from several large ROOT files.

This scenario can be relevant beyond XRootD, e.g., to
address challenges when dealing with research data obtained
under Non Disclosure Agreements (NDAs). Here, policy-aware
storage is needed when processing such sensitive data in
conjunction with cloud setups.

To address such demands, we exemplify policy-aware storage
by realizing access logging and guaranteed data deletion for



XRootD. For access logging, we log IP address, file name, and
time stamp upon file creation and access while data deletion
enforces a limited storage time. Traditionally, these policies
are followed by system administrators rather informally by
changing system configurations and manually running scripts.
To automate and stabilize adherence to policies, we enhanced
XRootD with policy support and annotate HEP data files
with policies. To this end, each upload or download of a file
incorporates checking the policy. For both actions, if the policy
enforces access tracking, we log the IP address, file name and
time stamp. For upload actions of files that request limited
storage time, we furthermore set up a time-based trigger for
data deletion according to the lifetime specified in the policy.
Performance evaluation. To evaluate the effect of policy-
support on XRootD, we measured upload and download times
for a standard and a policy-aware XRootD server. The server
was deployed in an OpenStack VM (1vCPU and 2GB RAM)
at Aalto University and accessed by clients from an identical
VM located at CERN.

Derived from real usage patterns, we uploaded 300 MB files
for a period of five minutes with one process. For our download
test, we instructed 10 parallel processes to retrieved 10 kB files
over the course of one minute. We measured execution times for
each up- and download and repeated each test 30 times. Figure 7
shows the results. For the CPPL enabled case, we present two
results, one including only checking of the CPPL policy and
one that also measures execution of the derived instructions.
The results show negligible overhead for policy negotiation, as
CPPL provides space-efficiency (with compression) and fast
matching (cf. Section III), as well as for accompanied actions.
Thus, our design and realization enable customer control on
storage for big data analysis. Applying policy-aware request
processing to further cloud storage systems, hence realizes
large scale, efficient policy-aware storage, e.g., to enable NDA-
compliant offloading of research data to the cloud, but also to
realize general policy-compliant storage of regulated data.

B. Realizing Policy-Aware Storage in In-Memory Databases

Beyond policy-aware storage for XRootD, we also investi-
gated policy integration strategies for distributed in-memory
databases, as these offer an essential form of data storage in
business-oriented use-cases. However, database administration
is known to be a demanding task, since expert knowledge is
required to properly set up and tune databases to provide good
performance. Hence, outsourcing the operation of databases to
corresponding PaaS offerings is becoming increasingly popular.
Especially for PaaS-based database offerings, strict policy
adherence is vital, as databases often hold crucial business
assets. To not impede the substantial performance gains of
In-Memory Databases (IMDB), it is necessary that policy
adherence mechanisms do not tax the overall performance of
PaaS-based IMDB offerings.

To study and enable efficient realization of policy support in
IMDBs, we augmented the Hyrise [29] open source in-memory
research database with policy adherence mechanisms based on
CPPL. Hyrise uses replication mechanisms to support cloud-

standard cppl

0
20000
40000
60000
80000

100000
120000
140000
160000

C
om

pl
et

ed
Q

ue
ri

es
[q

ue
ri

es
/s

]

Figure 8. Performance of policy support in Hyrise-R: For high-throughput,
transactional workloads, the policy evaluation incurs no notable overhead.

based scale-out deployment [30], elasticity [31], as well as
high availability features. Currently, Hyrise-R implements full
replication, where the entire data is stored at every node in the
database cluster. Using this approach, every node can process
every query. However, expressive policy adherence mechanisms
enable more fine-grained replication and data distribution
mechanisms in cloud scenarios compared to maintaining full
copies. For example, some data may be restricted to be stored
in specific geographic locations. Other data may demand a
minimum replication rate for high availability. In these cases,
partial replication enables increased flexibility and improves
resource utilization, as every database node only has to maintain
a subset of the entire database. Using partial replication, a policy
annotation is crucial, if the user wants to specify what data
fragments are allowed to be stored on which nodes.

As an initial prototype on the way towards achieving partial
replication, we implemented policy adherence support for the
properties location and replication rate based on the CPPL
policy language. First, we adapted the query dispatcher to
only forward queries to replica nodes located in a permissible
location, storing all queried data fragments. Second, integrating
policy support also affected the synchronization mechanism of
replicas, i.e., the transmission of data manipulation messages
only to permissible nodes storing related data fragments.
Performance evaluation. Performance measurements were
conducted by simulating a high-throughput transactional work-
load. No-op queries were used instead of actual operations to
exclude confounding effects of actual operations as potential
decelerating components that do not contribute to the integra-
tion of CPPL. To retrieve a sufficiently meaningful dataset, we
performed 30 repeated measurements of both the standard and
the CPPL-enabled implementations of the Hyrise-R dispatcher,
which is backed by two Hyrise replica instances. The results
depicted in Figure 8 indicate negligible overhead for policy
evaluation. Thus, based on the compact representation and
the efficient matching of policies in CPPL, cloud-optimized
scale-out deployments of in-memory databases can offer policy
support without notable performance degradation.

C. Benefits of Controllable Processing – Enabling Orange to
Virtualize and Offload Customer Hardware to the Cloud

Apart from cloud storage, also processing of data in the cloud
can be affected by regulations. To exemplify corresponding
requirements on the PaaS layer, we focus on the attempt of
Orange Polska, a large ISP, to virtualize customer premise
equipment functionality (e.g., routing or firewall filtering in



vHGW
(routing)

ISP’s
Customer

vHGW
(firewall)connection

security

location,
availability,

performance

ISP

failure notification

Figure 9. Policy-aware PaaS enables tapping cloud benefits for regulated
cloud processing, e.g., ISPs can offload network functionality to the cloud.

home gateways) and offload processing to the cloud as virtual-
ized home-gateway (vHGW). These vHGWs are envisioned
to replace today’s heterogeneous deployments comprised of
various HGW types that offer differing functionality which
makes operation, administration, and maintenance complex
especially at a large scale. Instead, offloading functionality to
the cloud as vHGWs allows different devices to offer unified
functionality, reduces capital and operational expenditures
of ISPs, and enables fast deployment of new functionality.
To realize this offloading, several regulations and customer
expectations must be addressed. These range from privacy
of customers, over security of network connections, up to
availability and performance demands. While we attribute the
vHGW to the SaaS layer, we still choose it to discuss policy
realization for PaaS which realizes most of the corresponding
requirements on policy support.

Typically, ISPs need to follow privacy regulations that apply
to customer communication. As depicted in Figure 9, they need
to restrict the location of a vHGW, e.g., to the country of the
customer [2]. To realize this location support we can instruct
policy decision points (PDPs) to enforce location regulations for
vHGW bootstrapping and relocation (cf. Section III). Similarly,
ISPs must ensure confidentiality of data transmissions between
customers and their vHGWs. Specifically, today’s local area
security mechanisms must be replaced with end-to-end security
mechanisms when offloading HGWs to the cloud. Furthermore,
different functionality of a vHGW such as routing, DHCP, and
firewall can be distributed to different cloud servers. These
functional blocks must likewise securely communicate with
each other. To ensure suitable connection security in all these
cases, we can adapt our design used to realize control on
network setup at the IaaS layer (cf. Section IV-B).

Beyond privacy and security demands, vHGWs must provide
similar or better performance as today’s deployed hardware.
Thus, the PaaS layer must meet performance metrics, especially
regarding delay, jitter, throughput, and packet loss as well as
datacenter availability. Prior to vHGW deployment, PDPs could
use server attributes, which they receive similar as location
information, to match the requirements with the capabilities of
cloud servers. Compared to today’s SLAs, the use of policies
enables more dynamic control, e.g., each vHGW can request
a specific performance level based on end-user traffic patterns.
After deployment, constant monitoring of performance metrics
can enable adjustments or relocation on demand.

Moreover, policy support would enable configurable report-
ing to customers, e.g., to enhance monitoring capabilities of

ISPs for their vHGWs: Today, failure of HGWs can be detected
within the ISP’s own network. Contrarily, failures in the cloud
require the cloud to notify the ISP on occurrence and details
of a problem. To this end, customer expectations negotiate
instructions on error notification, e.g., how and where the
cloud has to report errors to the ISP. This enables ISPs to
handle vHGW failures automatically even though they run on
foreign cloud infrastructure. For example, ISPs can instruct
the cloud to provide information that enable the ISP to trigger
actions like relocation of the vHGW. Negotiating specific error
handling instructions even allows the cloud to handle issues
automatically without interaction with the ISP at time of error.
Finally, realizing data deletion with policies would enable ISPs
to comply with data storage regulations, i.e., the requirement
to store data for a certain amount of time for inspection but
also to ensure deletion of data according to privacy laws.

Although missing confidence in foreign clouds limits ISP’s
plans to the usage of their own cloud infrastructure today,
we hope that our work establishes increasing trust such that
also offloading of mission critical data and services to foreign
clouds and cloud federations becomes viable for vHGWs, as
well as for processing in regulated contexts in general.

VI. POLICY-AWARE SAAS: NEW BUSINESS CASES,
BROADER CUSTOMER BASE, SIMPLIFIED CONFIGURATION

To complete comprehensive policy support for the cloud,
we now show that adherence to customer expectations at the
SaaS layer enables enhanced and new business cases. To this
end, services at the SaaS layer can draw upon policy-support
of the IaaS and PaaS layer (cf. Sections IV, V). Still, there
are a lot of very service specific expectations of customers
on the handling of their data, e.g., restriction regarding data
aggregation, usage for automated processes such as machine
learning, or sharing with third parties. In the following, we
exemplify such expectations by means of the Security Cloud
offer of F-Secure which provides security solutions to their
customers. Making this service policy-aware and thus putting
customers into control of handling of their data greatly enhances
confidence of customers into the service. Thus, a policy-aware
SaaS has the potential to significantly broaden the customer
base, increasing cloud provider profit but also enabling usage
of the service for customers with regulated data.

A. Adressing Customer Expectations in F-Secure’s Security
Cloud Improves Service Quality and Security of Customers

F-Secure products range from protecting an endpoint, (laptop,
phone, server) to protecting an organization from threats posed
by user provided content in cloud based SaaS services, and
lastly detecting breaches in an organization. The core of F-
Secure’s Security Cloud is a knowledge base of digital threats
that is constantly growing and evolving as data is gathered
from client applications and accumulated through automatic
threat analysis. Centralizing the information used to combat
digital threats into a cloud service provides many benefits. New
knowledge about threats can be utilized faster, and the system



can consolidate data from a large range of clients and maintain
a picture of the global threat situation.

For analysis, F-Secure retrieves new, not yet analyzed files for
analysis from their customers. In the past, however, customers
often excluded specific types of files, e.g., text documents,
from cloud analysis due to worries about security and privacy
and the need to comply with regulations, e.g., the General
Data Protection Regulation. This broad exclusion of files from
security analysis puts customers at significant security risks as
documents that exploit zero day vulnerabilities became one of
the main attack vectors in high profile targeted attacks. Hence,
to protect against security threats but also comply with security
and privacy requirements, F-Secure’s customers have demand
for fine-grained control on data handling in the cloud. For
F-Secure, realizing policy-support thus enables new business
cases based on regulated and confidential data. Furthermore,
the increased amount of analyzed data results in a better trained
knowledge base which increases the quality of security analysis.

Based on customer requests, F-Secure identified a set of
relevant policy attributes: As content submitted for analysis is
often user generated or confidential, e.g., emails or documents,
customers request F-Secure to delete data after analysis or want
to restrict analysis to automated processes, i.e., exclude manual
analysis by humans. Other regulations limit the location of the
analysis, e.g., customer’s tax information must not leave the
originating jurisdiction [2]. Even more, customers would like
to control the use of third parties involved in security analysis,
or even limit analysis to servers within the customer’s own
organization, e.g., to prevent information leakage. Furthermore,
some organizations such as governments, military, or insurance
providers affected by the Health Insurance Portability and
Accountability Act request that their data is handled separately
from other organizations. Finally, F-Secure also incorporates
meta-data, e.g., creator or origin of a document, in the analysis.
While this data is valuable to train the knowledge base, and can
thus improve service quality, it is often of sensitive nature. Thus,
customers require means to express availability or exclusion
of (meta-)data for knowledge base training.

To address these requirements of customers, F-Secure can
annotate data with corresponding policies which travel with
the data (as any other meta-data). In contrast to specifically
tailored realizations, the annotation provides each component
with a uniform representation of customer requirements, thus,
significantly easing policy integration. CPPL’s features enable
an efficient realization of this concept: Compression ensures
low overhead for passing on policies with the data and fast
matching incorporates negligible overhead for policy checking
at different components (cf. Section III). Beyond expressing
customer requirements, also applications can express their
requirements, thus, addressing F-Secure’s need to specifically
shape the security analysis for different appliances, e.g., cloud
or smartphone protection. Finally, it enables F-Secure to easily
adapt to changes posed by law or regulatory changes as well
as setting up new standard data handling procedures based on
changing customer perceptions regarding security and privacy.

Summing up, customers already actively express their

demand for the features of a policy-aware SaaS layer as it
enables them to use cloud services for regulated and confidential
data. For cloud providers, establishing this support does not
only yield new business cases and broadens customer base but
also eases management and extension of their cloud services.

VII. CONCLUSION

To tap highly available, scalable, and elastic resources of
clouds for regulated use cases, customers must be enabled
to control data handling in the cloud. Extending upon the
recent CPPL policy language that is specifically tailored for
cloud scenarios, we show that a wide spectrum of industry-
driven cloud use cases covering all layers of a cloud stack
can be realized. Specifically, we enable elasticity for regulated
data by realizing policy-aware resource management (with
OpenStack) and set customers into control of intra- and inter-
cloud communication, thus, enabling them to, e.g., mitigate
information leakage due to transfer over unsecure links.
Exemplified by big data management at CERN, we showed that
realizing policy-aware storage comes with negligible overhead
for data upload and access which, as we showed based on our
realization for the in-memory database Hyrise, even holds for
high-throughput transactional workloads. Drawing upon this
support, we discussed possibilities for policy-aware processing
exemplified by Orange Poland’s attempts to offload network
functionality to cloud environments to significantly reduce
costs. For applications at the top of a policy-aware cloud stack,
as discussed for F-Secure’s Security Cloud, policy-awareness
enables new business cases, broadens the customer base and
simplifies cloud service management.

Moreover, we extended CPPL with policy decision points
that realize compliance with policies that limit the set of cloud
servers that are allowed to receive data, e.g., due to location
regulations, and also enables policy-awareness in federated
cloud scenarios. Beyond feasibility of comprehensive policy
realization in the cloud, our results also witness the necessity of
key performance features of CPPL for cloud computing based
on a wide spectrum of industry-driven cloud use cases. We
make the original and the adapted CPPL source code public [4].

As part of future work, we plan to enable cloud providers
to technically prove their compliance with expressed customer
requirements, e.g., using trusted computing technology. We
hope that our positive experience and results motivate further
integration of policy-support into cloud services to foster
support for tapping highly available, scalable, and elastic cloud
resources for regulated data.

ACKNOWLEDGEMENTS

This paper has received funding from the European Union’s
Horizon 2020 research and innovation programme 2014-2018
under grant agreement No. 644866. It reflects only the authors’
views and the European Commission is not responsible for
any use that may be made of the information it contains. We
would like to thank the German Research Foundation DFG for
the kind support within the Cluster of Excellence ”Integrative
Production Technology for High-Wage Countries”.



REFERENCES

[1] Intel IT Center, “Peer Research: What’s Holding Back the Cloud?” Intel,
Tech. Rep., 2012.

[2] N. Cory, “Cross-border data flows: Where are the barriers, and
what do they cost?” 2017, accessed 24.10.2017. [Online]. Available:
http://www2.itif.org/2017-cross-border-data-flows.pdf

[3] M. Henze, R. Matzutt, J. Hiller, E. Mühmer, J. H. Ziegeldorf, J. v. d.
Giet, and K. Wehrle, “Practical data compliance for cloud storage,” in
IEEE IC2E, 2017.

[4] M. Henze, J. Hiller, S. Schmerling, J. H. Ziegeldorf, and K. Wehrle,
“Cppl: Compact privacy policy language,” in ACM WPES, 2016, source
code available at https://github.com/SSICLOPS/cppl.

[5] M. Y. Becker, A. Malkis, and L. Bussard, “A practical generic privacy
language,” in ICISS, 2010.

[6] “eXtensible access control markup language (XACML) version 3.0,”
OASIS Standard, 2013.

[7] L. Bussard, G. Neven, and F. S. Preiss, “Downstream usage control,” in
POLICY, 2010.

[8] M. Azraoui, K. Elkhiyaoui, M. Önen, K. Bernsmed, A. S. Oliveira, and
J. Sendor, “A-PPL: An accountability policy language,” in DPM, 2014.

[9] R.-A. Cherrueau, R. Douence, H. Grall, J.-C. Royer, M. Sellami,
M. Südholt, M. Azraoui, K. Elhhiyaoui, R. Molva, M. Önen, A. Garaga,
A. S. Oliveira, J. Sendor, and K. B ernsmed, “Policy representation
framework,” A4Cloud Consortium, Tech. Report, 2013.

[10] J. Poroor and B. Jayaraman, “C2L: A formal policy language for secure
cloud configurations,” in ANT, 2012.

[11] R. Kantola, J. Llorente Santos, and N. Beijar, “Policy-based commu-
nications for 5g mobile with customer edge switching,” Security and
Communication Networks, vol. 9, no. 16, 2016.

[12] M. G. Jaatun, I. A. Tøndel, N. B. Moe, D. S. Cruzes, K. Bernsmed,
and B. Haugset, “Accountability requirements for the cloud,” in IEEE
CloudCom, 2017, pp. 375–382.

[13] M. G. Jaatun, S. Pearson, F. Gittler, R. Leenes, and M. Niezen, “Enhanc-
ing accountability in the cloud,” International Journal of Information
Management, 2016.

[14] R. Thion and D. Le Metayer, “Flavor: A formal language for a posteriori
verification of legal rules,” in IEEE POLICY, 2011, pp. 1–8.

[15] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: Protecting confidentiality with encrypted query processing,” in
ACM SOSP, 2011.

[16] J. H. Ziegeldorf, J. Pennekamp, D. Hellmanns, F. Schwinger, I. Kunze,
M. Henze, J. Hiller, R. Matzutt, and K. Wehrle, “Bloom: Bloom filter
based oblivious outsourced matchings,” BMC Medical Genomics, vol. 10,
no. 2, p. 44, 2017.

[17] M. Henze, J. Hiller, R. Hummen, R. Matzutt, K. Wehrle, and J. H.
Ziegeldorf, Network Security and Privacy for Cyber-Physical Systems,

in Security and Privacy in Cyber-Physical Systems. Wiley, 2017, pp.
25–56.

[18] S. Betgé-Brezetz, G. B. Kamga, M. P. Dupont, and A. Guesmi, “End-
to-end privacy policy enforcement in cloud infrastructure,” in IEEE
CloudNet, 2013, pp. 25–32.

[19] J. Modic, R. Trapero, A. Taha, J. Luna, M. Stopar, and N. Suri, “Novel
efficient techniques for real-time cloud security assessment,” Computers
& Security, vol. 62, pp. 1 – 18, 2016.

[20] M. Anisetti, C. A. Ardagna, E. Damiani, F. Gaudenzi, and R. Veca,
“Toward security and performance certification of open stack,” in IEEE
CLOUD, 2015, pp. 564–571.

[21] R. Pires, D. Gavril, P. Felber, E. Onica, and M. Pasin, “A lightweight
mapreduce framework for secure processing with sgx,” in IEEE/ACM
CCGrid, 2017, pp. 1100–1107.

[22] L. V. Silva, R. Marinho, J. L. Vivas, and A. Brito, “Security and privacy
preserving data aggregation in cloud computing,” in ACM SAC, 2017,
pp. 1732–1738.

[23] F. Kelbert, F. Gregor, R. Pires, S. Köpsell, M. Pasin, A. Havet,
V. Schiavoni, P. Felber, C. Fetzer, and P. Pietzuch, “Securecloud: Secure
big data processing in untrusted clouds,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2017, pp. 282–285.

[24] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers,
R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure linux containers
with intel SGX,” in USENIX OSDI, 2016.

[25] M. Plauth, M. Bastian, and A. Polze, “Facilitating Policy Adherence
in Federated OpenStack Clouds with Minimally Invasive Changes,” in
Proceedings of the Fifth HPI Cloud Symposium “Operating the Cloud”,
2017, (to appear).

[26] S. Landau, “Highlights from making sense of snowden, part ii: What’s
significant in the nsa revelations,” IEEE Security Privacy, vol. 12, no. 1,
pp. 62–64, 2014.

[27] M. Kimmerlin, P. Hasselmeyer, S. Heikkilä, M. Plauth, P. Parol, and
P. Sarolahti, “Network expansion in OpenStack cloud federations,” in
EuCNC, 2017.

[28] strongSwan, “ipsec.conf Reference,” accessed 24.10.2017. [Online]. Avail-
able: https://wiki.strongswan.org/projects/strongswan/wiki/ConnSection

[29] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudré-Mauroux, and
S. Madden, “HYRISE - A Main Memory Hybrid Storage Engine,”
PVLDB, vol. 4, no. 2, 2010.

[30] D. Schwalb, J. Kossmann, M. Faust, S. Klauck, M. Uflacker, and
H. Plattner, “Hyrise-R: Scale-out and Hot-Standby through Lazy Master
Replication for Enterprise Applications,” in IMDM, 2015.

[31] S. Klauck, “Scalability, Availability, and Elasticity through Database
Replication in Hyrise-R,” in Proceedings of the Fourth HPI Cloud
Symposium “Operating the Cloud”, 2016.


