
Performance Evaluation for New Web Caching Strategies
Combining LRU with Score Based Object Selection

Gerhard Hasslinger a, Konstantinos Ntougias b, Frank Hasslinger c and Oliver Hohlfeld d

a Deutsche Telekom, Darmstadt, Germany, Email: gerhard.hasslinger@telekom.de
b Athens Information Technology, Athens,Greece, Email: kontou@ait.gr
c Darmstadt University of Technology, Darmstadt, Germany, Email: frank.hasslinger@stud.tu-darmstadt.de
d RWTH Aachen University, Aachen, Germany, Email: oliver@comsys.rwth-aachen.de

Keywords
Web caching strategies
Least Recently Used (LRU)
Score Gated (SG-)LRU
Least Frequently Used (LFU)
Caching simulator
Zipf law request pattern
Zipf random variate generator
2nd order statistics control
Cache hit rate
Che approximation

Abstract
The topic of Internet content caching regained relevance over the last years due to the
increasing and widespread use of content delivery infrastructures to meet capacity and
delay demands of multimedia services. In this study, we evaluate the performance of
web caching strategies in terms of the achievable hit rate for realistic scenarios of large
user populations. We focus on a class of Score Gated Least Recently Used (SG-LRU)
strategies which combine the simple update effort of the LRU policy with the flexibility
to keep the most important content in the cache according to an arbitrarily predefined
score function.

Caching efficiency is evaluated via simulations assuming Zipf distributed requests,
which have been confirmed manifold in access pattern of popular web platforms for
video streaming and various other content types. In this paper, we analyze the hit rate
gain of alternative web caching strategies for the standard independent request model
(IRM) within the complete relevant range of three basic system parameters. The results
confirm absolute hit rate gains of 10%-20% over pure LRU as realistic estimation in
general, as experienced in other trace-driven case studies for special caching strategies.

Moreover, we compare the performance for the independent request model with re-
sults for correlated dynamic request pattern over time, based on Wikipedia statistics
that are available as daily top-1000 page requests. In this way, we show that the IRM
analysis is valid for caches with a large user population, although high dynamics tends
to reduce the achievable hit rate below the IRM result for smaller user communities.

1. INTRODUCTION: CONTENT DELIVERY AND WEB CACHING

A. Relevance of web caching for growing Internet traffic
Web caching systems are widely deployed at global scale to
improve downloads, video streaming, IP-TV and many other
IP services. Today, a major portion of the IP traffic is trans-
ferred via content delivery networks (CDNs) and data centers
in cloud architectures [1][17][22][28][33][36]. Their distrib-
uted nature yields substantial traffic savings on expensive
intercontinental and inter-domain links. The main benefits
are reduced load and delays as well as higher throughput,
when caches serve requests to popular data on shorter
transport paths to the users. Caches are also present in local
networks, as nano data centers [40], in home gateways and
browsers on the user devices [8][15].

Caches are essential for increasing the Internet’s capacity
and enabling scaling to larger user bases. Figure 1 illustrates
the growth of IP traffic since the year 2000 as reported by
official statistics for Australia, Germany, and Hong Kong [3]
[6][26] as well as annual reports by the router manufacturer
Cisco [10]. In comparison to the fixed network and total traf-
fic volume, we notice that mobile IP traffic still contributes

less than 10%, but is catching up with currently higher
growth rates. Consequently, caching in mobile networks is
becoming more relevant, where the transmission over the air
interface constitutes a main bottleneck. Therefore the usage
and optimization of caches on mobile end devices is espe-
cially crucial, where limited storage capacity poses the chal-
lenge of efficient utilization of small caches. On the whole,
caches of different size are present in various parts of IP net-
works ranging from the core via edge servers of clouds,
CDNs and ISP networks to the user devices. In this way, they
play an important role to overcome bandwidth bottlenecks
and to reduce transfer delays [17][29][32][33].

The annual reports by Cisco [10] and Sandvine [34] in-
clude estimations of main IP traffic components, which re-
veal that video streaming and download applications gener-
ate most of the current IP traffic. In principle, this hasn’t
changed since the time when P2P traffic was dominant [16],
which bypassed traditional web caches. In the last decade,
the P2P traffic portion was decreasing, whereas the HTTP
traffic portion became dominant again [34]. Today, the bulk
of the network traffic is being delivered by global CDNs.

Figure 1: IP traffic growth in fixed and mobile networks

Cisco’s annual reports include a global cloud index, which
indicates that most IP traffic is flowing from data centers to
the users and that there is a considerable amount of cross
traffic within and between data centers [10].

B. Web caching strategies and criteria for efficiency
The efficiency of caching systems is driven by the replace-

ment strategy for identifying and storing the most relevant
objects. A basic and widely used caching scheme follows the
least recently used (LRU) principle, employing simple and
fast cache updates. However, LRU can't offer flexibility to
prefer objects due to cost and benefit aspects, regarding the
size, the transport path from the origin or other preferences
from the content providers’ or users’ perspective [2][33].

A number of studies have evaluated LRU web caching ef-
ficiency in terms of the hit rate [14][27][39][41]. They partly
recommend LRU, but on the other hand, alternatives are
shown to achieve higher hit rates [18][21][23][25][30]. Thus,
no clear picture can be concluded from literature whether
LRU is appropriate for web caching in a tradeoff with more
efficient but often more complex alternatives.

This tradeoff is discussed in detail by Megiddo and Modha
[25], who propose an Adaptive Replacement Cache (ARC)
algorithm for improved efficiency. ARC is shown to outper-
form LRU by 1.5-fold hit rate for a large set of measured and
synthetic traces. However, ARC maintains two caching lists
and involves more than half a dozen cases to be checked for
an update per request, as depicted in Fig. 1 of the work [25].

From a more general perspective, the following set of
basic criteria summarizes discussions on web caching
efficiency in the literature regarding the design of caching
strategies and their implementation:

A. Simple cache updates:
The implementation should be simple enabling updates at
low constant update effort per request to cope with LRU.

B. High hit rate:
The hit rate should be high and should approach the
optimum LFU hit rate when the independent request
model (IRM) is relevant for the user request pattern.

C. Adaptability to dynamically changing popularity:
The influence (i.e. weight) of past requests on the
decision about the cache content should decrease over
time to enable response to shifts in popularity and for
predictive prefetching methods.

D. Minimum upload traffic to the cache:
The traffic and effort for loading objects into the cache
should be as small as possible. In distributed caching
architectures the cross traffic between caches should also
be minimized.

E. Flexible caching policy:
The caching strategy should be flexible and adaptable to
optimize the cache content based on statistics about past
requests, prediction methods or other policies considering
content placement, transport costs and quality of service.

C. Score gated LRU (SG-LRU) web caching strategy
Since we couldn’t find caching methods in the literature

fulfilling all listed criteria, we propose score-gated LRU
(SG-LRU) [18], which combines an LRU stack implementa-
tion with arbitrary scores being attributed to each object. The
selection of objects to be put into the cache depends on the
scores, which makes the method fully flexible according to
the previous criterion (E).

LRU always puts the requested object on top of the cache,
while the bottom object is evicted if cache storage is ex-
hausted. As the only difference, SG-LRU admits a new ex-
ternal object to enter a full cache only if it has a higher score
than the bottom object. Otherwise, the bottom object is put
on top instead of the requested object.

1

10

100

1000

10000

100000

1000000

2001 2003 2005 2007 2009 2011 2013 2015

IP
 T

ra
ff

ic
 G

ro
w

th
 S

ta
tis

tic
s

[P
et

aB
yt

e/
Ye

ar
]

Year

Global Internet [Cisco VNI]
Asia [Cisco VNI]
N-America [Cisco VNI]
W-Europe [Cisco VNI]
Germany [BNetzA]
Hong Kong [OFCA]
Australia [Bureau of Statistics]
Mobile IP, Global [Cisco VNI]
Mobile IP, Germany [BNetzA]
Mobile IP, Hong Kong [OFCA]

Figure 2: Updates for LRU and SG-LRU caches per request in a usual double linked cyclic list implementation

Figure 2 illustrates (SG-)LRU updates for the usual implemen-
tation as a cyclic double linked list. The update effort of SG-
LRU on a double linked caching list implementation is almost
the same as for LRU. In addition, object scores are updated for
SG-LRU. Thus the score function has to be implemented such
that updates are no more complex than the updates in the cach-
ing list, e.g., when only the score of the requested object or a
few others is changed by a simple operation. A request count
within a sliding window or with geometrically fading weight
as explained in Section 3 can be updated at low constant effort
per request.

On the other hand, LRU is loading objects into the web
cache at the cache miss rate, i.e. a requested object is always
put into the cache if it wasn’t found. This leads to more LRU
cache loading traffic and processing effort, which can be much
higher than updating pointers in the LRU cache list. SG-LRU
avoids most of those uploads, because the SG-LRU cache con-
tent usually becomes stable, after being filled with the objects
of maximum score, provided that the ranking of objects due to
scores is stabilizing over time. In this regard, SG-LRU under-
cuts the LRU update effort in usual web caching scenarios.

The detailed evaluation of the performance gain in SG-LRU
hit rates as compared to pure LRU is a main goal of this study.
We extend and complement experience from measurement
based studies [21][23][25][30] by an exhaustive simulative
evaluation of the tradeoff between LRU and the least frequent-
ly used (LFU) principle. Independent Zipf distributed requests
are assumed in the first part, which have been confirmed as
the prevalent access pattern on Internet platforms [4][9][21]
[31][37], whenever a large user community has access to a
large set of objects. The LFU principle keeps those objects in
the cache that have been most frequently requested in the past.
Even if LFU is not a practically valid web caching strategy
because it cannot adapt to a changing popularity of objects,
LFU achieves an optimum hit rate for the independent request
model (IRM) and thus provides an upper bound of the caching
efficiency. As the main contributions of this study, we perform

• a simulation study of the efficiency of SG-LRU caching
strategies including advanced accuracy control estimation
developed in [19], which is also used to check the Che ap-
proximation [9] for LRU hit rates,

• an exhaustive evaluation of the hit rate optimization poten-
tial left open by LRU compared to SG-LRU and LFU for
the standard IRM model with Zipf distributed requests, and

• an extension of the study for dynamically changing popular-
ity of objects applied to request pattern for Wikipedia pages.
We continue clarifying our main focus within a broad spec-

trum of caching evaluations in Section 2. Section 3 introduces
the concept and implementation details of score gated LRU.
Simulative performance evaluations are addressed in Section 4
including an efficient random generator for Zipf distributions
and the control of the precision of hit rate estimates via 2nd
order statistics. Section 5 presents SG-LRU hit rate results for
the entire relevant parameter range for independent (IRM)
Zipf distributed requests. The Che approximation is validated
against simulation results in Section 5. Section 6 extends the
performance evaluations to dynamically changing object pop-
ularity with a case study of requests to Wikipedia pages. Final-
ly, main results are summarized in the conclusions.

The article extends previous work [20] with more details on
the implementation of the method and the caching framework.

2. SCENARIO CLASSIFICATION
Next, we address different preconditions and goals of cach-

ing applications to distinguish our main focus on web caching
for a large user population from other scenarios.

A. Web caching vs. caches in computing & database systems
Caching as used by IP-based services shares similarities

with caching in computer and database systems, i.e., to provide
faster access to a portion of frequently requested data. Internet
workloads and their effects on costs and benefits of caches are
entirely different from caches in local operation systems [2][5].
In computing and database applications, periodic sequences of
requests are usual, whereas Internet workloads are dominated
by random and Zipf distributed request sequences. Frequent
uploads of data as done by LRU for each cache miss are much
more expensive in terms of network traffic load and delay than
for data in a local system. Therefore, results from this study on
web caching strategies cannot be transferred to caches in com-
puting systems and vice versa, although some technical dis-
cussions seem to mix up the different scenarios [27].

OT

Ow

Ou

Oy

Ox

Ov

ON

OT

Ow

Ou

Oy

Ox

Ov

OZ

T

B

T

B
Cache miss

Put requested new
object ON on top
replacing bottom

object OZ
for SG-LRU: only if
Score(ON) > Score(OZ)

Cache miss
only for SG-LRU if
Score(ON) ≤ Score(OZ):

Put bottom
object OZ on top

OT

OW

Ou

Oy

Ox

Ov

OZ

OW

Ov

OT

Oy

Ox

OZ

Top of the Cache
Bottom

T
B

(SG-)LRU
Cache updates
Cache content

before the request Cache Hit
Put requested

object Ow on top

B. Cachable web content and HTTP caching guidelines
Caching is known to be inapplicable for a part of the web

content, including highly dynamic content or one-timers, i.e.
web pages that are only requested once over long time periods
[5]. Moreover, a content owner or provider can mark objects
as non-cacheable in network or in end system caches. None-
theless, the major portion of IP traffic for video streaming and
IP-TV services is distributed from caches in CDN and cloud
architectures. A recent update of caching options for HTTP by
the IETF standardization provides guidelines on how to avoid
inappropriate data in caches [12]. We always refer to the frac-
tion of cacheable data in evaluations of caching efficiency.

C. Cache updates per request versus daily updates
Web caching strategies basically assume updates to be per-

formed on a per request basis, but they can partly be deferred
to low traffic periods to reduce peak hour traffic. Cache pro-
viders often combine updates per request with daily updates
[22][29][32][36]. In this work, we focus on updates per re-
quest. The need for fast updates depends on the dynamics in
the popularity of objects, as discussed in Section 6.

D. Caches for large versus small populations
Caching systems are often organized hierarchically with

central caches serving a large population and lower level cach-
es for smaller regions. Even caches in the browser of each
single user can save around 20% of download traffic for repet-
itive requests [8]. The request pattern is different for each user
and is also varying when a cache serves small communities.
Our focus is on a large population with access to large web
platforms, where the request pattern is known to be universal
and characterized by a Zipf law [4].

E. Fixed versus variable size objects
Files and other objects representing cacheable web data

have different sizes of up to several GByte in case of videos.
For small caches, bin-packing problems can arise and there-
fore size has been considered as an important factor in studies
which assume complete files as transport unit. However, cod-
ing schemes for files and video streams are nowadays seg-
menting data into small chunks in the kByte range, while stor-
age size is steadily increasing. Therefore, we simply assume
objects of fixed size corresponding to data chunks. Files of
different size can still be represented as sets of fixed size ob-
jects with equal score according to the file popularity. From a
more detailed perspective, Hefeeda and Saleh [21] suggest
assigning linear decreasing scores to fixed size data chunks of
the same video because users often stop video streams after
some time, such that the first data chunks of a video are more
relevant.

3. IMPLEMENTING SCORE-GATED LRU
The implementation of the basic (SG-)LRU cache as a dou-

ble chained cyclic list is already shown in Figure 2 with a top
and bottom pointer to enable updates at low effort per request.

In addition, a score value for each object has to be stored
and pointers between the objects in the catalogue and their
position in the cache are established as shown in Figure 3.

Figure 3: Data structure for simulation of SG-LRU caching

A count of the requests to each object can be achieved
simply by incrementing the score of the requested object, cor-
responding to the least frequently used (LFU) policy. Since
pure LFU can't adapt to changing popularity, approaches for
restricted count statistics have been proposed and evaluated in
literature [9][18][25]. A class of such strategies is attributed as
LRFU spectrum [23][30], which includes LRU and LFU cach-
ing schemes as extreme cases. Two basic methods covering
LRU and LFU in this way are

• Sliding Window (SW): An extension of LFU, which limits
the request count per object within a window of the W most
recent requests, and

• Geometrical Fading (GF): A decreasing weight factor ρ
k for

the kth recent request is introduced and the ranking is done
according to the sum of weights per object for all requests
in the past.

The survey [30] refers to a similar ρ-aging method, where
the scores of all objects are reduced by a factor ρ not per
request, but in longer time intervals, e.g. once an hour, thus
reducing the effort per request.

In order to define score functions for sliding window SSW
and geometrical fading SGF, let δOj(k) = 1, if the kth recent
request (k = 1 refers to the most recent request) was addressing
an object Oj of the set O1, ..., ON and otherwise δOj(k) = 0.
Then we obtain

.10;)(;)(
1

≤<== ∑∑ =
ρρδδ

k
k

O
GF
O

W

k O
SW
O kSkS jjjj

 (1)

Figure 4 illustrates how the object’s position in the cache is
determined for (SG-)LRU with the score-based Sliding
Window and Geometric Fading schemes.

Both schemes behave similar when the window size equals
the sum of weights: W = 1/(1 – ρ). An unlimited LFU scheme
is approached as one extreme for W → ∞, ρ → 1. On the other
hand, geometric fading is equivalent to LRU for ρ ≤ 0.5, when
the most recent request dominates the weights.

Regarding the web caching criteria (A-E) of section 1.A, it
is obvious that Sliding Window and Geometric Fading are
adaptive to changing popularity of objects according to (C).

OT

OZ

OA

OF

OR

OH

OX

Top Pointer
Object Catalogue

Scores

S(OA)OA:

Content
Pointer

Cache
Pointer

S(OB)OB: 0*0*
* OB is currently not in the cache

S(OF)OF:

Bottom

Double-linked Cache List

Figure 4: Comparison of LRU, Sliding Window, Geom. Fading

The parameters W and ρ determine the size of the involved
memory for past requests, where a compromise has to be
found in a trade-off with criterion (B), which is approached for
large values W → ∞, ρ → 1.

We take a closer look at the implementation of sliding
window and geometrical fading with regard to criterion (A)
for fast updates per request.

For sliding window, we store the sequence of the W most
recent requests rk–W+1 , …, rk. Then a score update per request
modifies the score of two objects: The score is incremented
for the new requested object rk and decremented for object
rk–W+1, whose request is falling out of the window and thus is
overwritten by rk. Those updates require low constant effort per
request, but extra storage of the order O(W) is needed to hold
rk–W+1 , …, rk. This puts a scalability restriction on W, which can
be strict for user devices with small caches. On data center
cache installations with TByte storage for the content, even a
few GByte of extra storage for W = 109 seems negligible.

A direct implementation of the score function SGF for geo-
metrical fading would require an update of all objects by a
factor ρ per request and an increment of the score of the re-
quested object. Instead, as the update for the lth request, we
leave the weights for past requests unchanged and, add (1/ρ)l
only to the score of requested object. In this way, we achieve
the same ratio of weights for past requests as defined for SGF in
equation (1). The only drawback is that (1/ρ)l is steadily grow-
ing. If the updated score exceeds a threshold, we have to scale
down the scores. Nonetheless, we prefer geometrical fading in
the evaluations rather than sliding window, because
• mean update effort per request is lower for geometric fading,
• sliding window often needs to resolve equal scores of ob-

jects by a tie breaking decision.

For geometrical fading, equal scores are extremely seldom
and thus have negligible effect. It can be proven that geomet-
ric fading scores of two objects, which have been requested at
least once, are different, if ρ is a rational number, e.g., ρ = 1/2
or ρ = 0.9999. Nevertheless, the machine number format may
assign the same score value, if the difference of two scores is
below the significant precision threshold.

Finally, we compare the SG-LRU method to the direct
approach for score based caching, which maintains a sorted
list of objects in the cache according to their scores. The latter
requires logarithmic O(log(N)) update effort for reinserting an
object with modified score into a sorted list of N objects, e.g.
via the heap-sort algorithm used in [23]. Other work on
optimized cache policies attributes such update effort as
“prohibitively high” and instead demands and proposes the
ARC variant with constant update effort per request [25]. An
implementation of LFU, with constant update effort per
request is provided by [35], i.e. for objects being sorted by the
number of past requests. SG-LRU avoids many case specific
actions of the double LRU cache architecture of ARC. For
geometrical fading scores, the only SG-LRU effort beyond
pure LRU is for the lth request:
• multiplying the weight factor (1/ρ)l–1·(1/ρ) → (1/ρ)l and
• adding (1/ρ)l to the score of the requested object.

The SG-LRU mechanism doesn’t strictly enforce to keep
the highest scored objects in the cache as in a sorted list, but
the probability to enter the cache is increasing with the score
of an object and the number of request to an object. We com-
pared both alternatives in a previous study for independent
Zipf distributed requests [18] without finding significant dif-
ferences in caching performance. Once all top-k objects have
entered the cache, they will stay in the cache if the score rank-
ing is stable over time. Therefore the SG-LRU cache content
converges to the set of highest scored objects.

4. SIMULATION OF CACHING FOR ZIPF REQUEST PATTERN
There are only few special analytical results known on cache
performance, e.g. the hit rate for LFU in the independent re-
quest model (IRM) given in eq. (4), as well as some approxi-
mations, e.g. the Che approximation for the LRU hit rate.
Therefore cache evaluations are mainly based on simulations
and measurement based studies. In our web caching simula-
tions, we perform cache updates for LRU and SG-LRU strate-
gies, whereas uploading and delivery of objects is not includ-
ed. Basic data structures are set up for a cache of fixed size
M < N and a catalogue of N objects.

A. Relevance of Zipf request pattern
Many studies have confirmed Zipf’s law as an appropriate
model for access pattern to content on the Internet including
web shops and user-generated content such as videos hosted
on YouTube [4][38], for channels in IP-TV systems [7][31] or
for peer-to-peer file sharing systems (BitTorrent, Gnutella)
[21][37]. According to Zipf’s law, a small fraction of popular
web objects attracts most user requests, which is favourable
for the efficiency of small caches.

1

Sliding Window (W=10)

LRU: Least Recently Used

Geometric Fading (ρ = 0.9)

3 1 1 4 1 4 7 1 7 1

1 4 3 7

.9.81

3.23 1.32 1.00 0.96

Cache Ranks:
Scores:

3 1 1 4 1 4 7 1 7 1

1 4 7 3
5 2 2 1

Cache Ranks:
Scores:

3 1 1 4 1 4 7 1 7 1

3 1 4 7Cache Ranks:

Object Request Sequence:

When a finite set of N objects is considered for web caching,
Zipf’s law assigns decreasing request probabilities z(r) corre-
sponding to the objects’ popularity ranks r ∈ (1, 2, …, N):

∑ =
−− ==>=

N

r
rzrrz

1
/1)1(;0,for)(ββ αβαα (2)

where β is an adaptive shape parameter and α is a normaliza-
tion constant. Access probabilities are becoming more unbal-
anced for β → 1. β has been determined for Zipf models that
were adapted to different sets of request measurement traces in
[4][9][21]. The range 0.56 ≤ β ≤ 0.88 is covering all cases in
those studies. Therefore we focus our caching simulations on
Zipf distributed requests in the range 0.5 ≤ β ≤ 1.

B. Inversion method for a random Zipf rank generator
Despite of the relevance of Zipf’s law for Internet access,

efficient random generators for Zipf ranks seem to be missing
in literature. The Mathematica tool set [43] refers to an accept-
ance-rejection method for Zipf random variates proposed by
Devroye [11], which only covers the range β > 1 for infinite
support. We derived the following inversion formula for se-
lecting a Zipf rank r from a uniform random variate R ∈ [0, 1]
for finite sets of N objects [19]

 
)3(.)()(;

1
)1)(1(

1
1

1
11

][
)2/(

)2/1(∑
=

−
−

=
−

−−
−=

k

n
CDF

CDF

nzkZ
Z

RNr
N

β
β

In particular, the Zipf rank generator (3) is confirmed in [19]
to return the correct rank or a neighbor rank, i.e. to deviate
by no more than ±1 from the correct rank r for all N ≤ 106 and
β = 0.1, 0.2, ..., 3.0. The correctness of the rank r is verified
by checking ZCDF(r – 1) < R ≤ ZCDF(r). The cumulative Zipf dis-
tribution ZCDF(r) is computed and stored for r ∈ {1, ..., N} in
the starting phase of a simulation in order to control the Zipf
rank generator. A fast random Zipf rank generator is a pre-
requisite for evaluating billions of requests in the simulations.

C. Evaluation of SG-LRU web caching
 Next, we compare the achievable hit rates for LRU, SG-
LRU and LFU in simulation studies. We start with a first eval-
uation example assuming independent and Zipf distributed
requests. For caching evaluations of the independent request
model (IRM) we consider three basic parameters:

• the size N of a fixed set of objects,
• the cache size M (M < N), and
• the shaping parameter β of the Zipf distribution, which deter-

mines the request probabilities z(r) = z(1) r
–β to the objects.

We simulate how the cache content is developing for a se-
quence of K requests, starting from an empty cache. During a
filling phase of the cache until M different objects have been
addressed, the caching strategies behave identical. As soon as
the cache is full, pure LRU already has entered steady state
regarding the set of cached objects. Thus, it is sufficient to
exclude the cache filling phase as a non-representative start
phase for pure LRU simulations. For LFU and SG-LRU, the

convergence to a steady state depends on stabilizing score
ranks of the objects, which takes much longer than the cache
filling phase. LFU scores count the requests to each object.
During a sequence of k successive requests, an object in rank r
gets a binomially distributed number of requests in [0, ..., k]
with mean k z(r). We exclude the first quarter of each simula-
tion run from the hit rate evaluations in order to converge to
stable score ranks when the run time pertains sufficiently long.

Figure 5 shows SG-LRU evaluation results for an example
with N = 106 objects, a cache for M = 1000 objects and inde-
pendent Zipf distributed requests with z(r) = 0.01337·r –0.8. In
this case, the LRU hit rate is hLRU ≈ 10%, which is also con-
firmed by the Che approximation [9], whereas LFU achieves
the maximum achievable hit rate under IRM assumptions:

hLFU = z(1) + ... + z(M) ≈ 20.68% (4)

 The SG-LRU results for different fading factor ρ fall be-
tween both extremes. For sufficiently long simulation runs
with K > 107 requests, the hit rate is observed to stabilize,
where SG-LRU stays close to hLRU for ρ ≤ 1−10−3 and comes
close to hLFU for ρ ≥ 1−10−6. A fading factor ρ has similar ef-
fect as a sliding window of the size W = 1/(1 – ρ). Therefore it
is obvious that up to 106 past requests have significant influ-
ence on the scores and that the SG-LRU hit rates are increas-
ing with K towards a saturation level. The results in Figure 5
demonstrate a transient phase of increasing hit rate in each
curve, which finally reaches and stays at a maximum level
after K > 10·W = 10/(1 – ρ) requests have been evaluated.

Figure 5: SG-LRU hit rate developing with simulation run time

 The results confirm that SG-LRU with scores based on
previous requests and backlog limitation by sliding window or
geometrical fading can fully adapt to LRU as well as LFU hit
rates as extreme cases based on a single parameter ρ or W,
respectively. The parameter can be automatically tuned to ap-
proach the LFU hit rate up to hLFU – ε in the IRM case, because
the SG-LRU hit rate is monotonously growing with ρ or W.

D. Control of the accuracy of hit rate simulation results
using 2nd order statistics

The simulative evaluations of cache hit rates are subject to
variability that can be estimated either by confidence intervals

8%

10%

12%

14%

16%

18%

20%

22%

5.0 E+3 1.0 E+4 3.0 E+4 1.0 E+5 3.0 E+5 1.0 E+6 1.0 E+7 1.0 E+8 1.0 E+9

Sc
or

e-
ga

te
d

 L
R

U
 &

 L
FU

 H
it

 R
at

e

Number of Simulated Requests (ß = 0.8; M = 103; N =106)

5·103 104 3·104 105 3·105 106 107 108 109

LRU

SG-LRU ρ =1 – 10-3

SG-LRU ρ =1 – 3·10-4

SG-LRU ρ =1 – 10-4

SG-LRU ρ =1 – 5·10-5

SG-LRU ρ =1 – 10-5

SG-LRU ρ =1 – 10-6LFU

or by the 2nd order statistics of the simulation results [19]. Let
h(k) = 1 if the kth request is a cache hit, or otherwise h(k) = 0.
We evaluate the second order statistics σ(h(K)) as the standard
deviation of a stochastic process for evaluations over request
sequences of different length K, and thus for simulations of
different run time. σ(h(K)) is defined and computed from the
mean values over K successive requests of the process h(k):

).1)(Pr())(()(;)())(()(

)()(

)(
22

)()(

1)1()(/

===−=

⇒= ∑ +−=

khjhEhhjhEh

Kkhjh

KKK

Kj

KjkK

µµσ

Note, that the mean µ (h) equals the hit rate in all time scales
for a process in steady state, whereas σ(h(K)) is expected to
decrease with K, e.g. σ(h(K)) = Kh /)()1(σ for a process of i.i.d.
random values. The simulation of LRU caches already enters a
steady state as soon as the cache is filled, whereas SG-LRU
caching behavior depends on the scores, which often require a
long time span to establish stabilized ranking of objects [19].
We evaluate σ(h(K)) during caching simulations based on suc-
cessive request sequences of length K = 10, 102, ..., 10R of a
simulation run over 10R+1 requests and take the usual estimate
for the standard deviation:

.10/)()(

;1)()()(

110

1

12/10

1
2

)()(

1

1

)(/10/
+

=

+
=

∑

∑
+

+

=

−−=

R
k

RK

j KK

R

R

khh

hjhh K

µ

µσ

The cache filling phase and a start phase of the first quarter
of simulated requests are always excluded from the evaluation
in order to avoid an impact of initial transient phases.

When we simulate independent requests (IRM), there are
two alternatives to estimate the hit rate:

• by counting the hits h(k) or
• by computing the cache content request probability π(k) as

the sum of request probabilities of all objects that are cur-
rently in the cache

π(k) = Σ j: Oj is in the cache after k requests z(j)

where z(j) is the request probability of object Oj. Again, we
denote the standard deviations of the mean over sequences of
K requests by σ(π(K)).

Figure 6 shows excerpts π(K +1), ..., π(K +1000) of the sto-
chastic process π(k) for an LRU caching simulation with Zipf
distributed requests (β = 0.8; N = 1000 objects) in steady state
IRM conditions when the cache is full. Four cases of different
cache sizes M = 13, 47, 182 and 469 are considered, which are
sufficient to achieve 10%, 25%, 50% and 75% cache hit rate.

Figure 7 shows a 2nd order analysis of a SG-LRU caching
simulation with geometrical fading score function SGF defined
in equation (1) for the same scenario of independent Zipf re-
quests as considered in Figure 6 (β = 0.8; N = 1000 objects;
ρ = 0.9999). SG-LRU requires smaller cache sizes M = 2, 13,
87 and 342 to achieve 10%, 25%, 50% and 75% SG-LRU hit
rate. 2nd order statistics are shown:

Figure 6: Hit probability π(k) varying with the cache content

• for the hit count σ(h(K)) and
• for the cache content request probability σ(π(K))
with four curves for the different cache sizes in each case.

Figure 7: 2nd order statistics for SG-LRU caching simulations

The four curves for the hit count σ(h(K)) are almost linear

σ(h(K)) ≈ Kh /)()1(σ , although cache hits are not an i.i.d. pro-
cess. The four standard deviation curves for the cache content
request probability σ(π(K)) start at a low level σ(π(1)) < 0.005
already for single request, are remaining almost constant over
several time scales and finally also approach a linear decreas-
ing slope. On all time scales we observe σ(π(K)) < σ(h(K)) and
therefore prefer the cache content probability as hit rate esti-
mator. The exhaustive comparison of pure LRU and SG-LRU
hit rates in Section 5 involves the control by 2nd order statis-
tics, confirming that 108 simulated requests are usually suffi-
cient to bring the standard deviation of the hit rate estimator
into the range of 10-4 – 10-5. Otherwise, in a few cases the 2nd
order control indicates extended simulations to be required
with up to 1010 requests.

5. COMPARATIVE (SG-)LRU AND LFU EVALUATION
A. (SG-)LRU and LFU hit rate evaluation on the entire

parameter range for independent Zipf distributed requests
In several measurement driven case studies [21][23][25] alter-
native strategies are compared to LRU, but it remains open how
the evaluated performance gains depend on the system parame-
ters. We complement their measurement based experience by a

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Cache hit probabilities π(K+1), ..., π(K+1000) over 1000 requests

Cache size M = 469; hit rate h = 75,1%
Cache size M = 182; hit rate h = 50.4%
Cache size M = 47; hit rate h = 25.4%
Cache size M = 13; hit rate h = 10.1%

0,00001

0,0001

0,001

0,01

0,1

1

1 10 102 103 104 105 106 107

Standard deviations σ(π(K)) and σ(h(K)) in time scales over 10K requests

Hit Count M = 2
Hit Count M = 13
Hit Count M = 87
Hit Count M = 342
Cache Prob. M = 2
Cache Prob. M = 13
Cache Prob. M = 87
Cache Prob. M = 342

Standard deviations σ(h(K)) and σ(π(K)) in different time scales over K = 1, 10, …, 107 requests

comprehensive evaluation of the gain of LFU compared to
LRU for Zipf distributed independent requests (IRM). There-
fore we extend our web caching simulations over the entire
relevant range of the three characteristic parameters:

 (i) the number of objects N,
 (ii) the cache size M (M < N), and
 (iii) the shape parameter β of the Zipf distribution.

 Figure 8 shows results from evaluations for N = 106 objects
in the first graph and for N = 104 in the second. The hit rates for
LRU and LFU are compared for varying cache sizes M and for
β = 0.5, 0.6, ..., 1, actually 0.9999 instead of 1. The LFU opti-
mum hit rate under IRM is given by the top-M request proba-
bilities in eq. (4). In case of LRU, the Che approximation [9]
can be applied, as studied in detail in Section 5.C. Nonetheless,
we use SG-LRU simulations for cache hit rate evaluation in all
cases and refer to eq. (4) and [9] only for an additional check.
 Overall, we observe a 10% - 20% absolute hit rate gain of
LFU over LRU for the entire relevant range, i.e., when LRU
achieves hit rates between 10% and 50%. The relative LFU
gain is large especially for small caches. When LRU hit rates
are below 10%, then the LFU optimum is at least twice as high.
Figure 8 also expresses efficiency of the caching strategies in
terms of the cache sizes required to obtain a desired hit rate. In
order to obtain 50% hit rate, LRU requires between 1.6-fold
and 10-fold larger cache size than LFU; LRU caches for ob-
taining 10% hit rate are at least 10-fold, partly 100-fold larger.

Figure 8: Comparing LFU/LRU hit rates for IRM Zipf requests

B. Summary of the gain of LFU and SG-LRU performance
over LRU for Zipf distributed IRM requests

Finally, we evaluate the potential for improving LRU on a grid
of 8·6·99 cases combining the three main parameters over
their entire relevant range for

• β = 0.4, 0.5, ..., 1.1 to determine the Zipf distribution,
• N = 102, 103, ..., 107 for the number of objects, and
• M = M1%, M2%, ..., M99% for the cache size,

where MX% is the minimum cache size required to obtain an
LRU hit rate of X% depending on β and N. In total, 8 · 6 · 99 =

4752 simulations have been performed to cover the grid range.
Each simulation runs at least 108 requests in the evaluation
phase to keep the standard deviation of the hit rate results be-
low 5 · 10–5 as checked according to Section 4.D.

The results of the detailed simulation study are summarized
in Figure 9. For each combination of β and N we first evaluate
the minimum cache sizes M1%, ..., M99% to obtain LRU hit
rates of 1%, ..., 99% and then evaluate SG-LRU and LFU hit
rates for the same cache size. Figure 9 shows the minimum,
mean and maximum absolute LFU hit rate gain for all 8·6
combinations of β x N each time with a cache of the same size
MX% that is sufficient to achieve X% LRU hit rate.

Figure 9: LFU gain over LRU for IRM Zipf requests: Result

summary of 4752 cases on a grid on the relevant β × N × M range

In fact, we can confirm at least 9.8% absolute hit rate gain
whenever the LRU hit rate is in the range of 10% - 50%. In
this range, the maximum gain is between 15% - 20% and the
mean gain over all cases is 13.7%. The maximum is most of-
ten reached for the case β = 1.1, N = 100. Then, the LRU and
LFU cache sizes required for X% hit rate are often unchanged
for several values of X%. The minimum gain is due to differ-
ent cases, most of which are in the largest content catalogue
N = 107. Again, the relative differences in LFU versus LRU
caching efficiency are largest for small caches. When the LRU
hit rate is, e.g., 5% then an LFU cache of equal size achieves
at least 12.8% and thus more than 2.5-fold hit rate.

The additional storage required to compensate for 10%-20%
LRU hit rate deficit ranges from about twice the capacity for
N = 1000 objects up to 10-fold and more storage required in

0%

10%

20%

30%

40%

50%

60%

10 32 100 316 1000 3162 10000 31623 100000

C
om

pa
ri

ng
 L

R
U

 &
 L

FU
 h

it
ra

te
s

Cache size M (Independent Zipf requests z(r) = αr−β; N = 106)

LFU ß = 1.0
LRU ß = 1.0
LFU ß = 0.8
LRU ß = 0.8
LFU ß = 0.6
LRU ß = 0.6

10 32 102 316 103 3162 104 31623 105 3.1·105 106

0%

10%

20%

30%

40%

50%

60%

4 10 32 100 316 1000 3162 5623

C
om

pa
ri

ng
 L

R
U

 &
 L

FU
 h

it
ra

te
s

Cachesize M for independent Zipf requests (z(r) = αr−β; N = 104)

LFU ß = 1.0
LRU ß = 1.0
LFU ß = 0.75
LRU ß = 0.75
LFU ß = 0.5
LRU ß = 0.5

10 32 102 316 103 3162 104

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
LRU hit rate h (8·6 cases covering β × N for each h∈{1%, ..., 99%})

Max. LFU hit rate gain

Mean LFU hit rate gain

Min. LFU hit rate gain

A
bs

ol
ut

e
hi

t r
at

e
ga

in
: L

FU
 -

L
R

U

examples with N = 107 for large content platforms. Measure-
ment based studies [38] show similar curves for moderate LRU
hit rates up to 25%, which indicate even 10 - 100-fold higher
storage requirement to obtain 10%-20% more LRU hit rate.

Finally, it isn’t difficult to construct scenarios with larger
deficits of the LRU cache hit rate. When we consider a cache
of size M with IRM request pattern and probabilities

p1 = p2 = … = pM = 0.5/M >> pM+1 = pM+2 = … = pN = 0.5/(N-M)

then LFU achieves 50% hit rate by keeping O1, ..., OM in the
cache, whereas the LRU hit rate is less than 25% for N >> M,
because in the mean less than half of the objects O1, ..., OM are
found in an LRU cache. For p1 = p2 = … = pM ≈ 0.58/M we
observed a 28.9% absolute LFU hit rate gain over LRU, but we
have no proof that this is the worst case of highest difference.

C. Accuracy of the Che approximation on the entire range
for Zipf distributed IRM requests

Finally, we compare the Che approximation [9] with simulated
LRU hit rates, confirming a surprisingly good match. High
accuracy of the Che approximation is supported by mathemat-
ical arguments in [14] but without quantitative results in terms
of concrete boundaries. Thus we checked the deviations be-
tween simulation results and the Che approximation again for
all combinations of parameters on the grid (β, N, M) ∈

 {0.4, 0.5, ..., 1.1} × {102, 103 ..., 107} × {M1%, M2%, ..., M99%}

for Zipf distributed requests.
As the main result shown in Figure 10, we observe absolute

differences between simulation and the approximation of less
than 0.4%. The majority of evaluated differences were even
below 0.02%. Each simulation result is again based on 108 or
more requests until a standard deviation less than 5 · 10–5 is
confirmed [19]. Partly longer simulations runs are needed be-
cause the precision of the Che approximation is often in the
same range. The largest deviations are encountered for small
cache sizes M and for large β .

6. EVALUATION FOR DYNAMIC POPULARITY BASED ON DAILY
WIKIPEDIA PAGE REQUEST STATISTICS

A. Dynamics in content popularity
In contrast to the IRM assumption, changing popularity of
Internet content is observed in measurement based studies

• for user-generated content, e.g., videos [13][24][38],
• especially for file sharing systems [37], and
• for IP-TV applications [7][31].
Some interesting conclusions can be drawn from these papers:
• The temporal dynamics in object popularity are noticed on

the timescales of days, weeks, or months [7]. A study on the
effect of dynamics in YouTube video traces on the cache ef-
ficiency [38] confirms that request correlations on time
scales of a few hours can be ignored. Instead, the time scale
of a few days up to weeks is experienced as most important.

Figure 10: Che approximation: Deviations from simulations

• The popularity evolution of each object is characterized by
a rapid growth towards maximum popularity followed by a
phase of slow decrease [37]. When the uploaded content is
young, significant rank changes are encountered mainly
from low initial popularity, stabilizing at the maximum.

• Studies on P2P and IP-TV systems indicate content popu-
larity dynamics to be relatively low. Only 1-3% daily drift
in the popularity of the top-100, -1000 and -10 000 Gnutella
files has been observed in [37]. The measurement study
[31] reports that the cosine similarity value between the
popularity of individual TV channels over 3 days is about
0.97, corresponding to a fairly stable ranking of the content.
In principle, unpredicted changes in content popularity make

caching less efficient, if such dynamics is high enough to render
content useless shortly after being loaded into the cache. The
effect of popularity dynamics on cache hits mainly depends on
the user population served by the cache and its request fre-
quency, which can count into millions per day.

In fact, we experience much higher dynamics in the day by
day Wikipedia request pattern than the previously referred
studies on video, P2P and IP-TV platforms, see Section 6.D
for more details. Nevertheless, Zipf distributed requests and
the conclusions on caching efficiency of the previous sections
are confirmed to be fully relevant.

-0,1%

0,0%

0,1%

0,2%

0,3%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Si
m

ul
at

ed
 L

R
U

 h
it

ra
te

 -
C

he
 a

pp
ro

.

LRU hit rate (N = 1 000; 108 Zipf requests per simulation run)

ß = 1.1 ß = 1.0 ß = 0.9 ß = 0.8
ß = 0.7 ß = 0.6 ß = 0.5 ß = 0.4

-0,05%

0,00%

0,05%

0,10%

0,15%

0,20%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Si
m

ul
at

ed
 L

R
U

 h
it

ra
te

 -
C

he
 a

pp
ro

.

LRU hit rate (N = 105; 108 Zipf requests per simulation run)

ß = 1.1 ß = 1.0 ß = 0.9 ß = 0.8
ß = 0.7 ß = 0.6 ß = 0.5 ß = 0.4

B. Daily Wikipedia top-1000 statistics & Zipf request pattern
For realistic access pattern of a popular web platform, we refer
to statistics being published by Wikipedia [42]. Even if the data
volumes are smaller than for popular video streaming plat-
forms, Wikipedia operates a server and caching platform on
several locations to improve the delays and loading times for
the users and the availability of the platform. We evaluate daily
statistics of the number of requests to the top-1000 pages,
which are provided since August 2015 [42]. Since the number
of requests to all Wikipedia web pages is about 10-fold higher,
the top-1000 analysis can only give insight into the perform-
ance of small caches with focus on the most popular pages.
 In a first step, we check whether Zipf distributions can be
adapted to daily top-1000 request distributions. We determine
the deviation between the Wikipedia top-1000 requests for the
cumulative distribution function Wd,CDF(k) = Rd(k)/Rd(1000)
and a Zipf adaptation ZCDF(k) due to eq. (2), where Rd(k) is the
sum of requests to the top-k pages (k = 1, ..., 1000) at a day
d = 1, ..., 184 in the half year period from Aug. 2015 - Jan. 2016.
Our measure of deviation ∆Wd↔Z(k) is defined by the difference
in the ranks, for which both distributions Wd,CDF(k) and ZCDF(k)
achieve the same level

 ∆Wd↔Z(k) = jk – k where ZCDF(jk) ≤ Wd,CDF(k) < ZCDF(jk + 1).

The parameter β of the adapted Zipf distribution is deter-
mined in order to minimize the mean absolute rank deviation
(Σk |∆Wd↔Z(k)|)/1000. We found the minimum according to the
defined deviation criterion always in the range 0.5 < β < 0.6
except for two days with larger β up to 0.75.
 Figure 11 shows the minimum, maximum and mean abso-
lute rank deviations of Zipf distributions adapted to each daily
top-1000 request statistics. All rank deviations are in a range
[–27, 9] and mean absolute rank deviations are always less than
10. On 4 out of 184 days, the Wikipedia top-1000 requests can
be perfectly matched by a Zipf distribution with rank devia-
tions of only –1, 0 or 1 on all 1000 ranks. The largest devia-
tions from Zipf distributions are experienced in the top-10,
whereas the tail of the top-1000 distributions can be closely
fitted.

Figure 11: Zipf adaptations to daily Wikipedia page requests

This is due to a large statistical variation of requests especially
for the top-1 page, ranging from 3·105 to 6·106 requests, while
the total number of daily top-1000 request is less variable be-
tween 2.4·107-3.4·107. When we add the top-1000 requests of
several consecutive days, then we experience that such distri-
butions for larger time frames are less variable and closer to a
Zipf distribution.

C. Daily Wikipedia top-1000 statistics & IRM cache hit rates
In a first evaluation of caching efficiency based on the Wik-
ipedia data, we assume independent requests per day with re-
quest probabilities according to the top-1000 request frequen-
cies and separated simulations for each day.

Figure 12 shows the results on each day for SG-LRU caches
with two different fading factors and LRU with cache sizes 25
and 200, respectively. Table 1 summarizes the minimum, mean
and maximum values of the hit rates over all 184 days. Alt-
hough the variability in the daily hit rates is high, the potential
gain for SG-LRU is almost constant on each day, since SG-
LRU can again almost fully exploit the maximum LFU hit rate
under IRM conditions, where ρ = 0.9999 is sufficient for M =
25 and ρ = 0.99999 for M = 200, respectively. On the whole, a
10%-20% gain is confirmed similar to the results in Figure 9
also for a real request pattern due to Wikipedia statistics.

Figure 12: Cache hit evaluation for daily top-1000 requests

Table 1: Cache hit rates over the half year period

Cache Size 25 200

 Min. Mean Max. Min. Mean Max.

LRU hit rate 4.3% 8.3% 24.9% 29.3% 36.6% 54.9%

SG-LRU hit rate 12.2% 20.0% 38.5% 42.4% 49.4% 66.0%

D. Cache simulation for daily changing request pattern
compared to IRM hit rate results

From the daily top-1000 page request statistics we can also
gain insights into the dynamics of page popularity. The rate of
change in the top-k pages is expressed in Table 2 by the frac-
tion of requests addressing top-k pages of the previous day.

-30

-25

-20

-15

-10

-5

0

5

10

R
an

k
de

vi
at

io
n

Z
ip

f ↔
to

p-
10

00
 C

D
F

Deviation of daily top-1000 Wikipedia requests from Zipf distributions

Maximum Deviation
Mean Absolute Deviation
Minimum Deviation

0%

10%

20%

30%

40%

50%

60%

70%

80%

Pu
re

 &
 S

co
re

-g
at

ed
 L

R
U

 h
it

ra
te

s

Simulation for Wikipedia request pattern per day based on IRM

SG-LRU r = 0.99999 SG-LRU r = 0.9999
SG-LRU r = 0.9995 SG-LRU r = 0.997
LRU LRU

Cache Size M = 200 Cache Size M = 25
ρ
ρ

ρ
ρ

The evaluation is again based on 184 days from Aug. 2015 -
Jan. 2016. At least more than half of the requests for k = 25
and even 76.1% for k = 1000 are referring to yesterday's top-k
pages. On the other hand, 20% - 24% of the requests are for
new pages which didn't appear among yesterday's top-1000.

Table 2: Fraction of requests to yesterday's top-k pages

Top-k pages: k = 25 50 100 200 500 1000

 Y's Top-k → Top-k 54.7% 58.8% 62.4% 66.7% 71.9% 76.1%

 Y's Top-103→ Top-k 77.4% 78.2% 78.8% 79.2% 79.1% 76.1%

The fluctuation within the top-200 requests is captured day by
day in Figure 13. A dark gray surface represents the requests
to the previous day's top-200 and a light gray surface to previ-
ous top-1000 pages below a curve for the total number of re-
quests to a steadily changing set of top-200 pages on each day.

Figure 13: Changes in the daily top-200 request statistics

Finally, we simulate cache behavior over the half year time
frame. On each day, we assume constant request probabilities
Rd

(i)/Rd to the pages, where Rd
(i) is the number of requests to

the page on rank i in the top-1000 statistics on day d. Rd de-
notes the total number of top-1000 requests on that day. For a
new day, the cache starts with the content from the end of the
previous day. Then the (SG-)LRU strategy has to adapt the
cache content to the current request distribution in the starting
phase of each day.

With a single cache for all requests, the phases adapting to
daily changes are negligible within the total number Rd ≈ 2·107
of top-1000 requests per day, such that the IRM hit rate can
still be closely approached for each day. Instead, we assume a
number NC of regional caches, each of which is serving a frac-
tion 1/NC of the user population and thus a fraction Rd/NC of
the daily Wikipedia requests. Consequently, we simulate
Rd/NC requests with constant request probabilities per day,
and evaluate the caching efficiency depending on the number
NC of requests per cache per day as a characteristic factor.
Figure 14 shows simulation results again for requests only to
the top-1000 Wikipedia pages and for cache sizes of M = 200
with hit rate curves in the range > 30% as well as for M = 25
with hit rates < 30%, respectively. We still apply the SG-LRU
caching strategy with a geometrical fading score function. The
results shown in Figure 14 fall into three categories:

Figure 14: Cache hit rate for daily changing request pattern

• In the range NC ≤ 200 (for M = 25 even up to NC ≤ 1000), the
LFU hit rate limit for independent requests (IRM) per day is
closely approached by SG-LRU with an appropriate fading
factor ρ.

• In a range 500 ≤ NC ≤ 10 000, the SG-LRU hit rate doesn't
exploit the LFU limit under IRM conditions, but still signif-
icantly improves over pure LRU.

• In a range NC > 10 000, SG-LRU does not essentially im-
prove pure LRU hit rates for geometrical fading scores.

The first category corresponds to Rd/NC > 2·107/200 =

100 000 requests per day. In contrast to the static IRM case,
SG-LRU hit rates for geometrically fading scores are now in-
creasing up to an optimum parameter value ρopt and decreasing
beyond ρopt. For example in the case NC = 10 000, M = 25, we
observe SG-LRU hit rates going up to 16.6% for ρ ≈ 0.999 and
then reducing to 11.4% already for ρ = 0.9999. For larger NC
and thus smaller number of requests per cache per day, the
optimum ρopt is decreasing towards ρopt → 0.5, which means
that SG-LRU is transforming towards pure LRU.

For further study, we consider score functions that better
predict rising popularity of new pages, such that SG-LRU can
improve over LRU also under higher popularity dynamics. In
practice, Wikipedia and most other well known Internet plat-
forms are supported by only a few caching locations with a
high request load per cache per day. Therefore the independ-
ent request model (IRM) based on the daily request distribu-
tion is more relevant for the achievable cache hit rates.

For dynamics on the time scale of hours, the Wikipedia sta-
tistics has no data available per page. Therefore we leave an
analysis in smaller time scales open for future work based on
more detailed alternative traces. If we interpolate daily chang-
es in the requests to a page from Rd to Rd+1 over several hours
as a monotonous trend, then the dynamics is smoother, leading
to improved caching efficiency as compared to a hard shift
from Rd to Rd+1. From our current experience, we agree to [38]
that dynamics in the time scale of days is more relevant.

0,0E+00

1,0E+07

2,0E+07

3,0E+07

N
um

be
r o

f R
eq

ue
st

 p
er

 D
ay

Dynamics in Top-200 Requests per Day

All Top-200 Requests incl. New Pages
not in Yesterday's Top-1000
Fraction of Requests to Yesterday's
Top-1000
Fraction of Requests to Yesterday's
Top-200

0%

10%

20%

30%

40%

50%

60%

10 20 50 100 200 500 1000 … 10000 … 100000

SG
-L

R
U

 h
it

ra
te

s

Number NC of caches (Rd /NC requests per cache per day)

 (200) 0 9999

LFU (IRM limit) for M = 25

LFU (IRM limit) for M = 200

LRU for M = 25

LRU for M = 200

SG-LRU (ρ = ρopt & ρ = 0.999)

SG-LRU (ρ = ρopt & ρ = 0.9997)

CONCLUSIONS AND OUTLOOK
We perform extensive simulation studies to evaluate the effi-
ciency of caching for usually observed Zipf distributed request
pattern. The least recently used (LRU) caching strategy is
compared to score gated SG-LRU methods, combining low
LRU update effort with flexible score-based selection of the
cache content.
 In a first part on the standard model of independent (IRM)
Zipf distributed requests, we confirm that LRU hit rates in the
range 10-50% generally leave further 10-20% absolute hit rate
potential unused compared to SG-LRU, as also shown in several
measurement studies for more complex caching strategies [25].
 In a second part, we include dynamic popularity changes
based on Wikipedia page request statistics, which again exhibit
Zipf-like request pattern. Although over 20% new pages appear
among the top-1000 pages every day, the cache hit rates for
Wikipedia pages are still close to IRM conditions for the Zipf-
like daily request distribution when a cache serves a large pop-
ulation, i.e. when a cache handles 100 000 or more requests per
day. The impact of dynamic request pattern on the performance
becomes relevant for smaller caches, leading to less homoge-
neous results, also depending on local environments and user
preferences.
 On the whole, the results indicate that caching efficiency is
not restricted to the prevalently analyzed LRU case, but can
exploit the essentially higher LFU hit rate limit for Zipf dis-
tributed requests, which is simply determined by the sum of the
request probabilities of the top-M most popular objects. Statis-
tics about past requests is included in the proposed SG-LRU
method and provides a simple extension to exploit the hit rate
potential beyond pure LRU for IRM and for more realistic dy-
namic content popularity scenarios. We plan to proceed opti-
mizing SG-LRU score functions for request pattern based on
an extended set of web access measurements.

ACKNOWLEDGEMENTS
This work has received funding from the European Union´s
Horizon 2020 research and innovation programme in the EU
SSICLOPS project <www.ssiclops.eu> under grant agreement
No. 644866. This work reflects only the authors’ views and
the European Commission is not responsible for any use that
may be made of the information it contains.

REFERENCES
[1] Akamai, State of the Internet, Quarterly Report Series (2017)

<www.akamai.com>
[2] A. Araldo, D. Rossi, F. Martignon, Cost-aware caching: Caching more

(costly items) for less (ISPs operational expenditures), IEEE Transac-
tions on Parallel and Distributed Systems (TPDS), 27 (2016) 1316-1330

[3] Australian Bureau of Statistics, pages on Internet activity (2017)
<http://abs.gov.au/ausstats/abs@.nsf/mf/8153.0>

[4] L. Breslau et al., Web caching and Zipf-like distributions: Evidence and
implications, Proc. IEEE Infocom (1999)

[5] M. Busari, and C. Williamson, ProWGen: A synthetic workload genera-
tion tool for simulation evaluation of web proxy caches, Computer
Networks 38 (2002) 779-794

[6] Bundesnetzagentur, Jahresbericht (2016) <www.bnetza.de> (in German)
[7] M. Cha et al., Watching TV over an IP network, Proc. 8th SIGCOMM

Conf. on Internet Measurement (IMC), Athens, Greece (2008) 71-84

[8] J. Charzinski, Traffic properties, client side cachability and CDN usage
of popular web sites, Proc. 15th MMB conference, Essen, Germany,
Springer LNCS 5987 (2010) 182-194

[9] H. Che, Y. Tung, and Z. Wang, Hierarchic web caching systems: mode-
ling, design and experimental results, IEEE JSAC 20(7) (2002) 1305-14

[10] Cisco Systems, Visual networking index, forecast and methodology,
White paper series (2017) <www.cisco.com>

[11] L. Devroye, Non-uniform random variate generation, Springer (1986)
[12] R. Fielding, M. Nottingham and J. Reschke, Hypertext transfer protocol

HTTP/1.1: Caching, IETF standardization, RFC 7234 (2014)
[13] F. Figueiredo et al., TrendLearner: Early prediction of popularity trends

of user generated content (2014) <http://arxiv.org/abs/1402.2351>
[14] C. Fricker, P. Robert and J. Roberts, A versatile and accurate approxi-

mation for LRU cache performance, IEEE Proc. 24th International
Teletraffic Congress, Kraków, Poland (2012)

[15] R.G. Garoppo et al., The greening potential of content delivery in resi-
dential community networks, Computer Networks (2014) 256-267

[16] G. Hasslinger, ISP platforms under a heavy peer-to-peer workload,
Proc. P2P Systems and Applications, Eds.: R. Steinmetz and K. Wehrle,
Springer LNCS 3485 (2005) 369-382

[17] G. Hasslinger and F. Hartleb, Content delivery and caching from a
network provider’s perspective, Special Issue on Internet based Content
Delivery, Computer Networks 55 (Dec. 2011) 3991-4006

[18] G. Hasslinger, K. Ntougias and F. Hasslinger, A new class of web cach-
ing strategies for content delivery, Proc. Networks Symposium, Funchal,
Madeira, Portugal (2014)

[19] G. Hasslinger, K. Ntougias and F. Hasslinger, Performance and Preci-
sion of Web Caching Simulations Including a Random Generator for
Zipf Request Pattern, Proc. 18th MMB Conf., Münster, Germany,
Springer LNCS 9629 (2016) 60-76

[20] G. Hasslinger, K. Ntougias, F. Hasslinger and O. Hohlfeld, Performance
Evaluation for New Web Caching Strategies Combining LRU for Score
Based Object Selection, Proc. Internat. Teletraffic Congress ITC’28,
Würzburg, Germany (2016) 321-330

[21] M. Hefeeda and O. Saleh, Traffic modeling and proportional partial
caching for peer-to-peer systems, IEEE/ACM Trans. on Networking
16/6 (2008) 1447-1460

[22] N. Kamiyama et al., ISP-operated CDN, 14th NETWORKS Telecom.
Network Strategy & Planning Symposium, Warszawa, Poland (2010)

[23] D. Lee et al., LRFU: A spectrum of policies that subsumes the least
recently used and least frequently used policies, IEEE Transactions on
Computers 50/12 (2001) 1352-1361

[24] H. Li, et al., On popularity prediction of videos shared in online social
networks, Proc. 22nd ACM International Conference on Information &
Knowledge Management (CIKM), San Francisco, CA, USA (2013)

[25] N. Megiddo and S. Modha, Outperforming LRU with an adaptive re-
placement cache algorithm, IEEE Computer (Apr. 2004) 4-11

[26] Hong Kong Office of the communications Authority (OFCA), Statistics
of the Internet Traffic Volume (2017) <www.ofca.gov.hk>

[27] P. Panchekha, Caching in theory and practice, Dropbox TechBlog (2012)
<tech.dropbox.com/2012/10/caching-in-theory-and-practice>

[28] M. Pathan, R.K. Sitaraman and D. Robinson, Advanced content deliv-
ery, streaming and cloud services, Wiley (2014)

[29] PeerApp Inc., <www.peerapp.com>
[30] S. Podlipnik and L. Böszörmenyi, A survey of web cache replacement

strategies, ACM Computer Surveys (2003) 374-398
[31] T. Qiu et al., Modeling channel popularity dynamics in a large IPTV

system, Proc. 11th ACM SIGMETRICS, Seattle, WA, USA (2009)
[32] Qwilt Inc., <www.quilt.com>
[33] M. Rabinovich and O. Spatcheck, Web caching and replication, Addi-

son Wesley (2002)
[34] Sandvine Inc., Internet phenomena report <www.sandvine.com> (2017)
[35] K. Shah, A. Mitra and D. Matani, An O(1) algorithm for implementing

the LFU cache eviction scheme (2010) see <dhruvbird.com/lfu.pdf>;
<en.wikipedia.org/wiki/Least_frequently_used>

[36] R.K. Sitaraman et al., Overlay networks: An Akamai perspective, Chap-
ter 16 in Advanced content delivery, streaming and cloud services,
Wiley (2014) 307-328

https://www.lri.fr/~fmartignon/papers/TPDS_2015.pdf
https://www.lri.fr/~fmartignon/papers/TPDS_2015.pdf
https://www.researchgate.net/journal/1389-1286_Computer_Networks

[37] D. Stutzbach, S. Zhao, and R. Rejaie, Characterizing files in the modern
Gnutella network: A measurement study, Multimedia Systems 13/1
(2007) 35-50

[38] M. Tortelli, D. Rossi and E. Leonardi, ModelGraft: Accurate, Scalable,
and Flexible Performance Evaluation of General Cache Networks, Proc.
Internat. Teletraffic Congress ITC’28, Würzburg, Germany (2016)

[39] S. Traverso et al., Unravelling the impact of temporal and geographical
locality in content caching systems, IEEE Trans. on Multimedia 17
(2015) 1839-1854

[40] C. Valancius et al., Greening the Internet with nano data centers, Proc.
ACM CoNEXT Workshop, Rome, Italy (2009)

[41] D. Wessels, Squid: The definitive guide, O’Reilly (2004)
[42] Wikipedia statistics https://wikitech.wikimedia.org/wiki/Pageviews_API,

top-1000 request statistics for English Wikipedia pages,
wikimedia.org/api/rest_v1/metrics/pageviews/top/en.wikipedia/all-access

[43] Wolfram Research, Wolfram language tutorial (2015) https://reference.
wolfram.com/language/tutorial/RandomNumberGeneration.html

https://itc28.org/en/schedule/accepted-papers/area4-paper8.html
https://itc28.org/en/schedule/accepted-papers/area4-paper8.html
http://scholar.google.de/citations?view_op=view_citation&hl=en&user=4VYOqkgAAAAJ&citation_for_view=4VYOqkgAAAAJ:4DMP91E08xMC
http://scholar.google.de/citations?view_op=view_citation&hl=en&user=4VYOqkgAAAAJ&citation_for_view=4VYOqkgAAAAJ:4DMP91E08xMC
https://wikitech.wikimedia.org/wiki/Pageviews_API

	1. Introduction: Content delivery and web caching
	A. Relevance of web caching for growing Internet traffic
	B. Web caching strategies and criteria for efficiency
	C. Score gated LRU (SG-LRU) web caching strategy

	2. Scenario Classification
	A. Web caching vs. caches in computing & database systems
	B. Cachable web content and HTTP caching guidelines
	C. Cache updates per request versus daily updates
	D. Caches for large versus small populations
	E. Fixed versus variable size objects

	3. Implementing score-gated LRU
	4. Simulation of caching for Zipf request pattern
	A. Relevance of Zipf request pattern
	B. Inversion method for a random Zipf rank generator
	C. Evaluation of SG-LRU web caching
	D. Control of the accuracy of hit rate simulation results using 2nd order statistics

	5. Comparative (SG-)LRU and LFU Evaluation
	A. (SG-)LRU and LFU hit rate evaluation on the entire parameter range for independent Zipf distributed requests
	B. Summary of the gain of LFU and SG-LRU performance over LRU for Zipf distributed IRM requests
	C. Accuracy of the Che approximation on the entire range for Zipf distributed IRM requests

	6. Evaluation for dynamic popularity based on daily Wikipedia page request statistics
	A. Dynamics in content popularity
	B. Daily Wikipedia top-1000 statistics & Zipf request pattern
	C. Daily Wikipedia top-1000 statistics & IRM cache hit rates
	D. Cache simulation for daily changing request pattern compared to IRM hit rate results
	Conclusions and Outlook
	Acknowledgements
	References

