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Abstract  
The topic of Internet content caching regained relevance over the last years due to the 
increasing and widespread use of content delivery infrastructures to meet capacity and 
delay demands of multimedia services. In this study, we evaluate the performance of 
web caching strategies in terms of the achievable hit rate for realistic scenarios of large 
user populations. We focus on a class of Score Gated Least Recently Used (SG-LRU) 
strategies which combine the simple update effort of the LRU policy with the flexibility 
to keep the most important content in the cache according to an arbitrarily predefined 
score function. 

Caching efficiency is evaluated via simulations assuming Zipf distributed requests, 
which have been confirmed manifold in access pattern of popular web platforms for 
video streaming and various other content types. In this paper, we analyze the hit rate 
gain of alternative web caching strategies for the standard independent request model 
(IRM) within the complete relevant range of three basic system parameters. The results 
confirm absolute hit rate gains of 10%-20% over pure LRU as realistic estimation in 
general, as experienced in other trace-driven case studies for special caching strategies. 

Moreover, we compare the performance for the independent request model with re-
sults for correlated dynamic request pattern over time, based on Wikipedia statistics 
that are available as daily top-1000 page requests. In this way, we show that the IRM 
analysis is valid for caches with a large user population, although high dynamics tends 
to reduce the achievable hit rate below the IRM result for smaller user communities. 

1. INTRODUCTION: CONTENT DELIVERY AND WEB CACHING 

A. Relevance of web caching for growing Internet traffic 
Web caching systems are widely deployed at global scale to 
improve downloads, video streaming, IP-TV and many other 
IP services. Today, a major portion of the IP traffic is trans-
ferred via content delivery networks (CDNs) and data centers 
in cloud architectures [1][17][22][28][33][36]. Their distrib-
uted nature yields substantial traffic savings on expensive 
intercontinental and inter-domain links. The main benefits 
are reduced load and delays as well as higher throughput, 
when caches serve requests to popular data on shorter 
transport paths to the users. Caches are also present in local 
networks, as nano data centers [40], in home gateways and 
browsers on the user devices [8][15]. 

Caches are essential for increasing the Internet’s capacity 
and enabling scaling to larger user bases. Figure 1 illustrates 
the growth of IP traffic since the year 2000 as reported by 
official statistics for Australia, Germany, and Hong Kong [3] 
[6][26] as well as annual reports by the router manufacturer 
Cisco [10]. In comparison to the fixed network and total traf-
fic volume, we notice that mobile IP traffic still contributes 

less than 10%, but is catching up with currently higher 
growth rates. Consequently, caching in mobile networks is 
becoming more relevant, where the transmission over the air 
interface constitutes a main bottleneck. Therefore the usage 
and optimization of caches on mobile end devices is espe-
cially crucial, where limited storage capacity poses the chal-
lenge of efficient utilization of small caches. On the whole, 
caches of different size are present in various parts of IP net-
works ranging from the core via edge servers of clouds, 
CDNs and ISP networks to the user devices. In this way, they 
play an important role to overcome bandwidth bottlenecks 
and to reduce transfer delays [17][29][32][33]. 

The annual reports by Cisco [10] and Sandvine [34] in-
clude estimations of main IP traffic components, which re-
veal that video streaming and download applications gener-
ate most of the current IP traffic. In principle, this hasn’t 
changed since the time when P2P traffic was dominant [16], 
which bypassed traditional web caches. In the last decade, 
the P2P traffic portion was decreasing, whereas the HTTP 
traffic portion became dominant again [34]. Today, the bulk 
of the network traffic is being delivered by global CDNs.  



 
Figure 1: IP traffic growth in fixed and mobile networks  

Cisco’s annual reports include a global cloud index, which 
indicates that most IP traffic is flowing from data centers to 
the users and that there is a considerable amount of cross 
traffic within and between data centers [10]. 

B. Web caching strategies and criteria for efficiency 
The efficiency of caching systems is driven by the replace-

ment strategy for identifying and storing the most relevant 
objects. A basic and widely used caching scheme follows the 
least recently used (LRU) principle, employing simple and 
fast cache updates. However, LRU can't offer flexibility to 
prefer objects due to cost and benefit aspects, regarding the 
size, the transport path from the origin or other preferences 
from the content providers’ or users’ perspective [2][33]. 

A number of studies have evaluated LRU web caching ef-
ficiency in terms of the hit rate [14][27][39][41]. They partly 
recommend LRU, but on the other hand, alternatives are 
shown to achieve higher hit rates [18][21][23][25][30]. Thus, 
no clear picture can be concluded from literature whether 
LRU is appropriate for web caching in a tradeoff with more 
efficient but often more complex alternatives.  

This tradeoff is discussed in detail by Megiddo and Modha 
[25], who propose an Adaptive Replacement Cache (ARC) 
algorithm for improved efficiency. ARC is shown to outper-
form LRU by 1.5-fold hit rate for a large set of measured and 
synthetic traces. However, ARC maintains two caching lists 
and involves more than half a dozen cases to be checked for 
an update per request, as depicted in Fig. 1 of the work [25].  

From a more general perspective, the following set of 
basic criteria summarizes discussions on web caching 
efficiency in the literature regarding the design of caching 
strategies and their implementation:  

A. Simple cache updates: 
The implementation should be simple enabling updates at 
low constant update effort per request to cope with LRU. 

B. High hit rate: 
The hit rate should be high and should approach the 
optimum LFU hit rate when the independent request 
model (IRM) is relevant for the user request pattern. 

C. Adaptability to dynamically changing popularity: 
The influence (i.e. weight) of past requests on the 
decision about the cache content should decrease over 
time to enable response to shifts in popularity and for 
predictive prefetching methods. 

D. Minimum upload traffic to the cache: 
The traffic and effort for loading objects into the cache 
should be as small as possible. In distributed caching 
architectures the cross traffic between caches should also 
be minimized. 

E. Flexible caching policy: 
The caching strategy should be flexible and adaptable to 
optimize the cache content based on statistics about past 
requests, prediction methods or other policies considering 
content placement, transport costs and quality of service. 

C. Score gated LRU (SG-LRU) web caching strategy 
Since we couldn’t find caching methods in the literature 

fulfilling all listed criteria, we propose score-gated LRU 
(SG-LRU) [18], which combines an LRU stack implementa-
tion with arbitrary scores being attributed to each object. The 
selection of objects to be put into the cache depends on the 
scores, which makes the method fully flexible according to 
the previous criterion (E).  

LRU always puts the requested object on top of the cache, 
while the bottom object is evicted if cache storage is ex-
hausted. As the only difference, SG-LRU admits a new ex-
ternal object to enter a full cache only if it has a higher score 
than the bottom object. Otherwise, the bottom object is put 
on top instead of the requested object. 
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Figure 2: Updates for LRU and SG-LRU caches per request in a usual double linked cyclic list implementation

Figure 2 illustrates (SG-)LRU updates for the usual implemen-
tation as a cyclic double linked list. The update effort of SG-
LRU on a double linked caching list implementation is almost 
the same as for LRU. In addition, object scores are updated for 
SG-LRU. Thus the score function has to be implemented such 
that updates are no more complex than the updates in the cach-
ing list, e.g., when only the score of the requested object or a 
few others is changed by a simple operation. A request count 
within a sliding window or with geometrically fading weight 
as explained in Section 3 can be updated at low constant effort 
per request. 

On the other hand, LRU is loading objects into the web 
cache at the cache miss rate, i.e. a requested object is always 
put into the cache if it wasn’t found. This leads to more LRU 
cache loading traffic and processing effort, which can be much 
higher than updating pointers in the LRU cache list. SG-LRU 
avoids most of those uploads, because the SG-LRU cache con-
tent usually becomes stable, after being filled with the objects 
of maximum score, provided that the ranking of objects due to 
scores is stabilizing over time. In this regard, SG-LRU under-
cuts the LRU update effort in usual web caching scenarios.  

The detailed evaluation of the performance gain in SG-LRU 
hit rates as compared to pure LRU is a main goal of this study. 
We extend and complement experience from measurement 
based studies [21][23][25][30] by an exhaustive simulative 
evaluation of the tradeoff between LRU and the least frequent-
ly used (LFU) principle. Independent Zipf distributed requests 
are assumed in the first part, which have been confirmed as 
the prevalent access pattern on Internet platforms [4][9][21] 
[31][37], whenever a large user community has access to a 
large set of objects. The LFU principle keeps those objects in 
the cache that have been most frequently requested in the past. 
Even if LFU is not a practically valid web caching strategy 
because it cannot adapt to a changing popularity of objects, 
LFU achieves an optimum hit rate for the independent request 
model (IRM) and thus provides an upper bound of the caching 
efficiency. As the main contributions of this study, we perform  

• a simulation study of the efficiency of SG-LRU caching 
strategies including advanced accuracy control estimation 
developed in [19], which is also used to check the Che ap-
proximation [9] for LRU hit rates, 

• an exhaustive evaluation of the hit rate optimization poten-
tial left open by LRU compared to SG-LRU and LFU for 
the standard IRM model with Zipf distributed requests, and 

• an extension of the study for dynamically changing popular-
ity of objects applied to request pattern for Wikipedia pages. 
We continue clarifying our main focus within a broad spec-

trum of caching evaluations in Section 2. Section 3 introduces 
the concept and implementation details of score gated LRU. 
Simulative performance evaluations are addressed in Section 4 
including an efficient random generator for Zipf distributions 
and the control of the precision of hit rate estimates via 2nd 
order statistics. Section 5 presents SG-LRU hit rate results for 
the entire relevant parameter range for independent (IRM) 
Zipf distributed requests. The Che approximation is validated 
against simulation results in Section 5. Section 6 extends the 
performance evaluations to dynamically changing object pop-
ularity with a case study of requests to Wikipedia pages. Final-
ly, main results are summarized in the conclusions.  

The article extends previous work [20] with more details on 
the implementation of the method and the caching framework. 

2. SCENARIO CLASSIFICATION 
Next, we address different preconditions and goals of cach-

ing applications to distinguish our main focus on web caching 
for a large user population from other scenarios.  

A. Web caching vs. caches in computing & database systems                                                
Caching as used by IP-based services shares similarities 

with caching in computer and database systems, i.e., to provide 
faster access to a portion of frequently requested data. Internet 
workloads and their effects on costs and benefits of caches are 
entirely different from caches in local operation systems [2][5]. 
In computing and database applications, periodic sequences of 
requests are usual, whereas Internet workloads are dominated 
by random and Zipf distributed request sequences. Frequent 
uploads of data as done by LRU for each cache miss are much 
more expensive in terms of network traffic load and delay than 
for data in a local system. Therefore, results from this study on 
web caching strategies cannot be transferred to caches in com-
puting systems and vice versa, although some technical dis-
cussions seem to mix up the different scenarios [27].             
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B. Cachable web content and HTTP caching guidelines                                
Caching is known to be inapplicable for a part of the web 

content, including highly dynamic content or one-timers, i.e. 
web pages that are only requested once over long time periods 
[5]. Moreover, a content owner or provider can mark objects 
as non-cacheable in network or in end system caches. None-
theless, the major portion of IP traffic for video streaming and  
IP-TV services is distributed from caches in CDN and cloud 
architectures. A recent update of caching options for HTTP by 
the IETF standardization provides guidelines on how to avoid 
inappropriate data in caches [12]. We always refer to the frac-
tion of cacheable data in evaluations of caching efficiency. 

C. Cache updates per request versus daily updates                               
Web caching strategies basically assume updates to be per-

formed on a per request basis, but they can partly be deferred 
to low traffic periods to reduce peak hour traffic. Cache pro-
viders often combine updates per request with daily updates 
[22][29][32][36]. In this work, we focus on updates per re-
quest. The need for fast updates depends on the dynamics in 
the popularity of objects, as discussed in Section 6.  

D. Caches for large versus small populations 
Caching systems are often organized hierarchically with 

central caches serving a large population and lower level cach-
es for smaller regions. Even caches in the browser of each 
single user can save around 20% of download traffic for repet-
itive requests [8]. The request pattern is different for each user 
and is also varying when a cache serves small communities. 
Our focus is on a large population with access to large web 
platforms, where the request pattern is known to be universal 
and characterized by a Zipf law [4]. 

E. Fixed versus variable size objects                                
Files and other objects representing cacheable web data 

have different sizes of up to several GByte in case of videos. 
For small caches, bin-packing problems can arise and there-
fore size has been considered as an important factor in studies 
which assume complete files as transport unit. However, cod-
ing schemes for files and video streams are nowadays seg-
menting data into small chunks in the kByte range, while stor-
age size is steadily increasing. Therefore, we simply assume 
objects of fixed size corresponding to data chunks. Files of 
different size can still be represented as sets of fixed size ob-
jects with equal score according to the file popularity. From a 
more detailed perspective, Hefeeda and Saleh [21] suggest 
assigning linear decreasing scores to fixed size data chunks of 
the same video because users often stop video streams after 
some time, such that the first data chunks of a video are more 
relevant. 

3. IMPLEMENTING SCORE-GATED LRU  
The implementation of the basic (SG-)LRU cache as a dou-

ble chained cyclic list is already shown in Figure 2 with a top 
and bottom pointer to enable updates at low effort per request.  

In addition, a score value for each object has to be stored 
and pointers between the objects in the catalogue and their 
position in the cache are established as shown in Figure 3.  

 
Figure 3: Data structure for simulation of SG-LRU caching 

A count of the requests to each object can be achieved 
simply by incrementing the score of the requested object, cor-
responding to the least frequently used (LFU) policy. Since 
pure LFU can't adapt to changing popularity, approaches for 
restricted count statistics have been proposed and evaluated in 
literature [9][18][25]. A class of such strategies is attributed as 
LRFU spectrum [23][30], which includes LRU and LFU cach-
ing schemes as extreme cases. Two basic methods covering 
LRU and LFU in this way are  

• Sliding Window (SW): An extension of LFU, which limits 
the request count per object within a window of the W most 
recent requests, and 

• Geometrical Fading (GF): A decreasing weight factor ρ 
k for 

the kth recent request is introduced and the ranking is done 
according to the sum of weights per object for all requests 
in the past. 

The survey [30] refers to a similar ρ-aging method, where 
the scores of all objects are reduced by a factor ρ  not per 
request, but in longer time intervals, e.g. once an hour, thus 
reducing the effort per request. 

In order to define score functions for sliding window SSW 
and geometrical fading SGF, let δOj(k) = 1, if the kth recent 
request (k = 1 refers to the most recent request) was addressing 
an object Oj of the set O1, ..., ON and otherwise δOj(k) = 0. 
Then we obtain  
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Figure 4 illustrates how the object’s position in the cache is 
determined for (SG-)LRU with the score-based Sliding 
Window and Geometric Fading schemes. 

Both schemes behave similar when the window size equals 
the sum of weights: W = 1/(1 – ρ). An unlimited LFU scheme 
is approached as one extreme for W → ∞, ρ → 1. On the other 
hand, geometric fading is equivalent to LRU for ρ  ≤  0.5, when 
the most recent request dominates the weights.  

Regarding the web caching criteria (A-E) of section 1.A, it 
is obvious that Sliding Window and Geometric Fading are 
adaptive to changing popularity of objects according to (C).  
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Figure 4: Comparison of LRU, Sliding Window, Geom. Fading 

The parameters W and ρ determine the size of the involved 
memory for past requests, where a compromise has to be 
found in a trade-off with criterion (B), which is approached for 
large values W → ∞, ρ  → 1.  

We take a closer look at the implementation of sliding 
window and geometrical fading with regard to criterion (A) 
for fast updates per request. 

For sliding window, we store the sequence of the W most 
recent requests rk–W+1 , …, rk. Then a score update per request 
modifies the score of two objects: The score is incremented 
for the new requested object rk and decremented for object    
rk–W+1, whose request is falling out of the window and thus is  
overwritten by rk. Those updates require low constant effort per 
request, but extra storage of the order O(W) is needed to hold 
rk–W+1 , …, rk. This puts a scalability restriction on W, which can 
be strict for user devices with small caches. On data center 
cache installations with TByte storage for the content, even a 
few GByte of extra storage for W = 109 seems negligible. 

A direct implementation of the score function SGF for geo-
metrical fading would require an update of all objects by a 
factor ρ per request and an increment of the score of the re-
quested object. Instead, as the update for the lth request, we 
leave the weights for past requests unchanged and, add (1/ρ)l 
only to the score of requested object. In this way, we achieve 
the same ratio of weights for past requests as defined for SGF in 
equation (1). The only drawback is that (1/ρ)l is steadily grow-
ing. If the updated score exceeds a threshold, we have to scale 
down the scores. Nonetheless, we prefer geometrical fading in 
the evaluations rather than sliding window, because  
• mean update effort per request is lower for geometric fading,  
• sliding window often needs to resolve equal scores of ob-

jects by a tie breaking decision. 

For geometrical fading, equal scores are extremely seldom 
and thus have negligible effect. It can be proven that geomet-
ric fading scores of two objects, which have been requested at 
least once, are different, if ρ  is a rational number, e.g., ρ = 1/2 
or ρ = 0.9999. Nevertheless, the machine number format may 
assign the same score value, if the difference of two scores is 
below the significant precision threshold. 

Finally, we compare the SG-LRU method to the direct 
approach for score based caching, which maintains a sorted 
list of objects in the cache according to their scores. The latter 
requires logarithmic O(log(N)) update effort for reinserting an 
object with modified score into a sorted list of N objects, e.g. 
via the heap-sort algorithm used in [23]. Other work on 
optimized cache policies attributes such update effort as 
“prohibitively high” and instead demands and proposes the 
ARC variant with constant update effort per request [25]. An 
implementation of LFU, with constant update effort per 
request is provided by [35], i.e. for objects being sorted by the 
number of past requests. SG-LRU avoids many case specific 
actions of the double LRU cache architecture of ARC. For 
geometrical fading scores, the only SG-LRU effort beyond 
pure LRU is for the lth request: 
• multiplying the weight factor  (1/ρ)l–1·(1/ρ) → (1/ρ)l and  
• adding (1/ρ)l to the score of the requested object.  

The SG-LRU mechanism doesn’t strictly enforce to keep 
the highest scored objects in the cache as in a sorted list, but 
the probability to enter the cache is increasing with the score 
of an object and the number of request to an object. We com-
pared both alternatives in a previous study for independent 
Zipf distributed requests [18] without finding significant dif-
ferences in caching performance. Once all top-k objects have 
entered the cache, they will stay in the cache if the score rank-
ing is stable over time. Therefore the SG-LRU cache content 
converges to the set of highest scored objects. 

4. SIMULATION OF CACHING FOR ZIPF REQUEST PATTERN  
There are only few special analytical results known on cache 
performance, e.g. the hit rate for LFU in the independent re-
quest model (IRM) given in eq. (4), as well as some approxi-
mations, e.g. the Che approximation for the LRU hit rate. 
Therefore cache evaluations are mainly based on simulations 
and measurement based studies. In our web caching simula-
tions, we perform cache updates for LRU and SG-LRU strate-
gies, whereas uploading and delivery of objects is not includ-
ed. Basic data structures are set up for a cache of fixed size    
M < N and a catalogue of N objects. 

A. Relevance of Zipf request pattern                                       
Many studies have confirmed Zipf’s law as an appropriate 
model for access pattern to content on the Internet including 
web shops and user-generated content such as videos hosted 
on YouTube [4][38], for channels in IP-TV systems [7][31] or 
for peer-to-peer file sharing systems (BitTorrent, Gnutella) 
[21][37]. According to Zipf’s law, a small fraction of popular 
web objects attracts most user requests, which is favourable 
for the efficiency of small caches.  

1

Sliding Window (W=10)

LRU: Least Recently Used

Geometric Fading (ρ = 0.9)

3 1 1 4 1 4 7 1 7 1 

1     4      3      7

.9.81

3.23  1.32  1.00  0.96

Cache Ranks:
Scores:

3 1 1 4 1 4 7 1 7 1 

1     4      7      3
5       2       2        1

Cache Ranks:
Scores:

3 1 1 4 1 4 7 1 7 1 

3     1 4 7Cache Ranks:

Object Request Sequence:



When a finite set of N objects is considered for web caching, 
Zipf’s law assigns decreasing request probabilities z(r) corre-
sponding to the objects’ popularity ranks r ∈ (1, 2, …, N): 
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where β  is an adaptive shape parameter and α  is a normaliza-
tion constant. Access probabilities are becoming more unbal-
anced for β  → 1. β   has been determined for Zipf models that 
were adapted to different sets of request measurement traces in 
[4][9][21]. The range 0.56 ≤ β ≤ 0.88 is covering all cases in 
those studies. Therefore we focus our caching simulations on 
Zipf distributed requests in the range 0.5 ≤ β ≤ 1. 

B. Inversion method for a random Zipf rank generator                                          
Despite of the relevance of Zipf’s law for Internet access, 

efficient random generators for Zipf ranks seem to be missing 
in literature. The Mathematica tool set [43] refers to an accept-
ance-rejection method for Zipf random variates proposed by 
Devroye [11], which only covers the range β  > 1 for infinite 
support. We derived the following inversion formula for se-
lecting a Zipf rank r from a uniform random variate R ∈ [0, 1] 
for finite sets of N objects [19] 
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In particular, the Zipf rank generator (3) is confirmed in [19] 
to return the correct rank or a neighbor rank, i.e. to deviate     
by no more than ±1 from the correct rank r for all N ≤ 106 and              
β  = 0.1, 0.2, ..., 3.0. The correctness of the rank r is verified 
by checking ZCDF(r – 1) < R ≤ ZCDF(r). The cumulative Zipf dis-
tribution ZCDF(r) is computed and stored for r ∈ {1, ..., N} in 
the starting phase of a simulation in order to control the Zipf 
rank generator. A fast random Zipf rank generator is a pre-
requisite for evaluating billions of requests in the simulations. 

C. Evaluation of SG-LRU web caching  
 Next, we compare the achievable hit rates for LRU, SG-
LRU and LFU in simulation studies. We start with a first eval-
uation example assuming independent and Zipf distributed 
requests. For caching evaluations of the independent request 
model (IRM) we consider three basic parameters: 

• the size N of a fixed set of objects,  
• the cache size M (M < N), and 
• the shaping parameter β of the Zipf distribution, which deter-

mines the request probabilities z(r) = z(1) r 
–β to the objects. 

We simulate how the cache content is developing for a se-
quence of K requests, starting from an empty cache. During a 
filling phase of the cache until M different objects have been 
addressed, the caching strategies behave identical. As soon as 
the cache is full, pure LRU already has entered steady state 
regarding the set of cached objects. Thus, it is sufficient to 
exclude the cache filling phase as a non-representative start 
phase for pure LRU simulations. For LFU and SG-LRU, the 

convergence to a steady state depends on stabilizing score 
ranks of the objects, which takes much longer than the cache 
filling phase. LFU scores count the requests to each object. 
During a sequence of k successive requests, an object in rank r 
gets a binomially distributed number of requests in [0, ..., k] 
with mean k z(r). We exclude the first quarter of each simula-
tion run from the hit rate evaluations in order to converge to 
stable score ranks when the run time pertains sufficiently long. 

Figure 5 shows SG-LRU evaluation results for an example 
with N = 106 objects, a cache for M = 1000 objects and inde-
pendent Zipf distributed requests with z(r) = 0.01337·r –0.8. In 
this case, the LRU hit rate is hLRU ≈ 10%, which is also con-
firmed by the Che approximation [9], whereas LFU achieves 
the maximum achievable hit rate under IRM assumptions: 

hLFU = z(1) + ... + z(M) ≈ 20.68%                     (4) 

 The SG-LRU results for different fading factor ρ fall be-
tween both extremes. For sufficiently long simulation runs 
with  K > 107 requests, the hit rate is observed to stabilize, 
where SG-LRU stays close to hLRU for ρ ≤ 1−10−3 and comes 
close to hLFU for ρ  ≥ 1−10−6. A fading factor ρ has similar ef-
fect as a sliding window of the size W = 1/(1 – ρ ). Therefore it 
is obvious that up to 106 past requests have significant influ-
ence on the scores and that the SG-LRU hit rates are increas-
ing with K towards a saturation level. The results in Figure 5 
demonstrate a transient phase of increasing hit rate in each 
curve, which finally reaches and stays at a maximum level 
after  K > 10·W = 10/(1 – ρ ) requests have been evaluated.  
  

 
Figure 5: SG-LRU hit rate developing with simulation run time  

 The results confirm that SG-LRU with scores based on 
previous requests and backlog limitation by sliding window or 
geometrical fading can fully adapt to LRU as well as LFU hit 
rates as extreme cases based on a single parameter ρ or W, 
respectively. The parameter can be automatically tuned to ap-
proach the LFU hit rate up to hLFU – ε  in the IRM case, because 
the SG-LRU hit rate is monotonously growing with ρ or W.  

D. Control of the accuracy of hit rate simulation results 
using 2nd order statistics 

The simulative evaluations of cache hit rates are subject to 
variability that can be estimated either by confidence intervals 
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or by the 2nd order statistics of the simulation results [19]. Let 
h(k) = 1 if the kth request is a cache hit, or otherwise h(k) = 0. 
We evaluate the second order statistics σ(h(K)) as the standard 
deviation of a stochastic process for evaluations over request 
sequences of different length K, and thus for simulations of 
different run time. σ(h(K)) is defined and computed from the 
mean values over K successive requests of the process h(k): 
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Note, that the mean µ (h) equals the hit rate in all time scales 
for a process in steady state, whereas σ(h(K)) is expected to 
decrease with K, e.g. σ(h(K)) = Kh /)( )1(σ  for a process of i.i.d. 
random values. The simulation of LRU caches already enters a 
steady state as soon as the cache is filled, whereas SG-LRU 
caching behavior depends on the scores, which often require a 
long time span to establish stabilized ranking of objects [19]. 
We evaluate σ(h(K)) during caching simulations based on suc-
cessive request sequences of length K = 10, 102, ..., 10R of a 
simulation run over 10R+1 requests and take the usual estimate 
for the standard deviation: 
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The cache filling phase and a start phase of the first quarter 
of simulated requests are always excluded from the evaluation 
in order to avoid an impact of initial transient phases. 

When we simulate independent requests (IRM), there are 
two alternatives to estimate the hit rate:  

• by counting the hits h(k) or  
• by computing the cache content request probability π(k) as 

the sum of request probabilities of all objects that are cur-
rently in the cache  

π(k) = Σ j: Oj is in the cache after k requests z(j) 

where z(j) is the request probability of object Oj. Again, we 
denote the standard deviations of the mean over sequences of 
K requests by σ(π(K)).  

Figure 6 shows excerpts π(K +1), ..., π(K +1000) of the sto-
chastic process π(k) for an LRU caching simulation with Zipf 
distributed requests (β  = 0.8; N = 1000 objects) in steady state 
IRM conditions when the cache is full. Four cases of different 
cache sizes M = 13, 47, 182 and 469 are considered, which are 
sufficient to achieve 10%, 25%, 50% and 75% cache hit rate. 

Figure 7 shows a 2nd order analysis of a SG-LRU caching 
simulation with geometrical fading score function SGF defined 
in equation (1) for the same scenario of independent Zipf re-
quests as considered in Figure 6 (β = 0.8; N = 1000 objects;     
ρ = 0.9999). SG-LRU requires smaller cache sizes M = 2, 13, 
87 and 342 to achieve 10%, 25%, 50% and 75% SG-LRU hit 
rate. 2nd order statistics are shown: 

 
Figure 6: Hit probability π(k) varying with the cache content 

• for the hit count σ(h(K)) and 
• for the cache content request probability σ(π(K))  
with four curves for the different cache sizes in each case.  

 

Figure 7: 2nd order statistics for SG-LRU caching simulations 

The four curves for the hit count σ(h(K)) are almost linear 

σ(h(K)) ≈ Kh /)( )1(σ , although cache hits are not an i.i.d. pro-
cess. The four standard deviation curves for the cache content 
request probability σ(π(K)) start at a low level σ(π(1)) < 0.005 
already for single request, are remaining almost constant over 
several time scales and finally also approach a linear decreas-
ing slope. On all time scales we observe σ(π(K)) < σ(h(K)) and 
therefore prefer the cache content probability as hit rate esti-
mator. The exhaustive comparison of pure LRU and SG-LRU 
hit rates in Section 5 involves the control by 2nd order statis-
tics, confirming that 108 simulated requests are usually suffi-
cient to bring the standard deviation of the hit rate estimator 
into the range of 10-4 – 10-5. Otherwise, in a few cases the 2nd 
order control indicates extended simulations to be required 
with up to 1010 requests.   

5. COMPARATIVE (SG-)LRU AND LFU EVALUATION 
A. (SG-)LRU and LFU hit rate evaluation on the entire 

parameter range for independent Zipf distributed requests 
In several measurement driven case studies [21][23][25] alter-
native strategies are compared to LRU, but it remains open how 
the evaluated performance gains depend on the system parame-
ters. We complement their measurement based experience by a 
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comprehensive evaluation of the gain of LFU compared to 
LRU for Zipf distributed independent requests (IRM). There-
fore we extend our web caching simulations over the entire 
relevant range of the three characteristic parameters:  

      (i)   the number of objects N,  
 (ii)  the cache size M (M < N), and            
 (iii) the shape parameter β  of the Zipf distribution. 

 Figure 8 shows results from evaluations for N = 106 objects 
in the first graph and for N = 104 in the second. The hit rates for 
LRU and LFU are compared for varying cache sizes M and for 
β  = 0.5, 0.6, ..., 1, actually 0.9999 instead of 1. The LFU opti-
mum hit rate under IRM is given by the top-M request proba-
bilities in eq. (4). In case of LRU, the Che approximation [9] 
can be applied, as studied in detail in Section 5.C. Nonetheless, 
we use SG-LRU simulations for cache hit rate evaluation in all 
cases and refer to eq. (4) and [9] only for an additional check. 
 Overall, we observe a 10% - 20% absolute hit rate gain of 
LFU over LRU for the entire relevant range, i.e., when LRU 
achieves hit rates between 10% and 50%. The relative LFU 
gain is large especially for small caches. When LRU hit rates 
are below 10%, then the LFU optimum is at least twice as high. 
Figure 8 also expresses efficiency of the caching strategies in 
terms of the cache sizes required to obtain a desired hit rate. In 
order to obtain 50% hit rate, LRU requires between 1.6-fold 
and 10-fold larger cache size than LFU; LRU caches for ob-
taining 10% hit rate are at least 10-fold, partly 100-fold larger. 

 

 
Figure 8: Comparing LFU/LRU hit rates for IRM Zipf requests 

B. Summary of the gain of LFU and SG-LRU performance 
over LRU for Zipf distributed IRM requests 

Finally, we evaluate the potential for improving LRU on a grid 
of 8·6·99 cases combining the three main parameters over 
their entire relevant range for 

• β  = 0.4, 0.5, ..., 1.1 to determine the Zipf distribution,  
• N = 102, 103, ..., 107 for the number of objects, and 
• M = M1%, M2%, ..., M99% for the cache size, 

where MX% is the minimum cache size required to obtain an 
LRU hit rate of X% depending on β and N. In total, 8 · 6 · 99 = 

4752 simulations have been performed to cover the grid range. 
Each simulation runs at least 108 requests in the evaluation 
phase to keep the standard deviation of the hit rate results be-
low 5 · 10–5 as checked according to Section 4.D. 

The results of the detailed simulation study are summarized 
in Figure 9. For each combination of β and N we first evaluate 
the minimum cache sizes M1%, ..., M99% to obtain LRU hit 
rates of 1%, ..., 99% and then evaluate SG-LRU and LFU hit 
rates for the same cache size. Figure 9 shows the minimum, 
mean and maximum absolute LFU hit rate gain for all 8·6 
combinations of β x N each time with a cache of the same size 
MX% that is sufficient to achieve X% LRU hit rate.  

 
Figure 9: LFU gain over LRU for IRM Zipf requests: Result 

summary of 4752 cases on a grid on the relevant β × N × M range 

In fact, we can confirm at least 9.8% absolute hit rate gain 
whenever the LRU hit rate is in the range of 10% - 50%. In 
this range, the maximum gain is between 15% - 20% and the 
mean gain over all cases is 13.7%. The maximum is most of-
ten reached for the case β = 1.1, N = 100. Then, the LRU and 
LFU cache sizes required for X% hit rate are often unchanged 
for several values of X%. The minimum gain is due to differ-
ent cases, most of which are in the largest content catalogue    
N = 107. Again, the relative differences in LFU versus LRU 
caching efficiency are largest for small caches. When the LRU 
hit rate is, e.g., 5% then an LFU cache of equal size achieves 
at least 12.8% and thus more than 2.5-fold hit rate. 

The additional storage required to compensate for 10%-20% 
LRU hit rate deficit ranges from about twice the capacity for  
N = 1000 objects up to 10-fold and more storage required in 
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examples with N = 107 for large content platforms. Measure-
ment based studies [38] show similar curves for moderate LRU 
hit rates up to 25%, which indicate even 10 - 100-fold higher 
storage requirement to obtain 10%-20% more LRU hit rate. 

Finally, it isn’t difficult to construct scenarios with larger 
deficits of the LRU cache hit rate. When we consider a cache 
of size M with IRM request pattern and probabilities 

p1 = p2 = … = pM = 0.5/M >> pM+1 = pM+2 = … = pN = 0.5/(N-M)   

then LFU achieves 50% hit rate by keeping O1, ..., OM in the 
cache, whereas the LRU hit rate is less than 25% for N >> M,   
because in the mean less than half of the objects O1, ..., OM are 
found in an LRU cache. For p1 = p2 = … = pM ≈ 0.58/M we 
observed a 28.9% absolute LFU hit rate gain over LRU, but we 
have no proof that this is the worst case of highest difference. 

C. Accuracy of the Che approximation on the entire range 
for Zipf distributed IRM requests  

Finally, we compare the Che approximation [9] with simulated 
LRU hit rates, confirming a surprisingly good match. High 
accuracy of the Che approximation is supported by mathemat-
ical arguments in [14] but without quantitative results in terms 
of concrete boundaries. Thus we checked the deviations be-
tween simulation results and the Che approximation again for 
all combinations of parameters on the grid  (β, N, M) ∈ 

 {0.4, 0.5, ..., 1.1} × {102, 103 ..., 107} × {M1%, M2%, ..., M99%}  

for Zipf distributed requests.  
As the main result shown in Figure 10, we observe absolute 

differences between simulation and the approximation of less 
than 0.4%. The majority of evaluated differences were even 
below 0.02%. Each simulation result is again based on 108 or 
more requests until a standard deviation less than 5 · 10–5  is 
confirmed [19]. Partly longer simulations runs are needed be-
cause the precision of the Che approximation is often in the 
same range. The largest deviations are encountered for small 
cache sizes M and for large β . 

6. EVALUATION FOR DYNAMIC POPULARITY BASED ON DAILY 
WIKIPEDIA PAGE REQUEST STATISTICS 

A. Dynamics in content popularity  
In contrast to the IRM assumption, changing popularity of 
Internet content is observed in measurement based studies  

• for user-generated content, e.g., videos [13][24][38], 
• especially for file sharing systems [37], and 
• for IP-TV applications [7][31].  
Some interesting conclusions can be drawn from these papers: 
• The temporal dynamics in object popularity are noticed on 

the timescales of days, weeks, or months [7]. A study on the 
effect of dynamics in YouTube video traces on the cache ef-
ficiency [38] confirms that request correlations on time 
scales of a few hours can be ignored. Instead, the time scale 
of a few days up to weeks is experienced as most important. 

 

 
Figure 10: Che approximation: Deviations from simulations 

• The popularity evolution of each object is characterized by 
a rapid growth towards maximum popularity followed by a 
phase of slow decrease [37]. When the uploaded content is 
young, significant rank changes are encountered mainly 
from low initial popularity, stabilizing at the maximum. 

 

• Studies on P2P and IP-TV systems indicate content popu-
larity dynamics to be relatively low. Only 1-3% daily drift 
in the popularity of the top-100, -1000 and -10 000 Gnutella 
files has been observed in [37]. The measurement study 
[31] reports that the cosine similarity value between the 
popularity of individual TV channels over 3 days is about 
0.97, corresponding to a fairly stable ranking of the content. 
In principle, unpredicted changes in content popularity make 

caching less efficient, if such dynamics is high enough to render 
content useless shortly after being loaded into the cache. The 
effect of popularity dynamics on cache hits mainly depends on 
the user population served by the cache and its request fre-
quency, which can count into millions per day.  

In fact, we experience much higher dynamics in the day by 
day Wikipedia request pattern than the previously referred 
studies on video, P2P and IP-TV platforms, see Section 6.D 
for more details. Nevertheless, Zipf distributed requests and 
the conclusions on caching efficiency of the previous sections 
are confirmed to be fully relevant.   
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B. Daily Wikipedia top-1000 statistics & Zipf request pattern 
For realistic access pattern of a popular web platform, we refer 
to statistics being published by Wikipedia [42]. Even if the data 
volumes are smaller than for popular video streaming plat-
forms, Wikipedia operates a server and caching platform on 
several locations to improve the delays and loading times for 
the users and the availability of the platform. We evaluate daily 
statistics of the number of requests to the top-1000 pages, 
which are provided since August 2015 [42]. Since the number 
of requests to all Wikipedia web pages is about 10-fold higher, 
the top-1000 analysis can only give insight into the perform-
ance of small caches with focus on the most popular pages. 
 In a first step, we check whether Zipf distributions can be 
adapted to daily top-1000 request distributions. We determine 
the deviation between the Wikipedia top-1000 requests for the 
cumulative distribution function Wd,CDF(k) = Rd(k)/Rd(1000)   
and a Zipf adaptation ZCDF(k) due to eq. (2), where Rd(k) is the 
sum of requests to the top-k pages (k = 1, ..., 1000) at a day      
d = 1, ..., 184 in the half year period from Aug. 2015 - Jan. 2016. 
Our measure of deviation ∆Wd↔Z(k) is defined by the difference 
in the ranks, for which both distributions Wd,CDF(k) and ZCDF(k) 
achieve the same level 

   ∆Wd↔Z(k) = jk – k  where  ZCDF(jk) ≤ Wd,CDF(k) < ZCDF(jk + 1). 

The parameter β  of  the adapted Zipf  distribution is  deter-
mined in order to minimize the mean absolute rank deviation 
(Σk |∆Wd↔Z(k)|)/1000. We found the minimum according to the 
defined deviation criterion always in the range 0.5 < β < 0.6 
except for two days with larger β  up to 0.75.  
 Figure 11 shows the minimum, maximum and mean abso-
lute rank deviations of Zipf distributions adapted to each daily    
top-1000 request statistics. All rank deviations are in a range   
[–27, 9] and mean absolute rank deviations are always less than 
10. On 4 out of 184 days, the Wikipedia top-1000 requests can 
be perfectly matched by a Zipf distribution with rank devia-
tions of only –1, 0 or 1 on all 1000 ranks. The largest devia-
tions from Zipf distributions are experienced in the top-10, 
whereas the tail of the top-1000 distributions can be closely 
fitted.  

 
 

Figure 11: Zipf adaptations to daily Wikipedia page requests 

This is due to a large statistical variation of requests especially 
for the top-1 page, ranging from 3·105 to 6·106 requests, while 
the total number of daily top-1000 request is less variable be-
tween 2.4·107-3.4·107. When we add the top-1000 requests of 
several consecutive days, then we experience that such distri-
butions for larger time frames are less variable and closer to a 
Zipf distribution. 

C. Daily Wikipedia top-1000 statistics & IRM cache hit rates  
In a first evaluation of caching efficiency based on the Wik-
ipedia data, we assume independent requests per day with re-
quest probabilities according to the top-1000 request frequen-
cies and separated simulations for each day.  

Figure 12 shows the results on each day for SG-LRU caches 
with two different fading factors and LRU with cache sizes 25 
and 200, respectively. Table 1 summarizes the minimum, mean 
and maximum values of the hit rates over all 184 days. Alt-
hough the variability in the daily hit rates is high, the potential 
gain for SG-LRU is almost constant on each day, since SG-
LRU can again almost fully exploit the maximum LFU hit rate 
under IRM conditions, where ρ = 0.9999 is sufficient for M = 
25 and ρ = 0.99999 for M = 200, respectively. On the whole, a 
10%-20% gain is confirmed similar to the results in Figure 9 
also for a real request pattern due to Wikipedia statistics.  

 
 

Figure 12: Cache hit evaluation for daily top-1000 requests  

Table 1: Cache hit rates over the half year period 

Cache Size 25 200 

 Min. Mean Max. Min.  Mean Max. 

LRU hit rate   4.3%   8.3% 24.9% 29.3% 36.6% 54.9% 

SG-LRU hit rate 12.2% 20.0% 38.5% 42.4% 49.4% 66.0% 

D. Cache simulation for daily changing request pattern 
compared to IRM hit rate results 

From the daily top-1000 page request statistics we can also 
gain insights into the dynamics of page popularity. The rate of 
change in the top-k pages is expressed in Table 2 by the frac-
tion of requests addressing top-k pages of the previous day. 
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The evaluation is again based on 184 days from Aug. 2015 - 
Jan. 2016. At least more than half of the requests for k = 25 
and even 76.1% for k = 1000 are referring to yesterday's top-k 
pages. On the other hand, 20% - 24% of the requests are for 
new pages which didn't appear among yesterday's top-1000.  

Table 2: Fraction of requests to yesterday's top-k pages 

Top-k pages: k = 25 50 100 200 500 1000 

  Y's Top-k → Top-k 54.7% 58.8% 62.4% 66.7% 71.9% 76.1% 

 Y's Top-103→ Top-k 77.4% 78.2% 78.8% 79.2% 79.1% 76.1% 
 
The fluctuation within the top-200 requests is captured day by 
day in Figure 13. A dark gray surface represents the requests 
to the previous day's top-200 and a light gray surface to previ-
ous top-1000 pages below a curve for the total number of re-
quests to a steadily changing set of top-200 pages on each day.  

 
Figure 13: Changes in the daily top-200 request statistics 

Finally, we simulate cache behavior over the half year time 
frame. On each day, we assume constant request probabilities 
Rd

(i)/Rd to the pages, where Rd
(i) is the number of requests to 

the page on rank i in the top-1000 statistics on day d. Rd de-
notes the total number of top-1000 requests on that day. For a 
new day, the cache starts with the content from the end of the 
previous day. Then the (SG-)LRU strategy has to adapt the 
cache content to the current request distribution in the starting 
phase of each day. 

With a single cache for all requests, the phases adapting to 
daily changes are negligible within the total number Rd ≈ 2·107 
of top-1000 requests per day, such that the IRM hit rate can 
still be closely approached for each day. Instead, we assume a 
number NC of regional caches, each of which is serving a frac-
tion 1/NC of the user population and thus a fraction Rd/NC of 
the daily Wikipedia requests. Consequently, we simulate 
Rd/NC requests with constant request probabilities per day, 
and evaluate the caching efficiency depending on the number 
NC of requests per cache per day as a characteristic factor. 
Figure 14 shows simulation results again for requests only to 
the top-1000 Wikipedia pages and for cache sizes of M = 200 
with hit rate curves in the range > 30% as well as for M = 25 
with hit rates < 30%, respectively. We still apply the SG-LRU 
caching strategy with a geometrical fading score function. The 
results shown in Figure 14 fall into three categories: 

 
Figure 14: Cache hit rate for daily changing request pattern 

• In the range NC ≤ 200 (for M = 25 even up to NC ≤ 1000), the 
LFU hit rate limit for independent requests (IRM) per day is 
closely approached by SG-LRU with an appropriate fading 
factor ρ. 

• In a range 500 ≤ NC ≤ 10 000, the SG-LRU hit rate doesn't 
exploit the LFU limit under IRM conditions, but still signif-
icantly improves over pure LRU.  

• In a range NC > 10 000, SG-LRU does not essentially im-
prove pure LRU hit rates for geometrical fading scores. 

The first category corresponds to Rd/NC > 2·107/200 =         

100 000 requests per day. In contrast to the static IRM case, 
SG-LRU hit rates for geometrically fading scores are now in-
creasing up to an optimum parameter value ρopt and decreasing 
beyond ρopt. For example in the case NC = 10 000, M = 25, we 
observe SG-LRU hit rates going up to 16.6% for ρ  ≈ 0.999 and 
then reducing to 11.4% already for ρ = 0.9999. For larger NC 
and thus smaller number of requests per cache per day, the 
optimum ρopt is decreasing towards ρopt → 0.5, which means 
that SG-LRU is transforming towards pure LRU.  

For further study, we consider score functions that better 
predict rising popularity of new pages, such that SG-LRU can 
improve over LRU also under higher popularity dynamics. In 
practice, Wikipedia and most other well known Internet plat-
forms are supported by only a few caching locations with a 
high request load per cache per day. Therefore the independ-
ent request model (IRM) based on the daily request distribu-
tion is more relevant for the achievable cache hit rates.  

For dynamics on the time scale of hours, the Wikipedia sta-
tistics has no data available per page. Therefore we leave an 
analysis in smaller time scales open for future work based on 
more detailed alternative traces. If we interpolate daily chang-
es in the requests to a page from Rd to Rd+1 over several hours 
as a monotonous trend, then the dynamics is smoother, leading 
to improved caching efficiency as compared to a hard shift 
from Rd to Rd+1. From our current experience, we agree to [38] 
that dynamics in the time scale of days is more relevant.  
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CONCLUSIONS AND OUTLOOK 
We perform extensive simulation studies to evaluate the effi-
ciency of caching for usually observed Zipf distributed request 
pattern. The least recently used (LRU) caching strategy is 
compared to score gated SG-LRU methods, combining low 
LRU update effort with flexible score-based selection of the 
cache content. 
 In a first part on the standard model of independent (IRM) 
Zipf distributed requests, we confirm that LRU hit rates in the 
range 10-50% generally leave further 10-20% absolute hit rate 
potential unused compared to SG-LRU, as also shown in several 
measurement studies for more complex caching strategies [25]. 
 In a second part, we include dynamic popularity changes 
based on Wikipedia page request statistics, which again exhibit 
Zipf-like request pattern. Although over 20% new pages appear 
among the top-1000 pages every day, the cache hit rates for 
Wikipedia pages are still close to IRM conditions for the Zipf-
like daily request distribution when a cache serves a large pop-
ulation, i.e. when a cache handles 100 000 or more requests per 
day. The impact of dynamic request pattern on the performance 
becomes relevant for smaller caches, leading to less homoge-
neous results, also depending on local environments and user 
preferences.  
 On the whole, the results indicate that caching efficiency is 
not restricted to the prevalently analyzed LRU case, but can 
exploit the essentially higher LFU hit rate limit for Zipf dis-
tributed requests, which is simply determined by the sum of the 
request probabilities of the top-M most popular objects. Statis-
tics about past requests is included in the proposed SG-LRU 
method and provides a simple extension to exploit the hit rate 
potential beyond pure LRU for IRM and for more realistic dy-
namic content popularity scenarios. We plan to proceed opti-
mizing SG-LRU score functions for request pattern based on 
an extended set of web access measurements. 
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