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Abstract—The simplicity of HTTP made it the default building
block for desktop and mobile apps, yet it suffers from inherent
inefficiencies in the modern web. HTTP/2 was designed to address
these inefficiencies and its adoption remarks a major protocol
shift in the Internet. Despite this relevance, its Internet-wide
adoption remains unknown. Especially, the adoption and use
of server push—advertised as a key feature to further reduce
page load times—is completely unexplored. To answer both
questions, we provide large-scale measurements of the HTTP/2
adoption and usage of server push in the wild, probing the
entire IPv4 address space and the complete set of .com/.net/.org
domains. We find 5.38M HTTP/2 enabled domains hosted by
only few infrastructures driving this adoption. While we find the
overall HTTP/2 adoption to increase, only few hundred domains
utilize server push. We examine pushed content, push strategies
and identify the use of currently undocumented push strategies.
Moreover, we discover large sources of overheads through server
push for reoccurring page visits. By measuring page load times,
we show that while push can speed up webpages, it also can slow
them down—motivating the need for optimized push strategies.

I . I N T R O D U C T I O N

Currently, the Hypertext Transfer Protocol (HTTP) is the
de-facto standard protocol for realizing a large set of desktop
and mobile applications. Traffic shares of HTTP > 50 %, e.g.,
in a residential access link [1], an Internet Exchange Point [2],
or a backbone link [3], express this dominance. Despite this
relevance, HTTP-based applications are built on a protocol
that was designed 18 years ago and suffers from a set of
inefficiencies in the modern web, e.g., head of line blocking.

To largely address these inefficiencies, the IETF standardized
HTTP/2 (H2 for the remainder) in 2015 as the H1 successor.
Its deployment denotes a major protocol shift with the potential
to accelerate the web. Unlike IPv6, H2 has the potential to
be adopted quickly since no support by the network core is
required and client-side support is already provided by all
major browsers. However, despite this potential, its adoption
by the Alexa listed popular domains is known to be comparably
low [4]. Since the overall H2 adoption almost entirely depends
on server-side support (e.g., by large content distribution
infrastructures that have not yet widely enabled H2), the
H2 adoption rate can substantially change at any time. This
motivates further studies observing and analyzing this major
protocol shift to provide recommendations for an optimal use
of the new protocol.

A broadly anticipated component is the H2 server-side push
feature, transforming the pull-only web into a push-enabled web.
By enabling servers to send resources without an explicit client

request (push), server push promises the potential to speed up
the H2 web by saving unnecessary round trips. However, an
incorrect usage of push can have detrimental effects, e.g., i)
prolonging page load times by pushing objects in orders that
stall the browsers’ rendering pipeline or ii) wasting resources
when pushing cached or unnecessary objects. The correct
usage of push thus depends on appropriate push strategies
that determine which objects are being pushed and in which
order. While H2 implementations already support push, no
such strategies are defined in the standard [5], leaving it to
developers and providers how to implement and use this feature.
Furthermore, as this feature is typically configured explicitly,
an empirical understanding of current push (ab)use is missing,
which in turn is necessary to provide guidelines on how to
correctly utilize this feature.

To answer the above questions, we conduct a large-scale
measurement study, i.e., we probe the entire IPv4 address space,
the Alexa 1M list, as well as the complete set of .com/.net/.org
domains. This represents the first comprehensive study of
the overall H2 adoption and enables us to tackle the main
question of this paper: obtaining an empirical understanding
of current (ab)use of server-push in the wild. In the absence
of standardized push strategies, we hereby aim to inform the
current standardization activities with an understanding on push
use and aim at paving the way for optimized push strategies.
The contributions of this paper are as follows:

1) We present the first large-scale assessment of H2 by
i) scanning the entire IPv4 address space and ii) the
complete 151.4M .com/.net/.org domains. Thus, we are
able to paint a comprehensive picture of the H2 adoption.
This complements earlier work focusing on a longitudinal
adoption study on a smaller set of the Alexa top list [4] and
provides the insights that only few infrastructures currently
drive the H2 adoption. We found that, e.g., Akamai can
drastically increase their customer’s H2 adoption by at
least a factor of 210 in our datasets. We find that H2 is
enabled for 5.38M of the probed domains.

2) We provide the first analysis of H2 server push usage in the
wild. While millions already use H2, server push is only
used by 595 domains. In the absence of standardization
and recommendations for concrete push strategies (e.g.,
which resources to push and when), we identified current
undocumented push practices each having a potential
influence on page load time and network resource usage.
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Interestingly, we found that simply pushing some content
does not necessarily improve the page load time, indeed
only 50.92 % webpages show performance benefits and
using server push can even drastically degrade page load
time by up to 67 %.

3) We make our dataset publicly available for the re-
search community and provide additional information at:
https://push.comsys.rwth-aachen.de

Paper Structure. We first present background information on
the history of H2, its characteristics, and features in Section II.
We then summarize related work regarding the H2 adoption
in the Internet and server push approaches in Section III.
Section IV then presents our measurement of the Internet-
wide usage of H2 required to identify and further evaluate the
usage of server push in Section V. Finally, we conclude this
paper and discuss further research directions in Section VI.

I I . B A C K G R O U N D

H2. The initial starting point and some of the key features
for the first draft of H2 [5] are rooted in Google’s attempt to
replace H1 by the SPDY protocol [6]. Meanwhile, SPDY has
converged to H2, which has been finalized and standardized in
May 2015. Since SPDY will therefore be no longer supported,
we entirely focus on H2 in the following.

A major difference compared to H1 is that H2 is a binary
instead of an ASCII protocol, which enables easier framing
and more efficient processing [7]. Moreover, H2 is able to
multiplex requests and responses, which results in multiple,
parallel streams—identified by their stream IDs—over a single
TCP connection. This interleaving of requests and responses
mitigates the head of line blocking on the application layer,
when compared to H1.

Furthermore, clients can signal request importance to the
server by assigning priorities to streams that they initiated.
Exemplary, a browser could signal to prioritize requests for
images that are rendered next when scrolling, as compared
to content out of the currently rendered area. In addition, a
client is able to update these priorities dynamically. Note that
these priorities express preferences rather than demands and
that it is up to the server how to handle them. H2 preserves
the H1 paradigm of a stateless protocol, meaning header
information for the same connection can be repetitive. To
reduce the overhead caused by this redundancy, H2 enables
header compression [8].
H2 over TLS. Although not explicitly required by the standard,
all major server and client implementations use H2 over
TLS. To distinct between different protocols on top of TLS,
Application Layer Protocol Negotiation (ALPN) [9] is used.
We remark that, while we find its predecessor Next Protocol
Negotiation (NPN) [10] to be still in use, it will, however,
not longer be supported by browsers such as Chrome1. Using
ALPN, a client is able to inform the server about supported
protocols, ordered by priority. Upon negotiation, the server
selects the protocol and signals the decision to the client.

1blog.chromium.org/2016/02/transitioning-from-spdy-to-http2.html
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Fig. 1: H2 Server Push compared to H1 and H2 without
push. In H1, requests are served sequentially. As H2 offers
multiplexed streams, multiple requests can be issued in parallel.
When server push is active, it enables servers to preemptively
push embedded objects without explicit client requests. This
procedure can optimize page load times by saving round trips.

H2 Server Push. Finally, aiming to optimize the user
experience by reducing the page load time, H2 adds a feature
called server push. We point out that this feature, e.g., compared
to the stream feature, has to be configured and applied by the
server explicitly. To understand the benefits added by push,
recall the procedure used by H1: the browser first requests the
body document, parses it, and then individually requests all
discovered embedded objects. In contrast, an H2 push-enabled
server can preemptively push embedded objects without an
explicit client request, illustrated in Figure 1 [5].

Thus, push can optimize the page load time by omitting
these requests and thus saving the required round trip. This
way, push enables to transfer resources before the browser
completed parsing and processing the embedding document.
In order to push resources to a client, the server announces
a push using a PUSH_PROMISE frame over a client initiated
stream. Besides the actual header information for the data
to be pushed, it contains a stream ID on which the server
will send the actual data. Following the PUSH_PROMISE
frame, the server starts sending the data over the previously
announced server initiated stream. As a requirement by most
major browsers [7], pushed resources have to follow the same-
origin policy, i.e., the server can not push content from other
domains. If the client decides that the push should not be
sent after the PUSH_PROMISE, it can reset the promised
stream using a RST_STREAM frame. Moreover, the client
itself can disable the server push feature completely for the
current connection by setting SETTINGS_ENABLE_PUSH in
a specific settings header to 0.

The potential benefits on page load times thus render server
push a key feature of H2. Additionally, the fact that the standard
does not define any strategy on how to push content motivates
us to study its configuration and usage in the wild.

I I I . R E L AT E D W O R K

H2 Adoption and Performance. The first empirical under-
standing of H2 and SPDY adoption for popular domains is
provided by the scans of the Alexa Top 1M list by Varvello



et al. [4]2. Using a cumulatively evolving Alexa list—totaling
1.8M domains over the course of one year—these results
indicate a growth of H2 availability from 1.4 % in November
2014 to 3.6 % in October 2015 (see [4]). Their adoption
analysis is followed by an in-depth analysis of the websites’
structure and the influence on loading times. We complement
this ongoing effort by i) broadly analyzing the H2 adopting
in large-scale measurements covering the entire IPv4 address
space and the complete set of .com/.net/.org domains and ii) by
investigating the server structure driving this adoption. Further,
by including their Alexa domain list, we independently confirm
their measurements and verify our scan setup.

In addition, related work focused on the performance of H2
or its predecessor SPDY compared to H1 in various network
setups or real world traces [4], [11], [12], [13], [14]. As the
outcome of these works are partly contradictory, i.e., showing
faster and slower page load times, we are keen to investigate if
these performance gains or deficits can be attributed to correct
or false usage of server push in the Internet.
H2 Server Push. While the H2 standardization finished and
a first empirical understanding of its adoption by popular
domains is available, ongoing efforts to define push strategies
have not yet converged and no insights into push usage in the
wild are available. We again point out that the current standard
itself does not define any strategies at all.

Concretely, related work focused on how to optimize push
for specific setups and resource characteristics. To not waste
bandwidth in mobile networks, the approaches presented in
[15], [16] inform the server about what to push, based on the
state of the client’s current cache. In [17], an approach that
decides when to push or not depending on the size of the
respective object is presented and evaluated.

Further, means to quickly deliver objects with high priority
at an early stage, based on tracking object dependencies and
push, is presented in [11], [18]. Recent work utilized server
push in order to allow the server to choose the path on which to
send resources, in presence of multi-interface connectivity [19].

While these works conceptually propose or utilize push
mechanisms, no empirical understanding exists on how and if
at all push is used in the wild. By measuring and analyzing push
usage in the wild we provide the first empirical understanding
of push as key feature of H2. Besides a classification of
the pushed content, our measurements identify several non-
published push strategies and potential inefficiencies. By this
we aim to empirically elucidate push usage and inform the
ongoing debate on defining push mechanisms.

I V. AVA I L A B I L I T Y A N D U S A G E O F H T T P / 2

We start by broadly exploring the server-side availability
of H2 by large-scale active measurements of the www infras-
tructure. These measurements currently represent the largest
assessment of the global H2 deployment and enable our study
of H2 server push in Section V.

2More information available at http://isthewebhttp2yet.com, currently con-
taining data from Nov. 11, 2014 to Nov. 16, 2016

A. Set of Probed Infrastructures

To probe for H2 availability, our measurements utilize
multiple input datasets covering a large portion of the Internets’
server infrastructure. These data sets fall into two categories:
1) domain lists and 2) IP lists resulting from port scanning the
entire IPv4 address space.
Domain Lists. We utilize i) the Alexa Top 1M list, ii) complete
set of .com and .net domains available at Verisign [20], and
the complete set of .org domains available at PIR [21]. At
the time of writing, the .com/.net/.org zone alone contained
151.4M distinct domains (see Table I), representing ≈ 50 % of
the domain name space [22].
IP Lists. Lastly, we obtain the set of all publicly reachable
servers on H2 port 443 by scanning the entire IPv4 address
space. For the latter part, we extend ZMap [23] to support
scanning for TLS ALPN and NPN on top of simply enumerat-
ing open ports. Thus we can already scan for H2 announcing
hosts and thereby drastically reduce the set of hosts that we
need to scan for full H2 support.

These two viewpoints enable us to broadly comment on
the current H2 adoption and to complement prior work which
focused on the Alexa Top 1M list [4]. We summarize our data
sets in Table I and discuss the methodology used to assess the
H2 adoption next.

B. Methodology for Assessing H2 Adoption

Given these three datasets, we want to determine full H2
support, i.e., if we are able to fetch the landing page by using
H2 from these domains. To realize this probing, we utilize the
H2-capable Nghttp23 library to establish H2 connections to
all entries in our datasets. Since this step requires to perform
a large number of probes, we distribute the experiment to a
set of workers located in the same network. We prefix all
domains with a www., if not already present as we found
greater coverage of A records in the DNS for these domains.
We instruct the Nghttp2 library to timeout connections after
10 s to exclude unresponsive hosts. In case of a successfully
established H2 connection, we issue a GET request for the /
page of the domain/host. We follow up to 10 redirects and
once we downloaded the requested page, we parse its HTML
content, count objects from external domains (non-same origin)
and additionally download all same-origin objects, i.e., content
that is potentially pushable. Additionally, we identify push
indications by the server and also download these if present (to
be used for push analysis in the next section). We summarize
our datasets and results in Table I and next discuss their details.

C. Global H2 Adoption

We base our assessment of the global H2 adoption on two
measurements performed in September 2016 and January 2017.
Measurements for all data sets were completed over the course
of one week in the respective measurement period. We next
discuss the obtained H2 adoption figures. If not mentioned
otherwise, the reported statistics in the remainder of this Section

3https://nghttp2.org/



Alexa 1M Varvello [4] .com/.net/.org ZMap IP
Sep. 2016 Jan. 2017 Sep. 2016 Jan. 2017† Sep. 2016 Jan. 2017 Sep. 2016 Jan. 2017

# Domains 1M (100.00%) 1M (100.00%) 236.7K (100.00%) 241.9K (100.00%) 153.1M (100.00%) 151.4M (100.00%) – –
# IPs – – – – – – 669.6K∗ (100.00%) 849K∗ (100.00%)

Full H2 sup. 99.3K (9.93%) 125.4K (12.54%) 165.6K (69.97%) 168.4K (69.62%) 3.1M (2.03%) 5.3M (3.47%) 598.1K (89.31%) 766.6K (90.3%)
Using Push 125 < (0.01%) 117 < (0.01%) 98 < (0.01%) 100 < (0.01%) 6.4K < (0.01%) 7K < (0.01%) 95 < (0.01%) 118 < (0.01%)
No H2 neg. 534.8K (53.48%) 521.1K (52.11%) 1.4K (0.6%) 6K (2.5%) 44M (28.73%) 43.8M (28.92%) 4.2K (0.62%) 5.1K (0.6%)

Con. timeout 81K (8.1%) 71.9K (7.19%) 1.6K (0.66%) 1.7K (0.71%) 41.9M (27.39%) 38.8M (25.65%) 8.1K (1.2%) 4.7K (0.56%)
Con. failed 143.5K (14.35%) 131.7K (13.17%) 183 (0.08%) 1.4K (0.58%) 29.8M (19.45%) 29.7M (19.61%) 3.7K (0.55%) 971 (0.11%)
TLS error 74.5K (7.45%) 68.4K (6.84%) 361 (0.15%) 2.5K (1.04%) 13.5M (8.8%) 13.9M (9.16%) 1.1K (0.16%) 1.9K (0.22%)

Redirect H1 37.6K (3.76%) 40.7K (4.07%) 62.3K (26.32%) 53.5K (22.12%) 700.5K (0.46%) 1M (0.67%) 40K (5.98%) 46.3K (5.45%)
DNS failed 26.1K (2.61%) 37.2K (3.72%) 203 (0.09%) 3.5K (1.44%) 20M (13.07%) 18.8M (12.45%) 1.9K (0.29%) 3K (0.35%)

App. timeout 1.4K (0.14%) 1.5K (0.15%) 3K (1.26%) 2.8K (1.14%) 66.1K (0.04%) 82.7K (0.05%) 1.3K (0.19%) 4.8K (0.56%)
Miscellany 1.8K (0.18%) 2K (0.2%) 2.1K (0.87%) 2.1K (0.86%) 36.3K (0.02%) 40.9K (0.03%) 11.3K (1.69%) 15.7K (1.85%)

TABLE I: Summary of H2 availability scan over different datasets. Top rows (i.e., #Domains or #IPs) define the relative basis
for the reported figures. ∗Please note, these are the amount of IPs after ZMap ALPN/NPN enumeration over 232 IPs of which
60 M are TLS-enabled on TCP port 443. †At time of writing, the latest available data set was provided on November 16, 2016.

correspond to our latest measurement performed in January
2017 (we summarize both measurements in Table I).

Alexa Top 1M. We start by exploring the Alexa Top 1M
domain list. We chose this dataset since it contains popular
domains typically hosted on large infrastructures (e.g., CDNs)
that are likely to have a higher adoption rate than unpopular
sites and it further allows comparisons with prior work [4].
The list contains 1M domains of which 52.11 % announce no
H2 support in the NPN/ALPN negotiation (TLS handshake),
31.3 % fail to connect (various reasons, see Table I), and 4.07 %
redirect to H1. The remaining 125.4K (12.54 %) are H2-capable.
These H2-enabled domains are served by 64.6K distinct IPs
located in 1.8K ASes. This grouping by AS shows that H2
support is significantly driven by a small set of infrastructures
which enabled H2 support. Concretely, the top 10 ASes already
account for 88.8K domains and the top 2 ASes (i.e., Cloudflare
and Google) account for 66.9K domains. In other words,
53.4% of the H2-capable domains are served by only two
infrastructures. Out of 125.4K H2-enabled domains, we find
117 domains to use server push on their landing page.

Varvello et al. To allow comparability with prior work [4]
we include the list of domains which announce H2 support via
NPN/ALPN obtained from http://isthewebhttp2yet.com. This
list was obtained by scanning the list of Alexa Top 1M domains
accumulated over the course of one year. We remark that the
latest update to this list was on November 16, 2016, scanned
by us in January 2017. To verify our scan setup, we reproduce
these related results by probing for H2 support expressed
via NPN/ALPN in the TLS handshake (and thus replicate the
original scan setup). Full agreement would yield an NPN/ALPN
failure rate of 0% since this list was originally generated out
of domains that announce H2 support during the NPN/ALPN
negotiation. Probing this domain list with our scan setup yields
agreement with this related finding as indicated by the low
amount of NPN/ALPN failures. In total, we find 69.62 % of
the probed domains to be fully H2 capable (69.97 % in our
September measurement). A larger fraction of 22.12 % domains
is not H2 capable since the server redirects to H1—even though
H2 support is announced in the NPN/ALPN negotiation. We
thus conclude that our scan setup is able to verify related
results and indicates the correct functioning of our setup. Out

of 168.4K H2-enabled domains, we find 100 domains to actively
use server push.

.com/.net/.org. To asses the H2 support on a larger dataset
that is not influenced by page popularity and to possibly
obtain a larger corpus of sites that utilize server push, we next
probe the complete list of .com/.net/.org domains. This list
contains 151.4M domains, of which 565.0K are also included
in the scanned Alexa Top 1M list. H2 usage is not advertised
by 28.92 % of the probed domains, 66.9 % fail to connect
via TLS, and 0.67 % redirect to H1. The surprisingly high
failure rate can be explained by two aspects: i) TLS is not
configured (28.77 % connection refused + TLS error) and ii)
unreliable/unreachable or misconfigured infrastructure (25.65%
connection timeouts (10 s) and 13.07 % DNS failure of which
66 % are unresponsive authoritative DNS server (SRVFAIL)
and 32.8 % are missing A records (NXDOMAIN)). We find
5.3M H2-enabled domains (3.47 %). These domains are served
by 252.6K distinct IPs located in 3.3K ASes. Grouping domains
by the serving AS again reveals that only few infrastructures
dominate the H2 adoption. That is, 72.5 % of the domains are
served by the top 10 ASes and 59.3 % by the top 3 ASes (i.e.,
27.6 % Squarespace, 15.9 % Automatic, and 15.8 % Cloudflare).
This skewed distribution again highlights that few but large
infrastructures adopted H2 early. The adoption rate of 3.47 %
is lower than for the Alexa Top 1M list (12.54 %) due to
the larger diversity in unpopular sites. Notably, while the
number of registered .com/.net/.org domains declined from
153.1M domains in September to 151.4M domains in January,
the number of H2-enabled sites increased from 3.1M to
5.3M domains. This highlights the increasing H2 adoption.
Out of 5.3M H2-enabled domains, we find 7K to use push.

ZMap IPs. Moreover, we probe the entire IPv4 address space
(4 B IPs) using ZMap for servers announcing H2 support in
their ALPN or NPN negotiation. Out of 60 M hosts open on
port 443 (TLS), 849K distinct IPs responded to our probes
and announced H2 support, out of which 170.1K IPs are also
included in our .com/.net/.org dataset. We remark that our ZMap
module does not capture the entire set of H2-capable servers
due to missing Server Name Indication (SNI) information (i.e.,
forward DNS names for the probed IPs). This is because SNI-
capable servers require a domain name to be present in the



request to successfully complete the negotiation. In the absence
of domain names the ALPN/NPN negotiation fails (recall that
we are now port scanning IPs without knowledge of their
forward DNS names). Internet-wide we find 766.6K H2 capable
IPs. Note that these IPs may deliver multiple websites (e.g.,
CDNs) and are thus an indicator for available infrastructure
rather than H2-enabled websites. Out of 766.6K H2 enabled
IPs, 118 are using push.
CDN Support. We now focus on analyzing Akamai as one
of the largest CDNs. Akamai enabled H2 for a subset of its
customers in November 2015 [24]. Due to its distributed nature,
it does not dominate our AS top list. To identify domains fully
hosted by Akamai (i.e., having their www. A record point to
Akamai), we analyze the CNAME chain observed during DNS
resolution. By filtering our data with the identified Akamai
CNAMEs, we find 230.5K .com/.net/.org domains and 12.7K
Alexa listed domains to be served by Akamai. Out of these,
only 0.5% of the .com/.net/.org domains and 7.7% Alexa listed
domains deliver their landing page over H2. This is because
Akamai H2 support is currently enabled only for some of
its customers [24]. However, since Akamai requires no H2-
capable customer infrastructure to deliver H2 [24], Akamai
can drastically increase the H2 adoption by a factor of 13
(Alexa) to 210 (.com/.net/.org) at any time by enabling H2
for all of its customers (not yet counting the much larger set
of sites partially using Akamai, e.g., to deliver images). The
fact that such a drastic increase happens is reflected in our
measurements: the H2 enabled domains served by Akamai in
the Alexa Top 1M List (.com/.net/.org) increased from 523
(349) in September to 976 (1,097) in January, respectively.
Server Software. Last, we briefly comment on server software
driving the H2-capable web as identified by the server field
in the response header. Grouped by IP over all datasets, few
server software dominate: Nginx 51.0%, IdeaWebServer 18.5%,
LiteSpeed 9.2%, Apache 4.3%, and Microsoft IIS 5.4% for all
probed IPs, respectively. The server software distribution of
the H2 web thus differs from the H1 web, for which Apache
is found on ≈ 20 % and Nginx on ≈ 8 % of all IPs.

D. Conclusion

We broadly assessed the H2 adoption by utilizing large-
scale measurements providing us with a unique view on the
current Internet-wide H2 adoption. During the analysis of
our measurements (in Sep’16 and in Jan’17), we already
experienced an increase in H2-enabled sites by 65.83 % from
3.24M to 5.38M. Our analysis shows that while H2 already
is deployed on < 12.54 % of the probed domains, its current
adoption is mainly driven by only a few early adopters operating
large infrastructures (e.g., Cloudflare). These infrastructures
have the potential to continue to increase the H2 adoption, e.g.,
Akamai alone can drastically increase the H2 adoption by a
factor of 210 once enabled for all of its customers.

V. U S A G E O F H T T P / 2 P U S H

Motivated by its potential to improve Page Load Time (PLT),
we study the usage of H2 server push in the wild. While there

is currently interest in the research community on proposing
new push strategies (see e.g., [16], [17], [18]), no strategy
is defined in the H2 standard [5]. It further remains unclear
if push is already deployed. In the absence of this empirical
understanding of push usage, we start by identifying pushing
servers and continue by analyzing pushed content, its influence
on PLT, and by identifying concrete (re-)push strategies.
Push Resource Selection. Since the H2 standard does not
define how resources that should be pushed are specified, we
investigated how current setups decide what to push and when.
We first investigated how major CDNs found in our data set, i.e.,
Akamai and Cloudflare enable server push. Akamai, currently
allows manual configuration of resources to be pushed by
the CDN edge servers. On the other hand, Cloudflare relies
on the origin server to insert a Link: </resource/>;
rel=preload; header in the HTTP response or correspond-
ing prefetch links in the HTML content (as implemented
by nghttpx). Identifying pushable objects is either done
manually or automatically by analyzing static webpages for
resources. We observed that already for popular content
management systems (e.g., Joomla, Drupal, or WordPress)
plugins exist that automate server push resource selection.
Here, again the Link header is used to define resources that
should be pushed by the frontend. While Cloudflare’s solution
offers greater flexibility, it requires the initial resource causing
the push to be available at the edge server. It thus prolongs
server pushes until the origin resource is fetched, which can
be avoided when the server push mapping is known up front
as used by Akamai. Link header inspection for server push is
also implemented in H2 web servers by current Apache releases
using mod_http2, the h2o and nghttpx web servers, or
NodeJS node-http2. However, many web servers allow
explicit direct configuration of pushed objects without having
to wait for the Link header saving push latency.
Dataset. We base our analysis on H2 push-enabled pages iden-
tified in Section IV. That is, out of 5.38M H2 supporting sites,
7K are using push on their landing page. Of these push-enabled
sites, 6.4K belong to a domain parker (domainstaff.com) which
broadly registers domains for resell, each hosting the same
advertisement page. To not bias our results, we exclude them
from further analysis, leaving us with 595 sites.
H2 usage increasing, push remains low & stable. While we
observed the overall H2 adoption to increase from September
to January, we remark that in contrast the share of push-enabled
webpages remains rather stable. One reason for this trend can
be the fact that H2 can be enabled by upgrading the web
server software, while enabling server push needs explicit
configuration. This need for explicit configuration can thus
render push usage as indicator for true H2 adoption.

A. Identifying Pushes

Analysis of Pushed Objects. We start by providing an
empirical understanding on i) how often push is already being
used and ii) what content is being pushed. Therefore, we first
analyze the number of objects pushed by each of the 595 pages
and show the distribution in Figure 2(a). We observe that 50 %
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Fig. 2: Amount and type of pushed objects from the dataset
of 595 domains.

of these pages push no more than 6 objects, yet around 20 %
already push at least 17 objects, with a maximum of 72 objects
pushed by a single website. Moreover, Figure 2(b) depicts
the total amount of bytes pushed per site as CDF. We detect
that 50 % (80 %) of pushing sites push less than 81.75 KB
(192.90 KB), with the maximum being 2,606 KB. Since this
view omits site complexity (i.e., the total number of objects),
we next analyze the ratio of pushed to total objects from the
same origin (i.e., excluding external objects such as ads) as
CDF in Figure 2(c). We observe that 50 % of all websites push
at least 46.67 % (48.14 %) of their objects (bytes). Moreover,
already 59.96 % (63.83 %) of websites push 50 % of their
resources, respectively. In other words, many sites deploy push
to send a large fraction of their landing page for potential faster
loading due to omitted client requests.

Next, we turn our attention to the analysis of pushed content.
We therefore plot the push object frequency by MIME type in
Figure 2(d). The top three pushed object types are JavaScripts
(46.57 %), CSS (27.71 %), and images (22.96 %). They are
good push candidates since they are required to render the
landing page and are cacheable. We show their object size
distribution by MIME type as CDF in Figure 3(a). Altogether,
we observe that 97.91 % (76.21 %) of the pushed objects have
a size of ≤ 100 KB (10 KB). The MIME types of JavaScript,
CSS, and images show a quite similar size distribution while
HTML pages are typically rather small in comparison.
Network Resource Waste? One relevant question is if pushed
objects are page-specific or if they are common frameworks
used across multiple sites and thus could benefit from caching.
We therefore cluster objects by their SHA-256 hash and show
the frequency of same-hash objects in Figure 3(b). 3.49K
(53.59 %) of 6.51K pushed objects are indeed unique by their
hash. The remaining (46.41 %) object are pushed by multiple
sites and can be attributed to web frameworks in different
versions (e.g., 184 sites (30.92 %) push versions of jQuery).
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Fig. 3: Content analysis of of pushed objects.
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Fig. 4: Pushed resources referenced in the landing page. Each
line shows the fraction of overall resources of the same type.

Recall that a generally recommended practice is to serve these
frameworks from an external provider to render them cacheable
over multiple sites. Thus, they should never appear in any push.
However, since they do, this practice of unnecessary pushes
can be interpreted as waste of network resources.

Of particular interest are pushed objects which are not
directly referenced in the HTML of the landing page, but are
later incrementally discovered by a browser requiring multiple
round trips without push. We find that a large portion of pages
(57.87 %) only pushes resources that are directly embedded on
the landing page (c.f. Figure 4). We attribute this to content
management system plugins that automatically deduce the
resources to push by parsing the generated HTML output.
Additionally, 10.02 % of sites only push objects not referenced
in the landing page’s HTML, which indicates the use of a push
strategy that is based on other factors.
Push Order. In lack of current standardization or best practices
on which resources types should be prioritized, we examined
the order in which resources are pushed. In this scenario there
are multiple possible arrival dates to investigate: i) the order in
which the PUSH_PROMISE frames are received, ii) the order
when a particular pushed stream was completely received. For
the first received PUSH_PROMISE (first fully received pushed
object) the share between JavaScript 40.98 % (38.32 %), and
style sheets 36.42 % (38.32 %) are equally distributed, while the



share of images is 18.72 % (18.66 %). In fact, we observe that
71.93 % of pages clearly define a type driven-push strategy, i.e.
they first announce to push resources of a certain type and then
proceed to the next MIME type (e.g., first push all style sheets,
then push all JavaScripts). However, we note that from the
reception of the second push onward the distribution in which
resources are received and announced start to differ, due to
stream multiplexing. Indeed we observe that in cases where the
page pushes more than one object, 68.93% of pushed streams
were interleaved, i.e., the timestamp of the first byte and the
last byte received were overlapping with other pushed streams.
In fact, we observe that for 69.41 % of the pages the order
in which pushed streams arrive is different from the order in
which push streams are announced. This multiplexing effects
might appear counterintuitive to a user explicitly specifying
push resources, i.e., because the receive-order does not always
coincide to announced order in this scenario. Furthermore,
14.45 % of pages deliver all their pushed objects strictly before
the landing page’s HTML, while 79.33 % pages pushes arrive
strictly only after the landing page. Again, we observe that in
47.4 % pages the order of PUSH_PROMISE frames is in line
with the resource order of the HTML, indicating that pushed
resources were automatically obtained by parsing the HTML.
Temporal Push Stability. After initially discovering 595
pages that push objects on the landing page, we immediately
started sampling the push behavior of every pages in an interval
of 5 mins for 5 days using the same setup as described in
Section IV-B in order to examine how stable pushes can be
observed. Note that our sampling setup does not maintain any
state per page, such as storing cookies or local storage. We
observe that 506 pages (85.04 %) show a very deterministic
push behavior, i.e., pushes could always be observed, while 74
pages (12.44 %) pushed not regularly (however, for 33 of those
pages we could at least observe pushes regularly every hour).
We attribute this behavior to load-balancing effects and web
servers that control their push behavior based on the client’s
IP-address. Moreover, after 5 days, 15 pages (2.52 %) were no
longer reachable or completely stopped pushing content.

B. Page Load Time

Methodology. Motivated by its potential to optimize the PLT,
we first analyze the influence of H2 vs. H1 on the push-enabled
webpages and additionally analyze the influence of server push.
To perform our probes with realistic H2-capable browsers, we
utilize the Selenium4 framework to automate Chromium to
fetch the push-enabled webpages. Each individual measurement
is conducted with a fresh Chromium instance with a cold-
cache, a fresh user profile and no per-site state (such as service
workers, cookies, local storage etc.). We use Chromium 56
and we ensure H2 over TLS/TCP is used by disabling QUIC.
Moreover, we measure the PLT as the time difference between
the connectEnd (start) and the loadEventEnd events
(end) obtained through the W3C Navigation Timing API.
This measure excludes the connection establishment time, i.e.,

4http://www.seleniumhq.org/

excluding influencing noise factors such as DNS resolution
and the TCP and TLS handshake. This enables to focus on the
protocol’s influence on PLT alone, i.e., including all differences
between H1, H2 and H2 with push. As the comparison metric
between measurements, we use ∆PLT of two measurements,
i.e., the relative difference for one webpage fetched with two
assessed protocol variants (e.g., H1 vs. H2). To analyze the
influence of push by enabling and disabling push support, we
modified a Chromium variant to announce no push support
by setting SETTINGS_ENABLE_PUSH to 0 in the initial
SETTINGS frame, disallowing the server to push. Furthermore,
we verified that the pages under consideration adhere to this
setting. This permits to compare the PLT of a webpage that
pushes objects with the PLT where no resources are pushed.
Hence, for the no push case, all embedded resources are
requested by the browser only upon detection when parsing
the initial HTML document. These delayed requests require
additional round trips and thus should in theory increase the
PLT as compared to a push version where objects can be
pushed without a request.

We continue analyzing the set of 595 websites that have
full H2 support and push objects. We visit each page 30 times,
each single iteration through the set of pages takes 4 hours (5
days in total), i.e., every page is visited within this interval
having H2 with push, H2 without push, and H1 enabled. We
conducted this measurement in parallel to our stability sampling
described in Section V-A, however, from independent machines
with different IP addresses, but within the same network. In
the following we present our findings for the set of 506 pages
with a stable push behavior in order to present precise results.
Influence on Page Load Time. We start by comparing the
median PLTs for H1 and H2. We show the relative increase
(∆PLT < 0 on the left) and decrease (∆PLT > 0 on the
right) in PLT as compared to H1 in Figure 5(a). Since the
PLT measurements contain noise (e.g., jitter), we selected a
threshold of ∆PLT ≤ 5 % for which we consider webpages
to load equally fast. We observe that 50.92 % of the websites
served with H2 are above this threshold, i.e., they load faster
than their H1 counterparts and achieve reductions for the PLT
of up to 83 %. However, 5.19 % of the H2 websites experience
slower loading times of up to 72 %. This highlights that the
majority of websites benefit from enabling H2, however in
some cases H2 does not speed up the page load time, which
complies with results given in related work (cf. Section III).

To evaluate how effective server push is used, we compare
H2 PLT with and without push being enabled, see Figure 5(b).
We again use a ∆PLT threshold of 5 % to indicate pages that
are not impacted by push. As promised, push can indeed yield
PLT improvements. Concretely, 14.75 % of the studied websites
are above the threshold: here server push speeds up the PLT
of up to 63 % compared to H2 without push. A large body of
pages is not influenced by push in our setup (∆PLT ≈ 0), i.e.,
push neither helps nor harms. To our surprise, a fraction of
12.84 % pages suffer from server push as they load up to 67 %
slower with a median (average) of 9.75 % (13.25 %). Thus, the
use of server push does not always decrease the PLT per se
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Fig. 5: Speedup of H2 with push vs. H1 and H2 without push.
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Fig. 6: Distribution of ∆PLT under various aspects, with H2
without push as baseline.

and cannot be considered a silver bullet. In fact, our results
show that only 48.08 % of the pages had a ∆PLT ≤ 0. We
could not attribute simple reasons for these performance drops
to individual properties such as i) the total number of pushed
objects/bytes (Figure 6(a) and Figure 6(b)), ii) network latency
of the web server (Figure 6(c)), iii) share of pushed objects
in comparison to the total number of objects included in the
landing page (Figure 6(a)), iv) types of pushed resources, or
v) resource type ordering. Hence, we acknowledge that the
performance-determining factors of server push are either very
page-specific, or are indeed more complex and require further
analysis which however goes beyond the scope of this paper.
Conclusion. H2 keeps its promise to reduce PLT on a large
set of the considered domains. We observed that push is used
to deliver mostly medium sized JavaScripts, CSS, or images.
Interestingly, the practice to push common web frameworks
actually limits their cross-website cacheability. While some
pages’ PLT profit from server push, an equal share of pages is
subject to reduced performance at the same time. We find that
push performance cannot easily be attributed to how push is
used and on what resources, motivating further research.

C. Push Behavior on Reoccurring Visits

A practical challenge to be addressed by push strategies
is avoiding to repeatedly push same resources over multiple
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Fig. 7: Pushes in subsequent visits for various configurations.
To improve visibility, we cut-off at 50 pushes (cf. Figure 2(a)).

visits by the same client, as these may already be in the cache.
Pushing such resources is wasteful, moreover, upon a second
visit the server could push other resources that are not yet
in the cache. Currently, the H2 standard does not provide
mechanisms to enable a cache-aware server push. Thus, we
investigate whether or not this issue is present in our dataset.
Methodology. We use mitmproxy5 to capture the traffic
between browser and web server. Again, we automate the
browser to visit a page, then visit a dummy page, and to
visit the page again. We use different configurations (cache-
enabled, cache-disabled) of Chromium to examine push in
reoccurring visits. Figure 7 depicts the number of pushes
observed in the first and the second visit. We detected that
Chromium does not close the TCP connection to the server
for up to 180 s of inactivity, even if the user has left the page.
If the connection is reused, 5.96% of pages push responses on
the second visit. To simulate a revisit after this timeout, we
enforce a termination of the TCP connection in the proxy. We
found that enabling the browser’s cache does affect the push
behavior: With caching enabled 57.23% of pages push objects
on the second visit, compared to 95.53% of pages with disabled
cache. Next, we present results for the cache-enabled scenario,
where connections are not reused. Comparing the SHA-256
hashes we rediscover 97.39 % of all objects are pushed again,
i.e., redundant transfers and thus waste of network resources.
Moreover, 95.76 % of the re-pushing sites push solely objects
that already were pushed in the previous visit. In 95.53 %
of all re-pushing sites the amount of pushed objects was the
same for both visits; additionally considering hash equality in
89.0 % of pages the encountered pushes were exactly the same.
During our measurements, we discovered strategies we could
not account to the aforementioned cache settings. Thus, we
inspected the respective websites and derived further strategies,
verified in individual evaluations. We describe these strategies
(S) for reoccurring visits and illustrate possible disadvantages.
IP-based (S1). A server identifies clients by their IP and
avoids to push on re-visits within a certain time. This is
especially fragile in presence of NAT boxes or proxies, where
multiple clients share one IP. Quantifying the use of this strategy
is challenging, since we cannot reliably distinguish load-
balancing effects and server configuration. However, during
our stability measurement (Section V-A) we found 33 pages
that are potential candidates.

5https://mitmproxy.org/



Conditional Request (S2). The server decides to push objects
based on the advertised modification date of the page in the
If-Modified-Since HTTP request header, which is set
by the browser if the requested page is cached. However, if
the page is dynamic (indicated not to be cached), the browser
will not send this header and thus resources are always pushed.
We observed this strategy for Cloudflare-hosted websites.
Cookie-based (S3). A cookie is set by the server indicating
which resources have been pushed. This is not ideal since the
server assumes that client cache state is stable, while only the
client can tell which resources are still cached.
Client-side Code (S4). A website executes JavaScript code
that installs a HTML5 service worker upon the first visit. On
the next visit, request are then answered by the service worker
instead of being sent to the server. This interception enables
to realize custom behavior, e.g., prevent extra pushes.
Conclusion. Although some pages deploy non-standardized
measures to avoid pushing the same objects multiple times,
which in fact would waste network resources (especially in a
mobile scenario), there is enormous potential for improvement
either by avoiding pushing objects that are already cached or
pushing new fresh resources in the second visit.

V I . D I S C U S S I O N A N D C O N C L U S I O N

This paper presents the first broad assessment of HTTP/2
(H2) adoption and server push in the wild. We study infrastruc-
ture as well as domains by probing i) the entire IPv4 address
space, ii) the Alexa Top 1M list, and iii) the complete set of
151.4M .com/.net/.org domains. By this, we complement and
validate prior work that solely focuses on the Alexa 1M list.
In light of the H2 standardization in 2015, we find H2 still
not to be widely deployed, but also observe an increase in
deployment by 65.83 % from Sep’16 to Jan’17, totalling to
5.38M H2 domains in our datasets. This rising adoption can
be explained by out of the box support in major web servers,
which can provide H2 upon software upgrade. We also see that
the H2 adoption is driven by few large infrastructures (e.g.,
CDNs). Since they have not yet enabled H2 for their entire
customer base, they are capable of drastically increasing the
adoption at any time, e.g., Akamai alone can increase their
customer’s H2 adoption by a factor of 210 in our datasets.

Analyzing H2 server push, regarded as key feature promising
to further reduce PLT, we observe only hundreds of domains
using it. This massive difference to the overall H2 adoption
may be explained by the fact that server push needs to be
actively configured, which can pose an enormous challenge as
we have shown. Regarding its promise in PLT reduction, we
observe that push can speedup PLT (true for ≈ 50 % of the
sites), however, it can also slow down PLT (true for the other ≈
50 %). This effect cannot be attributed to the number of pushed
objects, their size, nor the fraction of all objects that are pushed.
We only observe a trend for extreme high latency links where
server push can indeed reduce PLT. The observation that an
approach designed to improve PLT can easily yield detrimental
effects, motivates further research to better understand the
complex nature of server push—especially towards its interplay

with the underlying transport protocol. We further find some
push practices to arguably waste network resources, either
by preventing cacheability or by unnecessary transmissions.
Without a better understanding of the effects of server push and
the used push strategies, server push clearly remains behind
its promised potential. In the absence of standardized push
practice, we argue that it is now the right time to optimize
push before inappropriate strategies find widespread adoption.
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