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Abstract—Crowd-sensing promises cheap and easy large scale
data collection by tapping into the sensing and processing capa-
bilities of smart phone users. However, the vast amount of fine-
grained location data collected raises serious privacy concerns
among potential contributors. In this paper, we argue that crowd-
sensing has unique requirements w.r.t. privacy and data utility
which renders existing protection mechanisms infeasible. We
hence propose TraceMixer, a novel location privacy protection
mechanism tailored to the special requirements in crowd-sensing.
TraceMixer builds upon the well-studied concept of mix zones to
provide trajectory privacy while achieving high spatial accuracy.
First in this line of research, TraceMixer applies secure two-party
computation technologies to realize a trustless architecture that
does not require participants to share locations with anyone in
clear. We evaluate TraceMixer on real-world datasets to show
the feasibility of our approach in terms of privacy, utility,
and performance. Finally, we demonstrate the applicability of
TraceMixer in a real-world crowd-sensing campaign.

I. INTRODUCTION

The proliferation of mobile, location-aware sensing devices
has enabled and inspired crowd-sensing, a new paradigm for
large scale data collection. By tapping into the capabilities
of smart phone users, crowd-sensing promises higher cover-
age and availability at lesser costs than traditional methods.
Successful real-world crowd-sensing campaigns range from
collaborative map creation [1] to monitoring cellular networks
[2] or road conditions [3]. Unsurprisingly, crowd-sensing is
receiving increasing attention also from commercial players:
E.g., the cellular network operator Telefonica sells insights to
retailers based on its customers’ location data [4], while Strava,
a site for tracking sport experiences, promises to support and
improve city planning based on its users’ activity traces [5].

Common to most crowd-sensing campaigns is the focus
on the spatial context of contributed data, e.g., in all pre-
vious examples data is annotated with a location. However,
numerous attacks on location data and serious real-world
incidents [6]–[8], have raised serious concerns over location
privacy. Indeed, privacy concerns have been identified as the
main obstruction in crowd-sensing [9]–[11]. Clearly, effective
location privacy protection mechanisms (LPPMs) are required
to resolve participants’ privacy concerns and to realize the full
potential of the crowd-sensing paradigm.

The majority of existing LPPMs are tailored to traditional
location-based services (LBS). In an LBS, users annotate
queries with their locations and receive answers personalized
to these locations. Despite a shared focus on location informa-
tion, crowd-sensing has fundamentally different characteristics

than these LBS and hence poses different requirements to
LPPMs. First, LBS usually involve the disclosure of only sin-
gle locations, while crowd-sensing campaigns typically collect
whole traces. LPPMs for crowd-sensing must thus provide
trajectory privacy instead of the simpler and weaker notion of
sporadic location privacy. Second, LBS value the timeliness of
answers over their spatial accuracy. In contrast, many crowd-
sensing campaigns such as map creation [1] or city planning
[5] have rather long-term goals and favor spatial over temporal
accuracy. Unfortunately, this mismatch of privacy notions, and
utility goals renders LPPMs developed for LBS unsuitable for
many crowd-sensing scenarios.

In addition to the mismatching privacy and utility goals, we
observe that existing LPPMs typically require a trusted third
party (TTP) that acts as an anonymization proxy and learns
all data in clear. However, such central entities are vulnerable
to attacks, database leaks, or seizure by governments [12].
This is even aggravated by the long-term data collection and
storage typical in crowd-sensing. We thus argue that LPPMs
must renounce centralized design patterns and should ideally
never learn participants’ data in clear.

Our contributions. In this paper, we propose TraceMixer,
a novel LPPM for crowd-sensing. TraceMixer departs from
traditional LBS and considers the inherent special require-
ments of crowd-sensing that hitherto remain unaddressed by
related work (Sect. II). To address these novel requirements,
TraceMixer implements a mix-zone based anonymization ap-
proach that i) provides trajectory privacy, ii) introduces min-
imal spatial distortion, and iii) is realized using advanced
cryptographic protocols that operate only over encrypted lo-
cations such that traces of the participants are never shared
in clear with anyone (Sect. IV). The implementation and
evaluation of our prototype show the feasibility of TraceMixer
in terms of performance, location privacy, and data utility
(Sect. V). Finally, we present a real-world use case that
demonstrates the real-world applicability of TraceMixer (Sect.
VI). In conclusion, with TraceMixer we provide a general
LPPM for long-term crowd-sensing campaigns (Sect. VII).

II. PROBLEM STATEMENT

In this section, we concisely frame the problem of location
privacy in crowd-sensing. We formalize our scenario (Sect.
II-A), distill requirements for adequate LPPMs (Sect. II-B)
and, finally, we analyze related works w.r.t. these requirements
and identify the need for novel approaches (Sect. II-C).



A. Scenario

We consider an abstract model of crowd-sensing campaigns
in three phases, i) data collection, ii) privatization, and iii)
publication. Data collection is initiated by the campaign ad-
ministrator who instructs the participants with a sensing task.
The participants, from hereon referred to as users ui ∈ U ,
move around in an area divided into discrete locations L.
Each user is equipped with a location-aware device, e.g., a
smart phone, and continuously collects data reports at her
current location. A single report is defined by the location and
the sensed event. Events can be anything from single sensor
readings such as the noise level [13] to arbitrarily sophisticated
(sensed) phenomena such as road conditions [3], [14]. The
event can be empty, e.g., when location information is the main
target of data collection [4]. Finally, the users upload reports
to the LPPM continuously or in batches. In the second phase,
privatization, the LPPM is responsible for applying adequate
privacy protection before releasing any data. We emphasize
that our focus is on privacy protection regarding the location
information contained in the uploaded reports. Thereby, we
deliberately do not address potential privacy risks concerning
the reported events themselves since they are specific to each
category of sensed data [9]. In the final publication phase, the
LPPM releases the privatized data to interested parties. Since
attackers may disguise as benign applications, the LPPM has
to trade-off data utility and privacy.

B. Requirements Analysis

We survey literature and real deployments to analyze the
unique requirements of crowd-sensing. These requirements
clearly distinguish crowd-sensing from traditional LBS and
make evident the need for novel LPPMs.

Privacy notion. In most crowd-sensing deployments, the
users upload successive reports which form mobility traces,
e.g., in road condition monitoring [3], map creation [1],
[14], or city planning [5]. Disclosing whole traces involves
significantly higher privacy risks than sporadically disclosing
only single locations as typical for traditional LBS: Users
exhibit unique mobility patterns which can be exploited to rei-
dentify anonymously contributed traces, predict users’ future
locations, or infer sensitive information [6], [7], [15]. Hence,
LPPMs for crowd-sensing must provide trajectory privacy
instead of the weaker notion of sporadic location privacy
assumed in the context of traditional LBS.

Utility goals. Due to the voluntary, unreliable nature of
crowd-sensing, many campaigns focus on data collection about
stable phenomena such as long-term mobility patterns [4], [5],
locations of roads and buildings [1], or physical road condi-
tions [14]. At the same time, these examples make evident
the need for high spatial accuracy of contributed data, e.g.,
mapping roads and buildings requires spatial accuracy in the
order of meters or even centimeters [1]. In contrast, the query-
response model of traditional LBS usually requires timely
operation. This has led to the development of LPPMs that
minimize temporal delays and thus resort to spatial distortion
to provide privacy. Existing LPPMs thus optimize for utility

goals opposite to those in the typical long-term crowd-sensing
campaigns considered in this work. We conclude that adequate
LPPMs should optimize spatial over temporal accuracy.

Trust model. Finally, we observe that most existing LPPMs
are operated as centralized anonymization proxies which learn
the locations of all users in clear. However, such central entities
are vulnerable to attacks, database leaks, and seizure by
governments [12]. Crowd-sensing deployments, which feature
rather long-term collection and storage of huge data sets,
become particularly attractive targets which aggravates privacy
risks. In consequence, crowd-sensing campaigns often fail to
motivate enough users to participate [9], [10]. We thus argue
that LPPMs in general and especially for crowd-sensing should
renounce centralized design patterns and ideally never learn
users’ locations in clear to minimize attack vectors.

C. Related Work

We analyze related work w.r.t. the requirements and com-
pare it qualitatively to our own approach. We concentrate on
approaches that fulfill our first requirement, trajectory privacy.

Mix zones. The concept of mix zones [16] is to introduce
quiet zones in which users do not report locations. In analogy
to anonymous communication networks, users must stay in
those mix zones for a certain time so that the entry and exit
events (i.e., users entering and leaving the mix zone) become
unlinkable to outside observers. Several works improve upon
the design and placement of mix zones, e.g., [10], [17], [18].
Our approach is also based on the idea of mixing users, but
introduces two key differences compared to traditional concept
of mix zones: Related works place mix zones a priori, hence
cannot guarantee that users will actually mix. In contrast, our
approach checks a posteriori whether a certain number of
users have mixed and releases data only then.

k-anonymity. Different approaches adapt k-anonymity [19]
to traces by aggregating k traces such that they become in-
distinguishable to an attacker [20]–[23]. These approaches in-
troduce significant spatial distortion which violates our utility
requirement. Further, they require either a TTP which violates
our trust model or require direct interaction between users
which is difficult to achieve in the crowd-sensing scenarios
targeted in this work, e.g., we observe only rare encounters in
the (popular) datasets used in our evaluation.

Differential privacy. A recent line of research on trajectory
privacy [24]–[26] derives from the differential privacy frame-
work [27]. Basically, traces are privatized by adding carefully
calibrated noise. Approaches based on differential privacy
generally provide stronger privacy than the k-anonymity-based
approaches, and can also be implemented in a user-centric
fashion without a TTP. Due to the inevitable spatial distor-
tion introduced by the addition of differentially private noise
our utility requirements are, however, not met. For example,
in [25] the added noise grows linear in the number of disclosed
locations which greatly degrades utility even of short traces.

Uncertainty. Different approaches use the uncertainty of a
tracking adversary as privacy metric and optimization goal.
Uncertainty is achieved, e.g., through path confusion [28]
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Fig. 1. Overview of TraceMixer: On the user side, traces are collected and preprocessed for the anonymization mechanism. The oblivious anonymization
protocol is executed by two privacy peers, PP1 and PP2, which determine aggregates of intersecting traces that can be safely released. Finally, the achieved
level of privacy is measured by the success of a tracking attacker with background knowledge about users’ mobility patterns.

or path cloaking [29]. Both approaches require TTPs and
significantly decrease data utility due to spatial distortion and
data loss, respectively. In [30], Bayesian Stackelberg games
are used to determine an optimal trade-off between utility
and privacy. Being completely user-centric, the framework
fits our trust model but is limited to spatial perturbation as
privatization mechanism. Our approach uses different means
of privatization and thus cannot be modeled in this framework.

Dummy trajectories. In this class of approaches, either a
TTP or the users introduce a large set of dummy trajectories
to hide the real trajectories within, e.g., [31]. This approach
is unsuitable to crowd-sensing since the large amount of fake
dummy reports cannot be distinguished from the real reports.

Other approaches. As summarized in [9], many proposals
consider anonymous reporting as the main solution to protect-
ing location privacy in crowd-sensing. However, anonymizing
identities alone does not provide sufficient privacy, since loca-
tion traces can be easily re-identified and sensitive information
can be inferred afterwards [6], [7], [15]. Like our work, the
approach in [32] is motivated by the goal to achieve high
spatial accuracy. Their optimzation algorithm requires a TTP
with global knowledge of all traces and considers the inference
of single locations instead of a tracking attacks, i.e., assumes a
different privacy notion than our work. We conclude that none
of the related works proposes an LPPM that fully addresses the
special requirements of the crowd-sensing scenarios targeted
in this work.

III. BACKGROUND ON SECURE COMPUTATIONS

A fundamental building block of our approach is secure
two-party computation (STC). It allows two mutually dis-
trusting parties holding private inputs x and y to compute a
functionality F(x, y) obliviously, i.e., without anyone learning
the private inputs. STC achieves this by cryptographically
transforming private inputs x and y such that they are not
revealed to anyone but can still be used to compute F(x, y).

In the classical STC scenario, the secure computation is
executed by the two peers that own x and y. However, as
explained in [33], state-of-the-art STC techniques can also be
used to efficiently realize oblivious computations over inputs

from n > 2 users: The n users first provide their respec-
tive private inputs x1, ..., xn in a secure manner (e.g., using
encryption or secret sharing) to two non-colluding privacy-
peers PP1 and PP2. The privacy peers can then compute the
desired functionality F(x1, ..., xn) over the protected private
inputs using state-of-the-art STC protocols, e.g., Yao’s Garbled
Circuits [34].

IV. TRACEMIXER DESIGN

We now explain the design of TraceMixer and how it
addresses the special requirements of crowd-sensing in detail.
We start from a high-level system overview, then explain each
component and their interaction in detail (Sects. IV-A to IV-D).

System overview. On the highest level, TraceMixer fol-
lows traditional anonymization approaches: Data records are
collected from a number of sources, anonymized through
an adequate mechanism, and finally released to the public
in privatized form. Departing from all previous approaches,
TraceMixer anonymizes traces without spatial distortion and
obliviously, i.e., without anyone learning a participant’s trace
in clear. The core idea that facilitates these key differences
is to employ Private Set Intersection (PSI) to obliviously find
sets of intersecting traces that can be safely released. Here, the
intuition is that intersections of traces form natural mix zones
which prevent attackers from tracking users if enough such
mix zones are present in a released aggregate. PSI, a classical
STC protocol, ensures that individual traces are never revealed
in clear and that even the LPPM remains oblivious to them.

Figure 1 provides an overview of TraceMixer. At the core
of TraceMixer is the oblivious anonymization protocol which
is executed by two privacy peers and divided into two parts: i)
We obliviously determine sufficiently large sets of intersecting
traces. ii) Once such a set is found, we shuffle, decrypt, and
release the traces in this set. The task of the user side com-
ponent is to discretize traces (Step 1) and then prepare traces
for the two parts of the anonymization mechanism: Hashing
and Sharing (Step 2.1) prepares the inputs for the adapted PSI
protocol of our oblivious aggregation mechanism (Step 2.2).
Trace Encryption (Step 3.1) prepares shuffle and data release
(Steps 3.2 and 3.3). We explain Step 2 in Section IV-B and
Step 3 in Section IV-C. Finally, in Step 4 (Section IV-D),



Input: Traces T = {T1, ..., Tn}, A = {}, k ∈ N+

Output: Aggregates A1, ..., Am with Al ⊆ T and |Al| ≥ k

1: for all Ti ∈ T do
2: for all Al ∈ A do
3: for all Tj ∈ Al do
4: if Ti ∩ Tj 6= ∅ then
5: Al.add(Ti);
6: if |Al| ≥ k then
7: A.pop(Al)
8: ShuffleRelease(Al)

9: goto Line 1
10: A.add({Ti})

Fig. 2. Trace aggregation algorithm on cleartexts: The algorithm finds
aggregates of at least k traces that intersect and releases them. This algorithm
is executed as a secure two-party computation between the two privacy peers.

we quantify how much privacy this anonymization approach
actually achieves. To this end, we propose a state-of-the-art
tracking adversary whose success probability serves as our
privacy metric.

A. Discretization

The goal of Discretization is to map traces from continuous
GPS coordinates into a discrete location space. This serves two
purposes: First, raw GPS data is error-prone and for many use
cases overly precise. Discretization allows to adequately set
the required granularity and to smooth out errors. Second, we
use a PSI protocol to find intersections of traces which requires
discrete locations. At first sight, the use of PSI seems to limit
our approach. However, discretization introduces artificial in-
tersections, e.g., between two traces that run close but without
intersections, which is desirable as it increases privacy.

To discretize continuous GPS samples, we choose to map
GPS coordinates to nearby reference points on OpenStreetMap
(OSM). This mapping can be done efficiently on the client
and offers worldwide coverage. To put an upper limit on the
discretization error, we only map to OSM nodes that are within
a maximum distance of 2m and discard other locations. All
further steps are now carried out over the discretized traces
which are represented as lists of OSM node IDs.

B. Oblivious Aggregation

The goal of the first part of our oblivious anonymization
protocol is to find aggregates of at least k intersecting traces.
We first describe our algorithm and then explain how it can
be realized to operate obliviously over encrypted traces.

Insecure aggregation. Figure 2 shows how our aggregation
algorithm proceeds on cleartext traces T . We start with an
empty set of aggregates A. For each received trace Ti ∈ T ,
we greedily search for an aggregate Ai ∈ A intersecting Ti

(Lines 1 to 4). If such an aggregate Al is found, we add the
trace T to it (Line 5). As soon as the privacy criterion |Al| ≥ k
is fulfilled, we remove Al from the set of aggregates A and
hand it to the second part of our anonymization mechanism
(Lines 6 to 8), which shuffles and releases the aggregate. If no
aggregate that intersects with the received trace Ti is found,
we create a new aggregate that only contains Ti (Line 10).

PP2

PP1

1 2 3Ti

ui

Hashing Hi
Boolean
Sharing

PSI

Hi
1

Hi
2

Fig. 3. Each peer computes two hash tables of its trace and shares them to
the privacy peers to prepare the PSI protocol.

Oblivious aggregation. To achieve oblivious aggregation,
we implement this algorithm as a secure two-party computa-
tion protocol that operates over encrypted traces only. The set
intersection (Line 4) is the only step that requires knowledge
of the traces’ nodes, while all other steps just manage meta
data, i.e., set memberships. Our basic idea to make aggregation
oblivious is to replace the insecure set intersection with a
PSI protocol executed by two privacy peers over encrypted
traces. Thus, they only learn whether two traces intersect but
nothing else. PSI is a classical, well-researched secure two-
party computation problem and we use the most efficient PSI
protocol proposed in [35].

The original protocol from [35] proceeds as follows. Each
privacy peer PP1 and PP2 holds in clear one of the two sets
to be intersected. Each peer then represents its respective set
as a hash table with a configurable amount of bins. PP1 and
PP2 then use boolean secret sharing to securely distribute hash
tables between each other. Using the secret shares, they can
now execute private equality testing to obliviously compare the
bins element-wise which efficiently tests whether the two sets
intersect. In our scenario, PP1 and PP2 would thus need to
hold either Ti or Tj in clear. However, this strongly contradicts
our privacy goals, as users should not share their traces with
any other party in clear (cf. Section II-B).

We hence adapt the original protocol to our setting such that
it respects our trust model. Our basic idea is that users carry
out the hashing steps of the original protocol themselves and
provide privacy peers the hash tables in secret-shared form.
The secret shares do not expose any information to a single
privacy peer but enable both peers together to carry out the
PSI protocol. Figure 3 illustrates these steps: User Ui hashes
her trace Ti to derive the hash table Hi. Still, Hi carries
significant information about Ti and thus must not be revealed
to the privacy peers in clear. Instead, Ui computes a boolean
secret sharing and provides each privacy peer one of the two
secret shares H1

i , H
2
i . The privacy peers cache shares locally

and can then obliviously intersect Ti with other traces using
the PSI protocol from [35] to find aggregates of k intersecting
traces. Once an aggregate has been found and released, the
shares of the traces are deleted.

C. Shuffle and Release

In the previous step, we have determined aggregates
Al = {Ti1 , ..., Tik} of intersecting traces. Now, these aggre-
gates Al need to be safely released. So far, privacy peers only
hold shares of the hash tables of each trace. If those shares



were recombined directly, the privacy peers would obtain each
hash table (i.e., practically the original trace) in clear which
violates our privacy requirements. Our basic idea to prevent
this is to let the users break up traces Ti1 , ..., Tik into small
encrypted fragments (in addition to sharing them as hash
tables) which are first shuffled blindly by the privacy peers
with the fragments of the other traces in the aggregate before
all fragments are decrypted and released together. Intuitively,
the blind shuffle prevents privacy peers or outside attackers
from determining which fragment belongs to which trace
Tij ∈ Al. The fragment length should generally be minimized,
since this decreases the chances of an attacker to successfully
recreate traces from the shuffle fragments. However, fragment
length must also be decided per use case, e.g., for our use
case of constructing elevation profiles (Sect. VI), we require
fragments of length two, while measuring people density [4]
even requires only one node per fragment.

Figure 1 includes an example of our idea. Trace T1 is broken
up into fragments {(1, 2), (2, 3)} which are encrypted individ-
ually by u1. Users u2 and u3 prepare T2 and T3 in the same
way. Having determined the aggregate Al = {T1, T2, T3}, the
privacy peers put the corresponding fragments into one big set
and shuffle this set blindly. Finally, the privacy peers release
the shuffled set, e.g., {(2, 5), (1, 2), (3, 6), (2, 3), (2, 4), (1, 3)}.
From this set of fragments, it is possible to build many traces
besides T1, T2, and T3, e.g., (4, 2, 3), (4, 2, 3, 1), (1, 2, 5), ....
Since the original traces are hidden among these numerous
other traces, an attacker can only guess which are the original
traces. We evaluate his success chances in Section V-C.

Now, we explain how to realize the shuffle and release. As
a preparation (Step 3.1 in Figure 1), each user divides her
trace Ti into fragments fij ⊆ Ti and encrypts each fragment
with the public key PK1 of PP1 using a semantically secure
crypto system E. The encryptions EPK1(fij ) are then sent to
PP2. When an aggregate of k intersecting traces is found in
Step 2, PP2 shuffles the corresponding encrypted fragments
and sends them to PP1. PP1 shuffles all fragments again, then
decrypts and releases each fragment. Note that this realizes a
blind shuffle, i.e., no single privacy peer knows or is able to
reverse the shuffle in order to recreate traces from fragments.

D. Attacker

In line with [17], [28], [29], [36], we consider tracking as
the primary attack on users’ privacy. Being able to track an
anonymous user along her trace, an attacker can not only infer
private information but is often able to identify the user based
on her unique mobility patterns [6], [7], [15]. The attacker’s
success is usually measured in the distance that the attacker
can correctly track a user. In our setting, the attacker aims to
reconstruct users’ traces from the released trace aggregates.

Assumptions. Before we explain in detail the attack, we
make different worst-case assumptions: First, we assume that
the attacker has background knowledge about each user.
Concretely, we build mobility profiles for each user that are
available to the attacker (cf. Figure 1, right). The mobility
profiles tell the attacker the probability that user ui moves

TABLE I
OVERVIEW OF THE DATASETS USED IN THE EVALUATION.

Datasets Trucks Geolife Aachen
Total traces 276 1341 5229
Total users 50 96 3410
Total nodes 61 181 472 052 7 219 405
Timespan in days 303.13 1631.06 100.58
Mean nodes per trace 443.34 352.28 1380.91

from a node x to y. Second, we assume that the attacker knows
the starting points of all users, e.g., a known home address.
Finally, we defensively assume that released fragments overlap
such that they can be connected to traces. Our tracking
attack would need adjustments for non-overlapping fragments
but, more importantly, be less effective. In conclusion, the
assumptions we describe strengthen the attacker and thus yield
a very defensive measure of the achieved privacy.

Attack. The attacker knows the user’s starting point and
follows her until the first mix zone, i.e., an intersection of
at least two traces, by following the fragments’ overlaps. A
mix zone is simply a node n which is traversed by multiple
users (e.g., node 2 in Figure 1) Thus, to track users across mix
zones the attacker needs to guess which exit node e1, ..., em
was taken by which user. We use a Bayes estimator to derive
the probability of a user taking one of the m exits [17]:

Pn (ui|e, n) =
Pn (e|ui)Pn (ui)∑

uj∈U Pn (e|uj)Pn (uj)
(1)

Pn (ui) and Pn (e|ui) are derived from users’ mobility pro-
files. Applying Equation 1, the attacker computes the likeli-
hood of all combinations of users and exit events. The attacker
now computes a maximum weight matching between users and
exit nodes using the likelihoods as weights, which results in
the most probable assignment of users to exit events. Finally,
we measure for each user how far along her contributed trace
an attacker is able to track her in the released aggregate. We
then define our overall privacy metric as the fraction of all
users the attacker can track over a certain distance.

V. EVALUATION

We first evaluate performance, utility and privacy and con-
clude with a qualitative security and privacy discussion.

Implementation. We implemented a complete prototype of
TraceMixer. To this end, we realize the user-side component as
an Android application and the anonymization mechanism as
well as the attacker in Python. However, for the performance-
critical private set intersection protocol, we use the efficient
C++ implementation provided within the ABY secure two-
party computation framework [33]. Public-key cryptography
for the trace preparation on the client-side and for the release
step on the privacy peers is implemented using libsodium.

Experimental setup. We measure the performance of the
user-side component on an LG Nexus 5 smart phone and
execute the anonymization mechanism between two desktop
machines (Ubuntu 14.04, Intel i7-4770 @ 3.10GHz, 16GB
RAM) that communicate over a Gigabit LAN. All results are
given as mean and standard deviation (SD) over 5 runs.
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Datasets. We evaluate all three components of TraceMixer,
i.e., the user-side application, the oblivious anonymization
mechanism, and the attacker, on three (popular) real-world
datasets: i) Trucks [37], ii) a subset of Geolife [38], and iii) a
large dataset of sports activities we collected around the city of
Aachen. We choose these datasets because they feature largely
different characteristics (as summarized in Table I) that allow
us to evaluate TraceMixer in very different settings.

A. Performance Evaluation

We measure the overheads for i) trace preparation, ii) obliv-
ious aggregation, and iii) shuffling and releasing fragments.

Trace preparation. We first study performance on the user-
side. To this end, we measure the time to encrypt 100 to 5000
trace fragments. As expected, the overhead is linear in the
number of fragments and requires only 4.49 s (SD 0.06 s) even
for very large traces with 5000 fragments. Note that the longest
trace in our dataset has only 4747 nodes and the most other
traces are significantly smaller. Thus, the overheads for trace
preparation are clearly manageable for smart phones.

Oblivious aggregation. The runtime of our oblivious ag-
gregation algorithm on the three datasets is shown in Figure 4.
We process traces in their chronological order and measure the
total processing time. TraceMixer requires only few minutes
on the small dataset, Trucks, while runtimes range in the order
of a few hours for the large datasets, Geolife and Aachen.
At least 93% of these efforts can be precomputed. Even if
datasets are anonymized in one batch (as in our evaluation),
these overheads are manageable. More importantly, for all
three datasets the presented runtimes only constitute far less
than 0.001% of the timespan over which the dataset was
collected (cf. Table I). Thus, the presented runtime overheads
are almost negligible when datasets are anonymized on the fly.

Interestingly, the difference between the Geolife dataset and
the much larger Aachen dataset are not as big as their sizes
suggest (cf. Table I). This is due to the different densities of the
datasets. Intuitively, traces intersect more frequently in denser
datasets such that our approach needs less tries to find an
aggregate to merge a new trace into. The Trucks and Aachen
datasets are rather dense and hence already after an average of
3 intersections an intersecting aggregate is found. Geolife is
sparse in comparison and requires on average 12 intersections
per trace before the trace can be merged. In consequence,
although much larger, the Aachen dataset requires a similar
total amount of intersections as the Geolife dataset.

Shuffle and release. Finally, we measure the performance
for shuffle and release. To this end, we measure the time
to shuffle and decrypt aggregates with up to 250 000 trace
fragments, which corresponds to the number of fragments in
an aggregate of k = 50 traces where each trace has maximum
length of 5000 nodes. As expected, the overhead is again linear
in the number of fragments and even for the largest aggregates
of 250 000 fragments requires only 10.64 s (SD 0.32 s). Thus,
the overheads for shuffle and release are clearly feasible on
the desktop machines that PP1 and PP2 are run on.

B. Utility Evaluation

We discuss data utility along three criteria: i) spatial accu-
racy, ii) temporal accuracy, and iii) suppressed data.

Spatial accuracy. The most important utility criterion is the
spacial accuracy of the data (cf. Sect. II). In our approach, only
the discretization step (cf. Sect. IV-A) introduces small spatial
inaccuracies but may also correct errors. Since discretizing
locations is not the focus of this work, we did not evaluate
these effects but instead set a small discretization threshold of
2m which introduces only little inaccuracies in comparison
to the error in most GPS receivers of today’s smart phones.
Notably, our approach does not use spatial obfuscation to
anonymize traces other than most related works. Thus, besides
the slight effects of discretization, our approach achieves
maximum utility in terms of spatial accuracy.

Temporal Accuracy. Traces uploaded to TraceMixer are
annotated with the current time. Further temporal information
is stripped off to prevent reconstruction of individual traces
through temporal correlation of the nodes. TraceMixer only
releases the timespan of the traces in a released aggregate.
Thus, temporal accuracy increases when aggregates are filled
up faster. Figure 5 plots the average timespan per aggregate
normalized by the timespan over which the dataset was
collected, e.g., a timespan of 50% means that on average each
aggregate is filled and released after half of the time it takes
to collect the whole dataset. As we expect, a smaller privacy
parameter k leads to smaller timespans since aggregates are
filled up faster. How fast aggregates of given size k are
filled then depends almost entirely on how fast new traces
are uploaded by users which is not determined or limited by
our approach but specific to the dataset and crowd-sensing
campaign. In conclusion, temporal accuracy is coarse but still
practical for our targeted scenarios which require only very
coarse or no temporal information at all (cf. Sect. II).
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Fig. 9. Attacker’s success on the Aachen dataset

Suppressed data. Finally, the percentage of data that could
successfully be anonymized versus the percentage of data
that remains suppressed because the privacy criterion could
not be fulfilled has an influence on utility. Figure 6 plots
the percentage of traces that could not be anonymized using
TraceMixer. An important insight is that the majority of these
traces were collected towards the end of the collection period.
These traces are anonymized last and thus suitable aggregates
often have already been released. This is confirmed by the fact
that the percentages decrease for larger datasets. Thus, when
data collection continues, the majority of these traces will
eventually be released. The percentage of suppressed traces
in Figure 6 must hence be seen as a very pessimistic estimate.

C. Privacy Evaluation

We evaluate the attacker’s success in reconstructing users’
traces from the released aggregates. For the attacker’s back-
ground knowledge, we construct mobility profiles from on up
to five randomly selected traces per user. Figures 7 to 9 plot a
CDF of the attacker’s success measured as the fraction of users
(y-axis) he can track over a given fraction of their whole traces
(x-axis) for privacy parameters k = 5, 25, 50 (lines). We do
not plot error bars, since standard deviations are very low, i.e.,
2.07%, 0.72% and 0.31% on Trucks, Geolife, and Aachen.

On all three datasets, the attacker quickly looses track of
users, e.g., even on Geolife he can only track 20% of the users
longer than 20% of their traces for k = 25. We further observe
that increasing the privacy parameter k also significantly
decreases the distance the attacker can track users, i.e., privacy
for users increases. As we observed in our performance and
utility evaluation, increasing k only slightly increases runtime
(Figure 4) and has only moderate impact on utility (Figures 5
and 6). Thus, it is clearly feasible to parameterize TraceMixer
for high levels of privacy, e.g., k = 50 and beyond.

D. Security and Privacy Discussion

Security guarantees. The core of TraceMixer is the obliv-
ious aggregation which is based on the PSI protocol proposed
in [35]. The original protocol is secure in the semi-honest
attacker model which requires that privacy peers do not collude
and do not actively cheat. Security in the semi-honest model
guarantees that no information is leaked about the inputs
except for what is implied in the output. The semi-honest
model is a standard choice for STC as it allows for efficient
protocols and protects against insider and outsider attacks. For
TraceMixer, we need to modify the original protocol such that

the hashing steps are executed on the client and the hash tables
are directly distributed to the privacy peers. Since hash tables
are secret shared to the privacy peers and no single privacy
peer learns anything from its individual shares, our adaptation
is also secure in the semi-honest model.

A second important aspect of the security of TraceMixer is
the security of shuffle and release. It is important to show that
neither privacy peer can reverse the shuffle as this would allow
them to recreate the original traces. For PP1 this is impossible,
since it obtains the fragments already in completely random
order from PP2. For PP2 this is impossible as well, since
i) it learns nothing from the fragments due to encryption and
ii) cannot relate encrypted fragments to decrypted fragments
released by PP1 due to PP1’s own shuffle and the seman-
tic security of the employed encryption scheme. A detailed
analysis of similar shuffle schemes was given in [39].

Privacy guarantees. It is important to note that the privacy
parameter k is strongly correlated to the actual achieved
privacy level (Figures 7, 8, and 9) but cannot guarantee
that the attacker’s chances are below a certain threshold.
Ideally, privacy peers would thus measure the achieved privacy
obliviously and release aggregates only when the attacker’s
success probability falls below a set threshold. However,
measuring privacy over encrypted traces is computationally
too expensive. Thus, privacy peers need to decrypt aggregates
before they can measure the actual level of privacy. Still, they
can decide to add further traces obliviously if the aggregate
does not achieve the required privacy level. Though, this is
not secure against an inside attacker compromising one of the
two privacy peers, it protects against outside attackers.

A second limitation are sybil attacks. An attacker can submit
k−1 traces that all intersect. The first real user who intersects
with the fake traces can then be trivially tracked by the
attacker. Protection against such sybil attacks can be achieved
in TraceMixer by requiring user authentication.

VI. USE CASE: CROWD-SOURCED ELEVATION PROFILES

To present a concrete use case for TraceMixer, we show how
to realize a privacy-preserving crowd-sourcing campaign for
the creation of high-precision elevation profiles. GPS altitude
information is error prone and altitude profiles are often un-
available or very coarse, especially in rural regions. In contrast,
most modern smart phones are equipped with barometers
which measure altitude very precisely. We observed that the
precision of barometric altitude is within centimeters of the
real altitude, while GPS altitude may deviate by several meters.



To employ TraceMixer in this setting, we implemented the
client-side component as an Android application which sam-
ples air pressure. The application runs as a background task
every 2min to minimize energy consumption. We let users
report only the difference in air pressure between two nodes.
This avoids computing altitude from absolute air pressure
measurements, which can vary significantly over time due
weather conditions. In contrast, the difference in air pressure
between two locations is much less impacted by local weather.

We distributed the application to 9 voluntary users who
anonymously collected 3 990 air pressure measurements
through TraceMixer. Starting from one reference point, we
iteratively calculated the altitude of surrounding nodes. To
quantify the error, we compare against the altitude data
obtained from the the local land-registry which features an
altitude resolution of 10 cm over a 20 cm × 20 cm grid. For
TraceMixer, we observe an average error in the altitude of
0.99m (SD 0.91m). This error is higher than our preliminary
experiments suggest due to the very low sample frequency
which leads to large distances between two sampling locations.
Increasing the sample rate increases energy consumption at the
client, but allows us to significantly decrease this error.

VII. CONCLUSION

We presented TraceMixer, a novel location privacy pro-
tection mechanisms tailored to the special requirements in
crowd-sensing, i.e., providing trajectory privacy protection
while preserving high spatial accuracy, that remained hitherto
unaddressed by existing location privacy mechanisms. With
TraceMixer, we achieve these goals through an anonymiza-
tion mechanism that is inspired by and at the same time
reinventing the concept of mix zones. Departing even further
from existing protection mechanisms, TraceMixer renounces
all centralized design patterns that make previous approaches
vulnerable to attacks, leaks, and seizure by governments.
Instead, TraceMixer’s core is implemented using secure two-
party computation techniques, allowing TraceMixer to operate
obliviously: The participants of a crowd-sensing campaign
never have to share their data with anyone in clear and even
the TraceMixer system learns only fully privatized data. As
a thorough evaluation on three real-world datasets shows, our
approach is feasible even for large datasets and introduces
minimal spatial distortion while effectively protecting users’
privacy. As a concrete use case, we carried out a crowd-
sensing campaign through TraceMixer, which demonstrates
the privacy-preserving creation of altitude profiles one order of
magnitude more precise than GPS. To conclude, TraceMixer
provides a practical location privacy protection mechanism
for a variety of crowd-sensing campaigns ranging from map
creation [1], [14], over environmental monitoring [3], [13] to
commercial applications [4] and city planning [5].
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