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ABSTRACT
In many areas such as bioinformatics, pattern recognition, and signal
processing, Hidden Markov Models (HMMs) have become an in-
dispensable statistical tool. A fundamental building block for these
applications is the Forward algorithm which computes the likelihood
to observe a given sequence of emissions for a given HMM. The
classical Forward algorithm requires that one party holds both the
model and observation sequences. However, we observe for many
emerging applications and services that the models and observation
sequences are held by different parties who are not able to share
their information due to applicable data protection legislation or
due to concerns over intellectual property and privacy. This ren-
ders the application of HMMs infeasible. In this paper, we show
how to resolve this evident conflict of interests using secure two-
party computation. Concretely, we propose Priward which enables
two mutually untrusting parties to compute the Forward algorithm
securely, i.e., without requiring either party to share her sensitive
inputs with the other or any third party. The evaluation of our imple-
mentation of Priward shows that our solution is efficient, accurate,
and outperforms related works by a factor of 4 to 126. To highlight
the applicability of our approach in real-world deployments, we
combine Priward with the widely used HMMER biosequence anal-
ysis framework and show how to analyze real genome sequences in
a privacy-preserving manner.

1. INTRODUCTION
Hidden Markov Models (HMMs) are used to model discrete

stochastic processes whose internal state cannot be observed. They
have become an indispensable statistical tool in many application
areas, ranging from natural language processing and pattern recogni-
tion to bioinformatics or even finance and economics. An important
algorithm associated with HMMs is the Forward algorithm which
computes the probability that a given HMM generated a given se-
quence of observations. Forward computation is not only an integral
part during training HMMs, but is also ubiquitously used in all appli-
cation areas to score how well a given HMM explains the observed
stochastic process. In bioinformatics, e.g., the Forward algorithm is
applied to efficiently analyze the similarity of genome sequences [1].
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Traditionally, both the HMM and the observation sequences are
held by the same entity. However, we observe that a second scenario
arises in which the HMM and the observation sequences are held
by two parties that are unwilling or even forbidden to share this
information with one another. For example, consider a service
that offers HMM-based genetic disease testing. Clearly, it requires
significant research efforts to build accurate disease models. To
remain competitive, the service must hence protect its intellectual
property. At the same time, users have valid security and privacy
concerns which prevent them from sharing sensitive information
such as their DNA or medical test results with untrusted services.
We find similar examples in other application areas, e.g., biometric
identification [39], location services [45], or speech processing [35].

This evident conflict of business interests, regulatory issues, and
privacy concerns leads to the question whether two parties can com-
pute the HMM Forward algorithm without either party learning
the other’s input? Secure multi-party computation [24] presents a
promising answer. However, we face two difficult challenges in
practice: performance and accuracy. Secure computations typically
require large numbers of cryptographic and interactive operations
that may well cause unreasonable overheads in real-world applica-
tions. Achieving accuracy is challenging as Forward computation
entails computation over very small probabilities, which is known
to cause problems even with plaintext floating point arithmetic [38].

Related work faces these challenges in different ways: [36] uses
efficient blinding techniques together with a semi-trusted third party.
The authors of [21, 35, 40] independently propose to compute in
logspace using homomorphic encryption and oblivious lookup tables
[21]. Techniques for secure floating point arithmetic are proposed
in [4, 17]. Unfortunately, none of these approaches provides both
sufficient accuracy and satisfiable performance in real-world use
cases, hence leaving secure Forward computation an open problem.

In this paper, we propose Priward that allows two mutually un-
trusting parties to efficiently and accurately compute the Forward
algorithm while remaining oblivious to each other’s inputs. Our
approach is based on a combination of additive secret sharing and
garbled circuits that is secure against semi-honest adversaries. We
carry out all computations in logspace using fixed-point precision
which achieves sufficient accuracy and low runtimes for real-world
problem instances. The following are our main contributions:

Problem Analysis: We first motivate the need for secure com-
putation on HMMs and then compile a set of requirements from
real-world use cases. Our rigorous analysis of related works reveals
problems and pitfalls inherent to their design that need to be avoided
in any secure computation on probabilities.

Secure HMM Forward Computation: We propose Priward,
an efficient secure two-party computation protocol for the Forward
algorithm. Thereby, we provide efficient and accurate techniques
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Figure 1: Our problem scenario: User U holds an observation
sequence O, e.g., a genome string, while service S holds a database
of HMMs {λ1, ..., λK}, e.g., encoding certain diseases. Neither
party wants to share her input with the other (trust spheres). Priward
enables both parties to compute the Forward algorithm (gray box)
in this setting while remaining oblivious to each other’s inputs, and
even to securely outsource computations to an untrusted cloud.

for computing in logspace that are relevant beyond the scope of this
work. Our thorough evaluation shows that Priward is efficient and
outperforms related work by a factor of 4 to 126. Additionally, our
approach enables resource constrained devices that still cannot cope
with the involved overheads to outsource computations (e.g., to an
untrusted compute cloud) without loss of security.

Real-World Use Case: To showcase the applicability of Priward,
we implement a secure version of the widely used HMMER biose-
quence analysis framework [1] and demonstrate privacy-preserving
matchings against the Pfam protein families database [3]. Our results
show that Priward achieves high accuracy and feasible overheads
even on large real-world HMMs and long observation sequences.

This paper is structured as follows. Section 2 motivates the sce-
nario, distils important requirements, and identifies limitations of
previous proposals. We give a primer on secure computations and
the cryptographic building blocks used in this paper in Section 3.
Section 4 presents Priward, our approach to secure Forward compu-
tation. In Section 5, we present a general evaluation of Priward and
show how to realize a real-world bioinformatics use case in a secure
and privacy-preserving manner. Section 6 concludes this paper.

2. PROBLEM STATEMENT
Computations using HMMs have so far assumed that a single

party holds all inputs, e.g., the model and observation sequences.
We motivate an emerging problem scenario (Sect. 2.1) where the
model and observation sequences are held by two different parties
that do not trust each other. We proceed to establish concise require-
ments for Forward computation in this scenario based on real-world
applications (Sect. 2.2) and finally analyze related work with regards
to these requirements (Sect. 2.3). Our analysis identifies significant
limitations among previous approaches that leave privacy-preserving
HMM Forward computation an important and open problem.

2.1 Scenario
We consider two parties, a user U and a service S as illustrated

in Figure 1. U holds an observation sequence O, while S holds
a database of HMMs {λ1, ..., λK}. Together, U and S want to
compute P (O|λi), i.e., the probability that a certain model has
generated the observation sequence. This scenario is ubiquitous
in different application areas of HMMs. In genetic disease testing,
e.g., S has a database of HMMs representing specific diseases
against which U wants to match relevant parts of her sequenced
genome to determine susceptibility to certain diseases. In speech
recognition [38], each of S’s HMMs is trained to recognize single
words or short phrases, while U supplies a sequence of spoken words
to be transformed written text.

In traditional deployments, the desired results are computed with
the Forward algorithm by one party which must obtain both inputs.
However, in many emerging scenarios neither party is willing to
share their inputs with the other or any third party, as indicated by
the trust spheres in Figure 1. As a motivating example, consider
that S offers a service and has invested significant research efforts
to build high quality HMMs. Sharing the HMMs would give away
the intellectual property that distinguishes S from other service
providers [21]. On the other hand, U must carefully consider the
privacy implications of sharing her personal data, especially for
sensitive data such as DNA [7], voice recordings [35] or locations
[45]. Finally, legal requirements may forbid to share models or
observation sequences, e.g., HMMs might be trained on private
patient data that must not be shared even in aggregated form.

In this paper, we thus pose the question how U and S can compute
the desired results obliviously, i.e., without learning each other’s
inputs. Such a solution not only reconciles the evident conflict of
business and privacy interests but enables new services that are
hitherto prevented by applicable privacy legislation. Remaining
oblivious to U ′s sensitive inputs, the service provider S also does
not have to fear the negative consequences of disclosure of customer
data in case of attacks, database leaks, or seizure by governments.

2.2 Requirements
We survey how HMMs are used in real-world applications and

distil a set of requirements for secure Forward computation.
Requirement 1 (Performance). Efficiency of Forward computa-

tion is of high importance in many real-world use cases. In speech
processing, e.g., typically one five-state HMM is used to recognize
a single word or utterance [38]. Thus, the performance of Forward
computation directly determines the size of the vocabulary that,
e.g., a voice command system can efficiently recognize. In contrast,
profile HMMs used for sequence alignments in bioinformatics of-
ten have hundreds of states with observation sequences of equal
lengths [3]. Although less time-sensitive than speech applications,
Forward computation in bioinformatics must still be efficient to
handle the involved large problem instances in adequate time. To
ensure the applicability of secure Forward computation in its many
diverse use cases, the first requirement is to minimize overheads
w.r.t. the size and number of HMMs and observation sequences.

Requirement 2 (Outsourcing). The increasing number of mo-
bile users, e.g., using speech-to-text services, poses additional chal-
lenges to secure Forward computation. Due to limitations on pro-
cessing, bandwidth, or energy, mobile users may not be able to
carry out computations themselves. It is thus highly desirable to
allow outsourcing computations to more capable peers, e.g., to an
untrusted computation cloud (cf. Fig. 1). To present a real alterna-
tive to constrained users, outsourcing must be both very efficient
and uphold all security guarantees.

Requirement 3 (Accuracy). Ideally, a secure HMM Forward
algorithm should compute results identical to those of a standard in-
secure implementation on plaintexts. However, most cryptographic
protocols operate over integers and require heavy quantization to
handle non-integers [15, 20] while those that operate over floats still
introduce significant overheads [17]. Fortunately, inaccuracies may
be tolerable to some degree in practice which allows us to strike a
balance between performance and accuracy: In speech recognition,
to recognize a word, we are only interested in the best guess, i.e.,
we compute only the argmax while the exact probabilities are less
important. In sequence alignments, the goal is to separate matching
from non-matching models, i.e., Forward scores are only compared
against a certain threshold. Since the actual required accuracy of the
numerical results depends on the actual use case, we only require



that accuracy can be flexibly traded off against performance. This
can often be achieved by adjusting the size of the HMMs or the
length of the observation sequence. However, this usually requires
expert knowledge and almost always involves expensive retraining
of HMMs. We thus require a trade-off independent of the model and
observation sequence that allows computation of either an accurate
result when necessary or a quick approximation when sufficient.

Requirement 4 (Security). The capabilities of U and S to attack
the computation are defined by the semi-honest model [23]: A semi-
honest attacker correctly follows the protocol but may try to infer
additional information from the protocol transcript. The semi-honest
model has many applications and advantages: It allows for efficient
protocols and protects against insider and outsider attacks when both
parties are not actively cheating. This is reasonable to assume in our
scenario since the user and service provider have a strong interest in
executing the computation correctly. We further observe that data
involved in typical HMM applications, e.g., in bioinformatics or
speech, remains sensitive for longer periods of time. To sufficiently
protect such data, we thus argue that all involved cryptographic
primitives must be parameterized for long-term security, e.g., by
choosing adequate key lengths as recommended in [8].

2.3 Analysis of Related Work
We discuss related work in chronological order and analyze the

different approaches along our four requirements (cf. Table 1).
Smaragdis et al. [40] were first to consider privacy-preserving

HMM computation in the context of speech recognition. Their
approach is based on homomorphic encryption (HE) throughout.
HE causes high performance overheads, especially for long-term
security levels. Without an evaluation of performance overheads,
it thus remains unclear whether their approach is practical. This
is aggravated by the fact that many of their secure protocols, e.g.,
the inner product, require plaintext knowledge of the inputs, which
prevents outsourcing Forward computation to an untrusted com-
putation cloud. A further concern is the numerical stability of the
results: Forward computation involves real numbers while the crypto
primitives of their approach operate over the integers. The authors
neither explain how they represent probabilities as integers nor do
they quantify the involved errors and how they propagate. Finally,
missing discussions of security and the use of insecure primitives
render the overall security of their approach doubtful.

Pathak et al. [34,35] adapt and improve the techniques from [40]
to similar applications such as keyword recognition and speaker
identification. Their approach, as well, makes heavy use of HE
which is expensive and scales poorly to long-term security levels.
This is confirmed by their evaluation results. As in the approach
by Smaragdis et al. [40], outsourcing is not possible since some
subprotocols require plaintext knowledge. Interestingly, Pathak et al.
show that a fixed-point representation can indeed achieve reasonable
accuracy on small HMMs when normalizing forward probabilities in
each iteration. However, it remains questionable whether reasonable
accuracy can also be achieved on larger HMMs and observation
sequences. It is also left unclear whether the authors fixed the
security issues found in [40].

Polat et al. [36] present a different approach based on additive
blindings which promises high efficiency. However, their approach
uses additive blinding over probabilities as if they were integers
from a finite field which raises serious concerns over the numer-
ical accuracy of the computed results. The authors provide only
a limited evaluation of the performance of their subprotocols on
random inputs and do not analyze the achieved accuracy. As in
the previous approaches and for the same reasons, outsourcing is
not possible. Furthermore, they rely on a third party to generate

Approach R1 R2 R3 R4
Smaragdis et al. [40] # # # H#
Pathak et al. [34, 35] # # H# H#
Polat et al. [36]  # # H#
Franz et al. [20, 21] H# H#   
Aliasgari / Kamm / Demmler et al. [5, 17, 28] #  H#  

Priward (this paper)     

Table 1: Comparison against related work by the requirements,
R1) performance, R2) outsourcing, R3) accuracy, R4) security.
 ,H#, and # mark completely, partly, or unfulfilled requirements.

correlated randomness for computing scalar products. If this third
party colludes with either party, the other party’s privacy is lost.

Franz et al. [20] propose a framework for secure computations
on non-integer values in logarithmic representation which they apply
to secure bioinformatics services [21]. Their approach is first to
provide reasonable accuracy for computations on real-world HMMs
and observation sequences. It uses lookup tables to compute the
critical logsum operation that causes problems in the approaches by
Smaragdis et al. [40] and Pathak et al. [34,35]. The size of the lookup
tables constitutes a trade-off between performance (smaller tables)
and accuracy (larger tables). However, the size of the lookup tables
grows exponentially in the bit-length of inputs, which makes their
solution rather inefficient when very accurate results are required.
As this approach frequently relies on HE primitives, it scales poorly
to long-term security levels and cannot be fully outsourced.

Aliasgari et al. [4,5], Kamm et al. [28] and Demmler et al. [17]
propose provably secure floating point primitives in the multi- and
two-party setting that can be fully outsourced. The proposed primi-
tives could be used to implement the classical Forward algorithm
in a secure manner but none of these works presents a concrete
implementation. This leaves unclear whether standard IEEE 754
floating point numbers achieve sufficient accuracy or whether addi-
tional measures are required to avoid underflows of the very small
probabilities involved in Forward computation [38]. Furthermore,
the performance comparison of the proposed primitives presented
in [17] indicates significant overheads.

Summary. The results of our analysis show that no approach
provides a satisfying solution to the problem of computing the
Forward algorithm in the secure two-party setting. Notably, almost
all previous solutions depend on HE primitives and are thus subject
to much higher overheads for long-term security levels. We conclude
that the efficient, accurate, and secure computation of the HMM
Forward algorithm is still an open and important problem.

3. CRYPTOGRAPHIC BUILDING BLOCKS
We give a brief overview of three secure two-party computation

(STC) techniques, i.e., oblivious transfer, garbled circuits, and addi-
tive secret sharing, which are important to understand our approach
and its advantages over related work.

Oblivious Transfer. Oblivious Transfer (OT) is an important
building block for STC. OT is a protocol executed between a sender
and a receiver. In the scope of this work, sender and receiver are
always the service S and the user U , respectively. The intuitive
goal of OT is to allow U to choose exactly one of many secrets
held by S without S learning U’s choice and U learning the other
secrets held by S. In the most basic case, 1-2-OT, S holds two
secret bits s0 and s1 while U holds a choice bit r. Running the OT
protocol, U obtains exactly sr and learns nothing about s1−r , while
S learns nothing about the choice r. As a short notation, we write
sr ← 1-2-OT(r, (s0, s1)). 1-2-OT can be generalized to 1-n-OTl,
where S holds n l-bit secrets and U learns exactly one secret without



revealing her choice nor learning any of the other secrets. A batch
of m parallel 1-n-OTl is denoted by 1-n-OTm

l . We can efficiently
instantiate 1-n-OTm

l by first reducing it to a batch of m · log2(n)
runs of 1-2-OTl [32, 33] and then reducing this large number of
long l-bit OTs to a small number of short t-bit base OTs [6, 27] (OT
Extension), where t is the symmetric security parameter. The base
OTs can be precomputed and their processing and communication
overheads amortize quickly over a large number of OT Extensions.

Garbled Circuits. Yao’s Garbled Circuits (GCs) [42] were the
first generic STC protocol. It allows two parties U and S with private
inputs x and y to evaluate a function F(x, y) without either party
learning the other party’s input. Yao’s protocol runs in three rounds,
i) garbling and transmitting the circuit, ii) garbling and transmitting
the inputs, and iii) evaluating the GC and exchanging the results.
First, the desired computation F(x, y) is represented as a Boolean
circuit FBool(x, y) which is facilitated by specific compilers [17].
Party S then garbles the circuit by encrypting and permuting the
truth table entries of each logic gate. S sends the GC F̃Bool(·) to
U . In the second step, S sends its own garbled input ỹ to U , while
U obtains her own garbled input x̃ from S via OT from S. This
ensures that S learns nothing about U ’s input x. Finally, U evaluates
F̃Bool(x̃, ỹ) by decrypting the GC gate by gate.

The processing and communication overheads of GCs are mainly
determined by the circuit size. It is thus critical to construct size-
efficient circuits. Circuit size is measured in the number of non-XOR
gates, as XOR gates cause virtually no overhead due to the opti-
mizations proposed in [30]. Different size-efficient circuit building
blocks have been proposed in [29] and are partly used in this work.

Additive Secret Sharing. Additive secret sharing is an alterna-
tive STC technique [12, 18] that uses an arithmetic circuit repre-
sentation, i.e., the desired functionality F(·) is represented using
addition and multiplication gates. An arithmetic circuit Farith.(·)
over the ring Z2l , i.e., all operations are modulo 2l, is evaluated
securely as follows. Both parties first share their input among each
other, e.g., party U holding an input x draws a uniformly random
r ∈U Z2l and sends xS = x − r to S and keeps xU = r as her
own share (and vice versa if S shares to U ). Note that xU +xS = x
mod 2l, thus we call the two shares xU/S an additive sharing of x.
We denote the operation of creating shares from a plaintext input
x by xU/S ← Share(x). Having shared their inputs, U and S
then evaluate the arithmetic circuit representing the desired func-
tionality f using only these shares. Note that addition gates can be
evaluated locally, since Z2l preserves the commutative nature of
additions, i.e., we have x+ y mod 2l = (xU + xS) + (yU + yS)
mod 2l = (xU + yU ) + (xS + yS) mod 2l. In contrast, mul-
tiplication gates require an interactive protocol between U and S,
which can be sped up using precomputed multiplication triples
(MTs) [9, 18]. Eventually, U and S obtain shares rU , rS of the
final result r which they exchange and add to obtain r = rU + rS

mod 2l. We denote this operation by r ← Recombine(rU/S).
Processing and communication overheads of this STC technique

are dominated by the effort to generate the required MTs, i.e., by the
number of multiplications. Similarly, the round complexity is deter-
mined by the multiplicative depth of the arithmetic circuit. Efficient
high-level building blocks have been proposed in [14, 15]. Note
that arithmetic circuits can also be evaluated using homomorphic
encryption as many related works propose (cf. Sect. 2.3). However,
STC over additive shares is more efficient for many tasks [18].

Hybrid STC. GCs are rooted in Boolean logic and are thus very
efficient for logical operations such as comparisons. In contrast, the
additive sharing approach is more efficient for arithmetic operations,
i.e., addition and multiplication. Therefore, it is reasonable to ask
whether the two representations can be combined to build efficient

hybrid STCs. This idea was first rigorously followed by the Tasty
framework [25] and recently improved by the ABY framework [18].
The basic idea of these approaches is to build efficient conversion
protocols and execute required operations in the most efficient rep-
resentation. A rigorous performance evaluation and different use
cases are presented in [18]. The results show that hybrid protocols
can significantly improve the efficiency of STCs.

4. SECURE HMM FORWARD ALGORITHM
We have observed scenarios and emerging use cases that make

evident the need for a secure Forward algorithm that allows users and
services to keep their sensitive or valuable inputs private, e.g., patient
data or intellectual property. Our analysis of related work reveals
different limitations which render previous approaches unsuitable
for our problem scenario. Hence, to solve the open problem of
secure HMM Forward computation, we now present Priward which
achieves the desired balance of accuracy and performance, allows
outsourcing, and provides adequate long-term security. Priward
combines additive sharings and garbled circuits (cf. Sect. 3) with
custom protocols to an efficient hybrid secure Forward computation
protocol. In the following, we briefly introduce basic HMM theory
and our notation then present the design rationale and a high-level
overview of Priward. The required subprotocols are explained in
detail afterward. Due to space constraints, the security discussions
of all (sub-) protocols are given in Appendix A.

HMM Primer. HMMs are used to model stochastic processes
whose internal state and corresponding transitions are hidden and
only the process’ output, i.e., its emissions, can be observed. An
HMM is defined by λ = (S, V,A,B, π) with i) hidden states S =
{s1, ..., sN}, ii) emission alphabet V = {v1, ..., vM}, iii) state tran-
sition matrix A ∈ RN×N with aji = P (si|sj) the probability of
moving from state sj into state si, iv) emission matrix B ∈ RN×M

with bi(vj) := bij = P (vj |si) the probability of emitting vj in
state si, and v) initial state distribution π ∈ RN with πi = P (si)
the probability of starting in state si. In our scenario, the HMM
is held by the service S while U holds a sequence of observa-
tions made about the Markov process. An observation sequence
O = o1...oT ∈ V 1×T is simply a sequence of emission symbols
ot ∈ V of length T , e.g., a sequence of utterances in a speech
recognition application. One important problem is to compute how
likely it is that a given HMM has generated a given observation
sequence. This problem can be solved using the classical HMM
Forward algorithm which is also an integral part of training HMMs.
The Forward algorithm computes P (O|λ), i.e., the probability of λ
to have generated O, iteratively using dynamic programming:

i) Initialization: α1(i) = πi · bi(o1), ∀i.
ii) Recursion: αt(i) =

(∑N
j=1 αt−1(j) · aji

)
· bi(ot), ∀t, i.

iii) Termination: P (O|λ) =
∑N

i=1 αT (i).

Note that the probabilities αt(i) get progressively smaller which
quickly causes underflows and introduces numerical instability in
the computation [19, 38]. Rabiner [38] proposes to normalize the
forward variables αt(i) after each iteration to deal with this problem.
As an alternative, Durbin et al. [19] propose to compute and store
all values in logarithmic space. We refer to probabilities in logspace
as scores, with log(P (O|λ)) being the Forward score.

Design Rationale. In our requirements analysis (Sect. 2.2), we
identified performance and accuracy of a secure Forward algorithm
as two main challenges. Indeed, we found no approach in related
work (Sect. 2.3) that provides a satisfiable solution to these chal-
lenges. Our approach to overcome these challenges is threefold:
First, to achieve reasonable accuracy, we store all involved proba-
bilities in logarithmic representation and with fixed-point precision



Input: U has O ∈ V 1×T , S has λ = (S, V,A,B, π)
Output: Forward score P̂ (O|λ)

Initialization: For 1 ≤ i ≤ N
U ⇔ S : b̂i(o1)

U/S ← Emission(o1, B̂i)

U ,S : α̂1(i)
U/S = b̂i(o1)

U/S + π̂
U/S
i

with π̂Ui = Logzero and π̂Si = π̂i

Recursion: For 2 ≤ t ≤ T, 1 ≤ i ≤ N
U ⇔ S : b̂i(ot)

U/S ← Emission(ot, B̂i)

U ,S : X
U/S
t = (α̂t−1(1) + â1i, ..., α̂t−1(N) + âNi)

U/S

with âUji = Logzero and âSji = âji

U ⇔ S : α̂′t(i)
U/S ← Logsum(X

U/S
t )

U ,S : α̂t(i)
U/S = α̂′t(i)

U/S + b̂i(ot)
U/S

Termination:
U ,S : XU,ST = (α̂T (1), ..., α̂T (N))U/S

U ⇔ S : P̂ (O|λ)U/S ← Logsum(X
U/S
T )

U ⇔ S : P̂ (O|λ)← Recombine(P̂ (O|λ)U/S)

Protocol 1: The secure Forward protocol: U holds an observation
sequence O that she wants to match against the HMM λ held by
S. Using the secure Emission and Logsum primitives proposed
in this work, both parties are able to compute the Forward score
P̂ (O|λ) securely, i.e., without either party revealing their sensitive
input to the other. Logzero represents the special case log(0).

which allows us to avoid the use of expensive secure floating point
primitives [5, 17]. Second, based on the ideas proposed in [37], we
replace the critical logsum operation that caused prohibitive inac-
curacies and high overheads in related works [21, 34, 35, 40] with a
piece-wise linear approximation (PLA) that we compute efficiently
using GCs. The granularity of the approximation directly yields a
performance/accuracy trade-off. Third, we replace the expensive HE
primitives of related work with additive secret sharing and oblivious
transfer which is more efficient, scales to long-term security levels,
and supports outsourcing computations from constrained devices to
the cloud without compromising security and at almost no costs.

Notation. Our protocols use the following notation: Forward
computation is carried out between the user U and the service S.
A single message sent by U to S is written as U ⇒ S, while
U ⇔ S denotes multiple messages and rounds of communication
between the two parties. Values in our logspace representation (cf.
Sect. 4.1) are denoted by x̂ ∈ Z and normal real-valued probabil-
ities by x ∈ R+. Logzero := log(0) represents the special case
x = 0. Secure subprotocols are marked in verbatim and are
realized using OT, GCs, and additive sharings. An additive secret
sharing of x ∈ Z2l is denoted by xU/S where each party holds one
share. rU/S = (expr(x1, ..., xn))

U/S denotes the evaluation of an
arithmetic expression on the variables xi of which at least one is
additively shared such that the result r is shared between them as
well. GCC(x̃1, .., x̃n,P) denotes the secure evaluation of a Boolean
circuit C on garbled inputs x̃1, .., x̃n and a set P of cleartext inputs
using Yao’s GC protocol [42]. All computations on additive sharings
and within GCs are carried out in Z2l if not stated otherwise.

Overview. Priward computes exactly the same initialization, re-
cursion, and termination steps as the classical Forward algorithm.
However, to enable both parties to keep their inputs private, we
substitute those steps that require both parties’ inputs with secure
interactive protocols carried out by U and S. On the highest level,
we only need two secure protocols, Emission and Logsum, to
build the secure Forward. Emission takes an observation held by
U and the emission score matrix held by S and selects the corre-
sponding emission score and shares it additively between the two

parties without either party learning the other’s input. Logsum
computes the sum of two logspace values that are given as additive
shares and returns the result again in shared form such that neither
party is able to learn anything from the shares. Intuitively, having
subprotocols operate over additive shares allows us to easily com-
pose them in a secure manner. Protocol 1 shows the details of our
secure Forward algorithm realized with these two primitives. In
the following, we explain how U and S compute each of the three
phases (initialization, recursion, and termination) in more detail. We
defer discussions on outsourcing to Sect. 4.4.

Initialization: At the start, U holds an observation sequence
O = o1...oT and S holds the HMM λ. The goal of initialization
is to compute additive shares of α̂1(i) = π̂i + b̂i(o1) for i =
1 . . . N . To this end, U and S invoke our Emission primitive N
times after which both parties obtain additive shares of the emission
scores b̂i=1..N (o1)

U/S . S then adds the prior state scores π̂i and
U adds Logzero to compute the desired sharing α̂1(i)

U/S . We
base Emission (cf. Sect. 4.2) on OT, as this is significantly more
efficient than HE-based constructions suggested in related work.

Recursion: The goal of the recursion step is to compute additive
shares of the forward variables α̂t(i)

U/S for i = 1 . . . N given the
additive shares α̂t−1(j)

U/S from the previous iteration. As before,
U and S first invoke Emission to additively share the emission
scores b̂i(ot)U/S . Next, they use our secure Logsum primitive
to compute additive shares of α̂′t(i) = log(

∑N
j=1 αt−1(j) · aji).

Unlike related work [34, 35, 40], we avoid to work on the actual
probabilities αt−1(j) and aji because this is liable to cause critical
inaccuracies and overheads. Instead, we compute a piece-wise linear
approximation in logspace as explained in detail in Section 4.3. The
result of Logsum is again distributed as additive shares between U
and S and they only need to locally add their shares of the emission
scores b̂i(ot)U/S to obtain the desired additive sharing α̂t(i)

U/S .
Termination: Finally, in the termination step the forward variables

αT (i) are summed up. Since we compute in logspace and over
additive shares, we need to employ the Logsum primitive again. As
the final result, the two parties U and S each hold additive shares
P̂ (O|λ)U/S of the Forward score. Depending on who should learn
the result in the concrete use case, the parties exchange their shares
to enable reconstruction of the Forward score P̂ (O|λ).

In the following, we explain our number representation (Sect. 4.1),
our secure Emission (Sect. 4.2) as well as Logsum primitive
(Sect. 4.3), and how to outsource computations (Sect. 4.4).

4.1 Number Representation
One of the main challenges for (secure) Forward computation are

the extremely small probabilities involved. To this end, Aliasgari
et al. [4] argue that full floating point precision is required. Indeed,
the numerical instabilities encountered in the approach by Polat
et al. [36] (cf. Sect. 2.3) underline that the dynamic range of the
occurring probabilities is indeed too large to compute with fixed-
point precision in probability space. Unfortunately, even recent
highly optimized secure floating point primitives still incur high
overheads [4,17] and are still too expensive for secure computations
on HMMs. Hence, we decide to follow the alternative approach
proposed by Durbin et al. [19] and carry out all computations in
logspace using a fixed-point representation of any involved non-
integers. As the results presented in [21, 35] indicate, this approach
achieves sufficiently accurate results for real-world use cases.

Formally, we transform a probability p ∈ (0, 1] ⊂ R to a fixed-
point logspace representation p̂′ = b2s · log(p)e (b·e denoting
the nearest integer) and map p̂′ to the ring Z2l by computing p̂′

mod 2l, where l is the chosen bitlength and typically l ∈ {32, 64}.



Input: Additive sharing xU/S of x ∈ Z2l

Output: Additive sharing x′U/S of x′ = bx/2se ∈ Z2l−s

U ⇒ S : xUr = xU + r, r ∈R Z2l+κ

U : x′U = −(r � s) mod 2l−s

S : xr = xS + xUr
x′S = xr � s mod 2l−s

Protocol 2: The Rescale primitive adapted to additive sharings
from [15]: U and S hold additive shares of x ∈ Z2l . By recombin-
ing a blinded xr they are able to securely compute additive shares
of bx/2se ∈ Z2l−s . Rescaling is required after each multiplication
of two fixed-point values represented as integers scaled by 2s.

Note that scaling and rounding to integers is required due to our cryp-
tographic building blocks. We handle the case p = 0 by the special
symbol Logzero which is practically represented by a sufficiently
small number, e.g., −2l−1. After transforming the inputs, any inter-
mediate values and results are also expressed in fixed-point logspace
representation. Hence, we must ensure that no value exceeds the
bit-length l to avoid incorrectness due to over- and underflows. Note
that the sum of two scaled values is again an integer that is scaled by
the same factor. However, multiplication leads to an accumulation
of the scaling factors, i.e., the product is scaled by 22s, which would
quickly exceed the maximum bit-length l and hence cause errors.
To avoid this, we scale the product down by the scaling factor 2s

before any subsequent additions or multiplications are performed.
On plaintext values, this rescaling is a simple matter of division

and rounding. However, in our approach, all values are additively
shared in Z2l which prevents straightforward division and we can-
not recombine them for rescaling without violating our security
requirements. Instead, we propose an efficient and secure protocol,
Rescale (Protocol 2). We adapt this protocol from [15] and ex-
tend it to work over additive shares in the two-party setting. Our
adapted protocol proceeds as follows. Note that all operations are
performed in Z, i.e., without modular arithmetic. Initially, U and S
hold shares xU respectively xS of an intermediate value x ∈ Z2l

which is scaled by 22s. First, U blinds her share xU using a random
number r of length l + κ bit and sends it to S. Then, U truncates
the lower s bits of r (a right shift by s bit scales down by 2s), and
uses the negative result as her share x′U . S obtains the blinded
input xr = xS + xUr , similarly truncates the lower s bits of xr and
uses the result as its share x′S . The resulting values x′U , x′S share
the desired downscaled value x′ in Z2l−s . Note that Rescale
introduces a random error in the least significant bit of the rescaled
value, i.e., x′ = bx/2sc + u with u ∈R {0, 1}. It is, however,
significantly more efficient than the deterministic pendant proposed
in [41] and our experiments show that this error can be tolerated.

4.2 Secure Emission Primitive
The Emission primitive (Protocol 3) is used during initializa-

tion and at the beginning of each recursion step. It obliviously
selects the required emission score b̂i(ot) and then shares it addi-
tively between both parties so that they can compute securely with
it. Emission proceeds in the following steps: At the start, the
user U holds the observation ot and the service S inputs the ith

row of the HMM’s emission matrix B̂. To hide the real values, S
first blinds the entire row B̂i by adding the same random value rS
to each emission score b̂i(vj) ∈ B̂i. Both parties then engage in
1-M -OTl after which U obtains the blinded emission score b̂′i(ot)
corresponding to her observation ot. The use of OT guarantees that
U learns only b̂′i(ot) and that S learns nothing about ot. Note that
b̂i(ot)

U/S = (b̂′i(ot),−rS) already is the desired additive sharing
of the emission score b̂i(ot).

Input: U has ot ∈ V , S has B̂i = (b̂i(v1), ..., b̂i(vM ))
Output: Additive sharing b̂i(ot)U/S of b̂i(ot)

S : B̂′i = (bi(v1) + rS , ..., bi(vM ) + rS)
with rS ∈R Z2l

U ⇔ S : b̂i(ot)
U ← 1-M-OTl(ot, B̂

′
i)

S : b̂i(ot)
S = −rS

Protocol 3: The Emission primitive: U holds an observation ot
and S holds the emission scores B̂ ∈ RN×M . U and S securely
compute additive shares of b̂i(ot) using additive blindings and a
single invocation of 1-M -OTl.

During the Forward algorithm, Emission is invoked once for
each state si ∈ S in each time step 1 ≤ t ≤ T , i.e., a total of
N · T times. Since for time step t the choice ot is the same for
all si ∈ S, we reduce the N calls to 1-M -OTl per time step t to
one 1-M -OTNl which is more efficient. Additionally, we batch
all remaining T calls to Emission together to further improve
efficiency resulting in one call to 1-M -OTT

Nl.

4.3 Secure Logsum Primitive
In the recursion step of the logspace Forward, we need to compute

the logarithm over a sum, i.e., ẑ = log(
∑N

j=1 αt−1(j)aji), where
we know the summands αt−1(j)aji only as values in logspace,
i.e., α̂t−1(j) + âji. This operation is referred to as logsum and is
ubiquitous not only in HMM computation but in signal processing
and pattern classification in general [37]. A logsum overN logspace
values is usually reduced to N − 1 successive or tree-wise calls to

logsum(x̂, ŷ) = x̂+ log(1 + exp(ŷ − x̂)) (1)

with x̂ ≥ ŷ (w.l.o.g.) where the term log(1 + exp(ŷ − x̂)) is either
computed directly or looked up in a precomputed table.

To compute the Forward algorithm securely, we need a secure
Logsum primitive which computes Equation 1 on shared inputs
x̂U/S , ŷU/S and returns the results as additive shares, denoted by

ẑU/S ← Logsum(x̂U/S , ŷU/S) (2)

We briefly discuss approaches in related work to securely com-
puting logsums and then explain our approach in detail. Equa-
tion 1 could be computed using the secure floating point primitives
from [5,17] or using homomorphic encryption and fixed-point preci-
sion with rescaling as proposed in [35,40]. Franz et al. [21] compute
Equation 2 based on HE and oblivious lookup tables which grow
exponentially in the bit-lengths of the inputs. We deem these ap-
proaches too expensive for our use case and follow the alternative
idea of Portelo et al. [37] to compute a piecewise linear approxi-
mation (PLA) of Equation 2. While Portelo et al. [37] propose a
completely GC-based solution, we propose a hybrid solution that
efficiently combines GCs with additive sharings and achieves better
performance than previous secure logsum computations.

The details of Logsum are given in Protocol 4. In a precompu-
tation step (that can happen at any time and needs to be computed
only once), S computes the parameters for the PLA: S selects k
intervals [li, ri]1≤i≤k and computes a linear regression mix+ ni

of log(1 + exp(−x)) with x ∈ [li, ri]. In the first protocol step, U
and S convert their additively shared inputs into garbled inputs by
evaluating a garbled addition circuit [18]. Both parties then eval-
uate the first part of Portelo’s circuit which obliviously computes
max(x̂, ŷ) and d = |x̂− ŷ| and then obliviously selects parameters
(li, ri,mi, ni) ∈ P where li ≤ d < ri. Different to [37], we
now convert back to additive shares using the OT-based subtraction
protocol proposed in [18]. The arithmetic representation then allows
us to compute the final result m · d+ n over additive shares much
more efficiently than using GCs as proposed by [37].



Input: Two shared summands x̂U/S , ŷU/S , PLA parameter k ∈ N
Output: Additive sharing ẑU/S of ẑ = log(x+ y)

S : Compute PLA P = {(li, ri,mi, ni)1≤i≤k}
U ⇔ S : x̃, ỹ ← GCCAdd (x̂

U/S , ŷU/S)

U ⇔ S : (m̃ax, d̃, m̃, ñ)← GCCSelect (x̃, ỹ,P)
U ⇔ S : (max, d,m, n)U/S ← GCSub(m̃ax, d̃, m̃, ñ)
U ⇔ S : mdU/S ← Rescale((m · d)U/S)
U ,S : ẑU/S = (max +md+ n)U/S

Protocol 4: The Logsum primitive: We adapt the idea from [37]
to compute the logsum of two logspace values by a piecewise lin-
ear approximation. To improve efficiency, only the selection of
the approximation parameters is done using GCs while arithmetic
operations are performed over additive shares.

4.4 Outsourcing
We consider a scenario where the two parties U and S need to

outsource computation of the Forward algorithm to two other peers
PU and PS of their choice, e.g., due to processing or bandwidth
constraints. This could be the case, e.g., for a mobile user U that
communicates to a cloud service which has become a ubiquitous
communication pattern, today. Though this example would require
only one party to outsource computations, we show how both parties
outsource computations for the sake of generality. A scenario where
only one party outsources is then straightforward even simpler to
realize. Note that the outsourcing step itself must be inexpensive
such that it respects U ′s and S ′s resource constraints. However,
outsourcing must not break security, i.e., PU and PS must remain
oblivious of the inputs and outcome of the computation.

To outsource computations, U and S first need to execute our
Emission primitive to compute b̂i(ot) ∀t, i. Emission is the
only part that cannot be outsourced because it requires the executing
parties to know the observation sequenceO and the model λ in clear.
However, our evaluation (Sect. 5) shows that Emission is very
efficient and can thus be computed even by resource constrained
devices. U now sends her shares b̂i(ot)U to PU and S sends b̂i(ot)S

to PS . Additionally, S shares all transition scores âij , 1 ≤ i, j ≤ N
and the prior state distribution π̂i, 1 ≤ i ≤ N to PU and PS by
invoking Share(·) on each item, individually. PU and PS then
compute Forward (Protocol 1) on the given shares. Finally, PU
and PS send their share of the final result to U and S, respectively,
who only have to compute one local addition to reconstruct P̂ (O|λ).
Note that PU and PS must not collude which is the standard as-
sumption in the secure two-party setting and clearly reasonable in
our scenario since PU and PS are chosen individually by U and S.

5. EVALUATION
To thoroughly quantify and evaluate the performance and accu-

racy of our approach, we implemented a prototype of Priward. Note
that security of Priward is discussed in Appendix A. We first per-
form synthetic benchmarks on fully connected HMMs to derive a
thorough understanding of the performance and accuracy of Pri-
ward (Sect. 5.1). We then show the applicability of our approach
in a real-world bioinformatics use case by integrating Priward into
the well-established HMMER framework [1] (Sect. 5.2). In contrast
to generic fully connected HMMs, the special architecture of the
HMMs involved in this use case allows significant performance
optimizations. Finally, we qualitatively compare the performance
of our approach against related works (Sect. 5.3). Now, we provide
further details on our implementation and experimental setup.

Implementation. We implement the Priward prototype in C++.
Emission requires the 1-n-OTm

l primitive which we implement
as one invocation of 1-2-OTm log2(n)

l according to [32, 33]. For
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Figure 2: Relative error of Forward on matching and non-
matching sequences: As we increase the number of approximation
intervals k (x-axis) the accuracy increases. Increasing fixed-point
precision from l = 32 (left) to l = 64 (right) shows less improve-
ment but reduces the variance of the error.

1-2-OTm
l we employ the efficient OT Extensions described in [6].

Logsum requires building and evaluating GCs, for which we build
upon the ABY two-party computation framework [18]. Besides the
OT Extension and ABY framework, which are fully multithreaded,
the rest of our implementation realizes only obvious optimizations,
e.g., batching of the operations in the inner for loop of the Forward
algorithm. Hence, further optimizations are possible, e.g., pipelining
GC generation and evaluation as proposed in [26].

Experimental Setup. We perform all experiments between two
standard desktop machines (Ubuntu 14.04 LTS, Intel i7-4770 @
3.10 GHz, 16 GB RAM) that communicate over a Gigabit LAN. To
offer long-term security according to NIST [8], we set the statistical
security parameter to κ = 80 bits and the symmetric security level
to t = 128 bits.

5.1 Generic HMMs
For the synthetic benchmarks, we create a dataset of ergodic (fully

connected) HMMs and observation sequences to serve as inputs.
Ergodic HMMs are the most general cases and also the most chal-
lenging in terms of performance and accuracy, as they require to take
all other states into account as predecessors during the recursion
steps of the Forward algorithm. Our dataset consists of random and
circular HMMs as well as matching and non-matching observation
sequences. Random HMMs and non-matching sequences are sam-
pled completely at random, while for the circular HMMs, we sample
state transitions and emission probabilities from a Gaussian distri-
bution centered on the topologically next state leading to a roughly
circular structure. With the intention to create good matches, we
sample observation sequences for the circular HMMs as a noisy
linear walk through the states of the HMM. Both sets of HMMs (ran-
dom and circular) contain HMMs with a varying number of states
N = 10, 20, ..., 100, emission alphabet sizes M = 102, ..., 104,
and number of observations T = 10, 20, ..., 100. Our selection
of parameters covers a wide range of actual use cases and choices
made in related work [4, 34, 35, 38].

5.1.1 Accuracy
Our approach introduces numerical inaccuracies at two points,

i) through the fixed-point representation of probabilities and proba-
bilistic rescaling (cf. Sect. 4.1), and ii) through the approximation
of logsum operations (cf. Sect. 4.3). In the following, we compare
the results of our secure Forward against a reference implementa-
tion on plaintexts to show that our approach nevertheless computes
accurate results. Our reference for accurate results is the widely-
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Figure 3: Runtime of Forward on HMMs with a different number
of states N (x-axis) for different k (lines) and l (left and right plot):
The runtime grows quadratically in N and linearly in k and l.

used natural-language toolkit (NLTK) [2] which is implemented in
double precision in Python.

Figure 2 plots the errors our approach introduces relative to the
reference results obtained with NLTK. On the x-axis, we vary the
number of approximation intervals k = 2, 4, ..., 32 in the piece-
wise linear approximation; left and right plots vary the bit-length
l = 32, 64 used for the fixed-point logspace number representa-
tion. We show the second and third quartiles (boxes), the and max
(whiskers) as well as the means (stars). As expected, the error de-
creases as we increase the accuracy of the PLA by increasing the
number of approximation intervals k. While an approximation with
only k = 2 intervals causes significant errors, the error decreases
quickly for bigger values of k. Already, k = 4 achieves a mean error
below 0.3 % for both l = 32, 64. For k = 8 even the maximum er-
ror (indicated by the whiskers) drops below 0.1 %. We observe that
the average accuracy does not significantly improve beyond k = 8.
This is due to the numerical errors introduced by the fixed-point
number representation and rescaling protocol (cf. Sect. 4.1). Inter-
estingly, using a higher bit-length of l = 64 shows only marginal
improvements to the average accuracy. However, the variance of the
error is reduced and outliers are less extreme.

In conclusion, our results confirm the expected: more approxi-
mation intervals k and higher fixed-point precision l improve the
numerical accuracy of the results. Unfortunately, an increase in ei-
ther parameter will also increase the size of the involved GCs which
will incur a noticeable decrease in performance. We will put these
numbers into perspective when discussing a real-world use case in
Sect. 5.2. The performance results presented in the next subsection
will allow us to strike a reasonable trade-off between accuracy and
performance.

5.1.2 Runtime and Communication
We first analytically derive the critical parameters for Priward’s

runtime and then thoroughly evaluate its performance. The runtime
complexity O(TN2) of the Forward algorithm is quadratic in the
number of states N and linear in the number of observations T . In
the secure Forward protocol, we additionally need to sahre all
emission scores b̂i(ot) securely using Emission which scales in
O(TMN) with M the size of the emission alphabet. Thus, N , T ,
and M are the critical parameters for which we have to analyze the
runtime. All results are aggregated over 20 independent runs and
plots show the mean values with corresponding standard deviation.

Number of States. Figure 3 plots the runtime of Forward on
HMMs with N = 10, 20, ..., 100 states for different PLA sizes
k = 2, 4, ..., 32 and bit-lengths l = 32, 64 with fixed M = 1000
and T = 10. As indicated by the overall complexity of the For-
ward algorithm, the runtime increases quadratically in the number
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Figure 4: Runtime of Forward for HMMs with a different number
of observations T (x-axis) for different choices of k (lines) and
l (left and right plot): The runtime grows linearly in T, k and l.

of states. Qualitatively, we observe the same growth for the commu-
nication overhead. Still, our approach is efficient and can evaluate
a fully connected HMM with N = 100 states with a reasonable
error smaller 1% (k = 4, l = 32) in less than one minute requiring
1.59GB for communication. As expected in the context of secure
computations, the communication overhead is significant and may
overtax especially mobile users. However, GCs are an active re-
search area and all ongoing and future optimizations of garbling
schemes [10,43] will also benefit our approach and reduce overheads
further. Meanwhile, Priward can be outsourced to a computation
cloud which can easily manage current communication overheads.

Increasing parameters k or l increases runtime and communica-
tion linearly. This is due to the fact that the runtime is dominated by
the (T − 1)N(N − 1) + (N − 1) calls of the Logsum primitive
whose core is a GC of size roughly linear in k and l. In total, the
Logsum calls account for more than 99% of the overall runtime
and for more than 95% of the total communication. The rest of the
computational overhead is due to the Emission primitive, while
the overhead of the operations on additive sharings are negligible.
Since efficiently calculating secure Logsum is relevant beyond the
scope of this work, e.g., for the secure computation of Gaussian
Mixture Models [4, 35], we provide a more elaborate evaluation of
Logsum in Appendix B.

Length of the Observation Sequence. Figure 4 plots the run-
time of Forward for T = 10, 20, ..., 100 observations and fixed
N = 10 and M = 1000. Runtime and communication scale lin-
early in T as the number of required Logsum operations scales
linearly in T . For example, processing T = 10 observations
costs 0.65 s and 15.45MB as opposed to 6.95 s and 167.05MB
for T = 100 observations. For the same reason as before, runtime
and communication also scale roughly linearly in k and l.

Size of the Emission Alphabet. The alphabet size M only influ-
ences the performance of Emission which accounts for less than
1 % of the overall overhead of Forward. To provide greater detail,
Figure 5 plots the runtime of the isolated Emission primitive. We
choose different T = 10, 20, ..., 100 and M = 102, 103, 104 while
fixing N = 10. Clearly, the runtime of Emission is linear in T
which conforms with its complexity O(TMN). The communica-
tion overhead shows qualitatively the same growth. We increase
M exponentially to show that, even for huge emission alphabets,
Emission is very efficient. For example, less than 0.5 s and about
40.13MB are required to securely share T = 100 emission scores
over a huge alphabet of 10000 possible emissions. The ability to
efficiently handle huge emission alphabets makes our Emission
primitive a candidate for computing fast approximations of the emis-
sion scores for HMMs with continuous probability distributions such
as Gaussian Mixture Models used in speech processing [35, 38].
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Figure 5: Runtime of Emission for a varying number of obser-
vations T (x-axis), alphabet sizes M (lines) with l = 32 (left) and
l = 64 (right): Runtime grows linearly in T and M and causes only
1 % of the total runtime overhead of Forward (cf. Figs. 3 and 4).

Outsourcing. We briefly discuss the overheads imposed on either
party U and S for outsourcing their computation to another peer.
As explained in Section 4.4, the overheads consist in executing the
batched Emission primitive as well as sending the resulting shares
to the computation peers. The overheads for Emission are very
low even for a large number of observations and huge emission
alphabets, e.g., less than 0.5 s for 100 emissions out of an alphabet
of 10000 possible observations (cf. Fig. 5). Distributing shares to
the computation peers only requires tens of KB even for the larger
considered models. The overhead is smaller for U than for S which
has to share the whole HMM. This is desirable as in many cases
only U will need to outsource computations (cf. Sect. 4.4). Hence,
outsourcing is clearly feasible for most mobile devices nowadays.

5.2 Use Case: Secure Bioinformatics Services
Recent advances have made whole genome sequencing (WGS)

fast, accurate, and affordable for the masses. It is widely expected
that WGS will pave the way for innovative research and novel
applications [16, 44]. As we can already observe, an industry will
emerge that offers genomics-based services such as drug testing or
diagnosis of diseases based on proprietary research [44]. To remain
competitive, service providers will need to protect the mathematical
models upon which their businesses are built. On the other hand,
users of such services are required to contribute genomic data which
is most sensitive information [7]. The approach presented in this
paper allows preserving the service provider’s intellectual property
while offering strongest protection for users’ genomic data.

To present a concrete use case, we consider the following ge-
netic disease testing scenario: The service provider holds a set of
HMMs that model specific diseases. The user holds an observation
sequence, e.g., parts of her sequenced genome, that she wants to test
against the service’s database. Concretely, we use HMMs from the
Pfam database [3], which contains 16 295 protein families that relate
to, e.g., certain phenotypes and diseases. HMMER [1] is widely
used tool in bioinformatics to query Pfam. Thus, we implemented
Priward in the most recent version, HMMER 3.1. It is important to
note that HMMER and Pfam are based on profile HMMs. Profile
HMMs have a special architecture that allows only a certain subset
of transitions which significantly speeds up the Forward computa-
tion. Since we adapt these optimizations which are specific to the
HMMER framework and the profile HMM architecture, the results
presented in the remainder of this section are not comparable to
those presented in Sect. 5.1 which were obtained on fully connected
HMMs. However, it becomes clear that our approach is flexible
enough to capitalize on the optimization potential offered by certain
reduced HMM architectures such as profile HMMs.

From Pfam [3], we choose the same models as [21], i.e., SH3_1
(Length L = 48), Ras (L = 162), BID (L = 191), and added
one of the smallest model found in Pfam, Extensin_1 (L = 10),
another midsize model, Ribosomal_S3_C (L = 83) as well as two
of the largest models, IDO (L = 408) and 3HBOH (L = 689). The
average length1 of HMMs in Pfam is 175 and more than 98.5 % of
the HMMs have a length smaller than 3HBOH, the largest model we
consider. We use observation sequences of the same length as the
HMM length (T = L) of two types: i) matching sequences where
we use the seeds on which the respective models were trained and
ii) non-matching sequences which we choose randomly from the
seeds of other models. The considered profile HMMs are built over
the amino acids alphabet which has M = 20 symbols.

5.2.1 Accuracy
Figure 6 plots the relative error Priward introduces in comparison

to the real scores computed by the HMMER framework on plain-
texts. We restricted the evaluation to k = 2, 4, 8 and l = 32 since
these choices achieve the best trade-off between accuracy and perfor-
mance according to the results presented in Sect. 5.1. Clearly, k = 2
leads to large errors that grow roughly linearly with the combined
length of the model and observation sequence. For k = 4, 8 the error
mostly drops below 1 % and now seems mostly model specific with
little correlation to the length of model and observation sequence.
Considering the use case, the more important question is whether
our approach is accurate enough to distinguish matching from non-
matching sequences. To answer this question, we classify sequences
according to the noise cutoffs (NC) and trusted cutoffs (TC) speci-
fied for each model in the Pfam database: Anything below the NC
can safely be considered a non-matching sequence and anything
above the TC a match. For k = 4, 8, our approach is able to per-
fectly distinguish between matching and non-matching sequences.
Notably, even for k = 2 our classification is perfectly accurate for
all but the largest model, 3HBOH.

5.2.2 Runtime and Communication
Figure 7 plots the performance overhead for the chosen Pfam

models. The x-axis denotes both length L of the model1 and length
T of the observation sequence. As before, the runtime is dominated
by the overhead for Logsum. Since the Forward algorithm over
profile HMMs as implemented in HMMER 3.1 requires T (7L+ 2)
Logsum operations, the runtime grows linear in both T and L.
Note that we increase both L and T in Figure 7, thus the growth
is quadratic. While, the smaller models can be computed in the
order of seconds (e.g., 0.82 s for Extensin_1, 13.43 s for SH3_1,
and 37.46 s for Ribosomal_S3_C for k = 2), the larger models
range in the order of minutes (e.g., 2.28min for Ras, 3.15min for
BID, and 13.75min for IDO, 38.5min for 3HBOH for k = 2).
Although runtimes in the latter cases are not unreasonable, they
emphasize the necessity and benefit for mobile users to be able to
securely outsource computations as offered by Priward.

Similar to the runtime, the communication overhead is dominated
by the calls to Logsum and thus grows quadratically as well, e.g.,
from 10.68MB for the smallest model (Extensin_1) to 47.19GB
for the largest considered model (3HBOH) with k = 2 and l = 32.
Clearly, the communication overhead is significant and may result
in additional runtime overheads when our approach is deployed in
networks with less bandwidth or higher latency than assumed in our
evaluation setup. However, these overheads are clearly manageable
by outsourcing Priward to a computation cloud.
1L determines the number of nodes in a profile HMM and each
node has three distinct states. Together with four special states, a
profile HMM thus has a total of N = 3L+ 4 states.
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Figure 7: Runtime of Forward on profile HMMs from Pfam [3]
with different length L on observation sequences of length T = L
(x-axis): Short models can be computed in the order of seconds
while medium to large models are in the order of minutes. Growth is
quadratic since T increases equally with L.

5.3 Comparison to Related Work
In Section 2.3, we have qualitatively discussed other approaches

to secure Forward computation and summarized them in Table 1. In
this section, we compare the performance of our approach quantita-
tively to these works by the reported performance numbers.

Pathak et al. [34, 35] report a runtime of 784.58 s for the evalu-
ation of one HMM with N = 5 states on an observation sequence
of length T = 98 on a 3.2GHz CPU. For a fair comparison, we
restricted Priward to run on one core at 3.1GHz and set k = 4
and symmetric security to t = 80 bits which achieves comparable
accuracy and security as in [34, 35]. In this setting, we measure the
runtime of Priward at 6.21 s which is 126x faster.

Franz et al. [21] do not evaluate their approach on generic fully
connected HMMs but concentrate on profile HMMs as in our use
case (cf. Sect. 5.2). Unfortunately, we could not obtain their source
code and a direct comparison with the results presented in Sec-
tion 5.2 is unreasonable for different reasons: First, the Forward
algorithm in HMMER 3.1 requires to compute an additional T ·L+1
logsum operations compared to version 2.3.2 used in [21]. Switch-
ing to HMMER 2.3.2 would reduce the overheads of our approach
by ∼ 14 %. Second, Franz et al. do not implement any networking,
yet we observe networking to cause non-negligible overheads even
on the local loopback interface. Third, Franz et al. use legacy/short-
term security while we use long-term security which causes addi-
tional overheads in comparison. Finally, the evaluation machines dif-
fer between a 2.1GHz 8 core processor used in [21] and a 3.1GHz
4 core processor machine used in our evaluation. The authors report
runtimes of 33 s, 499 s, and 632 s on the Pfam models SH3_1, Ras,
and BID, respectively. On the same models, we achieve a runtime of
16.95 s, 180.68 s, and 241.61 s, respectively. In a more comparable
setting (communication over the loopback interface, short-term se-
curity, and HMMER 2.3.2 style Forward computation), the runtime
decreases by roughly a factor of 2 to 8.15 s, 89.92 s, and 125.25 s
improving over [21] by a factor of 4 to 5. However, we emphasize
again that latter results were still obtained on different machines and
are thus only a rough indicator.

Aliasgari et al. [4,5], Kamm et al. [28] and Demmler et al. [17]
propose secure computation on floats which could be used to im-
plement a secure Forward algorithm over probability space and
using normalization [38] to avoid underflows. Then, only selection
of the required emission probabilities is not straightforward, but
can be realized through component-wise multiplication which is
the fastest previous method proposed in [21]. To draw a concrete
comparison, we estimate runtimes by counting the calls to the re-
quired primitives and weighting them according to the performance
measurements presented in [17], for which we choose a high batch-

size of 1000 which yields very defensive estimates. In this setting,
we estimate that Forward computation of T = 100 observations
over an HMM with N = 10 states and an alphabet of M = 100
symbols would cost at least 251.82 s, 51.76 s, and 39.37 s using the
primitives from [5], [28], and [17], respectively. In contrast, even
when parameterized with k = 8 for high accuracy, our approach
requires only 9.85 s which is approximately 25x, 5x, and 4x faster.

6. CONCLUSION
We presented Priward, which computes the HMM Forward al-

gorithm in an efficient and privacy-preserving manner. At the core
of our approach are efficient techniques to compute securely and
accurately over non-integers in a fixed-point logspace representa-
tion, which are relevant beyond the scope of this work for a variety
of privacy-preserving services [20, 35]. As a thorough evaluation
shows, our novel and improved building blocks make Priward faster
than previous works by factors of 4 to 126 while providing tuneable
accuracy. Despite our significant improvements, secure computa-
tions on HMMs still involve overheads that may well overtax the
resources of the protocol peers, e.g., drain the battery of a mobile
user. To overcome such limitations, our approach allows outsourc-
ing computations very efficiently and securely, e.g., to an untrusted
computation cloud which remains oblivious of the inputs and results
of the computation. As a concrete use case, we implement Pri-
ward in the widely used HMMER framework and demonstrate the
feasibility of privacy-preserving bioinformatics services. Here, our
approach improves upon the performance of related work by a factor
of 4 to 5 while the accuracy of the computed results clearly satisfies
the use case’s requirements. To conclude, Priward provides the
basis for a wide variety of privacy-preserving HMM-based services
ranging from genomic testing over speech processing to localization
and makes them affordable even for mobile users.
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APPENDIX
A. SECURITY DISCUSSION

We now discuss the security of Priward. We assume the semi-
honest adversary model (cf. Sect. 2.2). We first summarize security
proofs of the building blocks that underly Priward. We then argue
that our proposed protocols Rescale, Emission, Logsum, and
Forward are secure based on modular sequential composition [13].

Security of the Building Blocks. We heavily rely on three well
established secure computation techniques: OT, additive sharings,
and GCs. First, Security of 1-n-OT has been proven in [32, 33]
and the security of OT Extensions in [6, 27]. Second, additive shar-
ings over Z2l realize perfect blinding and thus essentially represent
perfectly secure One-Time-Pad encryption. We perform additions
and multiplications over additive sharings. Additions are local op-
erations and thus irrelevant for security in the semi-honest model,
while the security of the multiplication protocol directly follows
from [18, 22]. Finally, security of Garbled Circuits including recent
optimizations has been rigorously addressed in [10, 11].

Security of Rescale. To argue security of Rescale (Sect. 4.1,
Prot. 2), we show that neither party learns the value x that is rescaled.
First, note that the shares xU , xS are random and a single share
conveys no information about x to either party. During the protocol,
U blinds her share xU by a l+κ bit random number r and sends it to
S . S learns xUr + xS = x+ r. Blinding with a large random r over
Z achieves statistical security towards S with security parameter κ.
U receives no information from S and learns nothing about x.

Security of Emission. To show that our Emission primitive
(Sect. 4.2, Prot. 3) is secure in the semi-honest model, we show
that U does not learn anything about the emission scores b̂i(vj)
held by S and S does not learn anything about U’s observation ot.
In Step 1, S blinds the emission scores additively over Z2l with
the random value rS ∈ Z2l . From U ′s perspective, the blinding
represents a One-Time-Pad encryption which is perfectly secure.
Since all emission scores are blinded by the same random value
rS , we use 1-n-OTm

l to guarantee that U learns only exactly one
blinded emission score in Step 2. U then arithmetically shares the
value with S, which does not leak information as the employed
additive sharing uses perfect blinding over Z2l . In the final step, S
subtracts rS from its share, which is a local operation and reveals
no information. We conclude that Emission is secure.

Security of Logsum. To argue security of Logsum (Sect. 4.3,
Prot. 4), we show that neither party learns anything about the sum-
mands x̂ and ŷ or the result ẑ. First note, that the summands x̂ and
ŷ are given as additive shares and each party holds only a single
share which does not reveal any information since shares appear
completely random. Further, the PLA parameters k and P are com-



pletely independent of the inputs and thus reveal no information
either. Steps 2, 3, and 4 are realized in one monolithic GC and
involve i) input conversion, ii) the selection of approximation pa-
rameters, and iii) the conversion of outputs. We emphasize that we
differentiate these three steps in our protocol description only for
reasons of clarity but implement them in one single GC which yields
better performance. Consisting of only one GC, security for these
steps follows directly from the security of the GC building block.
The output of these steps, i.e., maxU/S , dU/S , mU/S , and nU/S ,
is additively shared over both parties which reveals no information
to either party holding only a single share of each output since
additive sharing implements perfect blinding over Z2l . It is also
important to note that the structure of the circuit is independent of
all parameters except for the public parameter k, therefore leaking
no sensitive information. Step 5 computes the product over additive
shares using the secure protocols from [18, 22] and uses the secure
Rescale on it. All outputs are again additively shared and reveal
no information to either party. The last step involves an addition
operation over additive shares which is executed locally and has no
security implications in the semi-honest model. Finally, the output
z is obtained by the two parties in shared form where a single share
is indistinguishable from a random value and reveals no informa-
tion. In summary, security of Logsum depends on the security of
GCs and the Rescale protocol as well as the randomness of the
additive sharings. As Rescale offers statistical security against a
semi-honest S, Logsum itself offers statistical security as well.

Security of Forward. To argue security of Forward (Sect. 4,
Prot. 1), we show that U learns nothing about the HMM λ, i.e., S ′s
private input, and vice versa S learns nothing about the observations
o1, ..., oT , i.e., U ′s private input, except for what is implied in the
final result P̂ (O|λ). We argue that Forward is secure because the
only interaction between U and S happens through the Emission
and Logsum primitives. Since these primitives are secure and their
output is received in the form of random additive sharings, their use
reveals no information and neither does their composition according
to the security of modular sequential compositions of semi-honest
protocols [13]. All other steps are local operations that have no
security implications in the semi-honest model. Finally, one or both
parties learn the Forward score P̂ (O|λ) by recombining their shares
of the result, which is of course as intended.

Limitations. It is important to note that in our Forward de-
sign, U learns the dimensions of S ′s HMM and, vice versa, S
learns the length of U ′s observation sequence. In this work and
in most related works [4, 21, 40], such information is not con-
sidered sensitive. If desired, we can prevent leakage of this in-
formation by padding the HMM with dummy states and the ob-
servation sequence with predefined dummy symbols to a com-
mon predefined length. However, padding necessarily increases
the size of the HMM and observation sequence and thus comes
at the cost of performance and communication overheads. Fi-
nally, note that we develop protocols in the semi-honest model.

Bit-length l 32 64
PLA size k 2 4 8 16 32 64 128 2 4 8 16 32 64 128
Avg. abs. error 6.0e-2 4.4e-3 9.2e-4 5.3e-4 5.1e-4 5.4e-4 6.2e-4 6.0e-2 4.3e-3 7.7e-4 2.0e-4 5.5e-5 1.4e-5 2.7e-6

Runtime (seq.) 2.35 2.83 3.30 4.22 5.79 9.23 14.90 3.10 3.25 4.25 5.61 8.21 13.67 23.52
Runtime (batch) 0.42 0.59 0.89 1.49 2.70 5.10 9.98 0.75 1.00 1.52 2.61 4.66 8.88 17.74

Communication 0.02 0.02 0.03 0.05 0.08 0.15 0.28 0.03 0.04 0.05 0.08 0.14 0.26 0.49

Table 2: Evaluation of the secure Logsum primitive: The runtime [ms] and communication overhead [MB] increase and the approximation
error decrease as the number of approximation intervals k and the bit-length l of the garbled circuits increase.

However, established techniques to make semi-honest computa-
tion robust against malicious behavior [31] can be applied to our
approach when the problem scenario requires this.

B. EVALUATION OF THE SECURE LOG-
SUM PRIMITIVE

Secure and accurate computation of logsum operations is chal-
lenging and has significant performance impacts in most previous
works [21, 34, 35, 37]. Indeed, Logsum (Sect. 4.3, Prot. 4) clearly
dominates the runtime of our approach. Since secure computation
over non-integers is relevant beyond the scope of our work [15, 20],
e.g., for securely evaluating Gaussian Mixture Models [35], we
provide a detailed evaluation of the Logsum primitive in this sec-
tion. All presented results are aggregated over 1000 runs and were
obtained in the evaluation setup described in Section 5. The mea-
sured accuracy, runtime, and communication overheads for different
choices of k and l are summarized in Table 2.

Accuracy. Logsum uses a piece-wise linear approximation with
k intervals to compute the result. As expected, the error of the
approximation decreases with increasing k. Increasing fixed-point
precision by choosing l = 64 additionally improves accuracy, but
only beyond k = 8. For the smaller values of k, the approximation
error dominates the additional accuracy in the fixed-point represen-
tation. However, increasing k and l comes at the cost of runtime and
communication overheads as analyzed in the following.

Runtime. We first measure runtime for sequential Logsum op-
erations. The runtime grows linearly in k and l with 2.35ms in
our least accurate setup (k = 2, l = 32) to 23.52ms in the most
accurate setup (k = 128, l = 64). We now batch all m operations
into one single invocation of Logsum and again report the average
runtime of a single logsum operation. Sequential operation requires
evaluation ofm small GCs and requires 3 ·m rounds of communica-
tion, whereas batched operation corresponds to the evaluation of one
very large GC in only three rounds of communication. Thus, batch-
ing achieves the best speed-up for small circuits (small k and l). For
l = 32 and k = 2, we observe a speedup of 5.6x and still up to
4.13x for l = 64, k = 2. As expected, this decreases for bigger
values of k, e.g., to 1.5x and 1.3x for k = 128 and l = 32, 64,
respectively. We evaluated different batchsizes and observed no
significant speedup beyond batches bigger than m = 1000. For
both sequential and batched operation, we observe that to achieve a
certain accuracy it is more efficient to increase k than to increase l.

Communication. Communication scales linearly in k and l and
is in the order of tens to hundreds of kilobytes per run of Logsum.
The dominating part is the transmission of two t bit keys per gate in
the GC. Hence, communication overheads can be traded off against
the security level t, e.g., switching to short term security t = 80
reduces communication by approximately 34 %. Also ongoing and
future optimizations of the GC foundations [10, 43] will further
reduce communication overheads.
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