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Abstract—Pervasive applications evolve around the user’s
context, making it a full-fledged communication party. However,
no equivalent approach to End-to-End communication exists that
allows a sender to bind data, through encryption, to a target
context. Existing solutions require central infrastructures or only
apply to the immediate context, restricting pervasive applications.

We propose Encryption to Trusted Contexts (ETC), a com-
munication security building block that enforces context bindings
while preserving the data handling and forwarding mechanisms
of the original application. Our approach leverages a Broadcast
Encryption scheme to protect data in transit and binds decryption
to the verification of an expressive, flexible context specification
based on trusted, unforgeable sensing. Data can then be encrypted
from and to any context, securely exchanged among devices, and
made accessible only within the specified context. We demonstrate
the feasibility of ETC in a prototypical implementation for ARM
TrustZone devices, realizing communication security for context-
driven, pervasive applications.

I. INTRODUCTION

Emphasizing the context of users [1] over their iden-
tity, pervasive applications complement Internet End-to-End
(E2E) approaches with an untethered, mobile communication
paradigm. Context, as the set or combination of sensor readings,
thereby becomes a full-fledged entity with which sending
devices can establish End-to-Context (E2C) communication. As
an E2C application example, Floating Content [2] binds data to
a context defined by an anchor zone and a validity time period.
Location-aware mobile devices inside this context replicate and
share data via ad-hoc local wireless communication; outside
of the context, data is to be deleted. The E2C communication
paradigm thereby enables intuitive, context-driven applications.

Application data may then be sent and received directly,
forwarded opportunistically [3], or placed and retrieved within
the environment [4]. E2C communication security, i.e., a
mechanism to encrypt and protect context-bound data in transit
and at rest, then becomes an obvious requirement for handling
meaningful and sensitive data. For example, data in Floating
Content is per design bound to, i.e., only accessible within,
a context. However, without E2C encryption, data has to be
communicated in clear text, making it accessible in any context
and effectively removing the context binding. Communication
security, equivalent to E2E approaches, thus is a direct feature
for the viability and applicability of E2C applications [5]–[12].

However, no E2C encryption mechanism exists that allows
a) a sender to encrypt, and thereby bind, data to a target
context from outside of this context and b) a receiver to decrypt
data only if the current context matches the target one. Two

fundamental characteristics of E2C communication render the
design of such a mechanism challenging. First, contexts cannot,
outside of the context, be associated with a (public) key for
encryption [13], [14]. Second, the set of recipients that populate
the target context in E2C approaches, e.g., a location at a point
in time [2], is inherently unknown at encryption time, rendering
host-based E2E encryption infeasible [15], [16].

Indeed, E2E encryption requires a defined set of recipient
hosts and is thus unable to support recipient sets dynamically
formed by contexts. Encrypting data to each individual potential
recipient incurs a prohibitive overhead, while group encryp-
tion [17] requires key re-distribution when recipients leave the
group. Similarly, Attribute- and Identity-based Encryption [18],
[19] fail as recipient attributes and identities are unknown at
the time of sending. Context-driven approaches either require
central infrastructures [20]–[22] or derive encryption keys
exclusively between devices in a common context [13], [14]. In
this, their applicability is limited to the respective infrastructure
or ad-hoc context, in contrast to a building block for distributed
E2C communication security. Mitigating these shortcomings, an
E2C encryption mechanism would then allow secure, pervasive
existence of application data while enforcing context bindings.

In this paper, we thus propose Encryption to Trusted
Contexts (ETC), an E2C mechanism that a) leverages the target
context specification made by the application to simultaneously
define the decryption policy, i.e., indicate the required sensor
readings, b) enables the binding, encryption, and transmission
of data from any context to the target context, and c) ensures its
decryption only within the intended, defined context. Our design
builds on three main components, namely a) a specification
defining the context that data is associated with and addressed
to, b) Broadcast Encryption (BCE) [23] affording encryption
via a system-wide public encryption key and decryption using
per-user secret keys and c) a Trusted Application (TA) within an
ARM Trusted Execution Environment (TEE) that realizes the
triple functionality of sealing the private BCE decryption key
on the device, trusted sensing of contexts, and verifying the data
context policy as the prerequisite for decryption. Our design is
motivated by the context awareness of current smartphones as
well as the proliferation of ARM TrustZone technology.

ETC departs from existing security approaches (Section II)
and addresses the unique threat model of E2C communication
(Section III). Building on BCE and a trusted context sensing
component (Section IV), ETC encrypts data to sensor-based
contexts (Section V). Our prototypical ARM TrustZone imple-
mentation shows the feasibility of ETC (Section VI), realizing
an E2C communication security building block (Section VII).
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II. STATE OF THE ART

A. Complementing E2E Security

Disruption-tolerant Networking security [24] offers en-
cryption to context endpoints, using public-key or identity-
/attribute-based approaches [25]. In their own right, Identity-
based Encryption [18] and Attribute-based Encryption [19]
offer encryption on recipient identities or attributes instead
of host specifications. A key generator distributes identity or
attribute-bound keys and decryption requires the associated
key(s). Common to these approaches is the requirement to
specify recipients via their attributes and identities at the time
of sending. In contrast, we strive for encryption to contexts
that accommodate an a priori undefined set of recipients.

B. Trusted Sensing

Multiple approaches [26]–[29] afford trustworthy sensor
information by incorporating a trusted component in the sensing
and reporting process. This component signs or attests to sensor
information and thus affords a measure of trust in the values
used in sensing approaches or as a trigger to access pre-installed
components, e.g., a trusted drive application [28]. Our use
case of distributed pervasive applications requires avoiding
attestation to a central service in favor of local trusted sensing.

C. Trust- and Context-driven Security

Multiple approaches, e.g., [16], [20], [30] define context-
driven security in the form of smart geographical contexts that
adapt the application upon authorizing a user, assuming and
restricting to a trusted infrastructure that is deployed beforehand.
In contrast, ETC emphasizes infrastructure independence to
provide a generic building block for mobile applications.

Mitigating the need for an infrastructure, pairing co-present
devices based on the common context, e.g., using observed
audio or wireless signals, affords ad-hoc communication secu-
rity [13], [14]. However, said pairing only affords encryption
between devices in the current context and thus does not afford a
distributed encryption mechanism that spans multiple contexts,
e.g., sending data to a future and/or distant context. As a
design alternative, the concept of fuzzy extractors derives a
cryptographic key from a context definition, thus affording data
encryption bound to a context and subsequent decryption upon
attestation of said context [31]. In ETC, we opt to use BCE for
both its revocation capabilities and the intuitive restriction of
data access within an application by way of secret user keys.

Cesena [32] outlines a preliminary design of combining
BCE, to protect data in transit, and trusted attestation of device
states. While building on the same components, ETC addresses
a fundamentally different problem, namely trusted context
sensing as a building block for communication security. We
furthermore define a complete architecture and report on a
real-life implementation and evaluation of our design.

III. THREAT MODEL

The threat model in our design revolves around unauthorized
access to application data, i.e., outside of the respective
application or outside of the specified context. The threat of
unauthorized access by malicious users, which are not part of
the application that data belongs to, or software is inherent to

the underlying untrusted, unreliable communication scenario.
Similar, intermediate devices or infrastructure elements, which
store data, might try to decrypt it, even while adhering to their
respective application functionality. We account for this threat of
outside attackers using Broadcast Encryption (cf. Section V-C).

In contrast, inside attackers are participants of the applica-
tion attempting to access the data in an invalid context, e.g.,
devices in Floating Content that are outside of the anchor zone
and/or validity period. An inside attacker may try to fake the
required context as well as manipulate or forge the context
specification to achieve an unauthorized decryption. We address
this threat by making decryption dependent on trusted sensing
and verification of the specified context as well as integrity
protection of context specifications (cf. Section V-D).

With regard to the ETC Trusted Application, we follow the
standard threat model and assumptions [28]. Namely, we assume
that the TA cannot be compromised. Furthermore, physical
attacks are out of the scope of our security design.

IV. BACKGROUND

A BCE system [33] for a number of users N generates in
a setup-phase a system-wide public key PK and a secret key
SKi for each user i ∈ {1, ...., N}. In order to “broadcast” a
message M to a subset S of all users, i.e., S ⊆ {1, ...., N},
the sender encrypts M to the cipher text C using the public
key and indicating S. Notably, the system size N is not static
but may be increased [23]. In order to “broadcast” a message
M to a subset S ⊆ {1, ...., N} of all users, the sender encrypts
M to the cipher text C using the public key and indicating S

C = Enc(PK,S,M).

For performance reasons, the broadcast payload M is actually
encrypted using a (random) symmetric key, e.g., using AES,
and only said key is encrypted by the BCE system.

A user j receiving an encrypted message C then decrypts
it using its secret key, deriving the symmetric key M required
to decrypt the accompanying payload M ′

M = Dec(S, j, SKj , C, PK).

The strength of BCE systems lies in the fact that colluding
users, who are legitimately part of the BCE system but are
outside of S, cannot retrieve the original message M .

ARM TrustZone [34] offers a Trusted Execution Envi-
ronment (TEE), the Secure World, on the device, parallel
to the user-facing Normal World. In contrast to Trusted
Platform Module solutions, no single physical entity affords
trust in a Trusted Application (TA) executing in the TEE.
Instead, the TrustZone realizes a lower privilege level to which
execution can only be switched using a narrow Secure Monitor
Call (SMC). Via this call, a Normal World application also
exchanges data with a Secure World TA.

ARM TrustZone thereby offers Trusted Platform Module-
equivalent services within a full-fledged execution environment
that can make use of the device’s hardware capabilities instead
of being restricted to a single, dedicated hardware module. In
light of Trusted Applications that perform complex tasks, such
as cryptographic computation, this difference is non-negligible,
motivating our Trusted Execution Environment-based design.
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Fig. 1. ETC components (shaded) in the Normal World and Secure World
TEE. A legacy application, e.g., Floating Content [2], at the sender specifies a
target context and calls ETC for BCE encryption of data before transmission.
Receiving devices then trigger ETC decryption if untrusted sensing matches
the target context. Actual decryption in the Secure World requires trusted
sensing to verify the target context as well as unsealing the BCE secret key.
Decrypted data is then passed back to the application in the normal world.

V. ENCRYPTION TO TRUSTED CONTEXTS

ETC affords secure data handling on mobile devices in
context-driven applications leveraging the device’s sensing
capabilities. Fig. 1 shows an overview of the functional
components and their placement on a device. Please note
that, while we design ETC for ARM TrustZone devices, it
is applicable to other TEE-approaches, e.g., Intel TXT [35]. We
thus provide a functional description of our design and refrain
from any TEE-specific implementation details.

A device in a legacy application, e.g., Floating Content [2],
that leverages our proposed E2C security mechanism, first
obtains the public encryption key and a private decryption key
in the application-specific Broadcast Encryption (BCE) system.
The private key is sealed by the ETC TA of the device (not
pictured in Fig. 1), hiding it from the user and other software on
the device (Section V-A). When sending data, the application
defines a target context specification for decryption (step (1) in
Fig. 1, Section V-B) and passes data and specification to ETC
for encryption (step (2), Section V-C). Sending and intermediate
forwarding of encrypted data remain unchanged in the applica-
tion. Receiving devices trigger decryption, if untrusted Normal
World sensing matches the context specification (step (3), V-D1),
by passing the encrypted data to the ETC TA in the Secure
World (step (4)). There, ETC requires trusted sensing to verify
the context specification (step (5), V-D2) before unsealing the
secret key (step (6)) and decrypting the data (step (7), V-D3).

A. Bootstrapping ETC

Our design builds on fundamental BCE encryption, using
a public key, to a defined subset of all possible recipients
(S ⊆ N ). Each recipient then requires a valid secret key
for decryption. An E2C-secured application sets up a BCE
system [33] with a system-wide public encryption key and
secret, private decryption keys. Due to the need of distributing
a secret key to each application participant, we envision a
trusted online service to afford this one-time setup.

As an initial bootstrapping step, a user contacts the service
to obtain the public key and the user-specific secret key. This
step comprises a crucial part of our design. Specifically, in
order to bind data decryption to trusted context sensing by the
TEE, ETC seals the secret key for decryption from the user and

other software. The secret key is therefore exchanged between
the service and a distinct TA on the mobile device realizing
a secure key exchange protocol. The TA then encrypts the
secret key with, e.g., a unique storage key or a dedicated file
encryption key [28]. Sealing the secret decryption key prevents
an inside attacker from decrypting data in invalid contexts.

Intuitively, users partake and require E2C security in
multiple applications. ETC thus supports the bootstrapping
and sealing of multiple application-specific BCE private keys.
Applications may then trigger the decryption of their data
at the ETC TA, which unseals the respective private key
(cf. Section V-D). As a means of authenticating each application,
a hash of its code pages present in memory at the Secure
Monitor Call, may be compared with a value stored at
installation [36]. Such authentication then prevents malicious
applications from triggering the decryption of foreign data.

After the bootstrapping phase, a user is able to encrypt
application data using the public key. As the main contribution
of ETC, this encryption binds data to a context specification.

B. Context Specification

Data may be encrypted to a specific context, i.e., a set of
required sensor values. Subsequently, this context specification
is passed to ETC. While the specification, in principle, may
refer to any type of sensor values, we envision palpable and pre-
definable sensor information, e.g., location, time, movement,
environment, or presence, to play a prominent role as a sender
defines the specification outside of the target context. Numerous
examples exist for user-defined context definitions that directly
facilitate application functionality [2], [5]–[8], [26]–[29].

In the simplest case, a context indicates single sen-
sor values, such as gps_location=(x,y), or a com-
bination of single values. However, context information
may contain noise due to sensor inaccuracies, manufac-
turing differences, calibration errors, etc. A robust context
specification thus may define ranges of sensor readings,
e.g., validity_period=(start_time, end_time),
that make up for such noise. E.g., in Floating Content, a robust
context specification would define a buffer around the anchor
zone, by adjusting the validity radius or by defining it as a
rectangle or a polygon.

Furthermore, a context may be constructed as a series
of (combinations of) single sensor readings or ranges, e.g.,
loc_series=[(x1,y1),(x2,y2)...(xn,yn)]. With a
series, data may be bound to a geographical path in a location-
based game or a series of environment readings, such as
Bluetooth Low Energy beacons that carry a BCE-encrypted
nonce or respond to a challenge to prove their authenticity.

The format of a specification may take various forms [1],
[28], e.g., using a markup language or even a scripting
language such as Python. In this, our design supports arbitrary
context specifications, as defined by each application that
leverages ETC, and realizes the subsequent verification of this
specification against trusted sensor information.

C. Encryption

Encryption in ETC builds on the underlying BCE system
and thus requires the public key as well as an indication of



the set of recipients S. However, as a notable difference to the
conventional usage of BCE, we assume encryption to the full
set of application participants, i.e., S = N . This is because,
in contrast to making the data accessible to only a subset of
recipient identities, e.g., the set of activated recipient devices,
ETC envisions data to be generally intended for all possible
recipients, i.e., application participants, and binds decryption
to the trusted sensing of a specified context.

In order to achieve this binding, ETC encrypts a hash
h(CS) of the context specification, concatenated with the data,
to cipher text C

C = Enc(PK,S,M ′); S = N,M ′ = M‖h(CS).

As such, data is protected against outside attackers that forward
or store data without participating in the respective application.

ETC makes use of the context specification in two further
aspects. First, it serves as the addressing identifier in the
respective mechanism that forwards encrypted data towards
the target context. Hence, the clear-text context specification,
as defined by the legacy application, is sent along with the
encrypted data. For example, a context specification in the
Floating Content application comprises the anchor zone and
the expiration date, enabling intermediate devices to decide
whether to forward, store, or discard the data. Second, ETC
uses the hash of the context specification to verify the integrity
of the clear-text context specification used to trigger decryption.

D. Decryption

A receiving device may decide to decrypt the data if the
current context matches the associated, clear-text context specifi-
cation. In this case, it may trigger the ETC TA, initiating trusted
context sensing and verification as well as data decryption.

1) Trigger: Triggering the ETC TA entails a context switch
between the Normal World of the regular OS and the Secure
World of the TA. As such, it entails a computational and
temporal overhead, in addition to the overhead of trusted
sensing and, eventually, decryption. In order to preserve system
availability and resources, triggering the TA thus should only
occur if the associated overhead can be amortized.

To this end, an application matches the clear-text context
specification to (untrusted) sensor information obtained in
the Normal World. The context sensing step may be part
of the application functionality, enabling to “piggyback” the
aforementioned comparison, or may be performed dedicatedly.
A sensed context matching the specification then triggers the
trusted context sensing by passing both the cipher text and
the context specification to the ETC TA via the SMC call. We
detail this step in the next section.

In combination with untrusted context sensing in the Normal
World, an inside attacker may easily forge the sensor data
indicated in the clear-text context specification to trigger an
“unauthorized” context switch to the Secure World. Our design
does not address this issue for two reasons. First, we envision
ETC to serve as a building block that does not interfere with
the original application behavior with regard to sensing and
handling of context information as well as decryption requests.
Second, (unauthorized) trusted sensing in fact exhausts the
resources of the attacker’s device, essentially performing a DoS

attack. On resource-constrained mobile devices, this provides an
incentive to refrain from said unauthorized decryption attempts.

2) Trusted Context Sensing: The trusted sensing component
queries all sensors indicated in the clear-text context spec-
ifications and verifies whether the sensor values match the
specification. Intuitively, single values are valid if they match
exactly while any value within a range is considered valid.
Similarity metrics [31] such as euclidean distance, hamming
distance, or set difference, that define a measure of closeness
between sensed and specified values within a metric space,
e.g., for (a series of) locations, may further account for valid
but noisy sensor information. An invalid reading or missing
sensor value, due to a sensing error, excessive noise, or sensor
failure, fails the verification process and the sensing component
returns an error. A positive verification triggers the actual
data decryption. Notably, sensor readings in ETC never leave
the TEE, mitigating the need for signatures [26]–[28] or
certificates [29] that attest their trustworthiness to an outside
entity. In the following, we highlight the two most important
design aspects of our context sensing component.

Series of readings: Sensing a context that specifies a series of
sensor readings requires the TA to return control to the Normal
World between readings to ensure device availability. Hence,
the sensing component stores the single readings and matches
the evolving partial context against the context specification.

Sensor state: Untrusted software could manipulate the sensor
state in the Normal World, damaging the integrity of sensor
readings produced after switching to the TEE [28]. The TA
thus resets the required sensors to a known, trusted sensor
state and maintains control until all readings are produced and
control is passed to the decryption process.

3) Data Decryption: Triggered by a positive context verifi-
cation, the TA temporarily unseals the secret key SKi within
the TEE and decrypts the cipher text C

M ′ = Dec(S, i, SKi, C, PK); S = N

to derive the original data M and hashed context specification

M ′ = M‖h(CS).

In order to verify the integrity of the clear-text, untrusted
context specification CS′, that was passed to the ETC TA from
the Normal World, we check whether

h(CS′) == h(CS).

This step serves to prevent any inside attacker from forging the
clear-text context description in transit to match any, currently
valid context. In case of a positive integrity check, the TA
re-seals the secret key and returns the decrypted data M to the
calling application in the Normal World via the SMC call.

Notably, the trusted functionality afforded by ETC ends with
the return SMC call and no assumption can be made about the
trustworthiness of functionality handling the decrypted data in
the Normal World. While this is independent of the encryption
scheme or availability of a trusted component, it enables the
decoupling of data from its context. As a possible solution,
ETC could be integrated with a trusted channel between TA and
Normal World applications [36], which allows the TA to verify
the integrity and state of the calling application. Furthermore,



multiple BCE schemes afford tracing of malicious software to
punish such misuse. The tracing entity would interact with the
malicious software, derive the secret key(s) used to decrypt
data, and revoke the key(s) by removing the associated user(s)
from the set of recipients S. User devices may directly perform
this functionality or may invoke the BCE system service.

VI. EVALUATION

We implemented our ARM TrustZone-driven design of
encryption and decryption on trusted contexts on a HiKey
development board [37] to evaluate the performance of our
design. The hardware characteristics of the board (ARM Cortex-
A53 CPU at 1.2 GHz, 2 GB RAM) thereby represent the
processing capabilities of modern smartphones. We realize
the Secure World components (cf. Fig. 1) within the OP-
TEE [38] Open Source TEE while the board runs Debian 16.06
as the Normal World OS. In order to show trends for large-
size systems, we additionally present results gathered using
a Ubuntu Desktop 14.04 machine with an Intel i7 2.93 GHz
CPU and 4 GB RAM. Finally, we port the PBC_bce Broadcast
Encryption Library [39] to the TEE to realize the bootstrapping,
encryption, and decryption functionality of ETC at the trusted
online service, in the Normal World at the sender, and in the
Secure World at the recipient, respectively.

Because several approaches address trusted sensing [26]–
[29], we do not evaluate sensing performance as the result
would be specific to our device, sensor, and driver combination.
Functionally, a sensor-specific trusted driver resets and queries
the sensor in the Secure World to obtain the required readings.
We omit implementation details of our ETC TA, that are
specific to our environment of HiKey board and OP-TEE,
in favor of reproducible computational performance results.
Notably, [28] discusses the performance of trusted GPS sensing.

Our evaluation focuses on our main design choice, namely
the novel use and cost of BCE encryption and decryption
in a trusted environment. Specifically, system initialization
incurs a substantial overhead, e.g., 321 s using the HiKey
board for N = 4096 potential recipients. In larger systems,
this becomes infeasible on mobile devices, supporting our
design of initializing large-size systems at a dedicated service.
Furthermore, BCE incurs, at each device, a negligible space
overhead of (2N + 1) ∗ 52 bytes to store the public encryption
key and 52 bytes for the unique secret key of the user. In contrast
to the aforementioned one-time overheads, the predominating
cost of ETC is the recurring time overhead of encryption and
decryption. Notably, each verification of (complex) context
specifications, even under noise, does not affect the decryption
overhead, as verification is a sequentially isolated step. In the
next section, we thus evaluate the time overhead and contrast
the performance of our TEE-based, decentralized solution
against two design alternatives: a) encryption and decryption
using symmetric keys per user protected by RSA-2048 digital
envelopes; b) a central service providing context-bound data
upon trusted remote context attestation [26], [27].

A. Time Overhead

We evaluate the time overhead incurred by BCE encryption
in ETC. We evaluate decryption time overheads using our
current ETC TA prototype implementation, denoted ta in all
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(b) Isolated decryption time overhead.

Fig. 2. Isolated measurements of BCE functionalities show a constant time
overhead for encryption and decryption at the recipient, regardless of the BCE
system size N . In contrast, re-generating the encryption or decryption product
in case of revocation incurs a time overhead proportional to N .

following figures, and encryption time overheads of the hikey
Normal World component of ETC. In order to show trends for
larger N , we use the aforementioned server device.

1) Isolated BCE Overhead: We first evaluate the time
overhead of BCE encryption and decryption over increasing
application sizes N on the HiKey board and the server.
Fig. 2 indicates the respective time overhead of encrypting
and decrypting a 256 bit AES key (solid bars). We find that,
on the HiKey device, the encryption step in the Normal
World (Fig. 2(a)) incurs a roughly constant overhead of 78 ms
regardless of the recipient set S = N . Correspondingly,
decryption in the ETC TA (Fig. 2(b)) shows a fixed time
overhead of 50 ms for all measured system sizes. The ETC TA
thereby makes use of AES hardware support in the HiKey
board, outperforming Normal World encryption based on a
software-only solution.

Our results display a constant BCE-specific time overhead
below 100 ms for encryption and decryption, supporting our de-
sign of communication security for fully distributed approaches
on mobile devices. Notably, each encryption and decryption step
in ETC only requires this fixed time overhead. Re-computing
this product incurs a substantial overhead that grows with
N and, for larger system sizes, dominates the encryption or
decryption overhead (meshed bars in Fig. 2). This overhead
occurs during revocation; the removal of the respective index
from both products requires their re-calculation.

2) Complete Time Overhead: In this section, we measure
the complete time overhead of encryption and decryption, as
observed by a Normal World application incorporating ETC,
within the Normal World component and ETC TA, respectively,
for increasing system sizes N . As in [2], we choose application
data of sizes 100 kB, 500 kB, and 1000 kB. For comparison, we
measure the overhead incurred by the two design alternatives
of 1) AES keys protected by RSA-2048 digital envelopes in
the Normal World and 2) a centralized service decrypting and
delivering data based on context attestation.
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Fig. 3. Encryption and decryption time overhead for different payload sizes
over increasing application sizes N , as measured on the HiKey board and
the server device. The results denote the time requirements as observed by
an application that uses ETC as a building block for communication security.
Decryption overhead is depicted in comparison to results for RSA-2048/AES
digital envelope (DE) and remote attestation service (RS) design alternatives.
We omit encryption results of DE and RS alternatives for readability.

In the former, a sender encrypts data using an AES
symmetric key and encrypts that key with the recipient’s RSA-
2048 public key. The recipient first decrypts the AES key
and then decrypts the application data. In the latter design, a
symmetric encryption scheme (AES) between a sender, central
service, and (mobile) recipient affords binding decryption of
data to trusted context attestation. The sender encrypts data
to the service and disseminates it along with a target context
specification. In this context, a recipient attests the required
sensor values to the service. Upon verification, the service
decrypts the data and re-encrypts and delivers it to the recipient.

In ETC, the time overhead comprises encrypting the
application data and hashed context specification using a
symmetric encryption scheme, and the encryption of the random
symmetric key using BCE. Our current implementation uses
AES in CTR mode for symmetric cryptography. Decryption
then comprises the corresponding steps at the recipient. We thus
measure the total time overhead for encryption in the Normal
World of the HiKey board and decryption, within the ETC TA,
for increasing application data sizes of 100 kB, 500 kB, and
1000 kB. Again, we provide measurements using the server
machine as an outlook.

Fig. 3(a) depicts the time overhead results of encrypting
data on the mobile device (HiKey) and the server. We find that
encryption is governed by the size of data and ETC achieves
encryption times of roughly 80 ms for data sizes of 100 kB
(100 ms for 500 kB, 120 ms for 1000 kB), independent of the
BCE system size. In comparison to isolated BCE performance
(Section VI-A1), these results clearly show the dominating
BCE overhead of affording flexible one-to-many encryption.
Especially, this shows in the comparison with 6 ms overhead
for 100 kB of data (22 ms for 500 kB, 43 ms for 1000 kB)
using RSA-2048/AES digital envelopes of single recipients (not
shown in the plot). While all approaches show an overhead

proportional to the application payload, BCE achieves results
that are competitive with less sophisticated schemes.

Correspondingly, Fig. 3(b) illustrates the time overhead of
decrypting data at the recipient in ETC and the digital envelope
and remote service alternatives. Please note that we omit time
delays incurred by communication from the results shown for
the remote service as these depend on the communication
network rather than the respective security functionality.

We find that, for 100 kB and 500 kB, both DE and RS
perform comparably or better to our TEE-based design. This
is due to the context switch required for BCE decryption
functionality in the Secure World. For data sizes of 1000 kB, the
additional encryption and decryption steps in RS as well as the
Normal World performance of AES in DE incur a greater time
overhead than our ETC TA. Indeed, the decryption overhead
is roughly constant, as confirmed by the server measurements
for larger N . In comparison to the higher overhead of RSA-
2048 decryption of an AES key and AES decryption of data
in DE, ETC TA benefits from AES hardware support in the
ARM TrustZone Trusted Execution Environment.

With regard to isolated BCE functionality (cf. Fig. 2(b)),
the overhead is dominated by the (fixed) time required to
decrypt the BCE-encrypted AES key. Specifically, owing to
the aforementioned AES hardware support, decrypting 100 kB,
500 kB, and 1000 kB of data in the ETC TA only requires
0.2 ms, 0.7 ms, and 1.3 ms, respectively.

In the application of ETC to pervasive applications, we
argue that the combination of a constant time overhead incurred
by the BCE scheme and hardware-supported decryption of
actual application data affords an efficient communication
security building block. ETC then extends (or combines)
this basic efficiency regarding security with the notion of
trusted sensing. In this, ETC constitutes a novel design that
simultaneously accounts for the role of context information in
pervasive applications, the need for communication security, and
the efficiency requirements of battery-driven mobile devices.

VII. CONCLUSION

We propose Encryption to Trusted Contexts (ETC) for
pervasive End-to-Context communication approaches and ap-
plications, affording a mechanism for communication security
that is equivalent to E2E solutions. ETC leverages Broadcast
Encryption to enable data encryption from any application
participant and context, and builds on an ARM TrustZone
Trusted Application to ensure that decryption of data is
dependent on the verification of the context data is bound
to. Our design seamlessly integrates in existing approaches,
preserving both the communication and data handling as well
as the sensing and context processing functionality of the
original application. Our implementation of ETC underlines the
performance and applicability of our approach on real-world,
smartphone-equivalent devices. The result is a fundamental,
practical communication security building block that enables
a) the handling of meaningful or sensitive data and b) the
enforcement of context bindings in pervasive applications.
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