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ABSTRACT
Exhaustive testing of wireless communication protocols on pro-
totypical hardware is costly and time-consuming. An alternative
approach is network simulation, which, however, often strongly ab-
stracts from the actual hardware. Especially in the wireless domain,
such abstractions often lead to inaccurate simulation results. There-
fore, we propose a code-transparent discrete event simulator that
enables a direct simulation of existing code for wireless prototypes.
With a focus on lower layers of the communication stack, we enable
a parametrization of the simulation timings based on real-world mea-
surements to increase the simulation accuracy. Our evaluation shows
that we achieve close results for throughput (deviation below 3 %
for UDP) and latency (corrected deviation about 13 %) compared to
real-world setups, while providing the benefits of code-transparent
simulation, i.e., to flexibly simulate large topologies with existing
prototype code. Moreover, we demonstrate that our approach finds
implementation defects in existing hardware prototype software,
which are otherwise difficult to track down in real deployments.

CCS Concepts
•Networks→ Network simulations; •Hardware→ Wireless de-
vices; Testing with distributed and parallel systems;

Keywords
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1. INTRODUCTION
For testing and development of wireless communication protocols,

a combined methodology of computer simulation and prototypical
hardware deployments, which facilitates the transition from one
domain into the other, is highly beneficial. Regarding prototypi-
cal hardware, so-called Software Defined Radio (SDR) platforms
emerged [25] offering an open and flexible way to modify hard- and
software, while enabling testing under realistic conditions. Such
a platforms typically consist of a Field Programmable Gate Ar-
ray (FPGA), a radio interface, and several I/O ports. Thus, they
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enable a flexible implementation of custom-made physical and data
link layer protocols and are particularly suited for the development
and testing of new wireless protocols. It is, however, costly to
deploy and maintain complex topologies of such devices, which
often impedes developers and researchers to exhaustively test their
protocols in larger distributed setups.

In contrast, a relatively cheap and powerful method to test and
evaluate new communication protocols is by means of simulation.
Computer simulation allows to perfectly control a simulated en-
vironment and thus to ensure reproducibility [5], which enables
testing of specific aspects of a newly proposed protocol. Moreover,
it facilitates the discovery of implementation defects, which is es-
pecially useful in distributed settings, offering a global view on the
current protocol state of each simulated instance. Advanced simu-
lation tools using the Discrete Event Simulation (DES) paradigm
ensure scalability and flexibility of the simulated communication
scenarios. Prominent examples for such tools are ns-3 [24] and
OMNeT++ [1, 26]. Nevertheless, at a certain point, the simula-
tion abstracts from the real world, which might, depending on the
use-case, lead to inaccurate behavior in the simulation.

In general, the development of a communication protocol bene-
fits from both simulation and prototypical implementation, as the
advantages of both methods nicely complement each other: Simula-
tion enables the evaluation of large-scale scenarios and facilitates
debugging, while prototypical implementation offers a realistic view
on possible side effects. In practice, however, this implies that two
models of the protocol specification are needed, i.e., one for the
prototypical hardware and one for the simulation. As each model
typically follows its own paradigm, the models can not be easily
translated into each other. This leads to two different models, where,
in general, it is hard to show that the models are equivalent to each
other and thus impedes a direct comparison of both.

For ns-3, Lacage proposed Direct Code Execution (DCE) [14]
to execute existing user space as well as kernel space protocol
implementations in the simulator. This extension enables a seamless
transition from real network deployments to computer simulation
and further improves the comparability to the real world. However,
DCE operates independently of soft- and hardware processing times,
and therefore only offers limited performance insights, especially
when considering prototypical hardware deployments.

In this paper, we propose Code-transparent Wireless Prototype
Simulation (CoWS), a DES approach built upon ns-3 and DCE to
comprehensively develop and test communication protocols both
on real wireless prototyping hardware and in simulations. In this
context, we refer to code-transparency as executing the same, un-
modified user code on hardware boards and in simulations. This
eliminates the risk of errors that might occur when translating from
hardware implementation to simulation model and thereby enables a
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seamless cyclic development process including prototypical deploy-
ment and simulation. The code-transparent approach thus allows
to establish a direct relation between real world and simulation
and is, therefore, an important step towards achieving realistic and
reproducible simulation of wireless communication protocols and
network applications. Furthermore, when carefully calibrating the
DES, based on measurements obtained from an SDR platform, ac-
curate results can be achieved in both domains. Finally, we show
that CoWS, through its inherent debug capabilities, eases the pro-
cess of finding implementation defects compared to debugging in
distributed hardware deployments. Our approach thus contributes
to short development cycles for new wireless protocols enabling
reliable and well-tested software for researchers and developers.

In particular, our contributions are as follows.

• A thorough analysis of the necessary steps to enable code-
transparent simulation (see Sec. 2);

• A detailed design description of Code-transparent Wireless
Prototype Simulation (CoWS) to show the feasibility of our
code-transparent DES approach (see Sec. 3);

• A validation of our methodology (see Sec. 4) and a perfor-
mance evaluation of CoWS showing its applicability in scal-
able scenarios (see Sec. 5); and

• A case study illustrating new debug possibilities (see Sec. 6).

The paper concludes with a related work discussion (see Sec. 7) and
some final remarks.

2. ANALYSIS
The goal of this paper is to propose a code-transparent approach

to combine the advantages of experimentation on real-world SDRs
with experimentation in scalable DES. We define code-transparency
as the property that the same user code, which runs on hardware
devices, also runs in the simulation. In this section, we describe the
preliminary steps that are needed to integrate a hardware design into
a simulator, following a DES paradigm.

In general, prototypical hardware boards, such as SDRs, consist
of hardware components, e.g., a microprocessor, and a software
library that allows accessing the hardware components. On top
resides the user code, which implements certain functionality based
on the underlying hardware. The library thus allows the user code
to easily access existing hardware, e.g., sending a packet over the
radio, without having to deal with low-level hardware details.

One of the most challenging tasks in simulation is to find the right
level of abstraction, trading accuracy for complexity [29]. Although
most analytic considerations in this section are not limited to a spe-
cific SDR design, we base our analysis on the 802.11 Reference De-
sign for Wireless Open Access Research Platform (WARP) v3 [17]
to provide a concrete example. WARP is widely used in wireless
communications research and is part of many scientific publications
in this area, e.g., [2, 6, 30]. In this section, after providing a short
introduction to the general architecture of the 802.11 Reference
Design, we analyze the different aspects that need to be considered
in a code-transparent DES. Afterward, in Sec. 3, we describe the
design of Code-transparent Wireless Prototype Simulation (CoWS),
which is based on the analysis.

2.1 The WARP 802.11 Reference Design
The 802.11 Reference Design provides an implementation of the

IEEE 802.11-2012 standard [10], where parts of the standard are
realized in hardware, i.e., with the help of an FPGA, while other
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Figure 1: Simplified architecture of the WARP v3 802.11 Ref-
erence Design (adapted from [20]). On the left, the different
layers of the architecture are shown. On the right, the access to
hardware components from the user code, i.e., CPU High and
CPU Low, is illustrated.

parts are realized in software, i.e., running on two Xilinx MicroBlaze
Central Processing Units (CPUs). The basic architecture of the
802.11 Reference Design is depicted in Fig. 1.

The architecture consists of WARP v3 hardware, custom FPGA
cores, and two Xilinx MicroBlaze CPUs, i.e., CPU High and CPU
Low. The user code, running on the Xilinx MicroBlaze CPUs,
implements major functionalities of the Medium Access Control
(MAC) protocol. It further parameterizes the FPGA core, where
parts of the MAC and Physical (PHY) protocol are realized, and thus
allows to flexibly configure its components. The interface between
hardware and software is a library offering a set of functions to the
user code, which, depending on their task, set certain registers or
manipulate the hardware in another way.

For our code-transparent simulation, this library offers a straight-
forward abstraction layer from real world to simulation. Instead
of manipulating real hardware, we change the library functions to
translate their functionality into DES. At the same time, the function
prototypes remain unchanged to enable code-transparent simulation
of the user code. In the following, we analyze the different compo-
nents of embedded system designs and explain the required adaption
to match DES.

2.2 Interrupts and Polling
Basically, there are two different ways for a processor to notice

changes in attached hardware components: Either by interrupting
the current execution with the help of an interrupt controller or by
continuously polling the components for changes. Both methods
should be supported by the simulation engine.

Interrupts nicely match the DES paradigm, as an interrupt simply
implies adding a new event into the future event set. The event
handler can process this event like any other event, i.e., with no
additional overhead. However, a polling approach requires a bit
more logic: When the user code actively polls for changes in the
hardware, the state of the simulation instance does not change until
there is an actual change in the hardware. Following the DES
paradigm, this implies that the mere act of polling might be neglected
to reduce the simulation overhead.

Therefore, we propose that at the beginning of a polling phase
the user code transfers control to the simulator until a change in the
(simulated) hardware occurs. Such a hardware change is, analog to
simulated interrupts, represented by an event in the future event set.
When the event handler processes this event, the simulation time is
updated and the control is handed back to the user code, which may
then react depending on the hardware change. The control flow of
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Figure 2: Control flow of polling in the simulator. When a
polling phase begins, the user code transfers control to the sim-
ulator until a hardware change occurs. Then, the control is
handed back to the user code to react upon the change.

the simulated polling process is depicted in Fig. 2. It includes a user
code, a library, and a simulator instance. The user code instance
polls the library instance once for hardware changes, then it transfers
control to the simulator instance until a hardware change occurs and
the control is handed back to the user code. This allows gaining the
same advantages as when simulating interrupts, while still modeling
the polling process through the simulation time.

2.3 Timers and Schedulers
Another important component of embedded systems are timers.

Timers allow the user code to schedule a certain function at a specific
point in time. Moreover, timers are also used to periodically execute
a certain functionality, e.g., sending a Beacon message every 100 ms.
In the 802.11 Reference Design, for example, a coarse (200 ms
accuracy) and a fine (64µs accuracy) grain timer are provided. The
accuracy defines the time interval, i.e., when the timer is fired to
check whether a scheduled function should be executed or not. This
process is conceptually illustrated in Fig. 3 (a). A direct modeling of
this approach into DES would imply the creation of a new event each
time the timer fires. To avoid this large and unnecessary overhead,
we propose to create a single event for the scheduled time of the
respective function, thus skipping void interrupts for the timers.
Fig. 3 (b) depicts the proposed behavior of a timer in the simulation.
Note that the simulation time only needs to be updated when the
event handler processes the timer event leading to the execution of
the scheduled function.

Additionally, hardware boards typically also provide a system
time. The 802.11 Reference Design, for example, offers a system
time and a MAC time, where the user code can adjust the MAC
time while the system time is read-only. These times are
realized each by a 64-bit register, which is incremented every mi-
crosecond. To simulate the progression of time in DES, it suffices to
update such time registers only when they are accessed by the user
code, by adding the simulated time between the previous access and
the current access to the according register. This again considerably
reduces the number of generated events, without constraining the
simulation of the user code.

2.4 Memory Management
Memory is a trade-off between size, access times, and persis-

tence. Especially in the design of embedded systems, different types
of memory, e.g., Random Access Memory (RAM), Electrically
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(b) Proposed model for scheduled timer in DES.

Figure 3: While on real boards timers periodically fire to check
whether a function is scheduled for execution (a), the proposed
model for simulated timers only fires at the time of the sched-
uled execution (b).

Erasable Programmable Read-Only Memory (EEPROM), and flash,
are used for different purposes. Depending on the simulation model,
the characteristics of a specific memory type should be considered.
For a code-transparent simulation, it is indispensable to map the
memory address space from the embedded device to a simulated
storage location.

In SDRs, mainly hardware registers and RAM are used for mem-
ory. The available EEPROM is used for contents that should persist
on the boards even when the power is turned off, e.g., the board
MAC address. To achieve a similar behavior in the simulation, we
propose to write the content of the EEPROM to a file on the host
computer in order to persist various simulation runs.

Regarding the RAM, an essential feature of the simulator is to
only provide those parts of the memory that are currently needed
in the simulation. To be more specific, the simulation engine shall
dynamically allocate and initialize only the needed memory parts.
During our analysis of the WARP library code, for example, we
found that the large parts of the available RAM are initialized, al-
though these parts of the RAM are never used for write and read
operations. Thus, such memory parts do not need to be allocated
and initialized in the simulator. In this way, the overall used memory
of all simulated instances can be kept low, which, in turn, ensures
efficient memory usage on the host system.

Similarly, typically not all hardware registers are used during the
execution of the user code. Consequently, only those registers that
are accessed by software or by (simulated) hardware components
need to be allocated in the simulation. For code-transparency, such
simulated registers can be realized in a map, where each entry
consists of the register’s address and the corresponding value.

2.5 FPGA Cores
FPGAs are increasingly integrated into SDRs, as they provide a

flexible way in realizing certain tasks, e.g., signal processing, in the
hardware [25]. While some of these tasks might be abstracted in the
simulation, such as the radio transceivers, other functionality needs
to be considered by the simulator.

As shown in Fig. 1, for example, essential parts of MAC protocol
are realized in the FPGA of the 802.11 Reference Design. In partic-
ular, the Distributed Coordination Function (DCF) of IEEE 802.11-
2012 [10] relies on a MAC support core in the WARP v3 FPGA.
This core is essential for the correct protocol behavior of the board
and must be therefore modeled in the simulation.



A typical approach for specifying a hardware design is by us-
ing Finite State Machines (FSMs) [22]. The advantage of such an
approach is that it can be easily translated into an imperative pro-
gramming language, such as C, and nicely fits the DES paradigm.
For the code-transparent simulation of an SDR platform, the dif-
ferent hardware FSMs, depending on the SDR design, can thus be
directly modeled into the simulator. With this approach, the user
code is still able to parameterize the simulated hardware support
cores, but design changes in the FPGA consequently require changes
in the simulation framework.

2.6 Processor
The main component of an SDR platform is the processor, en-

abling the execution of programmable user code. For a code-
transparent simulation, the processor of the SDR board needs to
be represented in the simulator. The speed of a processor mainly
depends on its clock rate and on its architecture, e.g., whether it sup-
ports floating point operations or not. One way to accurately model
the processor behavior is by Instruction Set Simulation (ISS) [4].
However, such fine-grained models create a large overhead for the
simulation engine, especially when simulating a large distributed
topology. Consequently, we opt for not modeling the execution of ev-
ery processor instruction, but instead to measure the execution time
for time-consuming tasks, e.g., copying data from one memory loca-
tion to another, and to calibrate our DES engine accordingly. Further
details regarding the calibration process are provided in Sec. 4.1.

2.7 Hardware I/O
Finally, an SDR platform consists of various hardware I/O compo-

nents, which enable the board to interact with its environment. Such
components typically include, for example, General-Purpose In-
put/Output (GPIO) pins, a Liquid Crystal Display (LCD), Universal
Asynchronous Receiver / Transmitter (UART), Ethernet ports, and
an antenna. For each component, the input and output characteristics
must be analyzed to allow for an adequate modeling in the simulator.
Output that is only meant for logging purposes, e.g., GPIO pins,
LCD, and UART, might be simply written to text files in the simu-
lation for a subsequent evaluation. For input, e.g., a user pressing
a button, the simulation might include a user model pressing the
button when a certain condition applies.

3. DESIGN
In this section, we present our design for Code-transparent Wire-

less Prototype Simulation (CoWS), which builds upon the analysis
in Sec. 2. Although the proposed design mostly offers general ap-
proaches for the simulation of wireless prototypes, we show its
feasibility by describing the integration of the existing 802.11 Refer-
ence Design for WARP v3 into the popular DES framework ns-3. In
the following, we first provide a short overview of the main design
components. Then, we describe each component more detailed in
individual sections.

3.1 Overview
The main architecture of CoWS consists of three layers, which

are depicted in Fig. 4, namely SDR code, DCE, and ns-3. On the
SDR code layer, we further differentiate between user code and
library. The user code is by design code-transparent, i.e., the same
code runs on SDR hardware as in the simulation. In the library
code, in turn, the function prototypes are unchanged while the
implementations might be adapted to call the simulation engine
instead of real hardware components. The clear separation between
user code and library thus facilitates the code-transparent simulation
of any user code that is also based on the SDR design. For the code-
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Figure 4: Proposed architecture of CoWS. The design consists
of three main layers: ns-3, DCE, and the SDR Code.

transparent simulation of different SDR platforms, the respective
library code and hardware functions need to be analyzed (cf. Sec. 2)
and similarly interfaced to the DCE layer.

The DCE layer includes an adaptation of the ns-3 extension DCE
by Lacage [14] to enable the code-transparent simulation. It is
structured into a translation and a hardware abstraction layer. The
translation layer maps function calls from the SDR code layer to
their counterpart in the simulation, while the hardware abstraction
layer models the behavior of hardware components using DES.

Finally, the ns-3 layer provides the simulation engine, which
is used to model all network-related functions, e.g., the physical
topology of the network or the respective transmission channels. As
the modifications on this layer are only marginal, it may be easily
replaced by another network simulation engine, e.g., OMNeT++ [1],
given that a similar extension like DCE is available to the simulator.
A more detailed description of the three layers is provided in the
remainder of this section.

3.2 SDR Code Layer
To integrate the SDR source code into ns-3, the code needs to

be analyzed in order to identify those code fragments that access
different hardware components. In general, the user code accesses
such components through a library that implements different func-
tions. In the WARP v3 design, this library is divided into a library
for CPU High, and a library for CPU Low, as the design implements
two CPUs. Apart from such hardware accesses, there are other
factors in the code execution that prevent the user code to be directly
simulated with DES. In the following, we shortly describe different
aspects of the user and library code that need to be addressed in
code-transparent DES.

C Libraries.
The user code as well as the library code might both use C li-

braries, most prominently the C standard library. As such libraries
are typically not specific to certain hardware, they can be directly
integrated into the simulation. In the 802.11 Reference Design, for
example, the user code frequently accesses the C library function
malloc to allocate memory. In the simulation, such functions are
typically also available on the host system. However, some library
functions need to be modified to match the DES paradigm. Yet, to
simulate an SDR platform in ns-3, there is typically no need to adapt
the libraries, as DCE already provides the necessary adaptions.

In this context, it is important to note that the system architec-
ture of the host system might be different from the simulated SDR
platform. This might have an effect on the sizes of certain data
types, e.g., the SDR platform might have a 32-bit architecture, while
modern computer systems typically provide a 64-bit architecture. To
avoid unexpected behavior when switching from embedded device



to simulation, data types should have a specified size, e.g., by using
int32_t instead of int.

Polling in Infinite Loops.
To simulate the user code with a DES paradigm, a major problem

occurs when the code is indefinitely polling for hardware changes,
which we already described in Sec. 2.2. According to the DCE
manual [7], infinite loops need to be modified in a way that the user
code periodically hands over control to the simulator engine in order
to let the event handler process the next event. Otherwise, a deadlock
situation occurs where the user code polls for hardware changes,
which can not happen because future events are not processed as
long as the current event, i.e., indefinite polling, does not complete.

There are several ways in how to hand over control to the simula-
tion engine. One possibility is let each polling function in the library
code call the simulation engine. This would also preserve the code-
transparency of the user code. However, this might result in many
unnecessary simulation engine calls and eventually slow down the
simulation execution time. Therefore, we opt for slightly modifying
the user code in a way that each infinite loop, e.g., the polling loop
in the main function, calls the simulation engine after one iteration,
which typically consists of polling different hardware components.
The control is then only handed over to the user code when the next
event is processed. As such loops are intended by the developer to
poll indefinitely for hardware changes, they can be easily identified
manually. Moreover, there are also ways in automatically detecting
such loops, e.g., with static code analysis [3].

Random Numbers.
Randomness is an important aspect of real-world communica-

tion protocols, which is difficult to adequately address in computer
simulation. Indeed, in many cases it is even useful that real-world
stochastic processes are controllable in the simulation, as this en-
ables reproducibility of simulation results.

In CoWS, the user code may get random numbers, which are
internally provided by a pseudo-random number generator. For most
specifications, e.g., the IEEE 802.11 standard [10], such a pseudo-
random number generator suffices. Additionally, this allows to set a
specific seed and thereby to reproduce simulation runs. Otherwise,
each simulated SDR node is seeded with another random number
to ensure a different behavior when relying on the pseudo-random
number generator.

3.3 DCE Layer
The main purpose of DCE is to enable the simulation of existing

user and kernel space implementations in ns-3 [14]. Thereby, a
core feature of DCE is to map Portable Operating System Inter-
face (POSIX) API calls to ns-3. This enables the code-transparent
simulation of Linux applications, e.g., iperf, in ns-3. For CoWS,
we make use of DCE to enable code-transparent simulation of SDR
user code. In order to do so, DCE needs to support the function-
ality of the respective SDR library and, where necessary, provide
abstractions from the actual hardware.

Following the DCE architecture, POSIX functions are provided
through shared libraries. To simulate WARP nodes, we extend
DCE with an additional shared library, which we name libwarp.
In general, DCE allows to add a system call either by using the
implementation provided by the host operating system, a so-called
NATIVE symbol, or by replacing the implementation in the library
with an own implementation, a so-called DCE symbol [7]. The latter
is applied for symbols where the behavior needs to be adapted for
DES. The libwarp thus acts as an interface between modified
WARP library and DCE layer to hand over control to the simulator.

All libwarp symbols are of the kind DCE, as they do not exist
in the host operating system. Their respective implementations are
provided on the DCE layer. For each SDR design, a corresponding
shared library needs to be implemented in DCE in order to enable
the simulation of the respective SDR platform. In the following,
we describe how the library and hardware abstraction of the most
important functions is realized.

Processors and Shared Memory.
SDR platforms might include more than one CPU to parallelize

the execution of tasks. As described in Sec. 2.1, the 802.11 Ref-
erence Design, for example, implements two Xilinx MicroBlaze
CPUs, namely CPU High and CPU Low, where the latter is responsi-
ble for time-critical tasks such as sending acknowledgement packets
and the former is responsible for high-level management tasks such
as the association of new stations. The communication between the
two CPUs is enabled through shared memory, e.g., the CPUs may
both access the transmit and the receive buffers, and via message
passing. For the latter, the 802.11 Reference Design implements a
Mailbox, which manages the messages for the respective CPUs
in first in, first out (FIFO) queues. To receive a new message, CPU
High may register for an interrupt or use polling, while CPU Low
exclusively uses polling.

In CoWS, the simulation of multiple CPUs is supported by letting
the code for each CPU run each in its own thread, which CoWS
manages on its DCE layer. The DCE layer also centrally man-
ages the communication via shared memory and message passing,
e.g., the FIFO queue of the Mailbox can be easily achieved with
std::queue. Moreover, the message interrupts and polling mech-
anisms nicely fit into DES, when modeled as described in Sec. 2.2.

Radio Communication.
Most parts of the radio communication are directly handled by

ns-3, and can thus be configured as one would usually configure
such communication in ns-3. However, when handing over a packet
from the user code to ns-3, and vice versa, translation steps are
necessary. We address these changes on the DCE layer, which acts
as a translation layer between the user code and ns-3.

Moreover, the simulation engine, similar to a real SDR board,
needs certain information to be able to transmit a radio packet. This
metadata, e.g., the total packet length, the employed Modulation and
Coding Scheme (MCS), the transmission power, etc., is thus used to
configure the transceiver. On the DCE layer, such parameters need
to be passed from the user code to the simulated PHY.

Similarly, for each received packet the PHY captures certain
metadata, e.g., the measured Received Signal Strength Indicator
(RSSI) during the reception. In the simulation, such information
needs to be conveyed from the simulated PHY to the simulated
SDR user code, besides the actual data packet. The 802.11 Ref-
erence Design defines two C structs, i.e., tx_frame_info and
rx_frame_info, which are stored in the transmit and accord-
ingly in the receive buffer along with the data packet for information
exchange between PHY and user code.

FPGA Support Cores.
Given that the SDR design includes FPGA support cores for the

user code, these support cores need also to be considered for code-
transparent simulation, as already mentioned in Sec. 2.5. The FPGA
of the 802.11 Reference Design, for example, includes a MAC Sup-
port Core, which handles sending of radio packets according to the
IEEE 802.11-2012 standard [10]. More specifically, it implements
low-level MAC mechanisms of DCF, i.e., the access to the shared
medium according to the protocol. The implementation into the



FPGA fabric guarantees a deterministic timing, which is essential
for respecting the Inter-Frame Spaces (IFSs). The MAC Support
Core is composed of three controllers, where each consists of an
FSM handling the transmission of different packet types.

The simulation of an FPGA configuration, which is specified in
Hardware Description Language (HDL) or Verilog, is not supported
in a code-transparent way in CoWS. Remember that the code-
transparent simulation of an FPGA is not the focus of this work,
but rather the code-transparent simulation of the user code. FPGA
support cores are therefore considered as another (static) hardware
component that needs to be modeled in the simulator. A convenient
way to do so is to use an automatic tool that converts HDL or Verilog
into C/C++. Based on the translated code, we implement the support
cores in the DCE layer. Each simulated SDR node then relies on an
own instance of the simulated cores.

Ethernet Communication.
SDR platforms often provide one or more Ethernet ports, which

are primarily used to transparently forward Ethernet packets via
the radio and to exchange configuration / measurement data with
a desktop computer. In the 802.11 Reference Design (cf. Fig. 1),
CPU High is responsible for receiving and sending packets via the
Ethernet ports. For receiving, interrupts may be enabled through the
user code, which CoWS realizes as described in Sec. 2.2.

As ns-3 supports the simulation of Ethernet hosts using the Tap
Bridge Model, this part can be reused for CoWS. Again ns-3 sepa-
rates the Ethernet header from the payload, which requires a small
translation step from standard-compliant Ethernet packets (as ex-
pected by the user code) to the ns-3 representation of Ethernet
packets. Apart from this minor modification, Ethernet communica-
tion with simulated SDR nodes seamlessly integrates into ns-3, as
further explained in Sec. 3.4.

3.4 ns-3 Layer
The ns-3 layer contains the DES core and is further responsible

for the simulation of the communication network. This includes
the different network components, e.g., an SDR instance, a physi-
cal topology of the simulated network, and the respective channel
models. As mentioned before, ns-3 already provides flexible con-
figurations for these components, which we can directly integrate
into CoWS. It is, for example, possible to include simulated SDR
and ns-3 Wifi nodes in the same topology. In the following, we
describe the integration of SDR nodes into ns-3 network topologies
and furthermore provide details on the simulated PHY and possible
channel model configurations.

Simulation of a Network Component.
In ns-3, simulated nodes use the NetDevice class for commu-

nication with other nodes. Therefore, an ns-3 node includes for each
communication channel an instance of NetDevice. For standard
Wifi communication, for example, a node may include an instance
of WifiNetDevice, which is derived from NetDevice. When
simulating a specific SDR design, it might be necessary to provide a
custom derivation of NetDevice for the respective radio interface.

The architecture of a simulated WARP node in CoWS is depicted
in Fig. 5. It consists of the user code, the WARP library code, DCE
hardware abstractions, and instances of NetDevice for communi-
cation to other nodes. For the radio communication, we created the
WarpNetDevice class, which is similar to WifiNetDevice
but uses the MAC implementation and PHY configuration defined
in the WARP user code and on the DCE layer. For the 802.11 Refer-
ence Design this corresponds to the IEEE 802.11-2012 standard [10],
but as the user code and the FPGA can be modified, this might

User Code

WARP Library

DCE

ns-3
CSMA ND WARP ND

Figure 5: Architecture of a simulated WARP node in CoWS.

follow any custom-made MAC protocol and PHY configuration.
Moreover, simulated WARP nodes include a CsmaNetDevice,
an ns-3 module for an Ethernet connection to other nodes.

PHY and Channel Models.
To model a wireless channel in ns-3, the user may either imple-

ment its own channel model or rely on already existing ones. When
considering IEEE 802.11, ns-3 provides YansWifiPhy for the
corresponding simulation of the PHY and YansWifiChannel
for the simulation of a wireless propagation model [15]. These
classes offer a wide range of configuration options, which allow
representing a similar setup in the simulation to the setup of the real
prototyping boards. In the next section, we provide more details
on the configuration of YansWifiPhy and YansWifiChannel,
which we use for the validation of CoWS.

4. VALIDATION
The aim of this section is to validate CoWS in real-world de-

ployments, i.e., we use different performance metrics to assess the
validity of the results obtained by CoWS in comparison to the real
world. Before describing our validation results in more detail, we
first discuss the applied validation methodology.

4.1 Methodology
As explained in Sec. 3, major parts of the hardware design func-

tionalities are modeled in CoWS to enable code-transparent simu-
lation of the user code. Regarding their timings, we differentiate
between four distinct cases: (i) inherent timings, e.g., a hardware
timer of 100µs, (ii) standard-defined timings, e.g., a DCF Inter-
Frame Space (DIFS) in IEEE 802.11, (iii) nature-defined timings,
e.g., wireless propagation speed, and (iv) hardware-dependent tim-
ings, e.g., a channel switch on the transceiver. While (i) to (iii) can
be directly configured in the DES engine, (iv) requires measure-
ments on the target platform to calibrate the simulation accordingly.
Such measurements strongly depend on the selected hardware and
therefore need to be performed for each platform prior to its accurate
simulation. As an example, we provide details on the calibration
of the 802.11 Reference Design (v1.5.2) on WARP v3 hardware,
followed by the considered scenarios and metrics. Note that it is also
possible to calibrate simulation code that is purely based on ns-3.
However, we will show that with calibration, our code-transparent
approach performs at least as well as a pure ns-3 solution.

Calibration.
For the calibration of CoWS, we first analyze which WARP de-

sign functionalities might have an impact on the execution time.
Where necessary, we measure the actual execution time of the se-
lected functionality in the real hardware. We repeat each measure-
ment 1000 times to compute an average value; the variance is for all
measurements negligibly small. Table 1 summarizes our findings.



Design component Timing [µs]

Read/write mailbox ≈ 1
Channel switch 93.6
Radio transmissions time modeled by ns-3
Ethernet transmissions time modeled by ns-3
Print text via UART 86.999x+ 0.013
Direct Memory Access 1.240; x < 1MB

2.862; x ≥ 1MB
memcpy 0.007x+ 0.012; x < 100Byte

0.05x− 0.073; x ≥ 100Byte

Table 1: Measured timings in µs of different 802.11 Reference
Design components on WARP v3, where x denotes the number
of Bytes used in the respective operation.

Note that the timing of some functionalities also depends on the
size of the input, e.g., printing text via UART depends on the number
of Bytes x. The timings are then used to calibrate the simulation
time of respective events in ns-3. However, not all design aspects
that require execution time are considered in Table 1. It is known,
for example, that floating point operations need a relatively long
computation time on WARP nodes due to the missing hardware
support for floating point operations. Nevertheless, this issue is not
considered in CoWS, as our DES model abstracts from the CPU
instruction level as already explained in Sec. 2.6.

Validation Scenario.
We base our validation on an existing real-world installation,

namely the wireless bridge scenario 1, which is depicted in Fig. 6(a).
In this scenario, two WARP nodes are each connected to a computer
via Ethernet. This allows to run any application on the computers,
e.g., iperf, to test or benchmark the radio communication between
the WARP nodes. Therefore, Ethernet packets from one computer
to a WARP node are transparently forwarded via the radio to the
other WARP node. This other board then forwards the packets via
Ethernet to the application on its connected computer. From the
application layer perspective, the replacement of the Ethernet con-
nection by this wireless WARP bridge does not require any changes
in the application code, as the 802.11 Reference Design includes
encapsulation and decapsulation functions to covert Ethernet to
WiFi packets and vice versa. To compare the results obtained in
the real-world scenario with a simulated scenario, we additionally
simulate this scenario in CoWS. The architecture of the simulated
nodes and their topology is depicted in Fig. 6(b).

Both scenarios of Fig. 6 consist of an AP and a STA. The STA
is wirelessly associated to the AP at a distance of 1 m. We selected
these idealized conditions, as the aim of this paper is not to model a
specific propagation environment in ns-3, but to validate the behavior
of the simulator in a scenario comparable to the real-world scenario.
We perform our measurements in the 2.4 GHz and in the 5 GHz band
to validate our approach under various influences on the wireless
propagation. The Operating System (OS) on each computer is an
Ubuntu Linux with kernel version 2.6.35, as this is the closest match
to the default Linux kernel version of DCE kernel mode (version
2.6.36) [7]. In total, we differentiate between four configurations of
the mentioned scenario:

WARP Antenna. The real-world wireless bridge scenario, where
the WARP nodes use their antennas for Single Input and Sin-
gle Output (SISO) communication. The antennas are placed

1https://warpproject.org/trac/wiki/OFDMReferenceDesign/
Applications/Bridge

iperf (client) / ping
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iperf (server)

Linux

Ethernet IEEE 802.11

1 meter

Ethernet

(a) Real-world wireless bridge scenario.
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(b) Simulated wireless birdge scenario.

Figure 6: Validation scenario: A STA is wirelessly connected to
an AP. For performance measurements, e.g., with iperf or ping,
both devices are connected to a computer via Ethernet.

at a distance of 1 m to each other. Additionally, each WARP
node is connected via Ethernet to a computer with Linux
kernel version 2.6.35.

WARP Cable. This configuration equals to the WARP Antenna
configuration, except that the antennas are replaced by a coax-
ial cable to shield the radio communication from external
interference. Moreover, an attenuator of 42 dB is included in
the cable connection to avoid damage to the radio controllers.

CoWS. A simulation of the wireless bridge scenario in CoWS,
as shown in Fig. 6(b). As wireless channel model, we use
YansWifiChannel with log distance propagation model
and constant speed propagation delay for communication at a
simulated distance of 1 m. Each WARP node is connected to
a simulated node via an ns-3 CsmaChannel. The simulated
hosts run with kernel version 2.6.36.

ns-3 WiFi. This configuration equals to the CoWS configuration,
with the difference that the simulated WARP nodes are re-
placed by ns-3 WifiNetDevices. Consequently, they do
not run the 802.11 Reference Design, but they are, however,
also simulating IEEE 802.11 and configured to use the same
MCS, transmit power and wireless channel as the WARP
nodes. We use this configuration to investigate how close the
provided ns-3 models match real-world scenarios.

Metrics.
Based on the previously described calibration and validation sce-

narios, we are mainly interested in two performance metrics to val-
idate the behavior of CoWS compared to real-world deployments.
The first one is the achieved throughput, or more specifically, the
goodput we achieve in real-world configurations compared to sim-
ulations. Secondly, we are interested in how well the latency is
modeled in CoWS compared to the real-world and to the ns-3 WiFi
simulation. In the four validation configurations, we measure good-
put and latency using the tools iperf and ping, respectively. In the
following, we present the measured results of the tools, each in an
individual section.

https://warpproject.org/trac/wiki/OFDMReferenceDesign/Applications/Bridge
https://warpproject.org/trac/wiki/OFDMReferenceDesign/Applications/Bridge
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Figure 7: Mean UDP / TCP goodput for each of the four scenario configurations in the 2.4 GHz and the 5 GHz band.

4.2 Goodput
For each of the four configurations that we described in the pre-

vious section, we measure the achieved goodput, i.e., the rate of
successful data delivery on the application layer. The measurements
are performed with iperf, where the iperf server runs on the com-
puter / simulated host that is connected to the AP. The iperf client,
in turn, runs on the computer / simulated host that is connected to the
STA. Following the default configuration of the 802.11 Reference
Design, we set the MCS to Quadrature Phase Shift Keying (QPSK)
and with 3/4 coding, which achieves a theoretical PHY throughput
of 18 Mbit/s. We repeat the measurements for a single configura-
tion 30 times to compute an average and a standard deviation; the
goodput results are extracted from the iperf server report.

UDP Measurements.
The results of the User Datagram Protocol (UDP) goodput are

shown in Fig. 7(a). When comparing the WARP Antenna results
for the 2.4 GHz and 5 GHz band, we note that the achieved goodput
is about 3 Mbit/s lower than in the 5 GHz band. We attribute this
observation to the increased interference in the 2.4 GHz band due to
co-existing radios. The results in the 5 GHz band, which is much
less crowded by other technologies, are almost the same as for
WARP Cable, where no interference occurs. As interference is
currently not considered in the channel model of our simulation, the
channel of the WARP Cable configuration actually closely matches
the channel model in CoWS and ns-3 WiFi. Still, we observe a
slightly higher goodput with CoWS compared to WARP Cable, on
average about 0.28 Mbit/s higher with 2.4 GHz, and on average
about 0.4 Mbit/s higher with 5 GHz, as the additional attenuation
of 42 dB in the cable setup is not modeled in the simulation, which
results in slightly better propagation conditions in the simulation.

In comparison, the goodput of the ns-3 WiFi configuration is on
average 0.25 Mbit/s lower than with CoWS, as we are considering
two independent implementations of IEEE 802.11 with slight differ-
ences. These results show that CoWS achieves a close match in the
UDP goodput compared to the real world, simulating the calibrated
802.11 Reference Design with a deviation below 3 %.

TCP Measurements.
Compared to UDP, which is a stateless transport protocol with low

overhead, the main features of Transmission Control Protocol (TCP)
are retransmissions, and flow / congestion control to provide reliable,
in-order data streams between a client and a server. However, these
mechanisms might come at the price of a reduced goodput compared

UDP, as observed in the results of Fig. 7(b). There, in the WARP
Antenna configuration, the goodput is at 9.55 Mbit/s in the 2.4 GHz
band, and at 11.48 Mbit/s in the 5 GHz band. Even the WARP Cable
configuration only achieves about 11.65 Mbit/s in both bands. In
comparison to WARP Cable, the results of CoWS and ns-3 are lower
with about 10.45 Mbit/s and 10.87 Mbit/s, respectively. Tazaki et
al. also observed in [23] that simulating TCP in DCE kernel mode
yields a lower goodput than the corresponding real-world setup,
although both use the same kernel version. This indicates that the
DCE kernel mode needs to be further revised to obtain better-aligned
goodput results.

In conclusion, the results show that CoWS achieves comparable
goodput results to a real-world scenario, although we detected slight
differences due to the model abstractions. The ns-3 WiFi approach
also achieves comparable results to the WARP Cable configuration,
but it lacks code-transparency whereas in CoWS we can support
any protocol that was developed for the hardware platform. Never-
theless, the communication latency needs to be further investigated,
especially regarding the simulation of the Linux communication
stack, which we do in the following section.

4.3 Latency
For the communication latency measurements, or more precisely

the RTT, we consider again the four configurations presented in
Sec. 4.1. In these configurations, we measure the RTT between the
STA and the AP using ping. Apart from this modification, the four
configurations remain unchanged. We repeat the measurements for
each configuration in the 2.4 GHz and in the 5 GHz band 100 times.
The results are plotted in Fig. 8(a) and Fig. 8(b), respectively.

The WARP Antenna results in Fig. 8(a) and Fig. 8(b) once again
show the effects of a crowded transmission band, i.e., at 2.4 GHz,
in combination with a random back-off scheme on the MAC layer.
The average latency of the WARP Antenna configuration in the
5 GHz band, which is less affected by wireless interference, is al-
most identical to the latency of the WARP Cable configuration, i.e.,
about 750µs. However, in comparison, the latency for CoWS is
significantly lower at about 430µs and the latency for ns-3 WiFi
reaches an average of 340µs. We attribute this time difference to
the fact that CoWS models more exactly different (hardware) design
functionalities due to the calibration process. Nevertheless, there re-
mains a time difference of about 320µs between CoWS and WARP
Cable, which we further investigate in the following.

We suspect that in DCE kernel model, the processing time in
the Linux kernel is not accurately modeled in ns-3. To confirm
this hypothesis, we conduct an additional experiment that focuses
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Figure 8: RTTs of the four configurations in the 2.4 GHz and in
the 5 GHz band. The measurements are based on using ping.

on the processing times in the Linux communication stack. The
measurement setup is shown in Fig. 9(a). It consists of two hosts that
are directly connected via Ethernet. We implement this setup with
real hardware and, for comparison, with DCE kernel mode, again
with Linux kernel version 2.6.35 for both setups. The measurement
setup in the simulation is depicted in Fig. 9(b). We measure the RTT
between the two hosts with ping, where we repeat the measurements
100 times for both the real and the simulated setup. The obtained
results are shown in Fig. 9(c).

In the real hardware setup, the average RTT is 237µs whereas,
in the ns-3 setup, we measure a constant RTT of 30µs. The time
difference between the two setting is thus about 207µs. We attribute
this time difference mainly to processing within the Linux communi-
cation stack and on the network cards, as the propagation time over
a 1 m twisted pair cable is below 10 ns and can thus be neglected.
This indicates that such processing times are not considered in ns-3,
thus leading to shorter RTTs.

When we thus add the processing time difference of 207µs to
the measured RTT of CoWS (cf. Fig. 8), there still remains a time
difference of 100µs to the average RTT of the WARP Cable con-
figuration. We account this difference to the CPU processing on
the WARP nodes, which is limited to a certain speed on real world
hardware, but is, however, not modeled in CoWS, as we abstract
from CPU instruction level in the DES.

ping

Linux Linux
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(a) Real hardware setup.

DCE

CSMA ND CSMA ND

CSMA Channel

DCE

ping

(b) ns-3 CSMA setup.
Real Hardware ns-3 CSMA

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
T
T
 [

m
s]

(c) Linux / Ethernet latencies.

Figure 9: RTTs between two Ethernet-connected computers in
real world and in ns-3 (c). The real hardware and the ns-3
CSMA setups are shown in (a) and (b), respectively.

In total, the latency measurements show that with CoWS we can
accomplish a similar timing behavior as in a hardware setup, with
a corrected deviation of about 13 %. To achieve a closer match
between simulation and real hardware timings, the involved setup
components, e.g., the Linux network stack, need to be carefully
analyzed and calibrated in ns-3.

5. EVALUATION
After the validation of CoWS with real-world setups in the previ-

ous section, we are further interested in the efficiency of our imple-
mentation. Remember that a central benefit of network simulation
is the ability to flexibly scale the simulation scenario to a required
(large) network size. Especially when working with prototyping
platforms, such as WARP, medium-size networks, i.e., already with
more than ten nodes, are expensive and difficult to maintain. There-
fore, an important performance indicator for CoWS is the scalability,
i.e., how does our code-transparent approach affect memory con-
sumption and computation time depending on the network size? In
the following, we first describe the chosen evaluation setup. Then,
we discuss the measured results for the memory consumption and
the computation time.

5.1 Setup
The evaluation setup consists of a simulated 5m× 5m area in

which n simulated nodes are randomly placed. We consider various
configurations of the network size, in the range of 1 ≤ n ≤ 1000.
In each configuration, we have one AP and the remaining nodes are
STAs. The AP and STA user codes are simulated with CoWS as
described in Sec. 3, based on version 1.5.2 of the 802.11 Reference
Design, DCE version 1.8, and ns-3.25. For comparison, we simulate
this scenario also through ns-3 WiFi, using WifiNetDevices
for AP and STAs. The simulation runs on a Ubuntu Desktop 14.04
machine with an Intel i7 3.1 GHz CPU and 16 GB RAM. We repeat
the measurements for each configuration 30 times.

5.2 Memory Usage
We measure the peak memory consumption of the ns-3 process

that is responsible for simulating the WARP nodes. In the considered
time frame, CoWS has initialized the needed data structures for each
simulated WARP node and the user code is in its main function
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of different sizes.

polling for inputs or accordingly waiting for interrupts. Similarly,
we also measure the peak memory consumption of the ns-3 WiFi
scenario. The results for both simulation scenarios, depending on
the number of nodes, are depicted in Fig. 10.

In both scenarios, we see that for small network sizes (up to
10 nodes), the memory consumption is dominated by a constant
amount of required memory for the ns-3 process. Then, a linear
growth of the occupied memory with each additional node can be
observed. For CoWS, it can be approximated by the linear function

f(n) = 4MB · n , (1)

where n denotes the number of simulated nodes. Hence, each
simulated WARP node occupies about 4 MB of memory, although
the real WARP v3 boards have a RAM of 2 GB at their disposal.
However, as described in Sec. 2, CoWS only allocates the amount
of memory that a simulated WARP node currently needs. Thus, we
are able to reduce the memory allocation per WARP node to about
4 MB. In the ns-3 WiFi scenario, we observe that each simulated
node requires roughly 300 kB memory, as its growth depending on
n can be approximated by

g(n) = 0.32MB · n . (2)

These results show that, as expected, both scenarios have a linear
growth in their memory consumption, where for code-transparent
simulation the amount of needed memory per board can be kept low
when analyzing the library code accordingly (cf. Sec. 2.4).

5.3 Computation Time
Besides the memory usage, an important factor for the scalability

of our approach is the required computation time, as, in DES, the
simulation time does not necessarily match the actual time to execute
the simulation, which is influenced by many factors. Thus, we
measure the computation time for a simulation of 1 s in networks of
different sizes. During this time, each simulated node periodically
broadcasts messages to the other nodes, as all nodes are in wireless
reception range of each other. The obtained results for CoWS and
ns-3 WiFi are shown in Fig. 11.

For larger network sizes (above 20 nodes), the computation time
for both scenarios grows quadratically with n. At this topology size,
the simulation time corresponds to the computation time, which,
however, strongly depends on the underlying scenario, as further
discussed in the remainder of this section. The computation time of
CoWS can then be approximated by the following function:

f(n) = 2ms · n2 . (3)

For configurations below 20 nodes, the computation time is relatively
higher, as other ns-3 tasks, which are independent of n, dominate the
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Figure 11: Total computation time for the simulation of 1 s
(dashed line) in networks of different sizes.

measurements. In the ns-3 WiFi scenario we also have a quadratic
growth, with a lower constant factor than in CoWS, which can be
roughly approximated to

g(n) = 0.4ms · n2 , (4)

as in simulation approaches that are not code-transparent, typically
less DES events are required due to the higher abstraction level.

The quadratic growth of the computation time in both scenarios
is caused by the communication complexity: As each of the n
nodes broadcasts messages to n− 1 nodes, the total communication
complexity isO(n2), where we need at least one event per message.
These results show that even computationally expensive scenarios
with a quadratic communication complexity can be simulated in
CoWS in an acceptable time on commodity hardware for typical
wireless network sizes, i.e., below 100 nodes. For larger networks,
however, more advanced simulation techniques should be considered
in CoWS as well as in ns-3 WiFi, e.g., parallel DES [19].

6. DEBUG FUNCTIONALITY
Besides scalability, a further advantage of simulation compared to

prototypical deployments is the enhanced ability to find implemen-
tation defects. For distributed systems, it is difficult to concurrently
inspect the state of interacting entities, while simulation of such sys-
tems, in turn, offers a global view on the current state of the network
due to implicit synchronization, which significantly facilitates the
analysis. Furthermore, when pursuing a code-transparent approach
as in CoWS, the simulation may also be used to find implementa-
tion defects to improve the common code basis for simulation and
prototypes. On the host computer, which is used for the simulation,
already advanced debugging tools are provided through the OS,
while direct debugging of embedded systems is typically a rather
cumbersome process. In the following, we describe our preliminary
results of searching for implementation defects with CoWS.

As an example to test the debug functionality enabled by CoWS,
we analyze the 802.11 Reference Design with GNU Project Debug-
ger (GDB) [8]. Therefore, we configure a simple scenario consisting
of a STA and an AP, which we run with CoWS on a Ubuntu Desk-
top 14.04 machine with an Intel i7 3.1 GHz CPU and 16 GB RAM.
During the execution of the simulation, we attach GDB to the STA
and to the AP to inspect the program state during run-time. We
found several implementation defects in the user code as well as
in the WARP library. In general, each detected defect should be
analyzed regarding its impact on the hardware board and reproduced
on the board to rule out defects introduced by the simulation.

These defects were mainly caused by access to uninitialized point-
ers or by dereferenciation of null pointers. For embedded devices,



in contrast to systems that are managed by an OS, it is typically
possible to write to any addressable part of the memory. However,
writing to arbitrary parts of the memory may lead to unexpected and
erroneous behavior of the device, which is, in addition, difficult to
track down. In particular, we found, in the 802.11 Reference De-
sign code (version 1.5.2), dereferencing of an uninitialized pointer2,
wrong usage of a memory comparison function3, and an erroneous
register access4. All reported code defects were acknowledged and
fixed by the WARP project in code version 1.5.35.

Although the focus of this work was not to thoroughly test a spe-
cific protocol implementation, our small case study already shows
the potential of CoWS. We expect that the integration of more
systematic testing approaches, e.g., symbolic execution [12], will
enable CoWS to exhaustively test code of prototyping hardware
regarding implementation defects and ultimately improve the relia-
bility of such deployments.

7. RELATED WORK
CoWS enables code-transparent simulation of wireless prototypes

to better analyze and to flexibly scale existing hardware deployments.
Therefore, we compare our approach to advanced analysis tools for
wireless prototype networks as well as code-transparent simulation
techniques in this context, which we present in the following.

The Power Aware Wireless Sensors (PAWiS) simulation frame-
work [28] allows simulating various aspects of Wireless Sensor
Networks (WSNs) based on OMNeT++. The focus of this simula-
tion framework is to optimize WSN deployments regarding power
efficiency and reliability. Therefore, a model of each WSN node,
including its function, timing, and power consumption needs to
specified, where the detail granularity of the model can be adapted
depending on the simulation aspect that the user is interested in.
Moreover, data post processing tools allow to analyze the output of
a simulation run, and subsequently to optimize the WSN based on
the results. Nonetheless, the specification of an adequate simulation
model is a cumbersome and error-prone process, which we avoid by
our code-transparent approach.

In a similar regard, Dustminer [11] provides a debug tool that
analyzes logs from deployed nodes to discover events that lead to
errors in the interaction patterns. The output logs need to be fed to
Dustminer, which allows a post factum search for irregular behavior
patterns. With CoWS, however, we envision that such analysis tools
find implementation defects during run-time due to the easy access
of node logs in simulation. For validation, found implementation
defects in simulation may be then recreated in a real-world setup
using the same code basis.

The authors of [9] propose Wireless MAC Processor, a framework
that abstracts from a specific Network Interface Card (NIC) by pro-
viding a set of elementary actions and signals, which programmers
use to define FSMs for the MAC protocol behavior. Such programs
may then be ported to different NIC with no additional programming
effort and even during run-time. Although not directly envisioned
by the authors of the original paper, this also enables the simulation
of such MAC models and thus facilitates the transition from real
hardware to simulation.

Hybrid Simulation framework (HySim) [13] allows simulating
the execution of code on microprocessors on instruction-level, which
is referred to as ISS. This allows for a very precise simulation but
also significantly slows down the simulation process, especially

2http://warpproject.org/forums/viewtopic.php?id=3201
3http://warpproject.org/forums/viewtopic.php?id=3206
4http://warpproject.org/forums/viewtopic.php?id=3217
5http://warpproject.org/trac/wiki/802.11/Changelog

in distributed settings with a large number of nodes. The authors
of [18], in turn, tackle this trade-off between scalability and accuracy
with a cross-level simulator for the Contiki OS (COOJA), which
allows for simultaneous simulation at different abstraction levels.
COOJA enables simulation of a small subset of the network at a very
high precision, i.e., at OS level or even ISS, while the remaining part
of the network is simulated at the application level. This constitutes
an interesting feature, which could be considered for the further
development of CoWS.

A TinyOS Simulator (TOSSIM) was introduced in [16]. It enables
a code-transparent simulation of TinyOS applications in WSNs
with a DES. Therefore, it replaces low-level TinyOS components
with TOSSIM components to translate hardware interrupts into
simulation events. Similarly to CoWS, the authors were able to
discover several bugs in TinyOS with the help of simulation. The
main difference to our approach is the lack of an accurate timing
behavior and that TOSSIM uses own, simplified channel models
instead of a state-of-the-art network simulator.

In [21], the authors propose WARPsim, which, similar to CoWS,
also provides a code-transparent simulation of WARP. Therefore,
WARPsim offers a subset of the OFDM Ref. Design for WARP v1/2,
which enables an execution of WARP code on standard desktop com-
puters. The execution of WARP instances in different processes,
which are coordinated via Inter-Process Communication (IPC), al-
lows the simulation of small networks. However, this approach
does not scale well for larger typologies as each additional WARP
node requires its own process. Moreover, hardware timings are not
considered in WARPsim, which leads to a limited comparability
with real-world setups. Lastly, a major drawback of WARPsim is
that is does not rely on an advanced network simulator, such as ns-3
or OMNeT++, which strongly limits its application.

Finally, a simulation framework for multicore systems, named
Manifold, is proposed in [27]. This framework enables a full sys-
tem simulation of a multicore architecture by flexibly integrating
user-defined component models. The simulation takes place at CPU
instruction-level and may be conducted in a parallel or in a sequen-
tial way. While Manifold offers a precise simulation of complex
multicore architectures, it is unclear whether this approach is suited
for simulating large network topologies due to the fine grain sim-
ulation steps that are involved. However, with CoWS we follow a
similar modular approach to facilitate the adaptation and extension
of our simulation framework.

8. CONCLUSION
In this paper, we propose a code-transparent simulation frame-

work of wireless prototypes. We first analyze the needed steps to
achieve code-transparent simulation and then present our design,
which is embedded into ns-3 / DCE and enables the simulation of
SDR nodes. The validation of our approach is based on WARP
and real-world scenarios and shows that, after calibration, we are
able to achieve a similar behavior in the simulation compared to
the real-world. The UDP goodput revealed a deviation below 3 %
and the corrected latency results deviate about 13 %, where, for the
latter, we identified further potential for improvement. Furthermore,
it would be interesting to validate our approach in more complex
scenarios including more stations.

The memory and computation overhead of our framework is in
the same complexity class as a corresponding simulation that is
realized purely by ns-3. With our approach, however, we have
the benefits of code-transparency, i.e., a common code-base for
prototypes and simulation, and a strong correlation between both
domains. In a small case study, we show the ability of our framework
to find implementation defects in the wireless prototype code by

http://warpproject.org/forums/viewtopic.php?id=3201
http://warpproject.org/forums/viewtopic.php?id=3206
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detecting bugs in the 802.11 Reference Design. We expect that with
more systematic approaches, e.g., with symbolic execution, we will
find further defects, which will strongly increase the reliability and
correctness of prototypical deployments.

To summarize, our framework will not replace the development
and testing of wireless communication protocols on SDR platforms,
as the quality of its results depends on a strong correlation to the real
world. However, it is a powerful tool to seamlessly switch from the
real-world deployment to the simulation domain and vice versa. It
thus complements results from a real-world deployment by enabling
scenarios that were previously not possible due to time and cost
constraints and, finally, it eases the verification process for wireless
communication protocols.
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