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ABSTRACT
Improving web performance is fueling the debate of sizing TCP’s
initial congestion window (IW), which is a critical performance pa-
rameter especially for short-lived flows. This debate yielded several
RFC updates to recommended IW sizes, e.g., an increase to IW10
in 2010. The current adoption of IW recommendations is, however,
unknown. In this paper, we therefore conduct large-scale measure-
ments covering the entire IPv4 space inferring the IW distribution
size by probing HTTP and HTTPS servers. We present an HTTP
and TLS scanning method implemented in ZMap, enabling quick
estimations of IW sizes at Internet scale. For the first time since the
standardization and implementation of IW 10, we shed light on the
rugged landscape of IW configurations on the Internet.
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1 INTRODUCTION
For decades network protocol engineering has focused on improv-
ing throughput. Recent advances instead focus on latency reduc-
tions, e.g., fueled by attempts to optimize the interaction experience
with web services. The results of these approaches are reflected
in attempts to replace TCP as long-established transport protocol
(e.g., by QUIC [12] or MinimaLT [19]) or attempts to reduce ini-
tial loading delay with handshake optimizations (e.g., by TCP Fast
Open [21] or TLS False Start [14]). Since protocol extensions or even
replacements can face slow adoption rates—especially for transport
protocols—protocol parameter optimizations denote a popular area
of performance optimization.

In this respect, one long-lasting debate concerns the size of TCP’s
initial congestion window (IW). This parameter controls the amount
of unacknowledged data that can be sent after connection setup
and therefore directly influences Internet traffic characteristics (e.g.,
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traffic burstiness) and application performance (especially for short-
lived flows). Concretely, small IWs can prolong transmissions dur-
ing TCP’s slow start, especially for request/response protocols such
as HTTP or the TLS handshake. At the beginning of the connection,
a small request triggers a potentially large response that does not
fit into a small IW thus prolonging the transmission for at least
one round-trip. On the other hand, large IWs generate traffic bursts
that can overflow low-capacity links. The debate on configuring an
Internet-optimal IW started in the late 90s currently yielded to the
deployment of IW 10, initially proposed in 2010 [9] and enabled in
the Linux kernel as a default in 2011 [16]. The advocators argued
that IW 10 allows transmitting the initial response within the first
round trip of the connection for large fractions of the web traffic.
A recent IETF draft [2] questions this practice of standardizing an
IW that is optimal for all applications and Internet hosts. Instead,
this draft argues that the IW should be configured custom to each
deployment and application. Despite this debate on the proposed
IW, the actual IW values of Internet hosts remains largely unknown.
Given the relevance of the parameter for both Internet traffic and
application performance and in light of the ongoing debate on its
optimal value, we posit that a deeper empirical understanding of
current practices is needed.

This paper describes the first comprehensive assessment of TCP’s
IW configuration among TLS/HTTP hosts. The goal of our work
is to inform the current debate with an up-to-date view on IW
configurations resulting from a large-scale assessment of all public
IPv4 hosts reachable on port 80/tcp (HTTP) and 443/tcp (HTTPS).
This view is particularly relevant since it is the first assessment after
the standardization of IW10. Our study is enabled by an extended
measurement methodology that enables to scan HTTP and TLS
hosts without any prior knowledge. We contribute:

• We conduct the first ever large-scale IW scan over HTTP/TLS
reachable hosts in the entire IPv4 space. Yet we show that scan-
ning a small random subset (e.g., as small as 1%) is actually
enough to infer a representative IW distribution. Scanning smaller
random sets helps in reducing the Internet scan footprint.

• We provide a measurement methodology utilizing HTTP and TLS
to estimate IW settings without prior knowledge on an Internet
scale. We make our implementation of this methodology in the
ZMap scan tool openly available [22].

• We observe a rather rugged landscape of IWs; while server net-
works show high deployments of IW10, other (legacy) networks
still use older values. Notably, some services run IW configura-
tions customized to different services.

Structure. Section 2 presents related work on IW scans and Sec-
tion 3 presents the design of our measurement. We then discuss
our scan results in Section 4 and conclude the paper in Section 5.
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2 RELATEDWORK
The relevance of TCP’s initial congestion window (IW) size is re-
flected in an extensive debate and a successive evolution of its
value in the TCP standards over the last decades. Initially, the IW
was set to 1 segment in 1988 [13] and 9 years later standardized in
1997 [24]. This setting was experimentally extended to 2-4 segments
(or 4380 B) in 1998 [3] and one year later moved to a proposed stan-
dard [4]—a setting that remained untouched for a decade. Motivated
by the increase of network access speeds and the desire to reduce
web page loading times, [9] proposed in 2010 and later RFC 6928 [8]
recommended in 2013 to increase the IW to 10 segments. Most
recently, Allman [2] even argues for abandoning a specification of
the IW size and thus ending a decades-long debate. This argument
is motivated by allowing hosts to configure more tailored IWs.

Given the relevance of the IW on both flow completion times and
Internet traffic burstiness, an empirical understanding of the IW is
necessary to understand current network performance. This under-
standing has been gained in both active and passive measurement
studies. With regards to active measurements, Medina et al. [15]
probed 85 k servers in 2004. The size of the probe set was limited
since prior knowledge of the targets was required—a property that
is not needed in our scan methodology which enables us to probe
the entire IPv4 address space. With regards to passive measure-
ments, Qian et al. [20] inferred IW distributions from several traces
in 2009. While their data set covers traces captured in a diverse
set of networks and also covers non-publicly visible hosts, our IW
assessment based on active measurements allows probing of the
entire IPv4 address space containing all publicly reachable hosts. A
small-scale study by CDNPlanet [7] probed 15 CDNs via HTTP and
found 6 to use IW10 and others to use larger IWs. Further, since no
large-scale assessment is available to track recent changes in IW
parameterization (e.g., IW10 [8] and the proposed abandoning [2]
of default IWs), we argue that an updated view on the current IW
deployment is required. We update this view with an assessment
of TCP’s IW for reachable IPv4 HTTP and TLS hosts.

3 INITIAL WINDOW SCAN DESIGN
We use active measurements to extensively assess TCP’s IW con-
figurations deployed by HTTP/TLS hosts in the IPv4 space. This
enables us to assess all publicly reachable IPv4 hosts, including con-
tent infrastructure such as CDNs for which the IW can be a relevant
performance aspect. Since the IW size is not advertised in the TCP
headers (e.g., unlike the Maximum Segment Size), the IW size can
only be inferred from the sender’s behavior. This IW size inference
is thus at the core of our methodology, which we detail next.

3.1 General Initial Window Size Inference
We base our scan on the method of Padhye and Floyd [18], which
we summarize and extend next and depict in Figure 1. The IW
estimation starts with performing TCP’s 3-way handshake in which
a certain MSS and a large receive window is announced within
the SYN packet. Advertising a large receive window ensures that
sending is only limited by the IW and not by flow control. To
infer the IW size, we send a request to trigger a data transfer by
the remote host upon completion of the handshake. The remote
host will either have sufficient data to send, utilizing the full IW,

Our Scanner Probed Host

SYN [MSS=...,WIN=...]

SYN, ACK

ACK, REQUEST

ACK, SEG 1

SEG n
SEG 1

ACK n+1, WIN=2 · MSS
SEG n+1
SEG n+2

RST

Estimate
MSS Timeout

RetransmissionEstimate
IW=n

Verify
IW
full

Figure 1: Scan procedure: A small MSS is announced and ver-
ified, preventing to run out of data prior to reaching IW. The
estimated IW is the # bytes received before retransmission.

or stop sending before reaching the full IW size if the request
did not trigger a large enough response. As in [18], we do not
send acknowledgments causing the remote end not to increase the
congestion window and to eventually trigger a retransmit of its
first segment. Our scanner can then simply count the bytes and
packets it received and assume this to be the IW.

This basic procedure is challenged by the presence of packet
reordering and loss. To account for these challenges, we inspect
the sequence numbers to detect both events. While this approach
enables us to easily detect reorderings, the detection of packet
loss can be more difficult. First, if one needs to further analyze
the received data besides the IW assessment, lost packets would
need to be retransmitted, which given the scanners methodology is
impossible. Second, packet loss at the end of the stream (tail loss), i.e.,
in the last packet, cannot be detected and thus may lead to erroneous
IW estimates. Furthermore, TCP tail loss probes could set off the
estimated value, thus we do not enable selective acknowledgement
effectively disabling tail loss probes. Performing multiple scans of
the same host can increase the likelihood of detecting tail loss.

However, the biggest challenge when applying this technique
to an unknown set of hosts is triggering large enough responses
that fill up the senders IW. This is because, in the absence of prior
knowledge, the response size to a generic request is unknown. In
the event of responses smaller than the configured IW, the IW size
cannot be estimated. We address this challenge in two ways.

First, we maximize the number of transmitted segments by lim-
iting the MSS advertised in the TCP handshake. This is possible,
since the IW is configured in bytes depending on the advertised
MSS [8]:

IW = min(10 · MSS,max(2 · MSS, 14600)).
This definition is twofold: on the one hand, it defines an upper limit
in bytes. On the other hand, it suggests to reference the IW just by
the factor employed to the MSS, i.e., by the number of packets. Thus,
by announcing a small MSS, we can effectively lower the amount of
response bytes that are required to fill the IW. However, no standard
defines the smallest possible MSS, only a default MSS of 536 B is
defined. We therefore examined fresh copies of multiple operating
systems to test for the smallest possible MSS. We observed that
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Linux will typically reject an MSS below 64 B. All tested variants
of Microsoft Windows default to 536 B if the MSS falls below that
value. Concluding, we announce an MSS of 64 B, but monitor the
actually used segment size and use the observed maximum for our
IW estimation.

Second, we derive HTTP and TLS-based probing methods to trig-
ger large requests without prior knowledge which we detail in the
succeeding sections. Yet, regardless of the method we can determine
whether hosts are limited by the IW or simply because they are
short of data to transmit. After having received the retransmission
of the first segment, we will now acknowledge the last received
segment, effectively acknowledging all data sent before. In case a
host has more data, the acknowledgements cause a release of more
segments as the congestion window increases and the number of
unacknowledged bytes reduces, thus the host was in fact limited by
the IW. In contrast, if the host is out of data, no new segments will
arrive, thus we conclude that the estimation failed as we cannot be
sure that the IW was filled. To limit the potential load of segments
our scanner has to process, we leverage flow control by signaling
a small receive window of only two segments to limit the sender
while still having some redundancy for the detection.

3.2 HTTP-based IW Inference
To generate sufficient response data, the first method relies on
inferring the IW by probing HTTP servers. This choice is motivated
by the widespread deployment of HTTP as major application layer
protocol, which thus provides a good candidate for our IW scans.
According to [1], HTTP accounts for over 50% of traffic at a major
European IXP and, according to our scans, we can successfully
exchange data with ≈ 48.3 M hosts on port 80. For the same reasons,
HTTP was used in prior works to infer the IW size, e.g., Padhye and
Floyd [18] or Medina et al. [15]. Both works can only ensure large
enough responses that fill the IW by providing URL lists defining
an appropriate request for each probed host. However, an extensive
assessment of the entire IPv4 space is not feasible by relying on prior
knowledge. We therefore propose an extended approach that allows
inferring the IW of HTTP servers without any prior knowledge
such as precompiled URL lists triggering large responses.

Our proposed approach is as follows; we initially request the /
page hoping that it contains enough payload to fill the IW. As we
have no prior knowledge of the host, we can only include the IP in
the mandatory HTTP Host header. Many (virtualized) servers will
reply with a 301 Moved Permanently error, thus we can extract a
valid URI from the Location header in the error response. In these
cases, the extracted URI will redirect us to a valid page. We can
further provide a valid Host header, if the host’s common name
is included in the URI. These information enables to again issue a
request that hopefully results in a larger response. So, we send a
RST to quickly end the connection and issue another request on a
new connection following the redirect.

If redirecting fails, we increase the response size by bloating
possible error pages. This approach is motivated by an initial ob-
servation (not shown) that a substantial number of servers replies
with 404 Not Found pages that include the URI that could not
be found. Thus, enlarging the request URI will enlarge the error
response. We therefore request a long URI indicating the nature of
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Figure 2: CCDF of certificate chain length of 36.5M hosts
from censys.io data. TCP payload sizes covered with several
IWs using MSS of 64 and a typical MSS of 1336B.1

the scan, anticipating a long enough response. We choose the URI
to fill up the MTU of our connection, thus transmitting more bytes
than we announced we would be capable of in the MSS.

In addition to acknowledging segments to look for more data,
we additionally infer if the IW was actually exhausted by exploiting
HTTP characteristics. Concretely, we request that the remote end
closes the connection upon finishing the transmission by including
the Connection: close HTTP header. This should lead to a FIN
once the remote end has transmitted all data. However, if the remote
end has still data after it filled the IW, it cannot send the FIN as it
still has data in its transmit queue. By receiving the FIN, we infer
that the IW was not reached (in the absence of packet loss).

3.3 TLS-based IW Inference
Rising security and privacy concerns contributed to an increasing
use of HTTPS, the TLS tunneled version of HTTP [17]. After port
scans of the default HTTPS TCP port 443, we were able to suc-
cessfully exchange data with ≈ 42.6 M hosts. This share is further
expected to grow. Not only traditional services (e.g., banking or
e-commerce) are using TLS also big players such as Facebook or
Google have started to secure all of their traffic, further motivating
others to switch. This trend is also manifested in HTTP/2 [6]—even
though not mandated by the standard, practically all current imple-
mentations enforce TLS. Given this increasing relevance, we next
detail a TLS-based inference method.

Our IW inference utilizes the TLS handshake in which a large
response is sent by the server. In TLS, the handshake is initiated
with a client hello, indicating, e.g., cipher suites or extensions.
Upon reception, the server replies with a server hello choosing
a cipher and depending on that, key material. Most importantly,
the server continues to transmit its certificate chain that is required
to validate its trust. Certificates typically dominate the server’s
answer in the number of bytes.

We analyzed TLS handshakes using the data provided at cen-
sys.io. Figure 2 shows the complementary CDF of server certificate
chain length of 36.5 M hosts. On average, the certificate chain length
was 2186 B (minimum 36 B and maximum 65 kB). For our scan to
succeed, the remote host needs to send us at least IW · MSS bytes.
Assuming an MSS of 64 B and IW 10, we only need 640 B of certifi-
cates which are supplied by more than 86% of the hosts. We can
still reach 50% of the hosts even if they would use IW 34. These cal-
culations neglect the actual size of the server hello and possible
extensions that follow, yielding even more payload to rely on.

To scan a host, we initiate the TLS handshake after completing
the TCP handshake. Since completing the TLS handshake relies on
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the offered cipher suites by the client, we compiled a list of 40 TLS
ciphers announced by Safari, Firefox, and Chrome and enriched the
list with ciphers that we extracted from the censys.io data that were
not already announced by the three browsers. To generate even
more data, we included extensions for requesting OCSP stapling.

We rely on our acknowledging method to determine if the IW
was filled or not. Yet in contrast to HTTP, we could have inspected
the TLS length fields and use these to determine if we can still
expect more data to be available. However, looking into payloads
requires that we have no packet loss and it further complicates the
implementation and we found no advantage doing so.

3.4 ZMap-based Implementation
Our ability to probe the entire IPv4 space in less than a day is based
on ZMap [10]. ZMap is designed for a single packet exchange with
the target to probe for open ports. Since this optimized port scan
design is not capable of exchanging multiple packets with the target
(as needed for TCP), we added this functionality in a lightweight
fashion. We added a probe module to establish TCP connections
and keep track of various per-connection properties such as the
length of each segment and connection state. This design still al-
lows us to perform fast scans, e.g., at a moderate scan rate of only
150 k packets/s, our HTTP-based IW scan only needs 7.5 hours to
probe the entire IPv4 address space. An unmodified ZMap scanner
performs a port scan at the same rate in only 6.8 hours—recall that
the unmodified scanner performs only a single packet exchange
with the host, instead of full TCP connections with subsequent
exchanges. This highlights the efficiency of our scan method.

3.5 Validation
We manually validated our IW estimation approach in two con-
trolled testbed experiments by running different versions of Linux
and Windows. Each OS ran (TLS)-web servers, serving different
files to trigger both cases of having i) enough and ii) insufficient
data available (i.e., less than the IW) and captured packet traces. In
the first experiment, we compared our estimator against ground
truth by comparing against the true IW value configured in each OS.
When enough data was available, the estimator provided the correct
IW in all tested cases. In a second experiment, we added packet
loss using NetEM to check its influence on the estimation accuracy.
We restrict this experiment to only probe a single recent Linux and
manually inspected each packet trace. All obtained IW estimates
were correct in the absence of tail loss. Only instances with tail loss
would lead to an underestimation of the IW. We argue that multiple
scans per host can limit the likelihood of underestimated IWs.

4 RESULTS: IW DISTRIBUTIONS
Scan setup. To evaluate the IW distribution on the Internet, we
operate a scanner within our University’s network. This operation
is closely coordinated with the University’s IT Center to properly
react to abuse emails and to have unfiltered access to the Internet
(e.g., without transparent web proxies). We followed the guidelines
in [10] and set up reverse DNS entries and a web page explaining the

1We implemented an ZMap based ICMP path discovery following RFC 1191 estimating
typical MSS values, highlighting the IW requirements of TLS. We found 99% (80%) of
all hosts support an MSS of 1336 B (1436 B).

Scan Reachable Success Few Data Error
HTTP 48.3 M 50.8% 47.6% 1.6%

TLS 42.6 M 85.6% 13.3% 1.1%
Table 1: Scan data set overview (rounded) scanned with MSS
64. Reachable meaning data exchange is possible.

nature of the scans together with an opt-out mechanism. Unroutable
or blacklisted IPs were not scanned.
Dataset. The presented results are based on two scans performed
in the second and third week of August 2017 and are summarized
in Table 1. We declare a success, if we are able to estimate the IW,
we mark a scan as few data if we cannot be certain that the IW was
actually exhausted, error marks all other cases (e.g., connection
reset). For our measurements we decided to probe each host three
times to account for tail loss and count it successful if at least two
out of three probes yield the same result and as tail loss may occur,
we require them to be the maximum of all three probes. To further
test if hosts adjust their IW based on the announced MSS (recall
that the standard also defines a byte limit), i.e., to always transmit
a certain amount of bytes in contrast to segments, we scan with an
MSS of 64 B and 128 B. To ensure no temporal changes at the host,
all six probes (three for each MSS) are sent after each other.
HTTP Scan Ethics. Our HTTP probing methodology is arguably
more intrusive than TLS-based probing. The reason is that HTTP
probing is requesting actual web (error) pages and thus generates
entries in server access logs. These entries triggered a significantly
higher number of abuse e-mail than our TLS-based probing. As
discussed in Section 4.1, the Internet-wide probing footprint can be
drastically reduced by only probing a random sample of IPs to get
stable IW distributions: currently, probing 1% IPs suffices.
Success rates. In total, we successfully probed 60.9 M distinct IPs,
of which 7 M offered both services. Table 1 shows that TLS yields
higher success rates than HTTP. HTTP probing of unknown hosts
mainly suffers from not generating sufficient response data for IW
inference. We tried to mitigate this by expanding error pages with
long URLs, yet we found that, e.g., Akamai changed their default
error page during our scans to not include the URL anymore. In
contrast to HTTP, TLS returns more data (e.g., due to certificates)
and is less intrusive. Still, around 13% of hosts return insufficient
data. We attribute this to missing Server Name Indication informa-
tion since connections are closed when no (forward) DNS names
are presented, which are unavailable when only enumerating IPs.

4.1 Overall IW Distribution
We start by exploring the overall distribution of IW sizes for both
HTTP and TLS. The reported results are based on successful IW
estimations (see Table 1) with an MSS of 64 bytes. Figure 3 shows
dominant IWs, i.e., observed at more than 0.1% of the hosts. We
see that both scans are dominated by the IWs of 1, 2, 4, and 10
segments. These IWs are present at more than 97% of all scanned
HTTP or TLS hosts. This finding is in line with recommendations
in various RFCs. Out of 7 M IPs that appear for both HTTP and
TLS, 6.2 M agree in their IW estimate and 858 k IPs yield different
IW estimates for HTTP and TLS. Interestingly, we find that the
TLS scan and the HTTP scan differ in the distribution of IW4 and
IW10: we find more TLS hosts with IW 4 than HTTP. In contrast
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Figure 3: IW distribution in IPv4 of HTTP and TLS for IWs
used by at least 0.1% of the hosts, probed with anMSS = 64B.

Scan NoData IW1 IW2 IW3 IW4 IW5 IW6 IW7 IW8 IW9 IW10
HTTP 4.8% 16.5% 7.1% 7.2% 2.9% 3.6% 2.0% 45.0% 2.7% 1.1% 0.9%

TLS 17.8% 56.3% 5.6% 0.7% 1.9% 2.8% 2.4% 2.4% 3.4% 0.4% 0.8%

Table 2: Lower bounds of IWs for hosts that did not send
enough data and the MSS observed in the connection.

to the measurement by Medina et al. [15] from 2005, we observe
that IWs of 4 and 10 segments have gained the highest relative
growth. When analyzing non-standard IWs, we observe two peaks,
one at 25 (TLS) and one at 64 segments (HTTP). However, the low
overall deployment of IW 10, especially on TLS-enabled host, is
notable, given its standardization in RFC 6928 is already four years
old and its implementation, released in the Linux kernel 2.6.39 from
May 2011, is even older.
Lower IWbound for hosts with insufficient data. As indicated
by our success rate, we are roughly missing half of the HTTP
(and 13.3% TLS) hosts by not having enough data available for IW
probing (see “Few Data” in Table 1). To better understand these
hosts, Table 2 shows their minimum supported IW, i.e., before they
run out of data. The picture is different for HTTP and TLS. For
HTTP, we find that 45.0% of probed hosts run out of data after
having transmitted data worth of an IW of 7. Given the current
standards, it is very likely that these hosts are actually configured
to use an IW of 10. For TLS, 17.8% do not sent any data (i.e., 4×
more than for HTTP) and 56.3% run out of data after an IW of 1.
This is likely caused by hosts not supporting our cipher suits or TLS
versions offered by our probing module. Here, we are not receiving
any certificates but only TLS error messages. In these cases, no
speculations on likely IW configurations can be made.
Scanning 1% is enough! We next investigate if the Internet-wide
scan footprint can be reduced by limiting IW probing to a smaller
subset of hosts. We thus extracted a random subset of 50%, 30% and
1% of all successfully probed IPs for both the HTTP and the TLS scan
and show their IW distributions in Figure 3. For the 1% sample we
additionally show the mean of 30 random subsamples and the 99%-
quantile in red (which is small and hardly visible). We observe stable
distribution for any sample size. This indicates that only probing
1% of all IPs already yields a stable distribution—even for IWs only
present at 0.1% of the hosts. Since the first sample requires knowing
the set of all IPs reachable for HTTP/TLS services, we further took
30 random 1% samples of the entire probable address space and
arrived at the same result. While probing the entire IPv4 space is
possible, it is (given current host configurations) not required to
obtain representative IW estimates; reducing the overall footprint
by only probing a random subset of 1% suffices. We provide weekly
results of 1% scans at https://iw.comsys.rwth-aachen.de.
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Figure 4: Alexa 1M IW distribution of HTTP and TLS scan
for IWs used by at least 100 hosts.

Since the overall distribution is likely to be impacted by (older)
legacy systems, we next focus on assessing popular Internet in-
frastructures by scanning the Alexa top 1 M list. We show the IW
distribution for the Alexa top 1 M list in Figure 4 (note the log-scale).
In contrast to probing the entire IPv4 space, the success rate at pop-
ular hosts for HTTP increases to 80% yet TLS only gains marginally
and succeeds at 85% of the hosts. We can now see that IW 10, as the
currently recommended value, dominates the scans with a support
of over 85% (80%) for HTTP (TLS). Yet, some hosts are still on IW 2
and IW 4. The IW distribution of TLS hosts is irrespective of their
Alexa rank, only IW10 is more pronounced for higher ranked HTTP
hosts. We believe that in contrast to the entire IPv4 space, hosts of
popular domains are interested in performance optimizations or
at least keep their systems up to date. Before we dig deeper into
understanding these differences, we next discuss how hosts define
their IW by looking at the differences when scanning with a larger
MSS before we analyze the data on a per-ASN/service basis.

4.2 IW defined by Byte Limit
Until now, we have only shown the results for our scan with an
MSS of 64 B. Only a marginal number (around 1%) of the scanned
hosts adjusts their IW according to the announced MSS. Roughly
50% of these hosts send 64 segments, and when doubling the MSS to
128, the segment number halves to 32. These findings suggest that
these hosts are configured to use 4 kB as their IW, i.e., the multiple
of the MSS and number of segments. We randomly sampled the
hosts and manually investigated if we can characterize the hosts.
Eight out of ten hosts present a login interface to what seems to be
residential access modems from Technicolor in different versions,
most modems are hosted by the Mexican ISP Telmex. Among the
others, we found publicly accessible power supply monitors that
show the same behavior. The remaining 50% of the hosts cannot be
clustered into large groups as above. One group that we found by
randomly sampling are hosts that seem to adjust their IW in a way
that the network MTU is filled, i.e., with a MSS of 64 they send 24
segments and on 128 they send 12, summing up to 1536 B.

4.3 IW Distribution by Network & Service
We start by analyzing the IW usage by network type represented by
Autonomous Systems (AS). We therefore cluster our data by ASes
with similar IW distributions using DBSCAN (wrt. IW 1, 2, 4, 10
and other). The lefthand side of Figure 5 shows particularly large
clusters with similar IW distributions that represent a considerable
fraction of all scanned IPs (HTTP 49%, TLS 48%). These clusters pro-
vide an intuition on per-service IW deployments. Clusters (HTTP

https://iw.comsys.rwth-aachen.de
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Figure 5: Distribution of IWs per AS. Left, 3 HTTP and 3 TLS
clusters of ASs standing out. Right, representatives of these
clusters or ASs that do not fit into the clusters.

and TLS) with nearly exclusive use of IW 10 mostly compromise
content provider, e.g., hosters, cloud provider, and CDNs. ASes with
many IW 2 based hosts belong to ISPs or in case of HTTP also to
universities. The cluster for IW 4 is a mixture between ISPs and
hosters. While the HTTP measurement shows more ISPs, the TLS
measurement stands out with an AS from Akamai that use IW 4. In
case of GoDaddy, 19.8% (32.7%) of the 137 k HTTP (193 k TLS) hosts
that were announced by AS26496 (704 prefixes) use an IW of 48. We
remark that the number of GoDaddy hosts is ≪ 1% which is why
this IW peak is not clearly visible in Figure 3. Unlike our previous
observed 4 kB IW hosts, these hosts use a static configuration of
IW 48, irrespective of the announced MSS. We found no obvious
reason for these comparably large IWs.

We find a diverse picture of different IW configurations. To com-
pare selected content and (residential) access networks, we show
their IW distribution in Table 3. Content networks are classified
by service-provider IP ranges (e.g., [5]) or the GHost HTTP server
string in case of Akamai. Access networks are classified based on
their reverse DNS record [23]: i) we extract hosts which encode
their IP in the reverse DNS record, i.e., 38.6% (62.5%) of all HTTP
(TLS) IPs. To exclude server networks (e.g., Amazon and Akamai)
we further match their reverse DNS record against a manually cre-
ated ISP domain list and against a keyword list (e.g., “customer”,
“dialin”). This way, we classify 16% (18.1%) of all HTTP (TLS) IPs as
access. While content providers have largely adopted IW 10, older
IW configurations are observed for networks with a potentially
high share of legacy devices (e.g., home routers in access networks).

Besides differences between network types, content networks
enable further per-service or even per-customer IW configuration
(e.g., by Akamai [11]). Assessing these differences is beyond the
scope of this paper since it requires presenting valid URLs hosted by
Akamai to access different (virtualized) services. While our method-
ology cannot assess Akamai’s different services without this prior
knowledge, we used our scanner to manually probe few Akamai
HTTP hosted sites and found different IW configurations (e.g., IW
16 and 32). This is a notable case of per-service IW customization.

5 DISCUSSION AND CONCLUSION
This paper presents the first large-scale measurement of TCP’s
Initial Window (IW) configuration of HTTP/TLS reachable hosts.
Since our method does not require prior knowledge of the target
host, it is applicable to the Internet at large and enabled us to probe

HTTP TLS
Service IW1 IW2 IW4 IW10 IW1 IW2 IW4 IW10

Akamai – – – – 0.0 0.0 100.0 0.0
EC2 0.0 1.8 3.4 94.7 0.2 1.3 2.6 95.8

Cloudflare 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
Azure 0.0 7.8 54.9 37.1 0.1 4.1 73.3 21.9

Access NW 3.5 50.2 20.8 21.7 4.5 17.6 67.1 10.4
Table 3: Per-service IWdistribution [%] clustered by IP range
(servers) or reverseDNS (access). Dominant IWshighlighted.

reachable hosts within the entire IPv4 address space. In light of the
ongoing debate on IW sizes, our study provides an up-to-date view
of the current Internet-wide IW configurations documenting the
slow adherence to RFC recommended changes of the IW.

The main result of our study is a rather network dependent IW
configuration. Since especially service providers can benefit from
larger IWs, their IW 10 adoption (or even larger IWs) is high. We
also noted service specific customizations, e.g., Akamai enables per-
service and even per-customer specific IW configurations. Since
these services are virtualized, analyzing such service (not host)
-specific configurations requires prior knowledge to present valid
host names/URLs—a setting our generalized methodology avoids to
be applicable to the Internet at large. Circumventing this limitation
by probing selected services with manually curated URL lists thus
motivates future work. In contrast, networks with a larger fraction
of legacy and other devices show a much lower IW 10 deployment
and higher shares of older recommended IW sizes (i.e., 1, 2, 4). In
case of Linux, this can be caused by outdated systems since IW 10
was enabled in 2011 [16]. Besides these RFC recommended IWs, we
observed non-RFC configurations such as much larger IWs.

These observations motivate future work, especially in light of
a recent proposal [2] to abandon general IW size recommenda-
tions in favor of per-service customized values. While we already
observe a diverse landscape of different IW settings, this trend to-
wards customized IWs is likely to continue. Monitoring and better
understanding this trend thus motivates future research.

Concerning our methodology, we identified TLS-based scans as a
promising alternative to traditional HTTP-based IW inference meth-
ods. Our ZMap-based implementation further shows that complex
TCP probes going beyond single packet exchanges as needed for
port-scans are feasible in a time-efficient manner. The implementa-
tion as a ZMap module therefore allows daily snapshots of the Inter-
net. To reduce the footprint of Internet-wide scans, we find that al-
ready scanning a random subset of 1% of the IPv4 address space suf-
fices to obtain representative IW distributions. We publish weekly
results on these 1% scans on https://iw.comsys.rwth-aachen.de.
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