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ABSTRACT
The softwarization of networks provides a new degree of flexibility
in network operation but its software components can result in
unexpected runtime performance and erratic network behavior.
This challenges the deployment of flexible software functions in
performance critical (core) networks. To address this challenge, we
present a methodology enabling the prediction of runtime perfor-
mance and testing of functional behavior of Network Functions.
Unlike traditional performance evaluation, e.g., testbed testing or
simulation, our methodology can characterize the Network Func-
tion performance for any possible workload only by code analysis.
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1 INTRODUCTION
Current research in SDN and NFV exemplifies the resurgence of
network softwarization and stands to fulfill the promise of active
networks by enabling flexible in-network processing for control
and data plane tasks. Contrasting this flexibility is 1) an erratic
latency being added to each flow that is now processed in software
rather than on dedicated, purpose-built hardware, and 2), a loss in
reliability, as software running on generic platforms is much harder
to test comprehensively. It is noteworthy that current implementa-
tions of even simple on-path Network Functions (NFs) face both of
these problems to unknown degrees.

To address this dual challenge, we present SymPerf, a methodol-
ogy that accurately predicts runtime and behavior of an NF purely
by automated reasoning about its implementation. SymPerf re-
quires no testbed emulations for known workloads and can fully
characterize NF performance for any input—even for the rarest
corner case. This work seeks to create pre-deployment confidence
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in the runtime behavior of NFs by working towards addressing the
following questions that network operators face when designing
and deploying NFs:

Implementation quality: Does the NF lead to an unwanted
state, e.g., an infinite loop? Can unexpected input cause forbidden
behavior, such as buffer overflows?

Performance:Howmuch latency and jitter is added per packet?
Will the NF sustain line rate? What is the worst processing time for
the NF and when—state, sequence of packets—does it occur? How
are execution times distributed for a random, known or adversarial
workload? How many NFs can be executed on a single machine?

2 PREDICTING NF BEHAVIOR
Our approach aims to predict the performance of an NF from its
underlying source code, as illustrated in Fig. 1, beginning with
enumerating all possible execution paths. In our scheme, we use
Symbolic Execution (SE) [2] in step 1 to generate a complete
execution tree. SE has already proven itself in the networking do-
main [3, 5] and allows us to categorize all possible inputs in such a
way that each possible execution path maps to exactly one distinct
input category. Since SE originates from automated software test-
ing, it is also able to find a broad range of software defects, such
as buffer overflows. If a bug is found, the developer is given a test
case triggering the bug, to iterate on the NF (step 2 ).

Each path through the execution tree is necessarily also a pass
through the NF under scrutiny. Next, in step 3 , we walk the ex-
ecution tree generating one instruction chain per path, in effect
mapping each possible input category to its corresponding CPU
instruction chain. In order to calibrate our prediction for a target
platform, we perform microbenchmarks measuring the costs of in-
structions. Instead of measuring time durations, we use CPU cycles,
which are a metric independent of frequency scaling. During the
calibration, which has to be done once for each platform, like our
testbed running Linux on an Intel i7-870, we store the results in a
per platform instruction cost database (cf. Fig. 1, step 4 ). Note that
this is only done once per target.

Combining the NF instruction chains with the appropriate cali-
bration database (step 5 ), we can predict runtimes for each path.
This is already enough to find, e.g., the path that consumes the most
CPU cycles, i.e., the worst-case path through the NF. The results
from the prediction can also be combined into a general overview,
assuming a uniform distribution over all paths, as is done in the
example presented in the next section. Alternatively, we can catego-
rize packets from a captured trace, which gives a traffic-dependent
prediction without needing a full testbed.
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Network Function
1 #include <bcc/proto.h>
2 #include <linux/pkt_cls.h>
3 #include <net/sock.h>
4 BPF_TABLE("hash", uint16_t, uint8_t, blocked_dports, 4096);
5
6 int act_main(struct __sk_buff *skb) {
7 u8 *cursor = 0;
8 struct ethernet_t *ethernet;
9 struct ip_t *ip;

10 struct tcp_t *tcp;
11 if (skb->len < sizeof(*ethernet)+sizeof(*ip)+sizeof(*tcp)) return TC_ACT_UNSPEC;
12
13 ethernet = cursor_advance(cursor, sizeof(*ethernet));
14 if (!(ethernet->type == 0x0800)) return TC_ACT_UNSPEC;
15 ip = cursor_advance(cursor, sizeof(*ip));
16 if (ip->nextp != 0x06) return TC_ACT_UNSPEC;
17
18 tcp = cursor_advance(cursor, sizeof(*tcp));
19 uint16_t dport = tcp->dst_port;
20 uint8_t *blocked_p = blocked_dports.lookup(&dport);
21 if (!blocked_p) goto return TC_ACT_OK;
22 uint8_t blocked = *blocked_p;
23 if (blocked) return TC_ACT_PIPE;
24 else return TC_ACT_OK;
25 }

Execution Tree
if (skb->len < sizeof(*ethernet)+sizeof(*ip)+sizeof(*tcp))

{}

return TC_ACT_UNSPEC

{len < 54}

if (!(ethernet->type == 0x0800))

{len ≥ 54}

return TC_ACT_UNSPEC

{len ≥ 54, read (data+ 12) ̸= 2048}

uint16_t dport = tcp->dst_port;

{len ≥ 54, read (data+ 12) = 2048}

uint8_t *blocked_p = blocked_dports.lookup(&dport);

{len ≥ 54, read (data+ 12) = 2048}

if (!blocked_p)

{len ≥ 54, read (data+ 12) = 2048}

return TC_ACT_OK

{len ≥ 54, read (data+ 12) = 2048, λ = 0}

uint8_t blocked = *blocked_p;

{len ≥ 54, read (data+ 12) = 2048, λ ̸= 0}

if (blocked)

{len ≥ 54, read (data+ 12) = 2048, λ ̸= 0}

return TC_ACT_PIPE

{len ≥ 54, read (data+ 12) = 2048, λ ̸= 0, read (λ) ̸= 0}

return TC_ACT_OK

{len ≥ 54, read (data+ 12) = 2048, λ ̸= 0, read (λ) = 0}

Instruction Chains
1 alloca
2 getelementptr
3 load
4 icmp
5 br
6 bpf_load_half
7 icmp
8 br

1 alloca
2 getelementptr
3 load
4 icmp
5 br
6 bpf_load_half
7 icmp
8 br
9 bpf_load_byte

10 icmp
11 br
12 bpf_load_half
13 trunc
14 store
15 bpf_pseudo
16 bpf_map_lookup
17 hash(2, 1)
18 icmp
19 br
20 load
21 icmp
22 br

· · ·

Performance Prediction
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Figure 1: SymPerf architectural overview and Network Function performance prediction workflow.
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(a) Histograms for the array-based implementation.
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(b) Histograms for the hashmap implementation.

Figure 2: Histograms for predicted and measured runtime
distributions of two TCP firewall implementations.

3 FIREWALL PREDICTION EXAMPLES
We apply SymPerf to predict the runtime performance of two simple
Berkeley Packet Filter (BPF) firewalls. BPF can run on the data path
[1], is available in Linux and already found industry-level deploy-
ment (e.g. [4]). Since BPF NFs are small but performance critical,
they are a natural showcase for our methodology’s usefulness.

We use our methodology to predict the performance of an array-
based and a hashmap firewall implementation. Both implementa-
tions perform the same task, i.e., dropping packets addressed to a
list of TCP ports. The first implementation sequentially scans an
array for blacklisted ports, while the second does a single hashmap
lookup instead. To create an instruction cost database (see Fig. 1),
we calibrate our approach for BPF instructions executed on our
testbed hardware: an off-the-shelf Intel CPU running Linux.

First, we compare the predicted to the measured performance
of the array firewall over all possible paths (assuming each path
to be equally likely) in Fig. 2(a). To obtain measured performance
figures of the firewall, we generate packets in a testbed triggering
all paths and measure the consumed CPU cycles until each path is
hit at least 106 times. We applied a 0.5% error margin for outlier

removal. Note the heavy variability in the NF performance, which
is no surprise, as some ports are at the far end of the array and
matched last, while other are at the start and matched earlier. Also,
observe that our prediction closely matches measured performance.

Similarly, we compare the predicted to the measured perfor-
mance of the hashmap firewall in Fig. 2(b). We observe that the
variance is significantly lower than for the array firewall, reflect-
ing the O (1) runtime of hashmap lookups. This shows that our
methodology is able to differentiate the runtime performance of
the two implementations of the same NF. We further show that our
methodology can predict the worst-case runtime performance of the
NF. That is, we correctly predict that no path in this firewall will
ever take longer than 591 CPU cycles. Thus, we are already able to
make informed decisions about the quality of both firewalls.

We are even able to distinguish different paths through the same
NF with our methodology. Fig. 2(b) clearly distinguishes paths that
exit early as the packet is malformed (e.g. invalid TCP), as well
as paths executing the core firewall. We observe that our predic-
tions are off by few CPU cycles, caused by advanced CPU features
that cannot easily be captured during calibration (e.g., superscalar
execution). However, SymPerf correctly predicts the relative per-
formance of both program parts. Also, predicted performance is
more conservative than measured, yielding a useful upper bound.

Preliminary results show that SymPerf accurately predicts the
runtime performance of BPF NFs for all possible execution paths.
This enables network engineers to evaluate and compare perfor-
mance of different NFs without performing testbed evaluations.

4 CONCLUSION
This paper discusses SymPerf, a new approach for analyzing and
predicting NF performance. We show the potential of Symbolic
Execution not only for testing but also for quantitative NF perfor-
mance prediction and implementation comparison, including the
expected and worst case. We currently focus on further improving
this prediction as well as the resilience of our calibration. Overall,
this will lead to safer NFs with predictable performance.
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