
Analysis of Fingerprinting Techniques for Tor Hidden Services
Andriy Panchenko

University of Luxembourg
andriy.panchenko@uni.lu

Asya Mitseva
University of Luxembourg

asya.mitseva@uni.lu

Martin Henze
RWTH Aachen University

henze@comsys.rwth-aachen.de

Fabian Lanze
Huf Secure Mobile GmbH

fabian@lanze.net

Klaus Wehrle
RWTH Aachen University

wehrle@comsys.rwth-aachen.de

Thomas Engel
University of Luxembourg

thomas.engel@uni.lu

ABSTRACT
The website fingerprinting attack aims to infer the content of en-
crypted and anonymized connections by analyzing traffic patterns
such as packet sizes, their order, and direction. Although it has been
shown that no existing fingerprinting method scales in Tor when
applied in realistic settings, the case of Tor hidden (onion) services
has not yet been considered in such scenarios. Recent works claim
the feasibility of the attack in the context of hidden services using
limited datasets.

In this work, we propose a novel two-phase approach for fin-
gerprinting hidden services that does not rely on malicious Tor
nodes. In our attack, the adversary merely needs to be on the link
between the client and the first anonymization node. In the first
phase, we detect a connection to a hidden service. Once a hidden
service communication is detected, we determine the visited hidden
service (phase two) within the hidden service universe. To estimate
the scalability of our and other existing methods, we constructed
the most extensive and realistic dataset of existing hidden services.
Using this dataset, we show the feasibility of phase one of the attack
and establish that phase two does not scale using existing classifiers.
We present a comprehensive comparison of the performance and
limits of the state-of-the-art website fingerprinting attacks with
respect to Tor hidden services.

CCS CONCEPTS
• Security and privacy→ Pseudonymity, anonymity and un-
traceability;Privacy-preserving protocols; •Networks→Net-
work privacy and anonymity; Network security;

KEYWORDS
TrafficAnalysis;Website Fingerprinting; Privacy; Anonymous Com-
munication; Onion Routing; Tor Hidden Services; Onion Services;
Web Privacy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WPES’17, October 30, 2017, Dallas, TX, USA.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5175-1/17/10. . . $15.00
https://doi.org/10.1145/3139550.3139564

1 INTRODUCTION
In the age of mass surveillance, privacy on the Internet has become
a concern. One of the fundamental building blocks for achieving
privacy is anonymity. Several approaches have been proposed for
anonymous communication, but only a few of these have reached
widespread deployment. Tor is the most popular low-latency anony-
mization network that aims to hide the user’s IP address while
communicating on the Internet [13]. The traffic exchange between
the sender and the receiver is tunneled over multiple nodes, known
as onion relays (ORs). The client, as initiator of a connection runs an
onion proxy (OP) and creates a virtual tunnel, called a circuit, to the
destination over typically three nodes: entry, middle, and exit [12].
By applying Diffie-Hellman key exchange, the sender negotiates
a separate symmetric key with each OR in the chain. The sym-
metric keys are used to encrypt the actual user data with multiple
layers of encryption [12]. While forwarding the user data, each of
the ORs removes (or adds, depending on the direction) a layer of
encryption. This ensures that each node in the chain knows only
its direct predecessor and successor. Beside protecting the client’s
privacy, Tor also allows servers to operate anonymously by offer-
ing (location-)hidden services1 (HSs). HSs allow users, in particular
those living in oppressive regimes, e.g., human right activists and
whistle-blowers, to bypass censorship and to exercise freedom of
speech by publishing and offering access to content without being
pursued, arrested, or forced to shut down their services. Hence,
it is vital to know the level of protection offered by this popular
anonymization technique.

The website fingerprinting (WFP) attack is a special case of traffic
analysis. It attempts to infer information about the content (i.e.,
the website visited) of encrypted and anonymized connections by
observing patterns of data flows. Here, the attacker is merely a
passive local observer and utilizes meta information, such as packet
size and direction, without breaking the encryption. Though Tor
claims to protect against local observers, the attack has been shown
to be feasible [29] and study of its limits has become an active field
of research. Later, it was shown that none of the existing WFP
attacks scales when applied in realistic settings, due a large set of
all possible websites [28]. However, the universe of hidden services
is small (a few thousands) and the impact of the WFP attack can be
alarming. Recent studies confirm this fact, but only using datasets
limited in size [16, 20]. In this paper, we analyze the impact of this
attack on Tor hidden services using realistic datasets and applying
state-of-the-art classifiers. Our contribution is as follows:

1Also known as onion services.

https://doi.org/10.1145/3139550.3139564


(1) We propose a novel two-phase fingerprinting attack which
does not rely on malicious entry nodes. In our case, the at-
tacker observes the link between the client and the entry
node. In phase one, we detect whether the considered con-
nection is to a HS or not. In phase two, we detect which
particular HS content is being accessed.

(2) We collect the most comprehensive dataset of hidden ser-
vices representing the real world. Instead of restricting the
dataset only to publicly available hidden service addresses,
we gather all HSs available in the Tor network to study the
impact of the attack in real-world settings.

(3) Using our dataset, we show that detection of a connection
establishment to a hidden service is feasible, whereas partic-
ular content recognition does not scale using any existing
methods when applied in realistic settings.

2 BACKGROUND
In this section, we explain the functionality of the Tor hidden ser-
vices. Figure 1 illustrates the steps to set up a hidden service in Tor
and to establish a connection to it. The server operator runs an
onion proxy in order to offer the server via Tor. Afterwards, the
server’s OP selects three ORs, called introduction points (InPs), and
builds a separate circuit to each of them (step 1) [6]. The server
informs the InPs about a service key2 currently associated with
its hidden service. The use of service keys prevents an InP from
tracking the HS’s activities, since the InPs are not able to recognize
which service they are serving. Next, the server generates a piece
of information called hidden service descriptor. This descriptor con-
tains the public key currently associated with its HS and a list of
its InPs with the corresponding service keys [6]. It publishes the
descriptor anonymously to a subset of ORs, called hidden service
directories (HSDirs), in order to advertise its service in Tor (step 2).

An OR is a HSDir if it provides an open port to store and serve
hidden service descriptors and has an uptime of at least 96 hours [6].
Based on the descriptor identifier (ID), the HS determines whether
a certain HSDir is responsible for keeping its descriptor. In Tor,
the HSDirs are represented in the form of a distributed hash table
(DHT) where each HSDir is identified by its fingerprint. The first
three consecutive HSDirs, whose fingerprints are greater than the
descriptor ID, are selected to store the HS descriptor [6].

To access a HS, the client needs to obtain its address. The HS
address, also called onion address, is in the form of x.onion where
x denotes the first 80 bits of the hash of the HS public key [6].
The client computes the ID of the corresponding HS descriptor to
retrieve a list of responsible HSDirs. It fetches the HS descriptor
from one of these HSDirs (step 3) to learn the InPs’ addresses of
the target HS and the corresponding service keys associated with
these InPs. Before connecting to an InP, the client creates a circuit
to a randomly selected OR, called rendezvous point (RP), (step 4)
and sends an arbitrary value, i.e., rendezvous cookie (RC), to that OR.
Next, the client builds a new circuit to one of the InPs of the HS
to inform the HS about the ID of the selected RP and the RC (step
5). The InP forwards this information to the HS (step 6). If the HS
accepts the client’s request, it builds a new circuit to the RP (step 7).

2Instead of sharing its public key, the server generates separate short-term single-use
keys, called service keys, used for communication with the InPs.

RP

HSDir
Client Hidden Server

InP 1

6

23

4

5

78

9

Figure 1: A hidden service protocol flow [6].

If the RP recognizes the RC sent by the HS, it informs the client that
the connection with the HS is established (step 8). Subsequently,
the RP starts transparently relaying encrypted packets between the
client and the hidden server (step 9).

Beside publicly accessible HSs, the server can be configured to
permit only authorized clients to access its service. The current Tor
implementation specifies two protocols to set up client authoriza-
tion; interested readers are referred to [6] for further information.

3 RELATEDWORK
In the following, we survey known attacks on HSs and briefly
overview the state-of-the-art WFP techniques targeting Tor users.

Attacks on Tor hidden services: The first documented attack
on HSs was presented by Øverlier et al. [27]. They considered
the first version of the HS protocol [13] where no guard nodes
(persistently used entry relays) were used. In that scenario, the
attacker controls (at least) one Tor node and repeatedly attempts
to connect to a HS until his node is chosen as a first hop of the
rendezvous circuit established by the HS. This leads to a situation
where the attacker controls both ends of the communication. Then,
the attacker sends specific traffic patterns along the circuits to
perform traffic correlation and, thus, reveals the HS’s location. To
prevent such attacks, Øverlier et al. introduced the use of guard
nodes, initially proposed by Wright et al. [36].

Murdoch et al. [24, 37] exploited the fact that the frequency of
computers’ system clocks is affected by the temperature of the CPU.
The authors put loads on HSs by initiating connections and fetching
content while remotely measuring the changes in the frequency
of the system clocks by observing TCP/ICMP timestamps. This
attack assumes the list of candidate HSs is known, and has limited
scalability as each candidate from the list has to be probed.

Biryukov et al. [8] proposed a method for enumerating HS ad-
dresses in a short time interval. Given the list of gathered onion
addresses, the authors further showed how to measure the popu-
larity of any HS and how to perform a selective Denial of Service
(DoS) attack on them; how to reveal guard nodes of HSs; and how
to deanonymize a significant portion of HSs. To collect almost all
HS addresses, they ran a large number of ORs with predefined fin-
gerprints using a limited number of IP addresses. The fingerprints
fall into every second interval between two consecutive HSDirs,



and, thus, cover all intervals of the DHT. Although only two ORs
per IP address appear in the live network according to the Tor spec-
ification, the authors exploited the fact that directory authorities
still collect statistics and allow bootstrapping for all ORs controlled
by the adversary. When one of the active relays becomes unreach-
able, the authorities replace it with another OR from the set of
attacker’s relays. The new OR has all the flags, including HSDir
flag, according to its real run time and not to the time for which it
was in the consensus. In their follow-up work, Biryukov et al. [7]
exploited the collected onion addresses to analyze the landscape of
HSs and present statistics about open ports used by HSs, content
distribution, and a geographical distribution of clients of HSs. Please
note that the Tor project is currently designing and implementing
countermeasures to hamper harvesting of onion addresses [21].
The same applies for predictable positioning of HSDirs in the DHT:
the use of distributed randomness commitments affecting DHT
positioning over time hinders this.

Jansen et al. [18] presented a memory-based DoS attack where
the attacker identifies and disables the entry nodes of a target HS
and, thus, forces the server to select new guards. Matic et al. [22]
exploited information leakages in the configuration and content
of HSs to reveal their location. They looked for URLs or email ad-
dresses pointing to regular websites and hosted on the same server,
investigated HTTPS certificates to extract candidate IP addresses,
searched for HS-specific strings, and used search engines to identify
candidates hosting similar content.

In summary, the majority of attacks on HSs presented so far
either assume an active attacker model or a malicious client that
permanently tries to connect to a target HS. Furthermore, most
of them are heavily dependent on specific protocol flaws already
fixed by the Tor project [1, 3] or misconfigurations made by the
administrators. In contrast to this, our adversary merely needs to be
on the link between a HS client and its entry node to be successful.

Website Fingerprinting: The first work applying website fin-
gerprinting to deanonymize Tor users was presented by Herrmann
et al. [17]. On a dataset consisting of 775 websites, the authors
achieved a recognition rate of only 2.95%. Thus, Tor was considered
to provide a high level of security against WFP. The first successful
WFP attack against Tor was presented in 2011 [29]. The authors
proposed several types of features to represent a page loading, e.g.,
the total number of transmitted bytes, the total size of incoming and
outgoing packets, and applied a Support Vector Machines (SVM)
classification technique. In a closed-world scenario, they recognized
775 index pages with a classification accuracy of almost 55%. In
addition, the authors evaluated the first WFP attack in an open-
world setting, i.e., they aimed to identify a small number of websites
within a set of thousands of random pages that had not previously
been seen by the classifier, and achieved a true positive rate (TPR)
of up to 73% and a false positive rate (FPR) of 0.05%. The results
prompted a considerable amount of further investigation in the
area of WFP.

Dyer et al. [14] compared existing classifiers and evaluated ad-
ditional features on datasets consisting of two, 128, and 775 web-
sites. However, they did not achieve better classification accuracy
than [29]. In 2012, Cai et al. [9] improved the recognition rate to
over 80% for a set of 100 pages and to over 70% for a set of 800 pages
by using features based on the optimal string alignment distance

(OSAD), and applying a SVM. Wang et al. [33] proposed modifi-
cations to the optimal string alignment distance of Cai et al. and
introduced a new layer for feature extraction, namely Tor cells.
The authors achieved more than 90% of classification accuracy for
both the closed-world (100 pages) and open-world (1,000 pages)
scenarios. Further research by Wang et al. [32] suggested a novel
k-Nearest Neighbor (k-NN) classifier, which reduced the computa-
tion time significantly. The authors achieved a recognition rate of
91% in closed-world (100 pages) and 85% in open-world (> 5,000
pages) scenarios.

Juarez et al. [19] assessed several assumptions made by previous
works in the field of WFP. The authors showed that the recognition
rate of pages reduces dramatically over time due to content change.
Furthermore, they observed a significant reduction in the classifi-
cation accuracy if a user performs multitab browsing or if different
Tor Browser Bundle (TBB)3,4 versions are applied for training and
testing. Juarez et al. were the first who considered the base-rate
fallacy in the scope of WFP. Due to the enormous variety of pages
in the world wide web, in most cases the adversary would wrongly
conclude that a user has visited a monitored page. Taking into
account the conclusions derived from [19], other works [15, 34]
continued investigating the feasibility of WFP in general.

In 2016, Panchenko et al. [28] proposed a new classifier, called
CUMUL, that outperforms all existing methods both in terms of
classification accuracy and computational complexity. The authors
were the first to collect a comprehensive and representative dataset
and to evaluate the attack against it. They showed that fingerprint-
ing websites, i.e., a set of webpages served under the same domain,
scales significantly better than webpage fingerprinting. Moreover,
they also showed that no existing fingerprinting method scales
when applied in realistic settings, i.e., for every webpage in the
dataset there are at least several others that look similar to the
classifier and, thus, cause confusion.

Contrary to the cases above, the number of HSs is significantly
smaller than the huge universe size of the world wide web. Hence,
if the adversary is able to reliably distinguish a HS connection from
a regular one, HS fingerprinting attack becomes similar to a closed-
world setting, where the WFP attack is known to be successful.

Kwon et al. [20] introduced the first passive fingerprinting attack
against HSs and their clients. Assuming that the adversary controls
an entry node, the authors detected the presence of a HS activity by
observing circuit-level information. Compared to our approach, this
attack works if and only if all circuits to a HS go through a single
entry node (according to our measurements, this strongly depends
on the Tor version used). Moreover, due to the use of guard nodes,
it is a challenge for an attacker to get into this position to target
individual clients. In contrast, our attack does not require control
of one or more entry nodes or to see circuit-level information
at all, but only to passively observe the link between the client
and the guards. By using a dataset consisting of 1,000 HSs and
1,000 Alexa websites, Kwon et al. successfully distinguished a HS
connection from a non-HS one with a TPR of more than 98% and a
FPR of less than 0.1%. However, they had only moderate success
in differentiating between HSs. In a closed-world scenario, they

3Also known as Tor Browser.
4https://www.torproject.org/projects/torbrowser.html.en

https://www.torproject.org/projects/torbrowser.html.en


monitored only 50 HS pages with 50 instances each and were able
to deanonymize 97% of the client-side connections and 94.7% of
the server-side connections. In an open-world setting, the authors
again considered 50 HS pages monitored by the attacker with 50
instances each and 950 uncensored HS pages with one instance
each and achieved TPR of 88% and FPR of nearly 3%.

To the best of our knowledge, Hayes et al. [16] presented the
most recent WFP attack, called k-FP. Their technique is based on
random decision forests. In the scope of HSs, they achieved a TPR
of 85% with a FPR of 0.02% when trying to recognize 30 HSs from a
set of world wide web pages. Moreover, the authors showed that
their classifier is more robust against existing countermeasures
compared to the other state-of-the-art classifiers.

To sum up, both HS fingerprinting approaches presented so far
either made strong assumptions regarding the considered attacker
model or lacked a large-scale evaluation by applying unrealistically
small datasets. In contrast, our work particularly addresses these
issues.

4 DATASETS
This section introduces the datasets utilized in the rest of the paper.
To explore the feasibility of HS fingerprinting in practice, we need
to obtain a comprehensive and realistic sample of accessible onion
addresses. However, the collection of HS addresses is a challenging
task. In order to limit potential information leakages, Tor does not
provide any way of retrieving a complete list of currently available
HSs. To overcome this, we used the following two-step approach.
First, we implemented a tool that automatically crawled all publicly
known HS search engines once per day. We collected 13,243 unique
addresses for the period of four months (April to July 2015).

Second, we exploited the role of the HSDirs in the HS protocol
to gather onion addresses directly from the live Tor network. We
launched several ORs in Tor that fulfilled certain requirements to
obtain a HSDir flag, i.e., to become HSDirs. Since the HSDirs see the
content of unencrypted descriptors served by them [6], we modified
the Tor implementation to harvest HS descriptors published on our
HSDirs. Moreover, we exploited the fact that, in addition to the
current version of the consensus, two predecessor documents also
retain their validity [8, 11]. This means that ORs and OPs may
use different consensuses containing different sets of ORs acting as
HSDirs. As a consequence, a HS may attempt to publish a descriptor
to a HSDir which is no longer responsible for it, or clients may
request a HS descriptor from a HSDir that is not responsible for this
descriptor. Therefore, we further modified the Tor source code to
allow for storing of descriptors not in the range of our HSDirs and
keep IDs not present in the memory of our HSDirs but requested
by clients. On a receipt of an unknown ID, our malicious HSDirs
immediately initiated a descriptor fetch from other responsible
HSDirs.

We also tried to ensure that our HSDirs were located far away
from each other in the DHT. Thus, we increased the probability of
capturing as many different descriptors as possible. Like [8], we
injected our ORs with predefined fingerprints. In other words, we
started randomly generating private/public key pairs until we found
a public key whose hash was in a predefined area of the DHT. We
utilized PlanetLab nodes in different subnetworks to run our relays.

Table 1: Statistics for collected web onion addresses.

Description Number

Addresses with valid traces 10,476
Addresses without any traces 754
Addresses pointing to HTTP error code 4xx 1,172
Addresses pointing to HTTP error code 5xx 418
Invalid header received from the client 325
Total number of addresses 13,145

We further used different Tor versions with various combinations of
configuration settings to avoid revealing the relationship among our
nodes (otherwise these would be detected as malicious and banned
from the network)5. On completing the experiment, we collected
41,936 unique onion addresses by capturing HS descriptors.

Finally, we parsed the collected descriptors and extracted the
public keys of the HSs. To obtain the corresponding URLs, we
computed the hash of each HS’s public key and stored the first 80
bits of this hash concatenated with the virtual domain .onion in our
database. After merging both sets of collected HS addresses and
removing duplicates, we obtained 48,418 unique onion addresses in
total. According to the Tor statistics6, for the corresponding time
period there were between 23,000 and 35,000 unique HS addresses.
In addition, the work of Biryukov et al. [8] – the only one previous
research showing a global picture of all existing HSs – reported on
39,824 unique onion addresses collected within approximately two
days. The difference can be explained by the fact that our network
view is not a snapshot, but a collection of HS addresses over a
longer period of time. Hence, our dataset contains more HSs than
were actually present at any one time during the study period.

The goal of our fingerprinting attack is to detect HSs that pro-
vide HTTP(S) access. Therefore, we limited our dataset to onion
addresses that serve HTTP or HTTPS content. We obtained 13,145
unique HTTP(S) hidden services. In comparison, Biryukov et al. [7]
reported on 6,579 HSs providing HTTP and HTTPS access in 2012.
Even though the number of addresses collected from search engines
in general is less than 30% of all HSs gathered, almost 60% from
them have been filtered as HTTP and HTTPS hidden services. On
the other hand, only 26.61% of the set of HSs collected from HS
descriptors were web services. A possible reason may be the fact
that HS operators who maintain a web server, e.g., web shops, are
usually interested in advertising their services publicly.

After completing the collection and processing of the data, we
gathered at least one network trace (i.e., sequence of packet sizes)
representing a correct page load for 10,476 HS addresses. Table 1
shows the obtained results and reasons for failing to gather traces
for many HTTP(S) services. 1,590 addresses returned to a HTTP
status code indicating a load error. Additionally, we observed a
group of addresses indicating the following client error code: Invalid
header received from the client. This error message may be caused
by some HSs requiring either a special authentication cookie to
5The Tor community is continuously improving algorithms for identifying sybils
(entities controlling many identities) in the network.
6https://metrics.torproject.org/hidserv-dir-onions-seen.html

https://metrics.torproject.org/hidserv-dir-onions-seen.html


access them, or client support of a specific protocol running over
HTTP. For 754 addresses, we could not collect any trace. This may
be due to the extremely short life time of some HSs.

To construct representative and realistic set of non-HS webpages,
we used the largest available dataset in the community [28]. This
dataset reflects webpages that are actually accessed through Tor. In
total, we utilized 211,148 webpages containing 65,409 unique web
domains. Additionally, for some evaluations we created a sample of
index pages representing the Alexa7 Top 1,000 most popular sites.

Ethical considerations. The collection of onion addresses for
our dataset does not strictly follow the guidelines for ethical Tor
research, which were published after we finished our experiments.
Nonetheless, we believe that it is important to know the degree
of protection offered by the real Tor network. There can be no
better evaluation than using real onion addresses. While running
our directories, we made every effort to minimize any potential
harm to the users and tried to examine all the risks that may exist,
as well as getting advice from the Tor Research Safety Board8.

Among other things, we removed all absolute timestamps from
our traces, which makes identifying exactly when a service was
active difficult. We will not publish fingerprints of non-publicly-
discoverable (i.e., private) hidden services. We replaced identifiers
of these HSs (i.e., onion addresses) with pseudonyms and removed
their content after conducting the experiments. We performed eval-
uations to assess how representative the WFP results are when
using only public onion services. Table 4 confirms our hypothesis
that, in general, using only publicly available HSs slightly underesti-
mates the complexity of the underlying classification problem. Still,
we conclude that, at least at the time we performed our experiments,
evaluation results obtained when using public hidden services were
representative for the whole universe of hidden services.

5 EXPERIMENTAL SETUP
Without loss of generality, we assume that the adversary collects
a sufficient number of network traces for each of the HSs of inter-
est and some non-HSs, i.e., regular webpages, as training data for
fingerprinting. The transferred packets are recorded with a traf-
fic analyzing tool that provides information about the length and
order of the packets that were sent and received. The collected
dumps are then analyzed to create a profile of each HS page and
public webpage, a fingerprint (FP). Wiretapping the victim’s traf-
fic, the adversary attempts to match the collected test data to a
previously-known fingerprint. Due to indeterministic packet frag-
mentation, updates in the pages, etc., differences between patterns
in training and test data are inevitable. Therefore, the attacker needs
to apply statistical methods to compare the recorded information
to the fingerprints and to probabilistically match it to the known
fingerprints.

5.1 Data Collection
Our experimental setup was similar to that applied in [28]. We
utilized TBB 3.6.2 to access HSs and regular webpages via Tor.
Note that we used the same TBB version used to fetch the largest
available set of regular webpages for WFP as we employ this set

7http://www.alexa.com/
8https://research.torproject.org/safetyboard.html

1 5 10 15 20

100

80

60

40

20

Number of onion addresses

Fr
ac
tio

n
of

hi
dd

en
se
rv
ic
es

[%
]

1500 1700

Figure 2: Complementary cumulative distribution function
(CCDF) for HS content distribution.

for our evaluation. We also provide comparison with the more
recent TBB 6.0.4. TBB consists of a pre-configured Tor client and
a stand-alone web browser based on Mozilla Firefox with privacy-
friendly settings. It also provides different patches to combat WFP,
including randomized pipelining. We ensured automatic filtering
of web HSs and autonomous page loads by using the plug-ins
Chickenfoot9, iMacros, and Scriptish10. The functionality of Tor
was controlled through Stem11, a Python implementation of the
Tor Control protocol. Together with the page sources recorded
by iMacros, we were able to select HTTP(S) HSs only. Finally, we
recorded traces for these pages using tcpdump. To train our classifier,
we extracted and analyzed multiple instances for each page (a
general requirement of every WFP method). We ensured that we
never used the same circuit to download more than one instance of
a single page.

5.2 Data Extraction and Processing
During data collection, we observed hundreds of HS addresses
showing identical content. On the one hand, this phenomenon may
be due to the existence of phishing addresses [25]. On the other
hand, due to the lack of a load balancing for Tor hidden services
at the time of executing these experiments, several HS operators
might provide backup onion addresses that point to the same page,
and, so increase the availability and capacity of their services12.
Similar observations are also described by Biryukov et al. [8]. As
in [20], we also found a large number of HS pages indicating that
the corresponding hidden service had been seized13.

In contrast to Kwon et al. [20], where the authors consider only
a small HS sample and manually exclude repeated content, we used
an automated approach to group all collected traces according to
their content. To this end, we applied a cosine similarity metric to
the collected HS page source dumps. This is a standard vector-based
measure used to determine how similar two text documents are
in terms of their subject matter [31]. We also introduced rules to
define what kind of HS contents can be classified in a group. Beside
pages that are obviously similar or even identical, we observed

9http://groups.csail.mit.edu/uid/chickenfoot/
10http://imacros.net/ and http://scriptish.org/
11https://stem.torproject.org/
12During the study period, HS load balancing approaches [4, 5, 26] were still in progress.
13In November 2014, a large amount of HSs were seized by Europol and other govern-
ment entities. For more details, we refer the reader to [2].

http://www.alexa.com/
https://research.torproject.org/safetyboard.html
http://groups.csail.mit.edu/uid/chickenfoot/
http://imacros.net/
http://scriptish.org/
https://stem.torproject.org/


1 2 3 4 5

100

80

60

40

20

Number of Tor entry nodes

Fr
ac
tio

n
of

pa
ge
s[
%]

hidden services
regular webpages

Figure 3: CCDF of the number of entry nodes used to load a
HS vs. a regular webpage.

many different onion addresses pointing to subpages of a certain
website. Although these subpages may contain different text and
resources, e.g., images, they share the same page template and logo.
Therefore, we considered them as one class. In addition, as in [8],
we found hundreds of blank pages or pages containing only a few
words that are inappropriate for classification. To avoid introducing
noise into our attack, we grouped such HS pages together. In total,
we created 3,145 groups representing different page content, on
which we focus in the rest of this work. Figure 2 illustrates the
distribution of onion addresses among the HS contents. Whereas
almost 20% of the generated groups consist of at least two unique
onion addresses, less than 0.05% include more than 1,000 addresses.
Furthermore, we observed that most of the onion addresses that
look alphabetically similar, also point to similar or even identical
HS contents.

6 OUR FINGERPRINTING TECHNIQUE
In contrast to previous works on WFP [28, 32], where the authors
assumed that a webpage is typically loaded over one circuit, i.e., the
clients communicate with one entry node only, we noticed that our
clients typically connect to several distinct entry nodes (depending
on the TBB version) to fetch a HS page. Figure 3 shows the statistics
obtained from our datasets. While more than 90% of the HSs were
fetched over at least two different entry nodes, for less than 20% of
the regular webpages the client used more than one entry node. To
take advantage of the observed information leakage caused by the
hidden service protocol, we define the following features. We first
count the total number of distinct entry nodes NG used for a single
page load. According to our observations, this number varies from
one to five. Next, we compute the sum of packet sizes transmitted
between the client and each of the entry nodes, denoted by SGi ,
where SG1 ≥ SG2 ≥ SG3 ≥ SG4 ≥ SG5 . If a given page is loaded
over smaller number of entry nodes, then the remaining values of
the features SGi , where 2 ≤ i ≤ 5, are zero. In the remainder of this
work, we refer to these new features as hidden service features.

We also include information regarding the complete page load
in our fingerprints. To do this, we rely on the approach proposed in
[28] and known as CUMUL. We extract information about the total
number of incoming packets Nin and the total number of outgoing
packets Nout transfered while fetching a page without taking into
account the existence of different entry nodes. Afterwards, we
calculate the total sum, Sout , of the data that the client has sent

during the page load, and the sum of the received data, Sin . Our
fingerprints also contain information that characterizes the load
pattern. As explained in [28], given a trace of packet sizes T =
(p1, ...,pn ), where pi > 0 indicates an incoming packet and pi < 0
an outgoing packet, the cumulative representation of this trace
is computed as C (T ) = ((0,0), (a1,c1), ..., (an ,cn )) where c1 = p1,
a1 = |p1 |, and ci = ci−1 + pi , ai = ai−1 + |pi | for i = 2, ...,N .
As recommended in [28], we derive 100 features by sampling the
piecewise linear interpolant of C at equidistant points. Thus, we
are able to represent information about the chronological sequence
of incoming and outgoing packets transfered during a page load.

To evaluate our attack, we apply LibSVM [10] with a radial basis
function (RBF) kernel with parameters c and γ . LibSVM includes a
tool to optimize these parameters using cross-validation. It applies
a grid search, i.e., various combinations are tested and the one
with the best cross-validation accuracy is selected. Before applying
the SVM, we scale each feature linearly to the range [−1,1]. This
prevents features in greater numeric ranges dominating those in
smaller numeric ranges [35]. For all following evaluations in this
paper where we do not explicitly mention a different methodology,
we always apply 10-fold cross-validation. This means, the data is
split into 10 evenly large parts, i.e., folds. Then, the entire process of
training and testing is repeated 10 times, using one of the 10 folds
as test data and the remaining 9 folds as training data in turn.

7 HIDDEN SERVICE RECOGNITION
Our fingerprinting approach consists of two classification phases.
In phase one, we try to detect whether a client has connected to a
HS or visited a regular webpage. Moreover, we aim to answer the
question whether it is possible to identify a communication to a
new, i.e., not seen before, HS by using FPs of already known HSs.
Once a HS connection is detected, in phase two we try to recognize
exactly which HS content has been visited. In the following, we
describe and evaluate both classification phases in detail.

7.1 Phase 1: Detection of Communication to HS
In phase one, we differentiate between two scenarios, depending
on whether the adversary is attempting to detect a connection
establishment to an already-known or a unknown (i.e., not seen
before) HS. In both cases, we apply a binary classifier. The set of HS
pages forms a single class and is denoted as the foreground class.
The set of regular webpages is called the background class.

Detection of unknown HS communication. For evaluation,
our foreground set consists of 3,145 unique HS contents with one
fingerprint per content. Our background set contains increasing
sizes b of regular webpages with one fingerprint per page and
b ∈ {3145,5000,9000,20000,50000,111884,211148}, where 211,148
is the maximum available background set size. Here, the accuracy,
i.e., the probability of a correct identification (either true positive or
true negative), is not a representative indicator, since classes are not
balanced. Therefore, we utilize metrics that are commonly applied
in such situations, namely recall and precision. Recall represents
the probability that a connection to a hidden service is successfully
detected. On the other hand, precision indicates the probability that
the classifier is actually correct when claiming to have detected a
connection to a HS. From the adversary’s perspective, precision



0
20
00
0

40
00
0

60
00
0

80
00
0

10
00
00

12
00
00

14
00
00

16
00
00

18
00
00

20
00
00

22
00
00

1

0.9

0.8

0.7

0.6

Background set sizes

Unknown HS communication (1 FP)
Unknown HS communication (8 FPs)
Known HS communication

(a) Precision

0
20
00
0

40
00
0

60
00
0

80
00
0

10
00
00

12
00
00

14
00
00

16
00
00

18
00
00

20
00
00

22
00
00

1

0.9

0.8

0.7

0.6

Background set sizes

Unknown HS communication (1 FP)
Unknown HS communication (8 FPs)
Known HS communication

(b) Recall

Figure 4: Results for classification phase one when using TBB 3.6.2.

0
20
00
0

40
00
0

60
00
0

80
00
0

10
00
00

12
00
00

14
00
00

16
00
00

18
00
00

20
00
00

22
00
00

1

0.9

0.8

0.7

0.6

0.5

Background set sizes

Unknown HS communication (1 FP)
Unknown HS communication (8 FPs)
Known HS communication

(a) Precision

0
20
00
0

40
00
0

60
00
0

80
00
0

10
00
00

12
00
00

14
00
00

16
00
00

18
00
00

20
00
00

22
00
00

1

0.9

0.8

0.7

0.6

0.5

Background set sizes

Unknown HS communication (1 FP)
Unknown HS communication (8 FPs)
Known HS communication

(b) Recall

Figure 5: Results for classification phase one when using TBB 6.0.4.

and recall should both be ideally equal or close to one. In this case,
it is highly likely that all users connected to a hidden service are
detected and the detection is practically always correct.

We computed precision and recall for all values of b. As shown
in Figure 4(a) and 4(b) (red line), we observe a slow decrease of both
metrics for increasing background set sizes. Still, for the maximum
considered universe size, the precision is as high as 0.87 and recall
is about 0.88. To overcome the observed degradation in the results,
our first intuition was to increase the quantity of fingerprints per
hidden service used for training by the attacker. Instead of one, we
utilized eight fingerprints per HS while keeping the background set
as described above. We also implemented an additional enclosing
10-fold cross-validation to ensure that all fingerprints belonging to
a certain hidden service are used only for training or for testing, but
not for both. Figure 4(a) and 4(b) (blue line) illustrate the obtained
results. We can see that the precision remains high, i.e., close to 1.0,
and almost constant. While the foreground pages are detectable
with a precision almost 1.0 if the universe is small, this value de-
creases by only less than 0.03 for the largest background set. Similar
results are observed with respect to recall. For b = 3,145, the ad-
versary is able to detect every hidden service, while increasing b to

211,148 stills allows more than 95% of the foreground pages to be
detected. In summary, we conclude that the adversary needs only
a few more fingerprints (but still a moderate quantity) per hidden
service to be successful.

Detection of known HS communication. So far, we have
considered the scenario where the adversary tries to detect a con-
nection establishment to a new HS that has not previously been
seen by the classifier. Due to the limited hidden service universe
size, it is also feasible to assume that the attacker knows all available
HS pages visited by the clients (or, alternatively, is interested in
detecting connection establishment only to some hidden services).
Therefore, we also explore the severity of the attack in the scenario
where the adversary tries to identify known HS communication. To
evaluate this, we extended our foreground set by one fingerprint
per hidden service (i.e., nine fingerprints per HS) and kept the same
background set sizes. Contrary to our previous experiment, here
we utilized those fingerprints for testing that are not included in
the training set, but belong to the same HSs that the classifier has
been trained on. While the size of the training set remains the same
as the one used above, we further restricted the testing set size to
that applied for unknown HS communication in order to keep both



0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

Precision

Fr
ac
tio

n
of

fo
re
gr
ou

nd
pa
ge
s[
%]

b =100
b =500
b =1000
b =1500
b =2000
b =2500
b =3000

0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

Recall

Fr
ac
tio

n
of

fo
re
gr
ou

nd
pa
ge
s[
%]

b =100
b =500
b =1000
b =1500
b =2000
b =2500
b =3000

Figure 6: CCDF for an open-world scenario within the hidden service universe.

experiments comparable to each other. The background set was
divided into training and testing sets as above. We then calculated
precision and recall for all values of b. As shown in Figure 4(a)
and 4(b) (green line), the foreground pages are detectable with a
precision grater that 0.96 for all values of b. For the recall, we make
similar observations. The adversary is able to detect almost every
hidden service page, i.e., the recall equals 0.9975, if b = 3,145, and
this metric remains greater than 0.96 for b = 211,148. Hence, as
expected, the detection of connection establishment to known HSs
is even easier classification task.

Discussion. First, we explore the significance of our hidden
service features introduced in Section 6. To this end, we compare
the classification results of our classifier with those obtained by
CUMUL [28]. As shown in Table 2, the impact of the proposed HS
features becomes significant for large background set sizes. For
instance, the recall dramatically drops by 0.4 on average when ex-
cluding the HS features compared to the corresponding outcomes
obtained by using fingerprints that contain these features. These
significant improvements occur particularly when the attacker re-
lies on prior knowledge in the area ofWFP and uses grid parameters
known to be successful for regular webpages [28]. Although the
effect of the HS features is not always so distinctive if more fine-
grained parameter search is performed, they are especially useful
when the adversary is trying to save time and computational re-
sources by using limited, standardly-suggested intervals of grid
parameters.

Table 2: Impact of our novel fingerprinting features.

our features CUMUL features
Background Precision Recall Precision Recall
3,145 0.9916 0.9935 0.9706 0.9918
5,000 0.9882 0.9907 0.9389 0.9883
9,000 0.9794 0.9868 0.9063 0.9819
20,000 0.9628 0.9825 0.9388 0.9651
50,000 0.9335 0.9733 0.9203 0.9313
111,884 0.8612 0.9595 0.8934 0.7460
211,148 0.8391 0.9357 0.8701 0.5282

Second, another interesting aspect is to investigate the impact
of a newer TBB version on the performance of our attack. The use
of several entry nodes for a communication with a HS has also
attracted attention of the Tor developers, who have introduced
improvements in newer TBB versions [30]. To evaluate this, we
repeated the process of data collection for both the foreground
and the background set by using the experimental setup described
above, but applying TBB 6.0.4. While we kept the same background
set sizes, we were able to gather 1,309 accessible hidden services.
We repeated the experiments described above and obtained the
results shown in Figure 5. Both precision and recall still remain
high, especially for known hidden services. Nevertheless, in some
scenarios (e.g., unknown HS communication with one fingerprint),
correct classification clearly becomes more challenging. Also, the
difference between unknown and known HS communication de-
tection becomes more marked here. A reason for this might be
the fact that most of clients already use only one entry node to
connect to a HS [23]. Compared to the old TBB version where the
length of the smallest packet sizes transfered for the both types of
pages (HSs vs. regular webpages) is different, we no longer observe
such variations. Last but not least, one has to take into account the
fact that the foreground set used for this evaluation is significantly
smaller, i.e., the training set size used by the attacker is restricted.
However, a connection establishment to a HS can still be correctly
identified with a precision more than 0.9 and a recall at least 0.8. In
terms of training time, for the largest universe size of 211,148 pages,
it takes one hour and 54 minutes on Intel Xeon 2.4GHz; for 111,884
about one hour and 4 minutes; for 50,000, less than 5 minutes and
for 3,145 pages, 12 seconds. To sum up, though the new TBB version
slightly increases the protection against an eavesdropper on the
link between the client and its entry node, it is more vulnerable
with regard to a malicious entry node as the latter sees all HS traffic
and can reliably detect HS communication [20].

7.2 Phase 2: Detection of Particular HS Content
Once a communication to a HS is detected, in phase two we try
to identify the particular HS content visited by the client. In ac-
cordance with phase one, here we also differentiate between two
scenarios depending on whether the adversary’s classifier has been
trained on the whole hidden service universe. Regardless of the



0 0.2 0.4 0.6 0.8 1.0

100

80

60

40

20

Fr
ac
tio

n
of

hi
dd

en
se
rv
ic
es

[%
]

Precision
Recall

Figure 7: CCDF for a closed-world scenario within the hid-
den service universe.

scenario, we assume that the attacker has detected a HS communi-
cation by applying classification techniques from phase one. Here
we do not apply HS specific features anymore (as unpredictability
in the number of used circuits might disturb the recognition) but
use the standard CUMUL classifier. First, we evaluate our attack
in an open-world setting within the HS world only. In this case,
the adversary wants to detect a particular set of HSs and is not
interested in (and/or was not able to collect fingerprints for) the rest
of the HS universe. Second, we also consider the scenario where the
complete list of all hidden services is known to the attacker, who
desires to knowwhich one of the HSs is being accessed by the client.
This use case is comparable to a closed-world setting in common
WFP approaches. In the following, we present the classification
outcomes obtained in both scenarios.

Open-world within hidden services. To evaluate this sce-
nario, we divided our HS dataset described above into a foreground
set consisting of 100 randomly selected HSs with 40 fingerprints
each and a background set representing increasing background
sizes b ∈ {100,500,1000,1500,2000,2500,3000} with one fingerprint
per page. Here, we again focus on recall and precision due to the
existence of unbalanced datasets. Figure 6 shows the results. As
illustrated in the figure, both recall and precision clearly decline
for increasing background set sizes. For instance, less than 50% of
the hidden services are identified with a recall at least 0.9 for the
largest background size, though almost all had recall of one with
the smallest HS universe size. For the precision, we observe an even
more remarkable decrease. For precision of 0.9, the drop-off is from
almost 100% to about 40%. To sum up, contrary to the adversary’s
success in phase one, the fingerprinting attack does not scale when
applied in open-world setting within the hidden service universe
only. Possibly, the attack would become feasible if the adversary
is able to fingerprint the whole HS universe. The results of this
scenario are shown and discussed in the next subsection.

Table 3: Accuracy of different classification problems.

Dataset Accuracy [%]

1000 random HSs 69.86
1000 random webpages 69.51
1000 Alexa Top pages 76.21

Table 4: Comparison of state-of-the-art classifiers in closed-
world setting.

Classifier Accuracy [%] Avg. runtime
per fold [s]

random HSs public HSs
1000 500 500 500

Our classifier (SVM) 69.86 80.65 81.7 62
Kwon (k-NN) 39.31 47.37 46.75 19
Wang (k-NN) 29.55 34.63 34.95 1916
Hayes (k-FP) – 47.60 49.61 991

Closed-world within hidden services. For this case study, we
consider amulti-class scenario where each HS content is treated as a
different class and each class is evaluated against all others. For this
evaluation, we were able to create a hidden service set consisting
of 2,744 unique HS contents with 40 fingerprints per content. Be-
sides precision and recall, we also computed the accuracy, since in
contrast to the experiments above, we consider a balanced dataset.
We used 10-fold cross-validation and achieved a recognition rate
of 60.97%. In addition, Figure 7 shows the CCDF of precision and
recall for this experiment. As we can see, there are fewer than 20%
of all HSs that have both precision and recall at least as good as
0.9 and about 5% of all HSs that are not detectable at all. Trying to
better understand the obtained classification outcomes, we found
that 161 hidden services cannot be identified at all and 99 HSs are
always correctly recognized. We further analyze the problem of
detectability of Tor hidden services in Section 7.3.

Discussion. Contrary to our expectation based on existing re-
sults for closed-world settings in common WFP attack scenar-
ios [9, 32], the recognition rate obtained in the latter experiment
is significantly lower. This could be because our dataset is signif-
icantly larger than the datasets used to evaluate state-of-the-art
classifiers (2,744 vs. 100 pages). Another hypothesis is that the
detection of a particular HS content is a more difficult classification
problem than the detection of regular webpages. Moreover, typi-
cally most evaluations are restricted to detection of the index pages
of most popular websites. Therefore, we performed an additional
closed-world experiment to investigate these hypotheses. To this
end, we selected the first 1,000 index pages from the Alexa Top list,
1,000 random HSs, and 1,000 webpages representing an unbiased
random sample of the world wide web [28]. Table 3 shows the ob-
tained classification results. We see that HSs are identified with an
accuracy similar to that of random webpages. Only Alexa Top index
pages have a slightly better recognition rate. Possibly, this is due to
the greater variability of the most popular websites. Therefore, this
experiment confirms the fact that most popular websites are not
necessarily a good sample of pages for a performance evaluation
of classifiers with respect to WFP attacks [28].

7.3 Comparison with Related Work
In this section, we compare our classifier to other state-of-the-art
WFP classifiers. First, we focus on phase two of our attack, namely
closed-world within hidden services. To do this, we used the same



0 20000 40000 60000 80000 100000

1

0.9

0.8

0.7

0.6

Background set sizes

k-FP (Hayes et al.)
Our classifier

(a) Precision

0 20000 40000 60000 80000 100000

1

0.9

0.8

0.7

0.6

Background set sizes

k-FP (Hayes et al.)
Our classifier

(b) Recall

0 20000 40000 60000 80000 10000010−1

100

101

102

103

104

105

Background set sizes

Av
er
ag
e
pr
oc
es
si
ng

tim
e
[s
]

k-FP (Hayes et al.)
Our classifier

(c) Runtime (The y-axis scales logarithmically.)

Figure 8: Performance evaluation of our classifier vs. k-FP of Hayes et al. [16].

set of 1,000 random hidden services described above and generated
the corresponding feature set not only for our classifier, but also
for the known state-of-the-art classifiers k-NN of Wang et al. [32],
k-NN of Kwon et al. [20], and k-FP of Hayes et al. [16]. Further-
more, all classifiers were (if necessary) adapted to perform 10-fold
cross-validation to make results comparable to each other. Table 4
shows the obtained classification outcomes and the correspond-
ing runtime per fold. As we can see, our classifier outperforms
all other state-of-the-art approaches in terms of the classification
accuracy. Please note that we were not able to successfully run
the attack of Hayes et al. for 1,000 pages due to its huge memory
requirements14. Therefore, we decreased out dataset to 500 hidden
services and repeated the experiments. While other state-of-the-art
approaches cannot reach even 50% accuracy on the reduced dataset,
our classifier achieves more than 80% recognition rate. The worst
performance is provided by Wang et al.’s k-NN classifier. The ap-
proach of Hayes et al. achieves similar results to the k-NN classifier
of Kwon. In terms of runtime, our classifier is faster by a factor of
15 than the k-FP of Hayes et al., and a factor of 30 than the k-NN
of Wang et al. The k-NN of Kwon et al. is by a factor of two faster
than our method, however, at the price of a significantly lower
classification accuracy. Please note that we could reproduce a high
accuracy of Kwon’s classifier on his dataset only by selecting the
checkbox “use training set for testing” in the Weka toolbox15. Per-
forming correct classification (i.e., using disjoint data for training
and testing) yields a significantly lower classification accuracy.

As the results from the closed-world experiments are not nec-
essarily transferable into open world [29], we further compare
classifiers in the open-world scenario. Please note that the classifier
of Hayes et al. [16] is the only WFP classifier for HSs that does
not require circuit level information (i.e., does not rely on a mali-
cious entry node). Hence, only comparison with this classifier is
possible in the open world. We selected 30 HSs with 40 fingerprints
each for the foreground set and increasing background set sizes b
consisting of regular webpages with one fingerprint per page and
b ∈ {1000,5000,10000,20000,50000,100000}. Moreover, we assume
that the adversary tries to detect already-known HSs. Figure 8
shows the obtained results16. As we can see, in the open-world
14Around 250 GB of memory was not sufficient for the successful execution of the
approach of Hayes et al.
15The use of this option is confirmed by the author in a private email exchange.
16Please note that incorrect predictions with respect to the foreground set are counted
as false positives.

setting our classifier also significantly outperforms state-of-the-art
with respect to both precision and recall. In particular, while the
recall obtained by using our classifier remains high and constant for
increasing background sizes, the degradation of the metric is severe
when applying the approach of Hayes et al. In terms of precision,
both classifiers exhibit similar behavior for growing number of
pages, with our classifier consistently outperforming that of Hayes
et al. by 10%. The promising results of classification in this experi-
ment should not be overestimated, as this is a simplified scenario,
where in phase two we distinguish between 30 HSs only, for the
purpose of comparing classifiers to each other. Also in terms of
runtime, our classifier is by several orders of magnitude faster than
the approach of Hayes et al. We conclude that our classifier provides
the best classification performance compared to state-of-the-art in
both closed and open-world settings.

8 CONCLUSION
In this paper we have analyzed the susceptibility of Tor hidden ser-
vices to the website fingerprinting attack. To this end, we proposed
a novel two-phase fingerprinting approach for hidden services that
does not rely on malicious Tor nodes. We show that our approach
significantly outperforms state-of-the-art methods with respect to
classification accuracy. Though recent works claim the feasibility
of attack in the context of hidden services, we show that in gen-
eral neither our attack nor other existing approaches scale when
applied in realistic settings. Moreover, as the size of HS universe
is constantly growing, it is likely that the feasibility of the attack
in the future will decrease even further. We present a comprehen-
sive comparison of the performance and limits of state-of-the-art
website fingerprinting attacks with respect to Tor hidden services
and reveal the fact that the attack still works well on some of them
despite considering full universe size at the time of our evaluation.

9 ACKNOWLEDGMENTS
The authors would like to thank Markus Peuhkuri from Aalto Uni-
versity in Finnland for helping them with accessing the PlanetLab
testbed. Parts of this work have been funded by the Luxembourg Na-
tional Research Fund (FNR) within the CORE Junior Track project
PETIT, the EU H2020 projects Privacy Flag and SAINT.



REFERENCES
[1] 2014. Better, fairer circuit OOM handling. https://trac.torproject.org/projects/

tor/ticket/9093. (2014).
[2] 2014. Thoughts and Concerns about Operation Onymous. https://blog.torproject.

org/blog/thoughts-and-concerns-about-operation-onymous. (2014).
[3] 2015. Getting the HSDir flag should require the Stable flag. https://github.

com/DonnchaC/torspec/blob/master/proposals/243-hsdir-flag-need-stable.txt.
(2015).

[4] 2015. Load Balancing/High Availability Hidden Services. http://archives.seul.
org/or/talk/Mar-2015/msg00218.html. (2015).

[5] 2015. Possible Solutions for Increasing the Capacity of a Hidden Service. https:
//lists.torproject.org/pipermail/tor-talk/2015-March/037173.html. (2015).

[6] 2017. Tor Rendezvous Specification. https://gitweb.torproject.org/torspec.git?a=
blob_plain;hb=HEAD;f=rend-spec.txt. (2017).

[7] Alex Biryukov, Ivan Pustogarov, Fabrice Thill, and Ralf-Philipp Weinmann. 2014.
Content and Popularity Analysis of Tor Hidden Services. In 34th International
Conference on Distributed Computing Systems Workshops. IEEE, Madrid, Spain,
188–193.

[8] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. 2013. Trawling for
Tor Hidden Services: Detection, Measurement, Deanonymization. In Symposium
on Security and Privacy (S&P). IEEE, Berkeley, CA, USA, 80–94.

[9] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. 2012. Touching from
a distance: website fingerprinting attacks and defenses. In ACM conference on
Computer and communications security (CCS). ACM, Raleigh, NC, USA, 605–616.

[10] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology 2 (April 2011).
Issue 3. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[11] Roger Dingledine and Nick Mathewson. 2017. Tor directory protocol, Version 3.
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt. (2017).

[12] Roger Dingledine and Nick Mathewson. 2017. Tor Protocol Specification. https://
gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt. (2017).

[13] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
generation Onion Router. In 13th conference on USENIX Security Symposium.
USENIX Association.

[14] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012.
Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures
Fail. In Symposium on Security and Privacy (S&P). IEEE, San Francisco, CA, USA,
332–346.

[15] Rafael Gálvez, Marc Juarez, and Claudia Diaz. 2016. Profiling Tor Users with
Unsupervised Learning Techniques. In International Workshop on Inference and
Privacy in a Hyperconnected World (INFER). DE GRUYTER, Darmstadt, Germany.

[16] Jamie Hayes and George Danezis. 2016. k-fingerprinting: a Robust Scalable
Website Fingerprinting Technique. In 25th USENIX Security Symposium. USENIX
Association, Austin, TX, 1187–1204.

[17] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. 2009. Website
Fingerprinting: Attacking Popular Privacy Enhancing Technologies with the
Multinomial Naïve-Bayes Classifier. In ACM workshop on Cloud computing secu-
rity. ACM, Chicago, IL, USA, 31–42.

[18] Rob Jansen, Florian Tschorsch, Aaron Johnson, and Bjorn Scheuermann. 2014.
The Sniper Attack: Anonymously Deanonymizing and Disabling the Tor Network.
In 21st Internet Society (ISOC) Network and Distributed System Security Symposium
(NDSS). Internet Society, San Diego, CA, USA.

[19] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. 2014.
A Critical Evaluation of Website Fingerprinting Attacks. In 21st ACM Conference
on Computer and Communications Security (CCS). ACM, Scottsdale, Arizona, USA,
263–274.

[20] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas Devadas.
2015. Circuit Fingerprinting Attacks: Passive Deanonymization of Tor Hidden
Services. In 24th USENIX Security Symposium. USENIX Association, Washington,
D.C., 287–302.

[21] Nick Mathewson. 2015. Next-Generation Hidden Services in Tor. https://gitweb.
torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt. (2015).

[22] Srdjan Matic, Platon Kotzias, and Juan Caballero. 2015. Caronte: Detecting Lo-
cation Leaks for Deanonymizing Tor Hidden Services. In 22nd ACM SIGSAC
conference on Computer and communications security (CCS). ACM, Denver, Col-
orado, USA, 1455–1466.

[23] Asya Mitseva, Andriy Panchenko, Fabian Lanze, Martin Henze, Klaus Wehrle,
and Thomas Engel. 2016. POSTER: Fingerprinting Tor Hidden Services. In
ACM SIGSAC Conference on Computer and Communications Security (CCS). ACM,
Vienna, Austria, 1766–1768.

[24] Steven Murdoch. 2006. Hot or not: Revealing hidden services by their clock
skew. In ACM Conference on Computer and Communications Security (CCS). ACM,
Alexandria, VA, USA, 27–36.

[25] Juha Nurmi. 2015. Warning: 255 fake and booby trapped onion sites. (2015).
https://lists.torproject.org/pipermail/tor-talk/2015-July/038318.html

[26] Donncha O’Cearbhaill. 2017. OnionBalance. https://onionbalance.readthedocs.
org/en/latest/. (2017).

[27] Lasse Øverlier and Paul Syverson. 2006. Locating Hidden Servers. In Symposium
on Security and Privacy (S&P). IEEE, Oakland, CA, USA, 99–114.

[28] Andriy Panchenko, Fabian Lanze, Andreas Zinnen,Martin Henze, Jan Pennekamp,
Klaus Wehrle, and Thomas Engel. 2016. Website Fingerprinting at Internet
Scale. In the 23rd Internet Society (ISOC) Network and Distributed System Security
Symposium (NDSS). Internet Society, San Diego, CA, USA.

[29] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. 2011.
Website Fingerprinting in Onion Routing Based Anonymization Networks. In
10th ACM Computer and Communications Security Workshop on Privacy in the
Electronic Society. ACM, Chicago, Illinois, USA, 103–114.

[30] Mike Perry. 2015. Notes and Action Items from Hidden Service Fingerprinting
Session. https://lists.torproject.org/pipermail/tor-dev/2015-October/009632.html.
(2015).

[31] Sandeep Tata and Jignesh M. Patel. 2007. Estimating the Selectivity of tf-idf
Based Cosine Similarity Predicates. Newsletter ACM SIGMOD Record 36 (June
2007), 7–12. Issue 2.

[32] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.
Effective Attacks and Provable Defenses for Website Fingerprinting. In 23rd
USENIX conference on Security Symposium. USENIX Association, 1–15.

[33] Tao Wang and Ian Goldberg. 2013. Improved website fingerprinting on Tor. In
12th ACM Computer and Communications Security Workshop on Privacy in the
Electronic Society. ACM, Berlin, Germany, 201–212.

[34] Tao Wang and Ian Goldberg. 2016. On Realistically Attacking Tor with Web-
site Fingerprinting. In Privacy Enhancing Technologies (PETS). DE GRUYTER,
Darmstadt, Germany, 21–36.

[35] Chih wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. 2010. A Practical Guide to
Support Vector Classification. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/
guide.pdf. (2010).

[36] Matthew Wright, Micah Adler, Brian Levine, and Clay Shields. 2003. Defending
Anonymous Communication Against Passive Logging Attacks. In Symposium on
Security and Privacy (S&P). IEEE, Oakland, CA, USA, 28–43.

[37] Sebastian Zander and Steven Murdoch. 2008. An Improved Clock-skew Measure-
ment Technique for Revealing Hidden Services. In 17th conference on USENIX
Security symposium. USENIX Association, Berkeley, CA, USA, 211–225.

https://trac.torproject.org/projects/tor/ticket/9093
https://trac.torproject.org/projects/tor/ticket/9093
https://blog.torproject.org/blog/thoughts-and-concerns-about-operation-onymous
https://blog.torproject.org/blog/thoughts-and-concerns-about-operation-onymous
https://github.com/DonnchaC/torspec/blob/master/proposals/243-hsdir-flag-need-stable.txt
https://github.com/DonnchaC/torspec/blob/master/proposals/243-hsdir-flag-need-stable.txt
http://archives.seul.org/or/talk/Mar-2015/msg00218.html
http://archives.seul.org/or/talk/Mar-2015/msg00218.html
https://lists.torproject.org/pipermail/tor-talk/2015-March/037173.html
https://lists.torproject.org/pipermail/tor-talk/2015-March/037173.html
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=rend-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=rend-spec.txt
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt
https://lists.torproject.org/pipermail/tor-talk/2015-July/038318.html
https://onionbalance.readthedocs.org/en/latest/
https://onionbalance.readthedocs.org/en/latest/
https://lists.torproject.org/pipermail/tor-dev/2015-October/009632.html
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Datasets
	5 Experimental Setup
	5.1 Data Collection
	5.2 Data Extraction and Processing

	6 Our Fingerprinting Technique
	7 Hidden Service Recognition
	7.1 Phase 1: Detection of Communication to HS
	7.2 Phase 2: Detection of Particular HS Content
	7.3 Comparison with Related Work

	8 Conclusion
	9 Acknowledgments
	References

