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ABSTRACT
Developers of smartphone apps increasingly rely on cloud services
for ready-made functionalities, e.g., to track app usage, to store data,
or to integrate social networks. At the same time, mobile apps have
access to various private information, ranging from users’ contact
lists to their precise locations. As a result, app deployment models
and data flows have become too complex and entangled for users to
understand. We present CloudAnalyzer, a transparency technology
that reveals the cloud usage of smartphone apps and hence provides
users with the means to reclaim informational self-determination.
We apply CloudAnalyzer to study the cloud exposure of 29 volun-
teers over the course of 19 days. In addition, we analyze the cloud
usage of the 5000 most accessed mobile websites as well as 500
popular apps from five different countries. Our results reveal an
excessive exposure to cloud services: 90 % of apps use cloud services
and 36 % of apps used by volunteers solely communicate with cloud
services. Given the information provided by CloudAnalyzer, users
can critically review the cloud usage of their apps.

CCS CONCEPTS
• Security and privacy → Human and societal aspects of se-
curity and privacy; •Networks→ Network protocols; •Human-
centered computing → Ubiquitous and mobile computing;
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1 INTRODUCTION
Smartphones have become important for storing and accessing
personal information, ranging from contacts and calendar entries
over pictures to work documents [26]. Additionally, smartphones
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produce data through their sensors which, e.g., enables localiza-
tion or activity recognition [31]. With the right permissions, this
abundance of sensitive data can be easily accessed by mobile appli-
cations (apps) through dedicated APIs [46]. Indeed, app developers
increasingly rely on user data to improve the functionality of their
apps or to increase revenue with targeted advertisement [40].

At the same time, major parts of apps’ backend functionality,
including tracking and advertising, are nowadays realized via cloud
services. These services range from cloud infrastructure and con-
tent delivery networks (e.g., AWS and CloudFront) over reporting,
analytics, and advertisement services (e.g., Crashlytics, Flurry, and
AdMob) to consumer services (e.g., YouTube and Facebook). We
discover that the most popular apps on Google Play utilize 4.3 cloud
services on average, which highlights the prevalence of cloud usage.

In this situation, users have no knowledge about which cloud
services are utilized by apps running on their smartphones. How-
ever, combining the sensitive data stored and sensed by smart-
phones with cloud computing—characterized by de facto monopo-
lies, technical complexity, inherent non-transparency, and opaque
legislation—raises severe privacy risks [35, 60]. Even worse, cloud
services can be realized on top of each other, leading to indirect
cloud exposure which is even harder for users to grasp. As an ex-
ample, our work reveals that Unity (a popular game development
platform) utilizes Amazon EC2 to (partly) deliver its services.

Any cloud service receiving sensitive information can use it for
unintended purposes, e.g., personalized advertising [40] or forward-
ing to other entities [36]. Furthermore, users have no guarantee that
their data is handled according to their legal requirements [36, 40].
Resulting from the de facto monopolized landscape of cloud ser-
vices, data is further susceptible to breaches as evidenced by the
compromise of 1 billion Yahoo accounts [29]. To put users back into
control, it is important to raise their awareness of these risks [43]
and provide them with means to protect their privacy.

Related work confirms the privacy risks of the access of apps to
an abundance of private information. To assess and counter these
risks, approaches aim at detecting privacy leakage by analyzing
traffic [51, 57] or tracking apps’ data flows [9, 26]. These related
works provide information on what data is leaked. So far, a way for
smartphone users to detect where (to which cloud services) their
data is leaked, as a foundation to protect their privacy, is missing.

To bridge this gap between users’ knowledge and information
required to enforce their privacy, we present CloudAnalyzer, which
provides users with detailed statistics of their personal cloud expo-
sure caused by their smartphone apps. To achieve this goal, Cloud-
Analyzer locally monitors the network traffic produced by apps
running on a user’s device and compares observed communication
patterns to 55 representative cloud services. Apart from revealing
the hidden exposure to cloud services caused by smartphone apps,
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CloudAnalyzer also detects the prevalent indirection in cloud us-
age where cloud services subcontract each other to realize their
functionality. Based on CloudAnalyzer’s observations, we support
users in critically reviewing their exposure to cloud services and, as
a result, change their app usage behavior or even decide to refrain
from using certain apps. Likewise, CloudAnalyzer is a valuable tool
for researchers to understand the characteristics of the usage of
cloud services by smartphone apps and the relationships between
cloud services. The following are our main contributions:
Representative Set of Cloud Services:We perform a thorough
analysis of the landscape of cloud services commonly utilized by
mobile apps today. Based on this, we derive the most influential
services in each category of mobile cloud services. Our resulting
set of 55 representative cloud services serves as a foundation for
detecting cloud usage of mobile apps.
Cloud Usage Detection: We develop a methodology to identify
cloud services based on patterns that can be directly obtained from
passively observed network traffic. Our methodology identifies,
besides the cloud service(s) an app is directly communicating with,
the indirect use of cloud resources. We present CloudAnalyzer,
an implementation of our methodology for unmodified Android
devices that transparently monitors cloud usage of apps.
User Study and Measurements: We utilize CloudAnalyzer to
study the cloud usage of 29 devices over the course of 19 days.
Additionally, we study the cloud entanglement of the 5000 most
popular mobile websites. Finally, we investigate the cloud usage
of 500 popular apps in five countries. CloudAnalyzer reveals an
alarming rate of 90 % of apps using cloud services and 36 % of apps
used by volunteers communicating solely with cloud services.

2 MOBILE CLOUD SERVICES AND PRIVACY
Developers for mobile platforms increasingly rely on cloud ser-
vices [65]. Their motivation ranges from reduced effort over cost
reductions to the possibility to integrate third-party services, e.g.,
advertising networks. We first provide an overview of the landscape
of mobile cloud services and derive a representative set of services.
Based on this, we distill privacy risks in the face of potentially
sensitive data collected by smartphones and discuss related work.

2.1 The Landscape of Mobile Cloud Services
To understand the extent of cloud exposure through mobile apps
and the resulting privacy risks, we identify classes of mobile cloud
services and their interweaving. As shown in Figure 1, a major
portion of cloud usage originates from software development kits
(SDKs) that app developers include to realize functionality rang-
ing from interaction with social networks over crash reporting
to targeted advertisement [13]. Depending on the individual SDK,
different cloud services are utilized. In the following, we discuss
the five different classes of mobile cloud services and their relation-
ships. Furthermore, we compile a representative list of the most
influential services for each class. We provide the full list of the 55
cloud services that we selected in Table 1.
Cloud Infrastructure (CI). Developers of mobile apps use cloud
infrastructure (i.e., computing and storage resources) to operate the
backend for their apps (instead of operating own servers). In our
work, we consider the most important infrastructure providers as

Figure 1: In the landscape of mobile cloud services, services
on upper layers can, but not necessarily have to, rely on ser-
vices on lower layers to provide their functionality.

identified by Canalys’ revenue analysis [16] and Skyhigh’s study of
application deployment [56]. The services covered by these studies
account for a market share of 68.7 % respectively 85.7 %.
Content Delivery Networks (CDN). To reliably, scalably, and
timely deliver static content, Content Delivery Networks (CDNs)
rely on globally distributed infrastructure. They can be realized
on top of cloud infrastructure or built on dedicated infrastructure.
We analyze all CDNs that have a market share ≥ 1% in Datanyze’s
measurements of 1M popular websites [19]. Together, the CDN
services in our analysis have a market share of more than 90 %.
Reporting andAnalytics (R&A). To support app developers with
statistics on errors and app usage, reporting services track errors
(e.g., crashes) of apps while analytics services gather statistics on
the usage of apps (ranging from gathering user statistics to track-
ing user interaction). We cover all services behind reporting and
analytics libraries with ≥ 1% of installs according to AppBrain’s
measurements [5, 6]. Libraries that do not operate own cloud ser-
vices are excluded from our analysis (e.g., ACRA).
Mobile Advertisement (MA). App developers often rely on mo-
bile advertisement services to monetize their apps [55]. These ser-
vices are usually realized on cloud infrastructure and/or CDNs. In
our work, we include all services behind ad network libraries with
≥ 1% of installs in AppBrain’s statistics [4, 8]. In addition, we in-
corporate the advertisement companies with the highest traffic as
identified by measurements of Pujol et al. [49].
Consumer Services (CS). Services directly addressing and inter-
acting with consumers often rely on cloud infrastructure and CDNs,
e.g., social networks, communication and video platforms, as well
as file storage services. Such consumer services (e.g., Facebook and
Twitter) can often be integrated into apps through an SDK. To cap-
ture this effect, we include the social network libraries with ≥ 1%
of installs according to AppBrain [7]. Furthermore, we cover the
services with the highest amount of mobile traffic in North Amer-
ica according to Sandvine [53]. Additionally, we incorporate the 20
most prominent consumer services as identified by Skyhigh [56].

2.2 Privacy Risks of Mobile Cloud Services
When considering the landscape of mobile cloud services, it be-
comes evident that this deployment model poses serious privacy
risks. Most notably, the challenge of protecting privacy is more
complex and important on smartphones compared to traditional
deployments. First, smartphones are equipped with a large num-
ber of sensors, facilitating detailed monitoring and tracking [31].
Second, users interact with their smartphones throughout the day,
leading to a growing amount of sensitive information and meta data
[31]. Thus, smartphones increasingly cover important aspects of
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private life. When outsourcing potential sensitive data to (mobile)
cloud services, these privacy risks further amplify—mainly due to
the centrality, technical complexity, non-transparency, and opaque
legislation of cloud computing [36], as we detail in the following.
Centrality. The cloud market is de facto centralized with a small
number of services jointly dominating the market [56]. As a result,
these services are a valuable target for attackers [36], exemplified by
the attack on Yahoo in 2013, compromising 1 billion user accounts
[29]. Users are very much aware of these imminent risks [40], and
they significantly hinder cloud adoption [36, 61].
Technical Complexity and Non-Transparency. At the same
time, the mobile cloud service landscape is technically complex
and non-transparent: Mobile cloud services often subcontract other
cloud services [36], e.g., to avoid operating own infrastructure, to
increase scalability, or to strengthen resilience against attacks. This
entanglement forces users to trust an unknown number of third-
party cloud services with the sensitive data of their smartphones.
Most notably, the situation nowadays is so complex that it is im-
possible for users to grasp. Hence, users are in need of support for
taking an informed decision regarding their privacy.
Opaque Legislation. Given this technical complexity and non-
transparency, the jurisdiction users’ data falls under is often unclear,
hence, offering users very limited legal protection [20]. Furthermore,
legislation in many countries allows government agencies, e.g., law
enforcement, to access and intercept data in the cloud [30, 36].
This threat became evident after the recent global surveillance
disclosures [30]. Even app developers often fail to know where data
(their app is responsible for) flows to [32].

As a result of these increased privacy risks, users perceive a
loss of control over their data [36, 40, 61]. Hence, providing users
with the means to counter this perceived loss of control when their
sensitive data is sent to cloud services is an important challenge.

2.3 Related Work
As we discuss in the following, different lines of research provide
valuable input for our goal to uncover cloud usage of apps.
Mobile Network Traffic. Xu et al. [65] study the usage behavior
of apps in a cellular network. ProfileDroid [64] studies Android
apps to understand their network behavior. AntMonitor [42] and
Haystack [50] realize mobile measurement platforms that enable
researchers to investigate the network usage of apps at large. With
the goal to detect leaked private data, PrivacyGuard [57] and ReCon
[51] intercept network traffic of apps. Ferreira et al. [28] study
the network behavior of apps to differentiate between (in)secure
connections and the location of communication endpoints.

These works focus on the patterns and content of apps’ network
communication (and partially on resulting privacy risks). They
provide us with a solid foundation for our work, since they derive
an understanding of the network-level behavior of mobile apps
and offer mechanisms to detect leaked private data in traffic. In
contrast to our work, these works neglect the added privacy risks
of the complex and non-transparent interweaving of mobile apps
with cloud services common today. As a first step in this direction,
TRINICS [38] lays out the idea of comparing the cloud usage of
different users to give them feedback on their privacy risks.

Service Source(s) CI CDN R&A MA CS Additional Brand Names

AdColony [4] [8]  
Adjust [4] [5]   
Akamai [19]  
Alibaba [16]  #  # Umeng

Amazon [4] [16] [56]   #   A. Mobile Ads, A. S3, A. Web Services
(AWS), Cloudfront, Twitch

Appboy [7] #  
Apple [53]  iCloud, iTunes
AppLovin [4] #  
Appnext [4]  
AppNexus [49]  
AppsFlyer [4] [5]   
Apteligent [6]  Crittercism
Chartboost [4] [8]  
Cloudflare [19]  
comScore [5]  ScorecardResearch
Criteo [49]  
Dropbox [56]  
Evernote [56]  

Facebook [7] [53] [56] #  Atlas, Instagram, F. Messenger,
WhatsApp

Fastly [19]  
GitHub [56]  

Google [4] [6] [7]
[16] [53] [56]  #    AdMob, Crashlytics, DoubleClick,

Fabric, Gmail, G. Analytics, YouTube
imgur [56]  
Incapsula [19]  
InMobi [4]  
KeyCDN [19]  
Kochava [4] [5]   
Leadbolt [4]  
LinkedIn [56]  
Localytics [5]  

Microsoft [6] [16] [56]    #  Bing, HockeyApp, Microsoft Azure,
Office, OneDrive, Outlook, Skype

Mixpanel [5]  
Netflix [53]  
Oracle [16]  #
Pinterest [56]  
Rackspace [19] [56]   
RNTSMedia [4] [7]   Fyber, HeyZap
Smaato [4]  
Snap [53]  SnapChat
SoftLayer [16] [56]  # #
SoundCloud [56]  
StackPath [19]  Highwinds, MaxCDN
StartApp [4] [7] [8] #  
StumbleUpon [56]  
Supersonic [4] #  IronSource, mobileCore, StreamRail
Tapjoy [4]  
Tune [4] [5]   MobileAppTracking
Twitter [4] [7]   MoPub, Vine
Unity [4] [8] #  Applifier

Verizon [4] [8] [19]
[56] #     AOL, EdgeCast, Flickr, Flurry,Millen-

nialMedia, Nexage, Tumblr, Yahoo
Vimeo [56]  
VK [7]  
Vungle [4] [8]  
WeChat [7]  
Yandex [5] [6]  #

Table 1: Our representative set of 55 services covers the
different classes of mobile cloud services. We use  to
denote representative services for each class ofmobile cloud
services, while# denotes less prominent services for a class.

Cloud Traffic. Bermudez et al. [12] identify DNS responses as
viable input to identify cloud services. Subsequently, they detect
network traffic flowing to Amazon Web Services [11]. Drago et al.
[23] rely on DNS and TLS packets to study cloud storage systems
based on passive network observations. To understand if and how
web services are realized on top of cloud infrastructure, He et al.
[34] perform DNS probing for popular web services. To understand
the prevalence of cloud services in the email landscape, Henze et
al. [39] analyze the cloud exposure of email users. These works
perform large scale measurements to understand the anatomy of
cloud services. Their methodology provides valuable input for our
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approach of detecting cloud usage on smartphones. However, these
approaches do not consider the privacy risks of smartphones com-
municating with cloud services, which is our main focus.
Mobile Advertising. Vallina-Rodriguez et al. [62] study mobile
advertising based on traffic within the network of a mobile carrier.
Focusing on advertisement libraries on Android, Book et al. [14] an-
alyze the use of permissions for mobile advertising. From a different
perspective, Chen et al. [18] investigate the privacy risks of mobile
analytics services. Complementing these works, Vallina-Rodriguez
et al. [63] study mobile advertising and tracking based on network
traces of volunteers. Finally, Brookman et al. [15] measure the ca-
pability of advertisers to link users across different devices. These
works highlight privacy risks of forwarding data to advertising
services. However, mobile advertising is only one part of the mobile
cloud landscape and, as we show, privacy risks further exacerbate
when looking at the complete mobile cloud landscape.
Data FlowTracking. Tracking the flow of data within smartphone
apps allows detecting the leakage of sensitive data to third parties,
even if apps try to obfuscate that they are sending out sensitive
data. AndroidLeaks [31] and FlowDroid [9] are static flow tracking
systems that are used ahead of time to detect potential leaks of
sensitive information by covering all possible execution paths of an
app. In contrast, dynamic flow tracking systems such as TaintDroid
[26] and TaintART [59] track data flows during execution of an
app to identify actual data leakage that occurs while executing an
app. One challenge of data flow tracking is to identify whether
an identified data flow is benign or constitutes a privacy risk. To
this end, AppIntent [66] identifies data flows that have not been
triggered by the user and marks those as critical.

Concluding, mobile operating systems today counter privacy
risks by measures ranging from access control to sandboxing [10,
25]. These protect against malicious apps, but do not restrain pri-
vacy invasive apps exploiting granted permissions. Hence, users’
privacy is insufficiently protected [58], especially since users re-
main oblivious of their exposure to a plethora of cloud services.
Related work that addresses this challenge primarily focuses on
detecting which private content is leaked from smartphones. In con-
trast, we study the privacy risks resulting from the destination of
leaked content, especially with the advent of mobile cloud services.

3 DETECTING CLOUD USAGE OF APPS
Given the privacy risks when data is sent from smartphones to the
cloud, users must be empowered to effectively assess these risks to
make an informed decision about which apps to use or not. To this
end, users need detailed information about the quality and extent
of cloud exposure induced by apps. However, existing approaches
today primarily focus on detecting the leakage of sensitive informa-
tion, irrespective of where data is communicated to. Additionally,
cloud exposure of users through their apps is highly individual, de-
pending on the utilized apps and users’ behavior when interacting
with apps. Hence, users are in need of an individual assessment of
the privacy risks resulting from cloud usage of their apps.

To achieve this goal, we present CloudAnalyzer that uncovers
the cloud usage of smartphone apps by passively observing network
traffic directly on users’ devices. By doing so, we neatly complement
existing work, especially on data flow tracking, since we enable

Figure 2: To uncover cloud usage, CloudAnalyzer analyzes
network traffic created by apps directly on users’ smart-
phones for communication with cloud services.

the attribution of privacy leaks to responsible cloud services. This
attribution empowers users to adequately assess their individual
privacy risks and take appropriate counter measures, e.g., uninstall
a certain app or change their usage behavior. In the following,
we first describe the overall architecture of CloudAnalyzer. We
then present our methodology for dissecting network traffic to
detect cloud usage and describe how we realize CloudAnalyzer for
commodity off-the-shelf Android devices.

3.1 System Overview
CloudAnalyzer operates on network traffic of smartphone apps
to detect contacted cloud services. We decided to realize all func-
tionality for uncovering cloud usage solely within the control of
the user, i.e., directly on her device. Since network traffic itself
is extremely sensitive, processing it outside users’ control would
strongly contradict our goal of improving user privacy.

Our system for uncovering cloud usage of smartphone apps,
CloudAnalyzer, operates as shown in Figure 2. Whenever an app
uses one of the communication interfaces (cellular or wifi) to con-
tact an Internet service, CloudAnalyzer locally obtains a copy of
the communication transcript. Subsequently, CloudAnalyzer dis-
sects the captured traffic to identify contacted cloud services. Based
on this, CloudAnalyzer attributes the communication flow to one
or multiple identified cloud services. CloudAnalyzer collects ag-
gregated statistics on the amount of network packets and traffic
that has been sent to and received from a specific cloud service,
differentiating between direction of communication, encrypted and
unencrypted communication, user-initiated and background traffic,
as well as the used communication interface (cellular or wifi).

3.2 Dissecting Traffic to Detect Cloud Usage
At the core of CloudAnalyzer sits our methodology to detect cloud
usage based on network traffic. We comprehensively analyzed the
communication behavior of smartphone apps to derive different
approaches for reliably identifying contacted cloud services.
IP Addresses. IP addresses are identifiers assigned to each net-
worked computer [48] and hence also to each server that is used
to realize cloud services. This can be used to identify the operator
of the infrastructure a service is realized on (cloud infrastructure
or CDN, cf. Section 2.1). To determine that a contacted server is
operated by a cloud service, we rely on information from providers:
Many cloud services (e.g., Amazon, Microsoft, Google, SoftLayer)
make their IP addresses public, e.g., to enable customers to con-
figure firewalls [38]. Often, such published information contains a
(textual) description of the location of the data center, enabling us
to also identify the corresponding jurisdiction. While IP addresses
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often allow us to detect infrastructure services, we have to analyze
application layer protocols to also detect services that fail to publish
their IP addresses as well as services realized at higher layers.
DNS Responses. The domain name system (DNS) translates (hu-
man readable) domain names to IP addresses [44]. Whenever a
smartphone app requests a resource from a specific domain name,
the Android system transparently issues a DNS request to translate
this domain name to an IP address. By observing subsequent DNS
responses from a DNS name server, we derive the actual contacted
service(s) [12, 23]. We mark all subsequent communication with
this IP address as belonging to the identified cloud service. Using
this approach, it is even possible to identify multiple services in the
case of indirect cloud usage. Furthermore, some cloud services (e.g.,
Amazon) use domain names that contain information about the data
center location, easing the detection of the applicable jurisdiction.
Server Name Indication.With the increasing use of encryption,
server name indication (SNI) enables operators to still servemultiple
domain names from one IP address. Support for SNI is available for
the widely deployed transport layer security (TLS) protocol [24]
and the evolving QUIC protocol [41]. Since clients send the SNI in
plaintext, we can observe this information and utilize it, similar to
DNS responses, to identify contacted cloud services.
TLS Certificates.When using TLS encrypted connections, servers
have to authenticate themselves to clients using a TLS certificate
[21]. This certificate typically identifies the institution operating a
service. To establish trust into certificates, they have to be validated
by a trusted certificate authority. Hence, the information in TLS
certificates constitutes an especially reliable source for identifying
cloud services. We use domain names and information about the
organization holding a certificate to identify services.

In CloudAnalyzer, we use the above approaches to detect cloud
exposure for traffic flows as follows. Whenever one of the above
approaches detects a cloud service, we mark any future packets
of the same traffic flow as being exposed to this cloud service as
well. Strictly working on traffic flows prevents false classification
that might result from more lenient approaches such as analysis of
traffic patterns. Most notably, the combination of multiple of the
above approaches also enables the detection of indirect cloud usage,
i.e., one cloud service realized on top of another cloud service. In
this case, we assign one traffic flow to more than one cloud service
and use the most specific information available on these different
cloud services, e.g., when assigning data center locations.

To apply the above approaches to detect specific cloud services,
we need to create patterns for each cloud service. For example, we
need to know which IP addresses a cloud service uses or how a
cloud service’s TLS certificate looks like. To this end, we researched
these patterns for our 55 representative cloud services (cf. Section
2.1). Here, we relied on information provided by cloud services as
well as other public information (e.g., filter lists for advertisement).
Subsequently, we verified that our selection of cloud services and
detection patterns is indeed representative by checking IP addresses,
DNS and SNI domain names, as well as TLS certificates for a random
subset of our measurements of the most used apps (cf. Section 4.3).

Our approach of creating patterns for representative cloud ser-
vices might not necessarily detect all cloud services. However, given
our goal to support users in empowering their privacy, we strive for
correctness over completeness. Our rationale here is to keep users

Figure 3: CloudAnalyzer accesses network packets by locally
imitating a VPN using Android’s VPNService.

clear of incorrect information which might result from probabilistic
approaches such as the topological analysis of autonomous sys-
tems [27] or IP geolocation databases [47]. Instead, the information
provided by CloudAnalyzer constitutes a solid lower bound for the
entanglement of cloud services. In return, we accept that we might
be unable to detect cloud exposure to a few less important and
seldom used cloud services. Additionally, cloud services might de-
liberately try to obfuscate their network communication. However,
during our extensive tests of CloudAnalyzer, we observed only a
single, negligible attempt to obfuscate a mobile advertising service.

3.3 Integrating CloudAnalyzer into Android
The core idea of CloudAnalyzer is to detect cloud entanglement
in network traffic. Since network traffic is of sensitive nature, we
have to realize CloudAnalyzer on users’ devices. However, mobile
operating systems such as Android lack an interface to access net-
work traffic without system modification (i.e., rooting or custom
firmwares). Since we mostly target not technically-minded users,
we cannot dictate modifications to the operating systems in con-
trast to related work [26, 59]. Instead, we aim at a solution that
enables users to uncover their cloud exposure simply by installing
an app through well-established channels (e.g., Google Play).

To achieve this goal, we use an indirect path to access network
traffic on unmodified Android devices: We realize an imitated VPN
to gain access to the device’s network traffic using the VPNService
of the Android SDK [42, 50, 57] as shown in Figure 3 to create
a tun interface that redirects all network traffic of the Android
device into our imitated VPN. Our imitated VPN receives raw IP
packets and performs two tasks: (i) it creates a copy of each received
network packet which is then forwarded to CloudAnalyzer for
further processing and (ii) it forwards the raw IP packets to their
destination. The latter proves technically difficult, since Android
prohibits the creation of raw sockets. Hence, our imitated VPN
implements the essential parts of a Layer 3 and 4 network stack
to forward data from the tun interface over a normal Java socket
to an Internet host. This approach includes memorizing the state
of all open connections to be able to retranslate payload received
on a socket to corresponding IP packets to send them back to the
application over the tun interface. Related work shows that this
can be realized at modest throughput and energy costs [42, 50, 57].

Besides protecting privacy, capturing and analyzing network
traffic directly on users’ devices gives us an additional advantage: It
allows to correlate network packets to the application they originate
from. To this end, we track connections by extracting the user ID of
the app that started a specific network flow from the kernel’s proc
directory. Subsequently, we translate this user ID to the package
name of the app using Android’s PackageManager API.

CloudAnalyzer’s way of utilizing Android’s VPNService pre-
vents users from using an actual VPN connection. This limitation
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can be circumvented by integrating CloudAnalyzer either into the
VPN client or server. On a different perspective, CloudAnalyzer
asks for permission to access sensitive network traffic and hence
users need to trust CloudAnalyzer not to misuse this privilege. This
requirement holds for all privacy enhancing technologies working
on network traffic and we are convinced that increased privacy out-
weighs the required trust. Furthermore, unlike related work [50, 57],
we do not require users to install a CA certificate to performman-in-
the-middle analyses. Hence, CloudAnalyzer intentionally remains
oblivious of the content of encrypted sensitive communication.

In summary, by using Android’s VPNService and keeping track
of connections, we can observe network traffic on off-the-shelf An-
droid devices (Version 4.4 and newer) without the need for system
modifications. Furthermore and in contrast to in-network traffic
monitoring, we are able to associate network packets to the app
they originate from. Hence, we can use CloudAnalyzer to check the
network traffic of an app for communication with cloud services.

4 REAL-WORLD CLOUD ENTANGLEMENT
We now set out to uncover the cloud usage of mobile apps us-
ing CloudAnalyzer. To this end, we first discuss our observations
derived from running CloudAnalyzer on devices of volunteers. Sub-
sequently, we report on additional measurements of popular mobile
websites and the most used apps in multiple countries to highlight
different aspects of cloud usage at larger scales.

4.1 Cloud Entanglement on User Devices
We begin our study by analyzing the cloud usage of actual users
on their mobile devices. To this end, volunteers installed CloudAn-
alyzer on 29 devices and collected statistics on the cloud exposure
caused by their apps over the course of 19 days.
Study Design. We advertised our study using mailing lists and
personal contacts to attract volunteers, but did not offer monetary
remuneration for participating in our study. People were already
motivated to participate through the possibility to gain interesting
insights into their exposure to cloud services. Study participants
could at any time pause CloudAnalyzer’s traffic analysis or examine
their cloud usage through a GUI. As a result, volunteers could have
changed their usage behavior based on the information provided
by CloudAnalyzer. However, since our focus in this work lies on
untangling the mobile cloud landscape, our experiments were not
designed to capture these effects. Still, one volunteer contacted us
to report on uninstalling an app based on the information provided
by CloudAnalyzer, and we will further study such aspects in future
work. We collected aggregated statistics on cloud usage detected by
CloudAnalyzer as well as general statistics such as the amount of
time CloudAnalyzer was running and the total amount of network
traffic (serving as a baseline). For our analysis, we only consider
data from days where CloudAnalyzer was running for at least 20
hours (to prevent partial measurements). In total, we were able to
collect data for 347 days of mobile device usage covering 383 apps.
Privacy and Ethical Considerations. As the goal of CloudAn-
alyzer is to empower users to execute their right to privacy, we
designed our study such that the risk of (inadvertently) harming the
privacy of our volunteers is minimized. To this end, we followed the
principles of privacy by design [17] and ethical research guidelines

Figure 4: Cloud services ac-
cessed by user devices.

Figure 5: Cloud traffic pro-
duced by individual apps.

Figure 6: The fraction of cloud usage varies across the differ-
ent dimensions of network traffic.

[22]. Notably, we are only interested in technical usage character-
istics of cloud services, not in user behavior. Hence, we neither
collected personally identifiable information nor other statistics on
our volunteers. In fact, we do not even know who participated in
our study (unless volunteers actively disclosed their participation).
We strictly minimized the collection of data to the amount neces-
sary and aggregated all statistics directly on the volunteers’ devices
at a granularity of one day (to minimize the risk of de-anonymizing
users based on temporal information). Users were educated about
the extent and purpose of data collection and had to explicitly agree
to these conditions. We obliged ourselves to not share collected data
with third parties. Furthermore, we gave users the possibility to
exclude specific apps from the analysis. Finally, we offered them the
option to disable automatic uploads of their statistics to manually
review collected information before sending it to our server.
Overall Cloud Usage. In Figure 4 we show the complementary
cumulative distribution function (1−CDF) for the number of used
cloud services per app across all devices. On average, each app con-
nects to 3.2 cloud services. Notably, 89.8 % of apps contact cloud
services. Naturally, web browsers contact many cloud services
(e.g., Chrome with 37 services), but also less obvious candidates,
e.g., the fitness tracking apps com.withings.wiscale2 (12) and
com.myfitnesspal.android (11), contact many services.

When looking at the fraction of cloud traffic per app in Figure
5, we make an even stronger observation. While 89.8 % of apps
produce cloud traffic, 53.8 % of apps send 95 % or more of their
traffic to cloud services. Notably, 35.5 % of apps send all their traffic
to cloud services. These numbers show that cloud entanglement is
a real problem, concerning a majority of apps and often leading to
complete exposure of apps’ communication to cloud services.
Different Dimensions of Cloud Traffic.Cloud traffic can be gen-
erated in various ways, e.g., triggered by users or automatically
by background processes, leading to different privacy risks. We
study the different dimensions of cloud traffic in Figure 6, where we
compare the fraction of traffic to and from cloud services along
different dimensions of network traffic to the overall fraction of
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Service Traffic Apps

Google 34.66 % 54.57 %
Facebook 9.71 % 24.80 %
Amazon 8.76 % 65.27 %
Akamai 5.92 % 27.94 %
Fastly 5.54 % 13.32 %
imgur 3.04 % 4.18 %
Cloudflare 1.27 % 12.27 %
Snap 1.07 % 1.04 %
Twitter 0.60 % 9.14 %
Verizon 0.60 % 16.45 %

Service Traffic Apps

StackPath 0.45 % 7.57 %
Microsoft 0.25 % 8.62 %
Chartboost 0.19 % 0.26 %
Dropbox 0.10 % 1.31 %
SoundCloud 0.07 % 2.87 %
GitHub 0.05 % 2.87 %
AppNexus 0.04 % 7.57 %
Criteo 0.04 % 5.74 %
Netflix 0.03 % 0.52 %
Tapjoy 0.03 % 0.26 %

(a) Top 20 cloud services for user devices

Service Traffic Sites

Akamai 13.74 % 43.24 %
Google 12.02 % 84.50 %
Amazon 10.33 % 76.82 %
Cloudflare 8.97 % 48.76 %
Fastly 2.91 % 41.08 %
Verizon 2.12 % 24.28 %
Facebook 1.56 % 47.86 %
StackPath 1.16 % 13.38 %
Microsoft 0.59 % 13.78 %
Twitter 0.53 % 10.46 %

Service Traffic Sites

Incapsula 0.47 % 3.26 %
Alibaba 0.46 % 3.58 %
Yandex 0.36 % 3.18 %
AppNexus 0.33 % 33.02 %
Vimeo 0.15 % 0.48 %
LinkedIn 0.10 % 2.28 %
Oracle 0.09 % 6.36 %
Criteo 0.09 % 9.34 %
GitHub 0.08 % 2.32 %
Rackspace 0.06 % 0.42 %

(b) Top 20 cloud services for mobile websites

Service Traffic Apps

Google 24.38 % 80.00 %
Amazon 20.90 % 80.27 %
Akamai 13.26 % 56.34 %
Facebook 5.84 % 50.98 %
Verizon 4.76 % 38.58 %
Unity 3.88 % 17.49 %
Chartboost 2.72 % 10.17 %
Fastly 2.12 % 17.69 %
StackPath 1.93 % 16.95 %
AppLovin 1.81 % 7.59 %

Service Traffic Apps

Cloudflare 1.38 % 18.58 %
Vungle 1.34 % 5.90 %
Microsoft 0.99 % 9.36 %
AppsFlyer 0.92 % 18.85 %
Yandex 0.71 % 3.86 %
Twitter 0.68 % 12.34 %
Criteo 0.48 % 13.69 %
Tapjoy 0.46 % 4.34 %
StartApp 0.46 % 3.25 %
Supersonic 0.42 % 4.68 %

(c) Top 20 cloud services for popular apps

Table 2: The cloud services with the highest traffic differ between user devices, mobile websites, and popular apps.

cloud usage (solid line). We observe a higher fraction of cloud usage
in uploaded (81.4 %) than in downloaded traffic (67.9 %). These num-
bers indicate that a large fraction of data, potentially containing
sensitive information, that leaves a smartphone is sent to cloud ser-
vices. The higher cloud usage of 76.4 % for background (not directly
triggered by users) compared to 67.3 % for foreground traffic (users
interacting with the app) likely corresponds to synchronization
tasks, e.g., updates of apps, typically happening in the background.
We do not observe a large difference for the cloud usage of traf-
fic sent over cellular compared to wifi networks. Furthermore, we
observe that cloud usage is more prevalent for encrypted (76.0 %)
than for plaintext traffic (55.8 %).
Most Prevalent Cloud Services. Given the overall high fraction
of cloud traffic, we take a closer look at the individual cloud services
that cause cloud traffic. In Table 2a, we list the 20 cloud services with
the highest fraction of cloud traffic across all devices. We witness
that several providers receive a large portion of traffic generated on
mobile devices of our volunteers. Most notably, Google accounts
for 34.7 % of traffic and is accessed from more than half of all apps.
While Amazon accounts for significantly less traffic, Amazon is
contacted by nearly two-thirds of all apps. These numbers highlight
that few cloud services have a high market penetration, both in
terms of traffic and numbers of apps. This distribution is especially
problematic considering the imminent privacy risks resulting from
a centralized cloud landscape (cf. Section 2.1).
Individual Perspective on Cloud Entanglement. To showcase
that cloud entanglement has an individual nature, we evaluate how
users’ selection of and interaction with apps influences their cloud
exposure. To this end, we study the per-device cloud traffic for the
20 most installed apps on our volunteers’ devices in Figure 7. We
exclude system apps, such as keyboards or contact synchronization.
For each combination of device and app, we provide the fraction of
cloud traffic (“–” denotes that an app did not produce any traffic
on this device, likely because it was not installed). Comparing the
apps of different devices, we notice that Devices 20, 23, and 25
use little to none of the 20 most popular apps. When looking at
the apps used on these devices in more detail, we observe that
these devices lack (the full stack of) Google apps, e.g., because of
using custom ROMs. For these devices, we directly witness a lower
fraction of cloud usage. However, Device 25 is a notable exception
which seems to be running Amazon’s version of Android, leading
to a cloud usage comparable to those of devices with installed
Google services. When looking at the cloud traffic for the same app
across different devices, we observe two classes of apps: The first
class contains a large number of apps where the fraction of cloud
traffic is the same across all devices. Among the 20 most used apps,

Figure 7: While most apps cause the same cloud entangle-
ment across devices, certain apps’ cloud traffic highly varies
across different devices.

this class covers apps that nearly exclusively use cloud services.
Nevertheless, we also found less common examples that produce
no cloud traffic at all (e.g., the client for the self-hosted Nextcloud
or banking apps). For the second class, we observe apps, e.g., web
browsers and email clients, where the fraction of cloud traffic for
the same app heavily deviates across devices. Hence, we discovered
apps where cloud functionality is either built-in or not and others,
where user behavior influences exposure to cloud services.

4.2 Cloud Entanglement of Mobile Websites
Web browsers are an important group of apps for which user be-
havior has a considerable influence on the level of cloud exposure.
Hence, we analyze the cloud usage of the most popular websites to
gain a deeper understanding of the cloud exposure they cause.
Measurement Setup. We mimic the mobile Chrome browser of a
Google Nexus 5 smartphone and visit the mobile versions of the
5000 most popular websites (measured by Alexa [1]). We wait for
each website to fully load and scroll to the bottom of the page to
also trigger subsequent traffic resulting from embedded scripts.
Overall Cloud Usage. In Figure 8, we show the number of cloud
services per mobile websites. We observe that 92.8 % of the popular
mobile websites use cloud services and on average each of the
websites exposes their visitors to 4.8 cloud services. In the extreme
case, fetching the mobile version of rollingstone.com leads to
connections with 16 different cloud services.

Additionally, we study the resulting cloud traffic of mobile websites
in Figure 9. While 11.1 % of mobile websites are almost completely
realized using cloud services (cloud traffic ≥ 99 %), we observe that
the fraction of cloud traffic is nearly evenly distributed among
websites. Hence, which websites a user frequently visits highly
influence her individual exposure to cloud services.
Most Prevalent Cloud Services.We now identify the cloud ser-
vices that are responsible for the most cloud usage. To this end,
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we present the 20 cloud services with the highest traffic from mo-
bile websites in Table 2b. In contrast to the most prevalent cloud
services on mobile devices in general (cf. Section 4.1), we observe
that Google has a significantly lower traffic share while CDNs play
a more important role. Even though most cloud services do not
account for large fractions of traffic generated by mobile websites,
they are embedded in a large number of websites (e.g., AppNexus
accounts for only 0.3 % of traffic but is embedded by 33.0 % of web-
sites). Most notably, Google and Amazon are present on 84.5 %
respectively 76.8 % of mobile websites. This most likely results from
small scripts, e.g., for Google Analytics, that are embedded in a
large number of mobile websites. As a result, these services have
the potential to create detailed tracking profiles of users [52].

4.3 Cloud Entanglement of Popular Apps
So far, we have concentrated on studying cloud exposure of app
usage. However, to thoroughly compare the cloud exposure caused
by different apps and reveal the influence of differing locations on
cloud usage, we now test apps under comparable conditions at large
scales. We analyze the 500 most downloaded free apps in Google
Play [33] for the five countries with the highest download numbers
(Brazil, India, Mexico, Russia, and USA [3]).
Measurement Setup.We run our measurements on real hardware
to create a realistic environment and prevent apps from changing
their behavior due to detected virtualization [45]. To this end, we
connect five Nexus 7 (Model 2013) devices running Android 6.0.1
each to a dedicated wireless router. Each router operates a VPN
connection to a server in one of the five countries under study,
similar to the setup proposed by MATAdOR [54]. However, we use
commercial VPN endpoints instead of PlanetLab nodes. To account
for the effect of different VPN speeds, we fix network bandwidth
to 2Mbit/s. We execute each app for 1minute and provide random
user input using Android’s Application Exerciser Monkey [2] (com-
munication with cloud services can be based on user input). We
repeat our measurements in parallel for all five countries on 10
different days. In total, we study 1475 different apps (one app can
be among the most popular apps in different countries).
Overall CloudUsage. In Figure 10, we show the number of utilized
cloud services per app for the different countries (across all 10 days).
Notably, 90.0 % (India) to 94.8 % (USA) of the studied apps connect
to at least one cloud service. On average, each app establishes a
connection to 4.3 cloud services (3.8 in India to 4.9 in the USA).
Each contacted cloud service constitutes a potential privacy risk (cf.
Section 2.2). The app with the highest number of contacted services,
com.fingersoft.hillclimb, a game with 7.9 million installs, uses
18 cloud services when launched in Russia.

Given these already high numbers, we now set out to quantify
the fraction of traffic flowing to cloud services. For each of the five
countries, Figure 11 contains the average fraction of cloud traffic for
upload, download, and total traffic over all apps. The total fraction of
cloud traffic ranges from 70.4 % in Russia to 80.3 % in the USA, which
is in the order of those numbers we observed for foreground and
cellular traffic on real devices in the wild (cf. Section 4.1). Notably,
here we observe a higher fraction of cloud traffic for downloads
compared to apps on real devices, likely because a large number
of free apps download advertisements from cloud servers. These

Figure 8: Number of cloud
services used by websites.

Figure 9: Cloud traffic pro-
duced by mobile websites.

Figure 10: On average, each of themost popular apps uses 4.3
cloud services. Apps in the USA contact more cloud services,
while apps in India and Russia use less cloud services.

Figure 11: Traffic resulting from the most popular apps has
a cloud exposure between 70 % and 80 %.

numbers highlight that our measurement setup is well suited to
study the behavior of apps during their interactive usage.
Most Prevalent Cloud Services. Given the frequent usage of
cloud services by the 500 most popular apps per country, we now
identify themost used cloud services to understand which individual
services are particularly responsible for this cloud exposure. To this
end, Table 2c contains the 20 cloud services with the highest traffic
across the 500 most popular apps in all five countries. Furthermore,
we list for each cloud service the fraction of apps that established at
least one connection to this service. We observe that the landscape
of mobile cloud services is indeed highly centralized, with Google,
Amazon, and Akamai each accounting for more than 10% of an
app’s network traffic on average. Additionally, four cloud services
(Google, Amazon, Akamai, and Facebook) are utilized by more than
50 % of the studied apps, significantly increasing the likelihood that
users are exposed to these services. When studying these numbers,
it is important to keep in mind that one network packet can belong
to more than one cloud service when services are realized on top
of each other. This situation occurs for, e.g., SoundCloud, which
partly utilizes Amazon EC2 according to our findings.

Given the deviation in overall cloud usage between different
countries identified in Figure 10, we now focus on what causes this
effect by identifying the most used cloud services in each country
in Figure 12. While overall we observe a similar trend across the
five countries, notable differences exist: Verizon (2.7 % to 6.3 %) and
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Unity (2.9 % to 4.8 %) are among the five most used services in only
three of the countries. Furthermore, Facebook (4.0 %) is not among
the five most used services in Russia. Finally, while Google accounts
for the highest cloud usage in the other countries, Amazon (24.4 %)
accounts for more traffic than Google (21.4 %) in the USA. Hence,
the most popular apps in different countries lead to a different cloud
exposure and thus different privacy risks.
Influence of Location. To answer the question whether differ-
ences in cloud usage result from different apps used in the five
countries or if cloud usage indeed differs based on users’ location,
we study the influence of location on cloud usage by testing identi-
cal apps for the five countries. We tested the 73 apps that are among
the 500 most popular apps in all of our five countries and synchro-
nized measurements across countries to rule out dependencies on
time factors. Again, we ran the experiment on 10 different days.

We first study the cloud usage of the 73 apps by comparing the
resulting fraction of cloud traffic for the five cloud services with the
highest traffic in each country in Figure 13. While we observe an
overall similar pattern of utilizing cloud services across all countries,
we still derive differences between the individual countries: First,
India (16.5 %) and Russia (15.3 %) showmore traffic for Akamai than
the other countries (10.0 % to 12.2 %). Second, Microsoft is among
the five cloud services with the highest amount of traffic in India,
compared to Verizon for the other countries. Hence, the exposure
of users to different cloud services does not only depend on the
used apps, but also on the (network) location where apps are used.

To further study the influence of location, we rely on information
on the location of data centers for some, especially larger cloud
services (cf. Section 3.2). We use this information to investigate
whether the (network) location of a mobile device has an influence
on the geographically distribution of contacted cloud services. More
specifically, we show the fraction of traffic that we were able to
assign to a geographic location (aggregated based on continents) in
Figure 14. While the majority of traffic for which we could derive a
location flows to North America (8.4 % to 9.7 % of overall traffic), we
can observe that apps tend to connect to geographically near cloud
data centers. This observation is illustrated by an increased fraction
of cloud traffic to South America for Brazil, to Asia for India, and to
Europe for Russia. Such information on the location of data centers
used by an app allows users to execute their right to privacy, e.g.,
when deciding between two apps with similar functionality.

5 CONCLUSION
Apps on smartphones have access to a growing amount of sensitive
information. As apps nowadays increasingly realize their function-
ality through cloud services, they potentially expose users’ private
information to a variety of third parties. Even worse, users are
often unaware of this erosion of their privacy. Starting from these
observations, we provide a detailed analysis of the mobile cloud
landscape which reveals and concretizes significant privacy risks.

Our problem analysis makes evident that users need to regain
control over their privacy. As a first step towards this goal, we
have to raise their awareness about their individual exposure to
cloud services and the implied privacy risks. Hence, we present
CloudAnalyzer which provides users with detailed statistics of
their individual cloud exposure caused by their smartphone apps.

Figure 12: Despite a similar trend, we observe notable differ-
ences in cloud traffic of popular apps of different countries.

Figure 13: Identical apps utilize cloud services differently
when operated in different countries.

Figure 14: Identical apps partly use data centers on different
continents when operated in different countries.

CloudAnalyzer locally monitors network traffic of apps and detects
communication with 55 cloud services that represent the mobile
cloud computing landscape. As a consequence, we not only reveal
the hidden exposure to cloud services caused by smartphone apps,
but also untangle complex and non-transparent data flows caused
by indirection and subcontracting between cloud providers.

To show the applicability of CloudAnalyzer, we deploy Cloud-
Analyzer to 29 devices to reveal the cloud exposure of actual users
over the course of 19 days. Additionally, we analyze the cloud en-
tanglement caused by the 5000 most used mobile websites as well
as the 500 most popular apps in five different countries. Our results
confirm that smartphone users are indeed exposed to cloud services:
About 90 % of all studied apps contact at least one cloud service
and 36 % of apps used by volunteers exclusively communicate with
cloud services. One volunteer even reported on uninstalling an app
due to excessive cloud usage uncovered by CloudAnalyzer.

To conclude, CloudAnalyzer empowers users to critically review
their individual exposure to cloud services. With a clear view of
their exposure and risk, users are encouraged to adapt their app
usage behavior or to take more informed decisions when choosing
between apps with similar functionality. In a second step, Cloud-
Analyzer can be used as a foundation to enable users to compare
their personal app-induced cloud exposure to that of their peers to
discover potential privacy risks of deviating from normal usage be-
havior [37, 67]. Notably, CloudAnalyzer also constitutes a valuable
tool for researchers interested in understanding the characteristics



MobiQuitous 2017, November 7–10, 2017, Melbourne, VIC, Australia M. Henze et al.

of users’ exposure to cloud services. Similarly, CloudAnalyzer is ben-
eficial for app developers to ensure compliance with data protection
regulations. Based on the information provided by CloudAnalyzer,
developers can ensure that their app (and included third-party li-
braries) does not inadvertently contact cloud services, especially if
they are located in countries with weaker data protection regula-
tions [20]. CloudAnalyzer provides developers with the necessary
means to monitor their apps for (unintended) cloud usage.
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