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Abstract—Despite their increasing proliferation and technical
variety, existing cloud storage technologies by design lack support
for enforcing compliance with regulatory, organizational, or
contractual data handling requirements. However, with legis-
lation responding to rising privacy concerns, this becomes a
crucial technical capability for cloud storage systems. In this
paper, we introduce PRADA, a practical approach to enforce
data compliance in key-value based cloud storage systems. To
this end, PRADA introduces a transparent data handling layer
which enables clients to specify data handling requirements
and provides operators with the technical means to adhere to
them. The evaluation of our prototype shows that the modest
overheads for supporting data handling requirements in cloud
storage systems are practical for real-world deployments.

I. INTRODUCTION

Most of today’s web services outsource data to cloud
storage. Frequently, customers and lawmakers insist that storage
providers comply with different data handling requirements
(DHRs), ranging from restricted storage locations or durations
[1]–[3] to certain properties of the storage medium such as full
disk encryption [4], [5]. These requirements are becoming
increasingly diverse, detailed, and difficult to check and
enforce [6]. At the same time, cloud storage systems are
becoming more versatile, spanning different continents [7] or
infrastructures [8], and even different second-level providers [9],
[10]. In such systems, the decision where to store data is
primarily taken with the goal to optimize reliability, availability,
and performance, ignoring the demand for support of DHRs.

This apparent lack of control is not merely an academic
problem. The Intel IT Center surveys [11] among 800 IT
professionals that 78% of their organizations have to comply
with regulatory mandates. Again, 78% of these organizations
are concerned that cloud offers are unable to meet their
requirements. In consequence, 57% of these organizations
actually refrain from outsourcing regulated data to the cloud.
The lacking control over the treatment of data in cloud storage
hence scares away a large set of clients. This especially holds
for the healthcare, financial, and government sectors [11].

Supporting powerful DHRs enables these clients to dictate
adequate treatment of their data and thus allows cloud storage
operators to break into new markets. Additionally, it empowers
operators to efficiently handle differences in regulations (e.g.,
w.r.t. data protection and privacy) [12]. Although the demand
for DHRs is widely acknowledged, practical support is still
severely limited [11], [13], [14]. Related work primarily focuses
on enforcing DHRs while processing data [15]–[17], limits
itself to location requirements [18], [19], or treats the storage

system as a black box and tries to enforce DHRs at a coarse
granularity from the outside [14], [20], [21]. Practical solutions
for enforcing arbitrary DHRs when storing data in cloud storage
systems are still missing—a situation that is disadvantageous
to both the clients and operators of cloud storage systems.
Our contributions. We propose PRADA, a general key-value
based cloud storage system that offers rich and practical support
for DHRs to overcome current compliance limitations. Our
core idea is to add one layer of indirection for the flexible and
efficient routing of data to the storage nodes according to the
imposed DHRs. In detail, we make the following contributions:
1) We present PRADA, our approach for supporting DHRs in

cloud storage systems. PRADA adds an indirection layer on
top of the cloud storage system to store data tagged with
DHRs only on nodes that fulfill these requirements.

2) PRADA’s design is incremental, i.e., it does not impair data
without DHRs. PRADA supports any DHRs that can be
expressed as properties of storage nodes and any arbitrary
DHR combinations, covering a wide range of use cases.

3) We prove the feasibility of our approach by implementing it
based on the distributed database Cassandra and quantifying
the costs of supporting DHRs in cloud storage systems.

II. SCENARIO

With the increasing demand for sharing data and storing it
at external parties [22], obeying to DHRs becomes a crucial
challenge for cloud storage systems [13], [14], [23].

We consider a cloud storage system that is realized over a set
of diverse nodes that are spread over different data centers [24].
To explain our approach in a simple yet general setting, we
assume that data is addressed by a key (a unique identifier for
each data item). Key-value based cloud storage systems [25]–
[28] provide a general starting point for our line of research,
since they are widely used and their underlying principles have
been adopted in other cloud storage systems [29]–[31].

In such a system, DHRs enable clients (end users and
companies) to stay in control over the treatment of their data,
even if it is outsourced to the cloud [13], [23], [32]. To this
end, a client attaches DHRs to each piece of data before it
is sent to the cloud storage system. DHRs are binding for all
systems involved in handling the data, i.e., data is only allowed
to be stored at nodes in the cloud storage system that fulfill
the DHRs imposed by the client.

DHRs constrain the storage, processing, distribution, and
deletion of data in cloud storage. These constraints follow from
legal (laws and regulations) [33], [34], contractual (standards



and specifications) [35], or intrinsic requirements (user’s or
company’s individual privacy requirements) [36]–[38]. For
businesses, compliance with legal and contractual obligations
is crucial to avoid serious (financial) consequences [39].

Notably, in our setting compliance with DHRs is achieved
and enforced by the operator of the cloud storage system. Only
the operator knows about the characteristics of the storage
nodes and only the operator can thus take the ultimate decision
on which node to store a specific data item. Different works
exist that propose cryptographic guarantees [16], [40], [41],
accountability mechanisms [42], transparency [43], information
flow control [6], [44], or even virtual proofs of physical
reality [45] to relax trust assumptions. Our goals are different:
Our main aim is for functional improvements of the status
quo. Thus, these works are orthogonal to our approach and
can possibly be combined if the cloud operator is not trusted.

III. DATA COMPLIANCE IN CLOUD STORAGE

We introduce PRADA, our approach to support DHRs in key-
value based cloud storage systems. The problem that prevented
support for DHRs so far stems from the common pattern used
to address data in key-value based cloud storage systems: Data
is addressed and partitioned (i.e., distributed to the nodes in
the cluster) using a designated key. Yet, the responsible node
(according to the key) for storing a data item will often not
fulfill the client’s DHRs. Thus, the challenge addressed in this
paper is how to realize compliance with DHRs and still allow
for key-based data access.

A. System Overview

The core idea of PRADA is to add an indirection layer on
top of a cloud storage system. Whenever a responsible node
cannot comply with the stated DHRs, we store the data item at
a different node, called target node. To enable lookup of data,
the responsible node stores a reference to the target for this data
item. We introduce three new storage components (capability,
relay, and target store), as described in the following.
Capability store: The global capability store is used to look
up nodes that can comply with a specific DHR. PRADA covers
all DHRs that describe properties of a storage node, ranging
from rather simplistic properties such as storage location to
more advanced capabilities such as the support for deleting
data at a specified point in time. To speed up lookups in the
capability store, each node keeps a local copy, which requires
the capability store to be kept consistent between nodes. This
can be realized by preconfiguring the capability store for a
storage cluster or by utilizing the storage system itself for
creating a globally replicated view of nodes’ capabilities.
Relay store: Each node operates a local relay store containing
references to data stored at other nodes. For each data item the
node is responsible for but does not comply with the DHRs
posed at insertion, the relay store contains the key of the data,
the node the data is actually stored at, and a copy of DHRs.
Target store: Each node stores data that is redirected to it in
a target store which allows a node to distinguish data that falls
under DHRs from data that does not.

Fig. 1. Creating data. The coordinator derives nodes that comply with the
DHRs from the capability store. It then stores the data at the target node and
a reference to the data at the responsible node.

Integrating PRADA into a cloud storage system requires to
adapt the individual operations such as creating and updating
data and to reconsider replication and load balancing strategies.

B. CRUD Operations

The most important modifications and considerations of
PRADA involve the CRUD (create, read, update, delete)
operations of cloud storage systems. In the following, we
describe how we integrate PRADA into the CRUD operations
of our cloud storage model (cf. Section II). To this end, we
assume that queries are processed on behalf of the client by
one node in the cluster, the coordinator node. Each node can
coordinate a query and clients will select them randomly.
Create. The coordinator first checks whether a create request
is accompanied by DHRs. If no requirements are specified,
the coordinator uses the standard method of the cloud storage
system to create data so that the performance of native create
requests is not impaired. For all data with DHRs, a create
request proceeds in three steps as illustrated in Figure 1. In
Step 1, the coordinator derives the set of eligible nodes based
on the DHRs in the capability store. Now, the coordinator
has to choose the target out of this set of eligible nodes. It
is important to choose the target such that the overall storage
load in the cluster remains balanced (we defer this issue to
Section III-D). In Step 2, the coordinator forwards the data
to the target, which stores it in its target store. Finally, in
Step 3, the coordinator instructs the responsible node to store
a reference to the actual storage location of the data to enable
retrieving data. The coordinator acknowledges the successful
insertion after all three steps have been completed successfully.
The second and third step are performed in parallel to improve
the query completion time of create operations.
Read. Processing read requests in PRADA is performed in three
steps as illustrated in Figure 2. In Step 1, the coordinator uses
the key supplied in the request to initiate a standard read query
at the responsible node. If the responsible node does not store
the data, it checks its relay store for a reference to a different
node. Should it hold such a reference, the responsible node
forwards the read request to the target in Step 2. In Step 3, the
target looks up the requested data in its target store and directly
returns the query result to the coordinator. Upon receiving the
result, the coordinator processes it as any other query result.
Should the responsible node itself store the requested data (e.g.,
because it was stored without DHRs), it directly answers the
request. If the responsible node neither stores the data nor a
reference, PRADA will report that no data was found.



Update. In this paper, we assume that DHRs of update requests
supersede DHRs of create requests. We thus process update
requests the same way as create requests. When the responsible
node receives new information for the relay store, it checks if it
already stores a reference for the corresponding key, indicating
an update. In case of an update and differing old and new target
nodes, the relay store needs to be updated and the data stored
at the old and new target node need to be merged. To this end,
the responsible node instructs the old target node to move the
data to the new target node. The new target node applies the
update to the data, locally stores the result, and acknowledges
the successful update to coordinator and responsible node. Now,
the responsible node updates the relay store information.
Delete. In PRADA, delete requests are processed analogously
to read requests. The delete request is sent to the responsible
node for the key that should be deleted. If the responsible node
itself stores the data, it deletes the data as in an unmodified
cloud storage system. In contrast, if it only stores a reference
to the data, it deletes the reference and forwards the delete
request to the target. The target deletes the data and informs
the coordinator about the successful termination of the query.

C. Replication

Cloud storage systems employ replication to realize high
availability and data durability [26]: Instead of storing a data
item only on one node, it is stored on r nodes (typically, with
replication factor 1 < r ≤ 3). The r nodes are chosen based
on the key of the data. PRADA cannot use the same replication
strategy as we have to comply with the client’s DHRs. In the
following, we thus detail how PRADA realizes replication.
Inserting data. Instead of selecting only one target, the
coordinator picks r targets out of the set of eligible nodes.
The coordinator sends the data to all r targets and the list
of all r targets to the r responsible nodes (according to the
replication strategy of the cloud storage system).
Reading data. To process a read request, the coordinator
forwards the read request to all responsible nodes. A responsible
node that receives a read request for data it does not store
locally looks up the targets in its relay store. It then forwards the
read request to all r target nodes. Finally, a target that receives
a read request sends the requested data to the coordinator. In
contrast to the standard behavior, a target may receive multiple
forwarded read requests. We hence ignore duplicate requests.
Impact on reliability. To successfully process a query in
PRADA, it suffices if one responsible node and one target node
are reachable. Thus, PRADA can tolerate the failure of up to
r − 1 responsible nodes and up to r − 1 target nodes.

D. Load Balancing

Load balancing aims to minimize load disparities in the
cluster by distributing stored data and read requests equally
among the nodes. Since PRADA drastically changes how data
is assigned to and retrieved from nodes, existing load balancing
schemes must be rethought. In the following, we describe a
formal metric to measure load balance and then explain how
PRADA builds a load-balanced storage cluster.

Fig. 2. Reading data. The coordinator contacts the responsible node to fetch
the data. As the data was created with DHRs, the responsible node forwards
the query to the target which directly sends the response to the coordinator.

Load balance metric. We measure the load balance of a
cloud storage system by normalizing the global standard
deviation of the load with the mean load µ of all nodes [46]:
L := 1

µ
√
(
∑|N |
i=1(Li − µ)2/|N |) with Li the load of node

i ∈ N . To achieve load balance, we need to minimize L. This
metric penalizes outliers with extremely low or high loads,
since underloaded nodes constitute a waste of resources and
overloaded nodes decrease the overall cluster performance.
Load balancing in PRADA. Key-value based cloud storage
systems achieve a reasonably balanced load in two steps:
(i) equal distribution of data at insert time, e.g., by applying
a hash function to identifier keys, and (ii) re-balancing the
cluster if absolutely necessary by moving data between nodes.

Re-balancing the cluster by moving data between nodes
can be handled by PRADA similarly to the mechanism of the
underlying cloud storage system. In the following, we thus
focus on the challenge of load balancing during insertion.

In contrast to key-value based cloud storage systems, we
face the following challenge: When processing a create request,
the eligible target nodes are not necessarily equal as they
might be able to comply with different DHRs. Hence, some
eligible nodes might offer rarely supported but often requested
requirements. Foreseeing future demands is notoriously difficult
[47] and we hence take the load balancing decision based on
the current load of the nodes. This requires all nodes to be
aware of the load of the other nodes in the cluster. Cloud
storage systems typically already exchange this information
or can be extended to do so, e.g., using efficient gossiping
protocols [48]. We utilize this load information in PRADA as
follows. To select target nodes, PRADA first checks if any of
the responsible nodes are also eligible to become a target node
and selects those as target nodes. This allows us to increase
the performance of CRUD requests by avoiding the indirection
layer. For the remaining target nodes, PRADA selects those with
the lowest load. To have access to more timely load information,
each node in PRADA keeps track of all create requests it is
involved with. Whenever a node itself stores new data or
sends data for storage to other nodes, it increments temporary
load information for the respective node. This temporary node
information is used to bridge the time between two updates of
the load information.

IV. EVALUATION

To thoroughly quantify and evaluate the performance of
PRADA, we implemented PRADA on top of Cassandra [26].
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Fig. 3. Query time vs. RTT. PRADA constitutes
limited overhead for operations on data with DHRs,
while data without DHRs is not impacted.

Fig. 4. Query time vs. replication. Create and
update in PRADA show modest overhead for in-
creasing replicas due to larger message sizes.

Fig. 5. Storage vs. replication. PRADA constitutes
only constant overhead per DHR affected replica,
while not affecting data without DHRs.

Cassandra is a distributed database that is employed as a key-
value cloud storage system by more than 1500 companies
with deployments of up to 75 000 nodes [49]. Cassandra also
implements advanced features beyond simple key-value storage
such as column-orientation and queries over ranges of keys
which allows us to showcase the flexibility and adaptability of
PRADA. We perform benchmarks of query completion times,
storage overhead, and traffic consumption. Furthermore, we
study PRADA’s load behavior through simulation.

A. Implementation

We implemented PRADA on top of Cassandra 2.0.5 [26],
but PRADA conceptually also works with newer versions. We
realize the global capability store as a globally replicated key
space initialized at the same time as the cluster. For each
regular key space of the database, we additionally create a
corresponding relay store and target store as key spaces. Here,
the relay store relies on Cassandra’s replication mechanism,
i.e., it will be replicated analogously to the regular key store.
For the target store, however, we implemented a DHR-agnostic
replication mechanism to ensure adherence to DHRs.

To allow clients to specify their DHRs when inserting
or updating data, we modified Cassandra’s method for
processing requests. To this end, we add an optional
postfix WITH ANNOTATIONS to INSERT statements which
enables specification of multiple DHRs, e.g., INSERT ...
WITH ANNOTATIONS location = { ’DE’, ’FR’,
’UK’ } AND encryption = { ’AES-256’ }. When
processing such requests, we base our selection of eligible
nodes on the global capability store, preferring nodes that
Cassandra would pick without DHRs (cf. Section III-D).

Our load balancing implementation relies on Cassandra’s
gossiping mechanism [26] which maintains a list of all nodes
together with their load. We extend this with local load change
estimators, i.e., whenever the local node sends a create request
or stores data itself, we update the corresponding local estimator
with the size of the inserted data. Our load balancer incorporates
local estimators and gossiped load information for its decision.

B. Benchmarks

We benchmark query completion time, consumed storage
space, and bandwidth consumption. In all settings, we compare
the performance of PRADA with the performance of an
unmodified Cassandra installation and PRADA*, a system
running PRADA but receiving only data without DHRs to
verify that data without DHRs is not impaired by PRADA.

We set up a cluster of 10 nodes (Intel Core 2 Q9400,
4 GB RAM, 160 GB HDD, Ubuntu 14.04) interconnected via
a gigabit Ethernet switch. Additionally, we use one node to
interface with the cloud storage system to perform CRUD
operations. We assign each node a distinct storage location.
When inserting or updating data, clients request a set of three
allowed storage locations uniformly randomly. Each row of
data consists of 200 B (+ 20 B key), spread over 10 columns.
These are conservative numbers as the relative overhead of
PRADA decreases with increasing storage size. For each result,
we performed 5 runs with 1000 operations and depict the mean
value for one operation with 99 % confidence intervals.
Query completion time. The query completion time (QCT)
denotes the time the coordinator takes for processing a query.
It is influenced by the round-trip time (RTT) between nodes
in the cluster and the replication factor.

We first study the influence of RTTs on QCT for a
replication factor r = 1. To this end, we artificially add
latency using netem [50] to emulate RTTs of 100 to 250 ms.
Our choice covers RTTs observed in communication between
cloud data centers around the world [51] and verified through
measurements in the Microsoft Azure cloud. In Figure 3,
we depict the QCTs for the different CRUD operations and
RTTs. We make two observations. First, QCTs of PRADA*
are indistinguishable from those of the unmodified Cassandra.
Hence, data without DHRs is not impaired by our approach.
Second, the additional overhead of PRADA lies between 15.9
to 16.3 % for create, 40.4 to 42.1 % for read, 49.0 to 50.7 %
for update, and 43.0 to 44.6 % for delete. The overheads for
read, update, and delete correspond to the additional 0.5 RTT
introduced by PRADA’s indirection layer and is slightly worse
for updates as data stored at potentially old target nodes needs
to be deleted. QCTs below the RTT result from corner cases
where the coordinator is also responsible for storing data.

From now on, we fix RTTs at 100 ms and study the impact
of replication factors r = 1, 2, and 3 on QCTs as shown
in Figure 4. Again, we observe that the QCTs of PRADA*
and Cassandra are indistinguishable. For increasing replication
factors, the QCTs for PRADA* and Cassandra reduce as it
becomes more likely that the coordinator also stores the data.
In this case, Cassandra optimizes queries. When considering
the overhead of PRADA, we witness that the QCTs for creates
(overhead increasing from 14 to 46 ms) and updates (overhead
increasing from 46 to 80 ms) cannot benefit from these
optimizations, as this would require the coordinator to be
responsible and target node at the same time which happens
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Fig. 6. Traffic vs. replication. Data without DHRs
is not affected by PRADA. Replicas increase the
traffic overhead introduced by DHRs.

Fig. 7. Load balance vs. throughput. PRADA’s
load balance depends on insert operation through-
put. Even for high throughput it stays below 0.5 %.

Fig. 8. Load balance vs. distribution. PRADA’s
load balance shows optimal behavior. Deviation
from node distribution leads to non-even load.

only rarely. Furthermore, the increase in QCTs for creates and
updates results from the overhead of handling r references at r
nodes. For reads, PRADA shows an average overhead of 37 to
42 ms due to the additional 0.5 RTT for the indirection layer.
For deletes, the overhead decreases from 43 ms to 18 ms for an
increasing replication factor, which results from an increased
likelihood that the coordinator node is at least either responsible
or target node which avoids additional communication.
Consumed storage space. To quantify the additional storage
space required by PRADA, we measure the consumed storage
space after data has been inserted, using the cfstats option
of Cassandra’s nodetool utility. To this end, we conduct
insertions for payload sizes of 200 B and 400 B (plus 20 B key),
with replication factors of r = 1, 2, and 3. We divide the total
consumed storage space per run by the number of insertions
and show the mean consumed storage space per inserted row
over all runs in Figure 5. Each additional replica increases the
required storage space by roughly 90 % for Cassandra. PRADA
adds an additional constant overhead of roughly 115 B per
replica. While the precise overhead of PRADA depends on
the encoding of DHRs and relay information, the important
observation is that it does not depend on the size of stored
data. The required storage space can be further reduced by
efficiently encoding DHRs [32].
Bandwidth consumption. We measure the traffic consumed
by the individual CRUD operations. Figure 6 depicts the mean
total generated traffic per single operation. Our results show
that using PRADA comes at the cost of an overhead that scales
linearly in the replication factor. When considering Cassandra
and PRADA*, we observe that the consumed traffic for read
operations does not increase when raising the replication factor
from 2 to 3. This results from an optimization in Cassandra that
requests the data only from one replica and probabilistically
compares only digests of the data held by the other replicas to
perform post-request consistency checks. We did not include
this optimization in PRADA and hence it is possible to further
reduce the bandwidth consumed by PRADA. For the other
operations, the overhead introduced by PRADA ranges from
2.4 to 3.3 kB for a replication factor of 3. For a replication
factor of 1, the highest overhead introduced by PRADA peaks
at 1.1 kB. Thus, the traffic overhead of PRADA allows for a
practical operation in cloud storage systems.

C. Load Distribution

To quantify the impact of PRADA on the load distribution
of the cloud storage system, we rely on a simulation approach.

Simulation setup. As we are solely interested in the load
behavior, we implemented a custom simulator in Python which
models the characteristics of Cassandra with respect to network
topology, data placement, and gossip behavior. On top of this
simulator, we realize a PRADA cluster of n nodes, which are
equally distributed among the key space [52] and insert m data
items with random keys. For simplicity, we assume that all
data items are of the same size. The nodes operate Cassandra’s
gossip protocol [48], i.e., synchronize with one random node
every second and update own load information every 60 s. We
repeat each measurement 10 times with different random seeds
[53] and depict the mean of the load balance L (cf. Section
III-D) with 99 % confidence intervals.
Influence of throughput. We expect the load distribution to be
influenced by the freshness of the load information as gossiped
by other nodes, which correlates with the throughput of create
requests. A lower throughput results in less data being inserted
between two load information updates and hence the load
information remains relatively fresher. To study this effect, we
perform an experiment where we simulate different insertion
throughputs. We simulate a cluster with 10 nodes and 107

create requests, each accompanied by a DHR. Even for high
throughput, this produces enough data to guarantee at least one
gossip round. To challenge the load balancer, we synthetically
create two DHRs with two characteristics, each supported by
half of the nodes such that each combination of the two DHRs
is supported by two to three nodes. For each insertion we
randomly select one of the possible combinations of DHRs.

Figure 7 shows the deviation from an even load for increasing
throughput. We compare the results with the load distribution of
a traditional Cassandra cluster. Additionally, we calculated the
optimal solution under a posteriori knowledge by formulating
the corresponding quadratic program for minimizing the load
balance L and solving it using CPLEX [54]. In all cases we
observe that the resulting optimum leads to a load balance of 0,
i.e., all nodes are equally loaded, and hence omit these results
in the plot. Seemingly large confidence intervals result from
the high resolution of our plot, showing only values below
1 %. The results show that PRADA even outperforms Cassandra
for very small throughput (the load imbalance of Cassandra
results from the hash function) and stays below 0.5 % even for
a high throughput of 100 000 insertions/s (Dropbox processed
less than 20 000 insertions/s on average in June 2015 [55]).
Influence of DHR fit. One of the core influence factors on the
load distribution is the fit of clients’ DHRs to the capabilities
of nodes. If the distribution of DHRs in create requests heavily



deviates from the distribution of DHRs supported by the
nodes, it is impossible to achieve an even load. To study this
aspect, we consider a scenario where each node has a storage
location and clients request exactly one of the storage locations.
We simulate a cluster of 100 nodes that are geographically
distributed according to the IP address ranges of Amazon Web
Services [56] (US: 64 %, EU: 17 %, Asia-Pacific: 16 %, South
America: 2 %, China: 1 %). First, we insert data with DHRs
whose distribution exactly matches the distribution of nodes.
Subsequently, we worsen the accuracy of fit by subtracting
10 to 100 % from the location with the most nodes (i.e., US)
and proportionally distribute this demand to the other locations
(in the extreme setting, US: 0 %, EU: 47.61 %, Asia-Pacific:
44.73 %, South America: 5.74 %, and China: 1.91 %). We
simulate 107 insertions at a throughput of 20 000 insertions/s.
To compare our results, we calculate the optimal load using a
posteriori knowledge. Our results are depicted in Figure 8. We
derive two insights from this experiment: i) the deviation from
an even cluster load scales linearly with decreasing accuracy
of fit of DHRs and node capabilities and ii) in all considered
settings PRADA manages to achieve a cluster load that is
extremely close to the theoretical optimum (increase < 0.03 %).

V. RELATED WORK

To enforce storage location requirements, related work
proposes to split data between different storage systems [14],
[20], [21]. These approaches can treat individual storage
systems only as black boxes. Consequently, they do not support
fine-grained DHRs within the database system itself and are
limited to a small subset of DHRs.

Similar to our idea of specifying DHRs, sticky policies
have been proposed to express requirements on the security
and geographical location of storage nodes [32], [57], [58].
However, it remains unclear how this could be realized
efficiently in a large and distributed cloud storage system.
With PRADA, we present a mechanism to achieve this goal.

To enforce privacy policies in the cloud, related work
proposes monitoring access of virtual machines to data [15],
trusted and isolated execution environments to enforce the
encryption of data [16], and user-specified placement of
virtual machines in the cloud to realize specific geographical
deployments [17]. These approaches are orthogonal to our work,
as they primarily focus on enforcing policies when processing
data while PRADA addresses the challenge of supporting DHRs
when storing data in cloud storage systems.

Focusing exclusively on location requirements, related work
enables the verification of storage locations, e.g., based on
measurements of network delay [18] or challenge-response
protocols [19]. In contrast, PRADA focuses on the more
fundamental challenge of supporting arbitrary DHRs.

To provide assurance that storage operators adhere to DHRs,
related work suggests automated monitoring of compliance [59],
information flow control [6], [44], and collaborative audit
logging architectures [39]. These approaches are orthogonal to
our work and could be used to verify that operators of cloud
storage systems operate PRADA in an honest way.

VI. DISCUSSION AND CONCLUSION

Support for data handling requirements (DHRs), i.e., control
over where and how data is stored in the cloud, becomes
increasingly important due to legislative, organizational, or
customer demands. Despite these substantial incentives, prac-
tical solutions to address this need in existing cloud storage
systems are scarce. In this paper, we have proposed PRADA,
which allows clients to specify a comprehensive set of fine-
grained DHRs and enables cloud storage operators to enforce
them accordingly. Our results show that we can indeed achieve
support for DHRs in cloud storage systems. Of course, the
additional protection and flexibility offered by DHRs comes at
a price: We observe a moderate increase for query completion
times, while achieving constant storage overhead and upholding
a near-optimal storage load balance even in challenging
scenarios. Notably, data without DHRs is not impaired by
PRADA. Hence, clients can choose (even for each individual
data item), if DHRs are worth a modest performance decrease.

PRADA’s design centers around a transparent indirection
layer, which effectively handles compliance with DHRs. This
design decision limits our solution in three ways. First, the
overall achievable load balance depends on how well the nodes’
capabilities to fulfill certain DHRs match the actual DHRs
requested by the clients. However, for a given scenario, PRADA
is able to nearly achieve the optimal load balance as shown
in Figure 8. Second, indirection introduces an overhead of 0.5
round-trip times for reads, updates, and deletes. We believe
that this indirection can not be avoided, yet this remains an
open research question. Third, the indirection layer realizes
functionality to support DHRs within the cloud storage system.
Thus, the question arises how clients can be assured that an
operator indeed enforces their DHRs. This has been widely
studied [18], [39], [42], [59] and the proposed approaches such
as audit logging, information flow control, and provable data
possession can also be applied to PRADA (cf. Section V).

To conclude, PRADA resolves a situation, i.e., missing
support for DHRs, that is disadvantageous to both clients
and operators of cloud storage systems. By enabling the
enforcement of arbitrary DHRs when storing data in cloud
storage systems, PRADA enables the use of cloud storage
systems for a wide range of clients who previously had to
refrain from outsourcing storage, e.g., because they have to
comply with data protection legislation. At the same time, we
empower cloud storage operators with a practical and efficient
solution to handle differences in regulations and offer their
services to new clients.
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