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Abstract—The website fingerprinting attack aims to identify
the content (i.e., a webpage accessed by a client) of encrypted
and anonymized connections by observing patterns of data flows
such as packet size and direction. This attack can be performed
by a local passive eavesdropper – one of the weakest adversaries
in the attacker model of anonymization networks such as Tor.

In this paper, we present a novel website fingerprinting
attack. Based on a simple and comprehensible idea, our approach
outperforms all state-of-the-art methods in terms of classification
accuracy while being computationally dramatically more efficient.
In order to evaluate the severity of the website fingerprinting
attack in reality, we collected the most representative dataset that
has ever been built, where we avoid simplified assumptions made
in the related work regarding selection and type of webpages and
the size of the universe. Using this data, we explore the practical
limits of website fingerprinting at Internet scale. Although our
novel approach is by orders of magnitude computationally more
efficient and superior in terms of detection accuracy, for the
first time we show that no existing method – including our own
– scales when applied in realistic settings. With our analysis,
we explore neglected aspects of the attack and investigate the
realistic probability of success for different strategies a real-world
adversary may follow.

I. INTRODUCTION

Anonymous communication on the Internet is about hiding
the relationship between communicating parties. For many
people, in particular for those living in oppressive regimes, the
use of anonymization techniques is the only way to exercise
their right to freedom of expression and to freely access
information, without fearing the consequences. Besides, these
techniques are often used to bypass country-level censorship.
Hence, the users of anonymization techniques strongly rely on
the underlying protection as defined in their attacker model.
For them, it is particularly important to know the level of
protection provided against considered adversaries. Several
methods for low-latency anonymous communication had been
proposed by the research community but only a few systems
have been actually deployed. The Tor network [8] – the most
popular system nowadays that is used by millions of daily
users – promises to hide the relationship between the sender
of a message and its destination from a local observer. This
is the entity that eavesdrops traffic between the sender and the

first anonymization node. It can be, for example, a local system
administrator, an ISP, or everyone in the sending range of a
signal if the user is connected via a wireless link. An entity
with such capabilities is one of the weakest adversaries in the
attacker model of this and other anonymization techniques [8].

The website fingerprinting (WFP) attack is a special case of
traffic analysis. Performed by a local eavesdropper, it aims to
infer information about the content (i.e., the website visited) of
encrypted and anonymized connections by observing patterns
of data flows. Here, the attacker merely utilizes meta infor-
mation, such as packet size and direction of traffic, without
breaking the encryption. Before the end of 2011, Tor was con-
sidered to be secure against this threat [11], [21]. Since then, it
has become an active field of research. Several related works
showed the feasibility of the WFP attack in Tor, however,
using relatively small datasets (compared to the size of the
world wide web) and proposed voluminous countermeasures.
A recent work [14] questions the practical realizability of
the attack in the light of assumptions typically made and the
impact of the base-rate fallacy on the classification results.

In this paper, we propose a novel WFP attack based
on a subtle method to map network traces into a robust
representation of a class (in machine learning, a class is a
set or collection of abstracted objects that share a common
characteristic; in our case these are traces recorded for the
same webpage). We abstract the loading process of a webpage
by generating a cumulative behavioral representation of its
trace. From this, we extract features for our classifier. These
implicitly cover characteristics of the traffic that other classi-
fiers have to explicitly consider, e.g., packet ordering or burst
behavior. By design, our classifier is robust against differences
in bandwidth, congestion, and the timing of a webpage load.
As we will show, this approach outperforms all existing state-
of-the-art classifiers in terms of classification accuracy while
being computationally tremendously more efficient.

To evaluate the severity of the WFP attack in reality,
we constructed the most representative dataset that has ever
been assembled in this domain. It consists of over 300,000
webpages (this is ten times larger than the biggest set used
before, i.e., the one described in [14]) and is not subject to
simplified assumptions made by the related work. For instance,
most researchers consider only the index pages, i.e., those
that web servers provide for a requested domain (e.g., [26],
[9], [11]). Their objective is limited to differentiating index
pages, i.e., to detect certain index pages within a set of
other index pages. We clearly differentiate the classification
of webpages and websites. Our datasets enable for the first
time to study the detectability of both single webpages and
complete websites within realistic Internet traffic (serving as
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background noise). Further, we do not limit our dataset to the
most popular websites according to Alexa1, since we argue
that their index page cannot serve as realistic background
traffic. For our datasets, we combined different sources for
information such as links distributed via Twitter or traces of a
Tor exit node in order to create a random and representative
sample of webpages actually visited on the Internet (or, over
Tor in particular) at the time of evaluation.

We use our superior attack together with our collected
data to study the limits of webpage and website fingerprinting
at Internet scale. We investigate the probability of success
for different strategies a realistic adversary may follow. We
show that with existing classifiers under realistic conditions,
webpage fingerprinting for any webpage is similar to finding
a needle in a haystack – in general it is doomed to failure.
However, website fingerprinting, despite being a more realistic
scenario, is also easier to handle for existing classifiers. Our
evaluation reveals several tactics that increase the probability
for a successful attack.

The contributions of this paper are as follows:

1) We propose a novel WFP attack on Tor based on
the idea to sample features from a cumulative rep-
resentation of a trace. We show that our approach
outperforms all attacks existing in the literature on
the state-of-the-art dataset in terms of classification
accuracy while being computationally more efficient
by orders of magnitude.

2) We provide the most comprehensive dataset to evalu-
ate the WFP attack. Instead of being limited to index
pages of popular websites, it contains various web
pages actually retrieved on the Internet. We managed
to assemble more than 300,000 of such pages.

3) Even allowing the attacker an optimal strategy, we
show that webpage fingerprinting at Internet scale is
practically unfeasible on the one hand while website
fingerprinting has a chance to succeed on the other.
We explore neglected aspects of the attack and inves-
tigate the realistic probability of success for different
strategies a real-world attacker may follow.

II. BACKGROUND

Tor (The Onion Router) is the most popular anonymization
network to date with more than two million daily users2. It
is designed particularly for low-latency applications such as
web browsing. Tor routes connections through virtual tun-
nels, called circuits, which typically consist of three onion
routers3 (OR). The traffic is encrypted in layers, i.e., the
client establishes a symmetric encryption key with each OR
on the circuit, encrypts the data with all keys consecutively,
and each OR decrypts its layer on the path. This technique
ensures that no relay on a path can know both the origin and
destination of a transmission at the same time. The goal of
Tor is to improve users’ privacy by hiding routing information
and communication content. However, Tor is not able to
obscure the size, direction and timing of transmitted packets.

1http://www.alexa.com
2According to https://metrics.torproject.org for August 2015.
3The onion routers are known as entry-, middle-, or exit-nodes, depending

on their position in the circuit.

Information leakage based on these metrics constitutes the
foundation of the website fingerprinting attack. The objective
is to match patterns of a website load trace to a previously-
recorded trace in order to reveal which particular website a user
is visiting over the anonymized and encrypted path. Typically,
multiple traces of a single website are retrieved and analyzed.
These are called instances.

Website fingerprinting is commonly evaluated in two sce-
narios: in the closed-world scenario, the number of websites
a user may visit is limited to a fixed number. Obviously, this
scenario is not realistic. However, it is suitable to compare
and analyze the performance of classification approaches. In
the more realistic open-world scenario, the adversary tries to
identify whether a visited website belongs to a given set of
monitored websites even though the user may also visit sites
unknown to the adversary. Here, we call this set of sites, which
are unknown, the background set and the set of monitored sites
the foreground set, correspondingly. In the remainder of this
paper we clearly distinguish between the terms “website” and
“web page”. A website is a collection of web pages, which
are typically served from a single web domain. The initial
web page of a website is called the index page4. This page is
served by the web server when a user queries the domain name
of the corresponding website. In the related work, website
fingerprinting is commonly applied only for such index pages.
In our evaluation, we extend the universe to arbitrary web
pages, and differentiate between the objectives of an adversary,
e.g., to monitor all pages belonging to a particular website, or
to monitor a single particular web page.

Attacker Model

We assume the attacker to be a passive observer. He does
not modify transmissions and he is not able to decrypt packets.
The attacker is able to monitor traffic between the user and the
entry node of the Tor circuit. Hence, he either monitors the
link itself or a compromised entry node. Further, we assume
the attacker to possess sufficient computational resources to
train the fingerprinting technique on large training datasets.

III. RELATED WORK

As early as 1996, Wagner and Schneier discovered that
traffic analysis can be used to draw conclusions about the
content of encrypted SSL packets [24]. We categorize the
related work in this research domain into traffic analysis on
encrypted connections in general, website fingerprinting on
anonymization networks in particular, and countermeasures
that have been proposed against such attacks.

A. Traffic Analysis on Encrypted Connections

The first implementation of a website fingerprinting attack
was described by Cheng and Avnur [7] in 1998. By looking at
file sizes, the authors aimed to identify which specific file was
accessed on a known server over an SSL-protected connection.
Similarly, Hintz [12] targeted identifying individual websites
when the server is not known, e.g., when using an anonymiza-
tion proxy. In order to detect whether a website from a given
blacklist had been visited over an SSL-protected connection,

4The index page is often also called the homepage or main page.
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Sun et al. [23] proposed Jaccard’s coefficient as a metric for the
similarity between observed and pre-collected traffic patterns,
allowing websites with slightly varying sizes to be matched.
These early works showed the general feasibility of the website
fingerprinting attack by considering the total sizes of resources.
However, they assumed that each request is associated with a
separate TCP connection – a constraint that only holds for early
versions of the HTTP protocol. Nowadays, HTTP makes use of
persistent connections and pipelining5 to improve performance.
Hence, it is no longer possible to trivially distinguish between
single web object requests. Bissias et al. [3] were the first
to perform website fingerprinting based on IP packet sizes
and inter-packet arrival times instead of web object sizes.
This allows the attack to be generalized to VPN or SSH
tunnels as well as WPA-protected wireless networks. To further
improve the attack, Liberatore and Levine [16] compared
the effectiveness of Jaccard’s coefficient and the naı̈ve Bayes
classifier on SSH-protected channels. Lu et al. [18] showed
that website fingerprinting can be improved by considering
information about packet ordering. Several related works do
not focus on website fingerprinting in particular, but rather
on the detection of other distinct characteristics of network
traffic, e.g., the language of a Voice-over-IP (VoIP) call [30],
or spoken phrases in encrypted VoIP calls [29]. Gong et al. [10]
even showed the feasibility of a remote traffic analysis (where
the adversary does not directly observe the traffic pattern) by
exploiting queuing side channel in routers.

B. WFP in Anonymization Networks

In 2009, Herrmann et al. [11] were the first to apply website
fingerprinting to the anonymization networks JAP [2] and
Tor [8] as well as on OpenSSH, OpenVPN, Stunnel, and Cisco
IPsec-VPN. In addition to the classifiers used by Liberatore
and Levine, the authors also evaluated a multinominal naı̈ve
Bayes classifier. Using this classifier and a dataset consisting
of 775 index pages, they achieved recognition rates above
90% for single-hop systems, but only 20% for JAP, and
as low as 2.95% for Tor. Therefore, Tor was considered to
be secure against website fingerprinting until Panchenko et
al. [21] increased the recognition rate for Tor to an alarming
degree using an approach based on Support Vector Machines
(SVM) in 2011: in the dataset provided by Herrman et al.,
they recognized more than 54% of the URLs correctly when
accessed over Tor. Moreover, the authors were the first to
evaluate website fingerprinting in an open-world scenario, i.e.,
they recognized a small number of (monitored) pages in a
set of thousands of unknown, random pages that classifier has
never seen before. Here, they achieved a recognition rate of up
to 73%. These results spawned a significant amount of interest
in the research community.

Dyer et al. [9] compared existing classifiers and additional
features on datasets with 2, 128, and 775 websites. However,
their proposed time, bandwidth, and variable n-gram classifiers
did not improve the recognition rate compared to the approach
of Panchenko et al. in any of the considered scenarios. In 2012,
Cai et al. [5] presented an approach achieving a recognition
rate of over 80% for a dataset with 100 URLs and over 70%
for 800 URLs. Like Panchenko et al., they utilized an SVM,

5HTTP pipelining is a method in which multiple requests are sent via a
single TCP connection without waiting for the corresponding responses.

but their features are based on the optimal string alignment
distance (OSAD) of communication traces. They were the first
to study the recognition of different pages of a website and
the effect of clicking on embedded links, i.e., browsing within
the same website, using a Hidden Markov Model. Though
such a user behavior turned out to be detectable with a high
probability, their study was limited to two websites only. Wang
et al. [26] improved the optimal string alignment distance
approach of Cai et al. and enhanced the data preparation
methods by statistically removing Tor management packets.
With these improvements they obtained recognition rates of
better than than 90% for both the closed-world (100 URLs) and
the open-world (1,000 URLs) scenarios. Recently, the authors
further improved the recognition rates in larger open-world
scenarios (> 5,000 URLs) using a novel k-Nearest Neighbor
(k-NN) classifier, which also significantly reduces the time
necessary for training compared to previous results [25].

The latest contributions to the field of website finger-
printing in Tor were made by Juarez [14], Cai [4], and
Kwon et al. [15]. Juarez et al. [14] critically evaluate typical
assumptions in WFP attacks. They showed that the accuracy
of classification decreases by 40% in less than 10 days and
further declines almost to zero after 90 days for Alexa Top
100 pages due to content change. Also, the accuracy drops
dramatically if a user performs multitab browsing or if different
generations of the Tor Browser Bundle (TBB) are used for
training and testing. Unfortunately, their analysis did not con-
sider an attacker that is able to use different versions/settings
for training although a realistic adversary would have this
capability. Moreover, the authors observe a similar impact on
the attack, if the adversary is not able to train using exactly
the same Internet connection as the user. The authors are the
first to consider the base-rate fallacy in the scope of the WFP
attack6. They show that, though the accuracy of classification is
very high, due to a large universe size, in most of the cases the
adversary would wrongly conclude that the user had accessed
a monitored page. To improve the situation, they propose to
refrain from positive classification if the probability difference
between the two closest classification decisions is below a
certain threshold.

Cai et al. [4] analyze WFP attacks and defenses from
a theoretical perspective using a feature-based comparative
methodology. The goal is to provide bounds on the effec-
tiveness of proposed defenses, i.e., to which extent certain
defenses hide which feature. Moreover, the authors propose a
methodology to transfer closed-world results to an open-world
setting. However, we argue that their theoretical definition
of the corresponding open-world classifier cannot hold in
practice. The key idea in the open-world scenario is to test
a classifier on traces of websites it has never seen before. In
practice, it cannot be guaranteed that an open-world classifier
identifies a monitored page if and only if the corresponding
closed-world classifier detects that particular page as defined in
their work. Instead of deriving theoretical bounds, we perform
a practical evaluation of the attack.

Recently, Kwon et al. [15] have applied the WFP attack
in the scope of Tor hidden services. Their approach can

6Note, however, that this issue has already been publicly dis-
cussed in the Tor community before, see https://blog.torproject.org/blog/
critique-website-traffic-fingerprinting-attacks
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substantially distinguish a Tor hidden service connection from
a regular Tor circuit – assuming the attacker controls the
entry node – but has only moderate success in differentiating
between hidden services.

C. Countermeasures against WFP

Several countermeasures have been proposed to protect
against website fingerprinting attacks. Padding as a basic coun-
termeasure was first studied by Liberatore and Levine [16].
Tor employs padding to generate cells of a fixed size, which
are indistinguishable. While padding operates on a per-packet
level, traffic morphing aims to adapt a complete packet trace
such that it looks similar to another packet trace [31]. However,
Dyer et al. [9] showed traffic morphing to be ineffective as a
defense against WFP in practice.

A number of countermeasures aim to create a continuous
data flow. Panchenko et al. [21] proposed creating background
noise by loading a random website in parallel with the actually
desired website thus obfuscating the real transmission. How-
ever, Wang et al. [25] stated that this approach is not powerful
enough to prevent website fingerprinting if the traffic overhead
is to be kept reasonable. Introducing BuFLO (Buffered Fixed-
Length Obfuscation), Dyer et al. [9] reduced the amount of
information exploitable by an adversary, by sending packets
with a fixed size and at fixed intervals. Cai et al. pointed
out several disadvantages of this approach [5]: besides a high
overhead in bandwidth and time, BuFLO may reveal the total
transmission size under certain conditions and further is not
able to adapt for congestion. To overcome these flaws, they
proposed Congestion-Sensitive BuFLO (CS-BuFLO). Cai et
al. also proposed Tamaraw [4], a heavily-modified version of
BuFLO, which improves performance primarily by treating
incoming and outgoing packets differently. Glove [20] is an
SSH-based defense that uses knowledge of website traces for
traffic morphing. The idea is to cluster all web pages into large
similarity groups and add only a small amount of cover traffic
to make all the pages within a cluster indistinguishable. Hence,
the attacker can only identify the cluster to which the web page
belongs, but not the web page itself. Built upon Tamaraw, a
similar idea – called Supersequence – is proposed by Wang
et al. [25]. However, to be successful, this approach needs to
have a-priori information about each page to be protected. To
overcome this, Wang and Goldberg propose Walkie Talkie [28]
– a general defense that enables the Tor Browser to transmit in
half-duplex mode. The idea is to buffer packets in one direction
and send them in bursts together with dummy traffic. This
usually results in a lower bandwidth overhead compared to
Tamaraw or Supersequence and allows for a variable packet
rate to deal with congestion.

Finally, several countermeasures at the application layer
have been proposed that do not introduce additional traffic.
As a response to the evaluation of Panchenko et al. [21], the
Tor project released an experimental patch of the Tor Browser
Bundle, which randomizes the pipeline size (i.e., the quantity
of requests processed in parallel) and the order of requests for
embedded website objects. This technique is called randomized
pipelining [22]. HTTPOS [19] (HTTP Obfuscation) follows a
similar approach of altering packet sizes, web object sizes,
and timing by modifying HTTP and TCP requests. This is
achieved, e.g., by changing the HTTP accepted-range header

field that is used to specify the byte range of a requested
resource. This functionality is typically utilized to resume a
download of a larger web object. The client can, for example,
change the traffic pattern of requesting a large resource to the
traffic pattern of multiple requests of small resources. However,
both Cai et al. [5] and Wang et Goldberg [26] showed that
these defenses are not as effective as assumed and, in the
case of randomized pipelining, might even lead to increased
recognition rates on small datasets. Since the severity of the
WFP attack has not been comprehensively studied to date,
none of these countermeasures is currently applied in Tor.

IV. DATA SETS

This section describes the datasets used in our evaluation.
The significance and plausibility of results strongly depends on
the dataset used for training and testing a classifier. In general,
a dataset should be a representative, independent, random
sample of the considered universe, here, the world wide web.
All prior works in this area limited their samples to index pages
of the most popular websites or small sets of sites known to
be blocked in certain countries. We argue that these datasets
do not reflect a representative sample of the Internet. First,
they do not contain any webpage of a site besides the index
page while the majority of retrieved web pages are not main
pages but articles, profiles or any other type of sub-page. Users
surfing the web often follow links, e.g., communicated through
social networks or they retrieve the index page of a website in
order to manually select interesting links. This is particularly
important when conducting an open-world analysis. Even if
the attack focuses on fingerprinting certain index pages, it is
important to use realistic traffic traces as background data to
evaluate the success. This fact has been neglected in the related
research, i.e., the problem has been simplified to classify index
pages within a set of other index pages instead of real traffic.
Second, none of the existing datasets allows an evaluation of
fingerprinting for complete websites, though this constitutes an
attack scenario to be expected in reality (a censor may rather
be interested in blocking or monitoring access to Facebook
entirely instead of blocking the Facebook login-page only).
Third, the world wide web consists of billions of pages.
Therefore, results obtained on small datasets do not allow
generalization. Our novel datasets aim to avoid the limitations
described above. Additionally, we tested our methods also on
data provided by other researchers, particularly to compare the
effectiveness of our attack. We now describe the compilation
of our datasets in detail.

A. Data sets provided by Wang et al.

To compare the performance of different approaches in
terms of classification accuracy and computation time, it is
essential to evaluate the classifiers on the same datasets. Wang
et al. provide two datasets7; one, which we refer to as WANG13,
had been used to evaluate the outdated OSAD classifier in
[26], and the other, which we call WANG14, had been used to
evaluate and compare the k-NN approach in [25]. The WANG13
dataset contains traces of 100 websites with 40 instances each.
The websites are based on Alexa’s top sites, where the authors
manually removed different localizations of the same site (e.g.,
google.com and google.de). Obviously, this dataset is only

7https://cs.uwaterloo.ca/∼t55wang/wf.html
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suitable for a closed-world analysis due to its limited size.
The WANG14 dataset was built for an open-world analysis.
It contains 100 websites with 90 instances each that can be
used as foreground class, i.e., as the set of sites monitored
by an adversary, or for a closed-world evaluation. This subset
was compiled from a list of blocked websites in China, the
United Kingdom, and Saudi Arabia. Further, WANG14 includes
traces of 9,000 websites drawn from Alexa’s Top 10,000 with
one instance each to serve as background data. Note that both
datasets include only the index page of each website.

Both datasets include information about the direction of
each cell and certain management cells (SENDME) were
removed using a probabilistic method described in [26]. While
WANG13 provides only cell direction and order, WANG14 also
includes a timestamp for each cell. This timestamp is necessary
for extracting the required characteristics used by the k-NN
classifier. In our evaluation we also investigate different layers
to extract the information used to generate trace representations
(see Section VII-A). Since the required information of these
layers is not available in the WANG13 set, we re-recorded the
websites used with 100 instances each using our own approach.
This allows us to extract all layers of data representation (i.e.,
also those where SENDME cells are included). Additionally,
we can transform our own format to the input format of the k-
NN classifier and compare our results. We refer to this dataset
as ALEXA100.

B. RND-WWW: An Unbiased Random Sample of the World
Wide Web

Obtaining a representative sample of web pages visited
by typical users is a challenging task. Logs of central inter-
mediaries, when they are available, e.g., for Internet Service
Providers, are generally not publicly available due to privacy
concerns. If we were to monitor the web surfing behavior of
users, the test results could be biased by the selection of users
(e.g., students), and the monitoring process itself, e.g., by the
Hawthorne effect8. To avoid these issues, we combined several
sources, each of which covers a different aspect of anticipated
user behavior. We call this dataset RND-WWW. In detail, it is
composed of web pages gathered using the following methods:

1) Twitter is a popular social network with more than
300 million average monthly active users that offers
micro-blogging services, i.e., users are allowed to
post messages with a maximum length of 140 char-
acters, called tweets. Many people use this service
to distribute links to web pages they are currently
interested in, and it is to be assumed that many
users follow these links. Therefore, Twitter serves as
a source of URLs of recent actual interest. Twitter
provides an API which enables live access to a stream
of randomly-chosen tweets that are currently being
posted. From this stream we extracted all HTTP links
over a period of three days and resolved the original
URL, since Twitter applies a URL shortening service.
From this source we were able to gather about 70,000
unique URLs of web pages.

2) Alexa-one-click: As described above, it is uncommon
only to visit the index page of a popular website.

8This effect refers to the psychological phenomenon that individuals modify
their behavior as a response to the awareness of being monitored.

Instead, users typically also click on links on these
pages, or they follow external links that directly lead
to subpages of a site, e.g., a link to a particular
article on a news website. To simulate this behavior,
we loaded the index page of each website in the
Alexa Top list of the 20,000 most popular sites and
followed a randomly chosen link on this page. We
then included the resulting page in our dataset.

3) Googling the trends: Google, by far the most popular
search engine, publishes the keywords that were
queried most frequently in past years per country
as trends9. We used 4,000 trends from Australia,
Canada, Germany, Hong Kong, India, Israel, Japan,
Singapore, Taiwan, Russia, the United Kingdom, and
the USA and queried the corresponding country-
specific Google website for these keywords. We then
randomly selected a link with a probability of 0.5
from the first, 0.25 from the second, 0.125 from the
third, and 0.0625 from the fourth and fifth result
pages and included the selected target web page in
our dataset.

4) Googling at random: We selected 20,000 English
terms at random from the Beolingus German-English
dictionary10 and entered them into Google Search.
From the results, we selected web pages with the
same method as described for Google trends.

5) Censored in China: We added a list of 2,000 web-
sites blocked in China according to http://greatfire.
org.

After removing duplicate entries, we were able to combine
more than 120,000 unique web pages in total from these
sources. In the related research, the set of websites that is
considered to be monitored by an adversary (i.e., the fore-
ground class) is commonly selected from a set of URLs that
are known to be actually blocked. In our evaluation, however,
we are more interested in investigating whether it is feasible
for an adversary to monitor any possible web page. Therefore,
we randomly selected a sample of 1% of the pages included
in RND-WWW as the foreground class and downloaded 40
instances of each with the methods described in Section V-A.
Accordingly, the remaining 99% served as background traffic
and were downloaded in one instance each.

Finally, the foreground set of RND-WWW consists of 1,125
retrievable web pages, combined from 712 different websites.
The sites with the highest frequency are http://facebook.com
(88 pages) and http://instagram.com (86 pages). The back-
ground set is composed of 118,884 unique and accessible web
pages distributed among 34,580 different websites. Besides the
four websites http://facebook.com, http://youtube.com, http:
//instagram.com, and http://tumblr.com, no website is repre-
sented by more than 2,000 pages. Moreover, 28,644 websites
occur only once in RND-WWW, i.e., they are represented by a
single web page.

9http://www.google.com/trends/
10Beolingus contains almost 1,000,000 terms including sayings, aphorisms,

and citations. The database is available for offline use at http://ftp.tu-chemnitz.
de/pub/Local/urz/ding/de-en/de-en.txt.
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C. Monitoring Real Tor Traffic

For the reasons mentioned in Section II, the website finger-
printing attack is typically evaluated against Tor. Therefore, an
intuitively representative sample of web pages to be considered
for our evaluation are those pages which are actually accessed
through the Tor network. Thus, Tor itself serves as source of
URLs used for our second dataset, called TOR-Exit.

To get access to this data, we operated a public Tor exit
node. We ensured that the fast and stable flags were assigned
to our node and that its information was thoroughly propagated
by the Tor directory service. Hence, it was fully integrated into
the operational service of Tor and used in the circuits of real
users. We captured HTTP requests from this exit node over
a duration of one week. We deliberately limited our selection
to plain HTTP traffic as we did not want to interfere with
encrypted connections. In general, it is not possible to infer
from a HTTP GET request which web page has actually been
retrieved, because there is a separate request for each object
embedded into a page. Since we are primarily interested in web
pages actually visited by Tor users, we extracted URLs in the
following manner: HTTP requests typically include a header
element called HTTP referer11, which provides the URL of the
web page that linked to the resource being requested. Hence,
in the case of an embedded object, the referer points to the
page containing this object, and if the user followed a link,
the referer points to the page containing this link. Thus, the
value of the referer serves as suitable source of URLs for web
pages that users actually visited.

From all HTTP requests that contain an HTTP referer12, we
include the web page pointed to by the referer in our dataset.
From those requests without a referer, we extracted the domain
name from which the object is requested and added the website
(or, more precisely, its index page) accessible through this
domain to our dataset. In both cases, we discarded duplicate
entries but deliberately included different web pages belonging
to the same website if available. Additionally, we removed
query parameters such as session identifiers, as these would
render a subsequent retrieval impossible. Further, we removed
all URLs linking to pure advertisement services, as these are
obviously not the target web pages sought by users. With the
method described above, we obtained a list of 211,148 unique
web pages. The set contains 65,409 unique web domains of
which 45,675 occur only once. Each website is represented by
fewer than 2,000 web pages.

Ethical considerations: The collection of URLs for the
TOR-Exit dataset does not strictly follow the guidelines for
ethical Tor research that were published after we finished our
experiments13. Still, we believe that it is important to know the
degree of protection offered by the real Tor network. There
can be no better evaluation than using those pages that are
actually retrieved via Tor. While running our exit nodes, we
made every effort to minimize any potential harm to the users
and tried to examine all the risks that may exist. Our scripts
extracted and stored only the URLs – without timestamps,
traces or any other data. From these we automatically removed

11Note that HTTP referers may be disabled on the client side. However,
they are enabled by default in the Tor Browser Bundle.

12From the captured HTTP requests, 96.3% contained a HTTP referer.
13https://blog.torproject.org/blog/ethical-tor-research-guidelines

all identifying information such as a session identifier. Hence,
with the information we stored there is only a minimal risk
to harm the anonymity of Tor users. This complies with the
recommendations for statistical analyses in the Tor network
(except that we did not publicly discuss our algorithms before
conducting the experiments) [17]. Furthermore, we will not
make this dataset or parts of it publicly available before
consulting the Tor research community and an appropriate
ethics feedback panel such as the Ethics Feedback Panel for
Networking and Security14.

D. Website-Collections

We compiled an additional dataset, called WEBSITES, with
the aim to investigate whether it is possible to fingerprint a
complete website, given that the adversary is only able to use
a subset of its pages for training. We assume this to be one
of the most realistic attack scenarios. To do this, we selected
20 popular websites that cover different categories (e.g., news
sites, social networks, online shops), different layouts, and
contents from different regions in the world. Within each of
these websites we selected a set of 50 different accessible
pages by following links from the index page applying the
same method as described for ‘Googling the trends’ in Section
IV-B. We then recorded 90 instances of the index page and
15 instances for each of the 50 subpages for all sites. The
complete list of websites used in this dataset is available in
the appendix.

V. EXPERIMENTAL SETUP

In practice, without loss of generality, we assume that
an attacker retrieves a certain amount of relevant web pages
by himself as training data for fingerprinting, using the
anonymization network that he assumes his victim uses as well.
He records the transferred packets with a traffic analyzing tool
which provides information about IP layer packets, i.e., the
length of the packet, the time the packet was sent or received,
the order in which the packets were sent and received, etc.

The attacker can make use of various information contained
in the dumps to create a profile of each web page, called
fingerprint. Later, wiretapping on the victim’s traffic, the
attacker tries to match the collected test data to a known
fingerprint. Usually, a difference between patterns in training
and test data is to be expected due to a number of reasons, e.g.,
indeterministic packet fragmentation, updates in web pages,
varying performance of Tor circuits, etc. Hence, the attacker
needs to apply statistical methods to compare the recorded
information to the fingerprints and to probabilistically match
it to a certain web page.

A. Data Collection

We accessed the Tor network using the Tor Browser
Bundle. This self-contained software package combines a pre-
configured Tor client and a stand-alone web browser based on
Mozilla Firefox. We used version 3.6.1, which includes patches
against website fingerprinting by applying randomized pipelin-
ing. The intention of TBB is to provide an easily-deployable
solution that leaks the minimum amount of information due to
identical browser configurations.

14https://www.ethicalresearch.org/efp/netsec/
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We recorded the traces of web pages using tcpdump.
We automated the recording using the plugins Chickenfoot15,
iMacros, and Scriptish16 and controlled the functionality of
Tor with Stem, a Python implementation of the Tor Control
Protocol (please note that our Tor controller does not interfere
with the regular circuit creation, assignment and fetching of
websites). With these methods we were able to automatically
retrieve hundreds of thousands of web pages selected from a
list of the corresponding URLs. Typically, multiple instances
of a single web page are retrieved and analyzed. This is
a requirement for training the classifier and for the cross-
validation we use in our evaluation. We ensured that we never
downloaded more than one instance of a single page through
the same circuit, as this could distort the evaluation results17.

B. Data Extraction and Processing

The features we use for fingerprinting are based on packet
size, direction, and ordering. It is possible to extract this
information at different layers: cell, TLS, and TCP. At the
application layer, Tor embeds the encrypted data in fixed-size
packets, called cells, with a length of 512 bytes, and cells
are further embedded into TLS records. Note that multiple
cells may be grouped into a single TLS record. Finally, in
the transport layer, TLS records are typically fragmented into
multiple TCP packets whose size is bounded by the maximum
transmission unit (MTU). Alternatively, several TLS records
can be within a single TCP packet. In Section VII-A we
provide an evaluation of the different layers of extraction and
discuss their implication on classification.

From our recorded data, we removed faulty traces that
are identifiable either by being empty or by an HTTP status
code indicating a load error. Further for pages with multiple
instances, we removed outliers identified by the interquartile
range, a standard measure to detect outliers in noisy measure-
ment data [1]. To apply this method, we compute I as the sum
of incoming packet sizes for each instance of a web page and
the corresponding quartiles. We then remove those instances
that do not satisfy the following inequality:

Q1 − 1.5(Q3 −Q1) < I < Q3 + 1.5(Q3 −Q1).

On average, 5% of the traces were discarded as outliers by
this method.

VI. A NOVEL WEBSITE FINGERPRINTING ATTACK

The classifier with the highest accuracy known to date is
that proposed by Wang et al. [25]. It is based on a k-Nearest-
Neighbor machine learning approach. The algorithm calculates
the distance between data points (here, packet sequences) and
classifies a test point based on the class of the k closest
training points. The major component of a k-NN classifier is
the distance function. Wang et al. use the sum over weighted
feature differences as distance metric. Based on prior knowl-
edge, they manually selected a large set of features, including
characteristics such as unique packet lengths, concentration of

15http://groups.csail.mit.edu/uid/chickenfoot/
16http://imacros.net/ and http://scriptish.org/
17Note that an adversary is generally not able to download training instances

over exactly the same circuit that the observed client uses. As path selection in
Tor is randomized, this information is not available to the considered attacker
(except the address of the entry node)

outgoing packets, or bursts. The weights are learned using
an iterative process, where the weights are initialized with
random values and then adjusted over several thousands of
iterations in order to optimize them. The feature set used for
their evaluation consists of almost 4,000 features.

We follow a contrasting approach. Instead of manually
identifying characteristics that may contain significant infor-
mation about the load behavior, we aim rather to derive our
features from an abstract representation that implicitly covers
all relevant characteristics. As identified in [25] and [21],
there are four basic features that already contribute significant
distinctive information: Nin, the number of incoming packets,
Nout, the number of outgoing packets, Sin, the sum of incoming
packet sizes, and Sout, the sum of outgoing packet sizes.
Therefore, we include these four features in our feature set. To
characterize the progress of the page load we propose using
the cumulated sum of packet sizes as an abstract representation
and to sample a fixed number n of additional features from
this representation.

When we apply the methods described in Section V-B on
our recorded data, we obtain a sequence of packet sizes, where
a packet may refer to a raw TCP packet, a TLS record, or a
Tor cell, depending on the layer used for data extraction. Given
such a trace of packet sizes T = (p1, . . . , pN ), where pi > 0
indicates an incoming packet and pi < 0 an outgoing packet,
the cumulative representation of this trace is calculated as

C(T ) = ((0, 0), (a1, c1), . . . , (aN , cN )),

where c1 = p1, a1 = |p1|, and ci = ci−1 + pi, ai = ai−1 +
|pi| for i = 2, . . . , N . From this representation, we derive
n additional features C1, . . . , Cn by sampling the piecewise
linear interpolant of C at n equidistant points. This feature
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Fig. 1: Feature extraction from the cumulative representation
of two traces

extraction process is illustrated in Figure 1. As a simplified
example we show the cumulative representation of two traces
T1 and T2 consisting of |T1| = 18 and |T2| = 14 packets
(each of size ± 568 bytes) and the corresponding features
Ci for n = 10. With this method, we are able to extract a
fixed number of identifying characteristics from traces with
varying length. Note that typically N � n, i.e., the trace of a
website consists of significantly more packets than the number
of features that we sample. In Section VII-B we show that n =
100 yields the best trade-off between classification accuracy
and computational efficiency. In the following, we refer to this
fingerprinting approach as CUMUL.
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As a beneficial side-effect of our feature set, fingerprints
can be intuitively visualized and compared. In Figure 2 we
visualize sample fingerprints derived with our method from the
recordings of two popular websites: about.com and google.de.
For both websites we recorded 40 instances. As we can see,
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Fig. 2: Visualized fingerprints of two websites

the load behavior of google.de is rather consistent and mainly
characterized by a sequence of incoming packets, which is
interrupted by a few outgoing packets at certain distinct points
in the progress. The fingerprints derived for about.com, a
website that publishes articles and videos on various topics,
show a greater variation. This site contains several embedded
dynamic objects (e.g., images) and their size and position
in the trace may vary. Nevertheless, the two websites are
characterized by clearly distinctive load behaviors. Our subtle
method to represent this load behavior based on the cumulated
packet sizes enables the differentiation of fingerprints of these
two pages even by the human eye. Obviously, this is not always
possible. Therefore, based on our feature set, we collect a set
of valid fingerprints and apply a machine learning technique to
differentiate them. We use a Support Vector Machine. Since the
fingerprints have by definition a fixed length, we can directly
use them as input to train the SVM classifier.

To evaluate our approach, we used LibSVM [6] with a
radial basis function (RBF) kernel, which is parametrized
with parameters c and γ. LibSVM includes a tool to op-
timize these parameters using cross-validation. It applies a
grid search, i.e., various combinations are tested and the
one with the best cross-validation accuracy is selected. In
its standard implementation the values are chosen from ex-
ponentially growing sequences c = 2−5, 2−3, . . . , 215 and
γ = 2−15, 2−13, . . . , 23. We adjusted these sequences to
c = 211, . . . , 217 and γ = 2−3, . . . , 23, since parameters
chosen from these ranges yielded the highest accuracy for our
data while reducing the computation time. Before applying the
SVM we scale each feature linearly to the range [−1, 1]. This
prevents features in greater numeric ranges dominating those
in smaller numeric ranges [13]. For all following evaluations
in this paper where we do not explicitly mention a different
methodology, we always apply our classifier as described in
this section using 10-fold cross-validation.

VII. EVALUATION AND DISCUSSION

In this section we evaluate our novel website fingerprinting
attack in Tor. We first identify the optimal layer of data ex-
traction, then we optimize the parametrization of our method.
In Section VII-C we thoroughly compare our approach to
the state-of-the-art attack, the k-NN classifier proposed by
Wang et al. and show that our method is superior in terms
of classification accuracy both in the closed- and open-world
setting as well as regarding computational efficiency and
scalability. Based on this, we evaluate our approach in different
attack scenarios. We show that monitoring a single web page
while considering realistic background traffic is doomed to
failure. However, in Section IV-D we also provide insights
into the scenario, where the attacker aims to monitor complete
websites and show that this scenario is still ambitious but
more feasible in practice, particularly when considering our
improved strategies for training the classifier.

A. Layers of Data Extraction

As explained in Section V-B, there are three possible layers
for data extraction: Tor cell, TLS record, and TCP packet.
From the raw TCP data we can extract all three layers. The
question we will address now is, which layer provides the most
information content with respect to website fingerprinting. Our
first intuition was that the most information is contained in the
TLS layer because only at this layer the dependency of cells
that belong together is included. If a record R is still being
transmitted in one direction and the transmission of a second
record R′ in the opposite direction starts before the TCP packet
containing the end of record R is sent, then R′ cannot contain
data that is sent in response to the data contained in R. We
illustrate this situation in Figure 3.

Record 1

Incoming 
TLS records

Outgoing 
TLS records

Record 2

time
Record 3

Record 4

Extracted without 
reordering

Extracted with 
reordering

Record 1 Record 2 Record 3 Record 4

Record 1 Record 2Record 3 Record 4

Fig. 3: Example of TLS record reordering

The figure shows four TLS records, their transmission
time, and direction. If the records were ordered according
to the beginning of each transmission, the resulting sequence
would be 1, 2, 3, 4. However, the data contained in record 3
cannot be a response to record 2, since its transmission has
started before that of record 2 had ended. As we require an
abstract representation of the loading behavior of the website
– independent of noise introduced by the transmission – the
sequence must be reordered to 1, 3, 2, 4. Hence, we reordered
the TLS records extracted from all our traces accordingly.

The best classifier known to date, proposed by Wang et
al. [26], [25], uses the cell layer. Tor issues a special cell
type called SENDME to ensure flow control. These cells are
irrelevant for the load behavior of a website and, thus, are
a source of noise in the measurement. Wang et al. use a
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probabilistic algorithm to identify and remove SENDME cells,
sometimes leading to a slight improvement in accuracy. This
method is also applicable when data is extracted as sequence
of TLS records: if a cell is assumed to be a SENDME by
the probabilistic algorithm, we can reduce the size of the
record containing this cell by 512 bytes. This leads to five
different layers of data extraction, which we evaluate: TCP,
TLS, TLSNoSENDME, Cells, and CellsNoSENDME. These
layers are illustrated in Figure 4 where it is assumed that Cell 3
is a SENDME. Accordingly, this cell would be removed for the
CellsNoSENDME format and TLS record 1 would be shrunk
by 512 bytes (indicated by the asterisk) for TLSNoSENDME.

TLS records

TCP packets

Record 1             *

Packet 2

Tor cells

Packet 3Packet 1

Cell 3Cell 2Cell 1

Record 2

Cell 5Cell 4

Fig. 4: Layers of data transport used for information extraction

To identify the best layer of data extraction we performed
several experiments in different settings. Table I exemplarily
shows the classification accuracy in a closed-world setting for
the ALEXA100 dataset using 40, 60, and 90 instances for
both classifiers, k-NN and our novel CUMUL. As we can see,
the layer used for data extraction does not have a significant
influence on classification accuracy. Surprisingly, throughout
our experiments the TLS format did not yield the best results
(regardless whether we reorder TLS records as described
above or not). The best classification accuracy is achieved by
extracting data on the Cells layer. However, the differences are
small and similar results can be obtained using even the most
basic layer of data representation that does not require any
post-processing, i.e., TCP. The effect of removing SENDME
cells in the TLS and Cells format with the probabilistic
method did not achieve consistent results: it either minimally
decreases or minimally improves the accuracy. Hence, the
effect is negligible and not consistently beneficial. Obviously,
this method is not able to reliably detect and remove these
management cells. Thus, we omit removing SENDME cells in
the following evaluations.

In the definition of the cumulative flow representation
C(T ) used to derive the features of our classifier (see Section
VI), we defined ai to be incremented by |pi|, i.e., the absolute
packet size for each packet. However, intuitively, it may be
beneficial to increment ai by one instead of the absolute
packet size when considering a layer of data extraction with
varying packet sizes. Otherwise, it is not possible to differen-
tiate whether data has been received in form of one larger
chunk or several smaller chunks (e.g., TCP packets). We
first assumed that a large cohesive data block is a distinctive
characteristic of a webpage, e.g., an embedded object such as
an image. Neglecting this information while processing data
may negatively influence the classification accuracy. However,

TABLE I: Accuracy of both classifiers for the ALEXA100
dataset (all values in %).

90 Instances 60 Instances 40 Instances

k-NN (3736 features)

Cells 91.60 91.95 88.89
CellsNoSENDME 91.97 91.76 89.50

CUMUL (104 features)

TCP 92.52 91.58 90.43
TLS 91.18 90.06 89.22
TLSNoSENDME 92.02 91.97 90.28
Cells 92.22 91.99 90.53
CellsNoSENDME 91.72 91.33 90.03

as our experiments indicated, this assumption turned out to be
incorrect. Throughout all our experiments with different layers
of extraction, incrementing ai by absolute packet sizes yielded
significantly better results than incrementing ai by one (except
for the Cells format, where both operations generate identical
features due to equal chunk sizes). It appears that larger data
chunks are not a characteristic of the page load behavior (that
our attack strives to fingerprint) but rather of the Tor circuit or
other network properties (and, hence, is to be treated as noise).

B. Optimizing Feature Sampling

An important design choice for our novel classifier is the
number n of features, i.e., the sampling frequency for the
features C1, . . . , Cn. On the one hand, the more fine-grained
we sample, the lower is the information loss caused by the
sampling. On the other hand, a high number of features
negatively influences the performance in terms of computation
time and, thus, scalability for the SVM, because the number of
features has a linear influence on the computational complexity
of the underlying optimization problem18. To identify the opti-
mal trade-off between classification accuracy and computation
time, we varied the sampling frequency n between 10 and 200.
The results are shown in Figure 5. As we can observe, there is
no significant increase in classification accuracy for more than
about 100 features for all the three layers of data extraction.
Hence, we consider n = 100 as a good choice and use this
number of features for the remaining evaluation.
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Fig. 5: Accuracy as a function of the number of sampled
features

18The quadratic programming solver used in libsvm scales betweenO(fn2)
and O(fn3), where n is the number of samples and f is the number of
features, see http://scikit-learn.org/stable/modules/svm.html.
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C. Comparison with State of the Art

In this section, we compare the performance of our novel
technique to the state-of-the-art approach, i.e., the k-NN clas-
sifier proposed by Wang et al. [25], that has been shown to
outperform prior approaches.

1) Closed World: We first compare the performance in the
closed-world scenario using the ALEXA100 dataset and the
100 websites provided as foreground in the WANG14 dataset.
Although the closed-world scenario is generally not realistic,
it is suitable for comparing the classification performance of
different classifiers. In this context, the accuracy, which is
defined as the fraction of correct classifications (positive and
negative) among the total number of cases examined, is a
suitable metric. Note that in the case of unbalanced datasets
that we have to face in the open-world setting, the accuracy
is practically meaningless and, thus, other metrics are to be
evaluated.

TABLE II: Accuracy of both classifiers for the WANG14 dataset
(all values in %).

90 Instances 40 Instances

k-NN (3736 features) 90.84 89.19
CUMUL (104 features) 91.38 92.03

The results for the ALEXA100 dataset are shown in Table
I, where we also differentiate between all evaluated layers of
data extraction. In Table II we show the results for the WANG14
dataset. Here, for reasons of clarity we only show the results
for that data format for which each classifier performed best.
As we can see, our CUMUL classifier, which is based on only
104 intuitive features – compared to 3736 synthetically gener-
ated features for k-NN – generally achieves a greater accuracy
than k-NN on both datasets. However, the improvements are
marginal, at about only 1 to 2 percentage points. Note that the
accuracy obtained using both approaches is already remarkably
high. Therefore, it is questionable whether further efforts to
improve the accuracy on such datasets are reasonable. This
could finally lead to the problem that the features consider
unique characteristics of the particular websites contained in
these sets and, hence, results might no longer be generalizable.
This problem is related to overfitting, i.e., the effect of a
model describing observed noise rather than the underlying
relationship. Additionally, we identified a difference in the
implementation of the cross-validation methodology of both
classifiers that makes a fair comparison difficult: while the
k-NN uses 60 instances of each foreground page for weight
learning and 30 instances for testing, the SVM performs an
internal cross-validation to optimize kernel parameters, which
uses all 90 instances of each foreground page. Besides this
basic separation difference, the selection of testing instances
might also differ. To make the results more comparable, we
modified the implementation of both approaches accordingly
for the open-world scenario described in the next section.

2) Open World: For the comparison in the more realistic
open-world scenario, we used the complete WANG14 dataset,
consisting of 100 foreground pages (90 instances each) and
9,000 background pages (1 instance each). To avoid the cross-
validation issue described above, we implemented an addi-
tional, enclosing 10-fold cross-validation. This step ensures

that the data used for training and testing in each fold is exactly
the same for both classifiers while all 90 × 100 foreground
and 9000× 1 background instances are used exactly once for
testing. Thus, within each fold, we select 90% of the data
(100 × 81 foreground and 8100 × 1 background instances)
for training, i.e., weight learning of the distance function and
calculating differences to the testing point in the case of k-
NN and optimizing the kernel parameters in the case of the
SVM. Correspondingly, we obtain 1800 testing predictions for
each fold and classifier. For the comparison we consider two
scenarios: multi-class and two-class. The basic difference is
whether each foreground page is treated as a different class
(multi-class) or the whole set of monitored pages forms a
single class (two-class). In the two-class scenario, the chances
for false positive classifications are lower, because confusion
within the foreground (i.e., a particular monitored page is
recognized as being a different monitored page) is irrelevant.
Note that the difference in both scenarios is not a matter of
optimizing a different classifier (as this would falsely imply
that monitored pages have a similarity that distinguishes them
from the background, which is not true in practice), but rather
a matter of counting, i.e., whether to count confusion between
two foreground pages as false positive or not.

TABLE III: Results for the open-world scenario of both
classifiers using the WANG14 dataset (all values in %).

multi-class two-class
k-NN CUMUL k-NN CUMUL

TPR 89.61 96.64 90.59 96.92
FPR 10.63 9.61 2.24 1.98

The results are shown in Table III. For the multi-class
scenario, we can see that our method clearly outperforms the
k-NN with a TPR, which is 7 percentage points higher while
achieving a lower FPR. Further we observe that the TPR and
FPR of the modified k-NN implementation perfectly match
the ROC curve shown in [25]. Thus, we conclude that our
modification did not influence the classification accuracy. It
would be interesting to compare complete ROC curves of both
classifiers instead of single values. However, we have to leave
this for future work due to the enormous computation time
required.

For a realistic adversary such as a state-level censor, con-
fusion within the monitored pages is not a problem. Therefore,
the results in the two-class scenario are applicable in practice.
Here, we see the same relation in the results, i.e., our approach
achieves a clearly higher TPR for a lower FPR. Interestingly,
we observe a significant decrease of false positives when
considering only two classes. This means that most of the
false positives in the multi-class scenario have been caused by
intra-foreground confusion, although it is reasonable to expect
significantly more background pages to be mistakenly classi-
fied as monitored. We identified the reason for this observation
in the compilation of websites used in the WANG14 dataset.
This set contains multiple pairs of sites that are very similar,
for instance, two different localizations of Yahoo19. Obviously,
such similarities confuse any classification approach and it is
a subject for debate to label such sites as one class.

19https://cs.uwaterloo.ca/∼t55wang/knnsitelist.txt
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Fig. 6: Comparison of runtimes for the different approaches
(y-axis scaled logarithmically)

Besides the detection accuracy we also compared the
computational performance in terms of runtimes for our novel
approach and the k-NN. To do this, we selected 100 foreground
pages at random from the RND-WWW dataset and performed an
open-world evaluation using both approaches under identical
settings (same machine, same cross-validation methodology).
Figure 6 shows the average computation times required by each
method for varying background set sizes. Note that libSVM has
a buit-in parallelization functionality while the implementation
of Wang et al. does not support parallelization. Therefore,
we evaluated our approach with and without this option
enabled. The results are unambiguous: our approach is faster
by several orders of magnitude (note that the y-axis is scaled
logarithmically) and scales significantly better for increasing
dataset sizes. Moreover, the performance of our approach can
additionally be increased by enabling parallelization (particu-
larly for optimizing the kernel parameters) and the runtime of
our method could be further improved without significant loss
of accuracy, by reducing the feature sampling frequency, see
Section VII-B. We assume that the computational costs for the
k-NN classification (in particular, the method used to adjust the
weights of the distance function) increase faster with a growing
number of instances. Due to its immense computational costs
we have to omit further evaluations on large-scale datasets
using this classifier.

Taking all results into account, we conclude that our
novel website fingerprinting attack outperforms all previously
proposed methods both in the closed- and the open-world
scenario, while obtaining such results with significantly less
computational effort and, thus, much faster. Hence, we are
equipped with the best website fingerprinting technique known
to date that we now use to investigate how severe the WFP
attack is in reality.

D. Webpage Fingerprinting at Internet Scale

We now address the fundamental question whether the
website fingerprinting attack scales when applied in a realistic
setting, i.e., whether it is possible to detect a single webpage
in real-world Internet traffic in general and in Tor traffic
in particular. To do this, we apply and optimize a separate
classifier for each page in the foreground class, i.e., the set
of pages to be monitored. We argue, and our experiments
confirm this claim, that this is the dominant strategy for an
attacker in order to increase the probability for success. We

later discuss the implications of this strategy for the scenario
where the adversary aims to monitor multiple web pages. We
concentrated on the open-world scenario, where the universe
of web pages a user may visit is not artificially restricted to
a small set. Therefore, this evaluation allows us to investigate
whether our novel attack allows an attacker to fingerprint the
load behavior of a single page within realistic Internet noise.

We selected all 1,125 available foreground pages in
RND-WWW. To evaluate whether the attack scales, we investi-
gated increasing sizes of the background class. Concretely, we
evaluate the attack for a varying size b of background pages,
with b ∈ {1000, 5000, 9000, 20000, 50000,MAX}, where
MAX corresponds to the maximum available background set
size. Further, we evaluated two scenarios. Assume the classifier
is trained on a particular web page w of our foreground set,
where w is not contained in the background class. We then
considered two types of background traffic:

• unfiltered: the background class remains unchanged.
The question we address here is whether it is possible
to monitor an arbitrary webpage in general.

• filtered: all other web pages w′, which belong to the
same web site as w, are removed from the background
set. This is to get an intuition for the upper bound of
the detection efficacy.

The difference in these scenarios is whether other web
pages that belong to the same website are treated as false
positives or not. The filtered scenario provides an upper bound
to the detection efficacy, because it assumes that users do not
visit other pages of the monitored site. The unfiltered scenario
shows whether a particular page of a site can be monitored
while users may visit other (unmonitored) pages of that site.
The unfiltered scenario is more difficult in practice as it is to be
expected that different pages of the same site exhibit a similar
load pattern and, thus, confuse the fingerprinting method.
It follows that in the filtered scenario we have to compile
a different background set for each considered page of the
foreground class, since different instances must be removed.
Therefore, the size MAX may vary slightly throughout our
evaluation.

The accuracy, i.e., the probability of a true result (either
true positive or true negative), cannot serve as indicator of
the adversary’s success in practice, since the sizes of the
foreground and the background class are heavily unbalanced.
We illustrate this with an intuitive example. Assume we train
the classifier for one foreground page (i.e., using 40 instances)
and use a background class consisting of 1,000 pages (with
one instance each). In this case, it is trivial to define a
classifier that achieves an accuracy above 96%: a classifier that
rejects any instance, i.e., which classifies any given instance as
background, classifies 1,000 out of 1,040 cases correctly, i.e.,
96.15%. This effect becomes even more pronounced when the
size of the background class is increased, e.g., to 99.9% for
50,000 background instances. Therefore, we use two metrics
that are commonly applied in similar domains: precision and
recall. The recall20 corresponds to the probability that access to
a monitored page is detected. In the related work, the quality of
a website fingerprinting technique had mostly been evaluated

20The recall is mathematically equivalent to the True Positive Rate.
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using only the True Postive Rate and False Positive Rate. These
metrics are at first glance intuitive as they express both the
fraction of accesses to monitored pages that were detected
(TPR) and the probability of false alarms (FPR). However,
a low FPR leads to incorrect interpretations if the prior, i.e.,
the fraction of monitored pages within the total number of
visited pages, is not taken into account. This effect is known
as base rate fallacy. Recent works [4], [14] started to consider
this fact.

The precision is defined as the number of true positives
divided by the number of positive test outcomes. This metric
takes account of the prior and the actual size of the universe.
It corresponds to the probability that a classifier is actually
correct in its decision when it claims to have detected a mon-
itored page. Which metric is more important depends on the
objective of the adversary. If the adversary wants to uniquely
identify the user that has visited a particular monitored web
page, then the precision is more important, because otherwise
many innocent users may be suspected. If the primary goal is to
restrict the set of users to those that may have visited monitored
web pages, then the recall is more important, because the
probability that accesses to monitored pages are detected at
all is more important than the number of false alarms. Ideally,
from the adversary’s perspective, precision and recall both
should be equal or close to one. In this case, he ensures
that all users visiting monitored pages are detected and the
detection is practically always correct. We calculated these
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Fig. 7: RND-WWW: CCDF of precision for increasing back-
ground set sizes

two metrics for both scenarios (filtered and unfiltered) and
each web page considered as being monitored, i.e., each page
contained in the foreground class. We repeated this calculation
for different values of b as described above and used 10-fold
cross-validation in each run. The results are shown in Figures 7
and 8, visualized using complementary cumulative distribution
functions21 (CCDFs). We can see that both metrics, precision
and recall, clearly decrease for increasing background set sizes.
In the filtered scenario, more than 80% of the foreground
pages are detectable with a precision greater than 0.8 if the
considered universe is small, i.e., b = 1, 000. However, only
40% achieve at least this precision when the background class
is extended to the maximum number available. Moreover, for
fewer than 20% of the pages does the classifier achieve a
precision greater than 0.9.

21In a CCDF, a point (x, y) expresses that a fraction of y of observations
was found to have a value greater than or equal to x.
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Fig. 8: RND-WWW: CCDF of recall for increasing background
set sizes

For the recall we make similar, yet even more remark-
able observations. If we assume an attacker whose primary
objective is to cover as many visits to monitored pages as
possible, hence, who is interested in a high recall, and let the
threshold of the recall, which identifies a foreground page as
being ‘detectable’ (ignoring false alarms) be 0.5, i.e., a page
is assumed to be detectable if the classifier detects access in
at least half the cases. Such an adversary is able to detect
almost each web page if b =1,000 but only less than 50% of
the pages for b =111,884. If we further assume a page to be
‘reliably detectable’ if the recall is greater than 0.9, then the
attacker is still able to reliably detect 60% of the pages for
b =1,000. However, if b is increased to the maximum value
in our evaluation, the rate of reliably detectable pages drops
below 5%. What is more, recall that this scenario is simplified
to the benefit of the attacker and is to provide an intuition for
the upper bound, as it assumes the background to be filtered,
which is not possible in practice.

In general, our assumptions regarding the more realistic
unfiltered scenario are confirmed. When other pages of the
website that the considered foreground page belongs to, are to
be classified as true negatives, precision and recall decrease
further. Obviously, in this case the classifier mistakenly con-
fuses more monitored pages with noise and vice versa.
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Fig. 9: TOR-Exit: CCDF of precision and recall for increas-
ing background set sizes

We performed the open-world evaluation also using the
TOR-Exit dataset as background noise in order to find
out whether there is a fundamental difference in the results
when the sets of background pages are compiled from pages
that are actually visited using Tor instead of being randomly
chosen or particularly popular. The results are shown in Figure
9. This dataset is considerably larger, leading to MAX >
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200,000. Consequently, the required computation time for each
foreground page and background set size is increased. To keep
the overall computation feasible, we limited the number of
foreground pages to 850. Thus, the fractions calculated for
the CCDFs are not directly comparable to those in Figure 7.
However, the general trend in the results remains unchanged.
The fraction of foreground pages for a fixed value of precision
and recall steadily decreases with increasing background sizes.

In summary, we see that for each step of increasing the
number of background pages, i.e., the size of the considered
universe, both precision and recall decline. Hence, it is to
be assumed that this trend continues for further increases in
universe size. Taking into account that MAX is still vanishingly
low compared to the number of pages in the world wide
web, we can conclude that the described attack does not
scale. Recall that this evaluation is still overestimating the
success probability of a real-world adversary, because due to
using 10-fold cross-validation, we conceded him to train the
classifier using 90% of the entire universe. In practice, this is
not possible, e.g., for the world wide web and, thus, only a
small subset can be selected for training. To investigate this,
we experimentally fixed a subset of 5,000 pages (a number
that is assumed to be closely sufficient in the related work
[27]) for training and only increased the size of the set used
for testing.
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Fig. 10: CCDF of the minimum number of background pages
that are mistakenly confused with the considered foreground
page for different background set sizes. The number of training
samples is fixed to 5,000.

Obviously, this reduces the classification accuracy. To give
an impression of the practical implications, in Figure 10 we
show the absolute minimum number of background pages that
are confused with the considered foreground page. Here, we
used 1,000 pages from RND-WWW as foreground and the plot
shows the CCDF for that fold of a 4-fold cross-validation,
that yielded the minimum number of confusions (i.e., the best
result from the adversary’s perspective). 2% of this foreground
set, i.e. 20 web pages, for b = 20, 000 (i.e., in dimensions of
universe size considered in the related work), do not have a
single confusion. But if b is increased to 100,000, each of the
1,000 considered foreground pages is mixed up with at least 8
pages in the background. This demystifies the assumption, that
there may be web pages that are particularly easy to fingerprint:
as we show there is not a single page for which no confusingly
similar page exists in a realistic universe.

E. Detection of Websites

We have shown in the previous section that fingerprinting
a single web page is not feasible. We now investigate another,
more realistic attack scenario where the adversary aims to
monitor a complete website. In this context the strategy de-
scribed to be optimal in the webpage scenario above would
be disadvantageous, since training a separate classifier for
each page of a site dramatically increases the number of false
positives to be expected (because the classification consists
of multiple decisions while a single false decision is enough
to confuse two websites). In general a web page may only
be altered due to dynamical content. It has already been
shown by Juarez et al. [14] that page updates have a profound
impact on the classification accuracy. Websites, however, can
additionally change due to adding new pages or removing
existing pages. Besides, for many websites it is practically
infeasible to fingerprint each page contained due to their
enormous amount, e.g., facebook.com. Hence, the objective to
create a website classifier is more challenging. Therefore, we
now analyze which attack strategies an adversary may follow
and analyze their efficacy. To be realistic in this regard, we
only concede the attacker to use a subset of available pages
for training of a website.

First, we investigate the most simple scenario to get an
intuition about the complexity of the problem in relation to
a webpage classifier. To do this, we performed the following
experiment. In two disjoint closed-world settings, we aimed to
differentiate between 20 websites in our WEBSITES dataset.
In case (a), a website is only represented by multiple instances
of its index page as it is typically evaluated in the related work.
This corresponds to the problem of classifying web pages. In
case (b), a site is given by a subset of its webpages. In both
cases we used 51 instances per class (website), i.e., all available
instances of the index page in case (a) and 51 different other
non-index pages in one instance each in case (b). Figure 11
shows the confusion matrices for both cases using heatmaps.
As we can see, websites can be “perfectly” separated based on
their index page (accuracy: 99%). Contrary, the classification
based on a subset of webpages is much less accurate even in
such a tiny closed-world setting (accuracy: 82%).

We now consider different attack strategies an attacker
may apply to improve the website classification accuracy.
The first strategy assumes that the index page is particularly
characteristic for the whole website. Therefore, we included it
(in 20 instances) in the training set of the classifier in case (b).
However, the assumption turned out to be false: the presence
or absence of the index page during the training does not
have impact on the resulting accuracy. Second, having only
one instance per non-index webpage may not be enough and
thus could deteriorate the resulting accuracy. However, even
using 15 instances for each of the 50 webpages per site did
not improve the classification significantly (accuracy: 85.99%).
The third strategy does not only consider one class per website,
but instead classifies each page within a site seperately to
take accout of their diversity. Then, confusion within the
classes representing different webpages of the same website
is ignored and counted as true positive. The classifier built
according to this strategy yielded even a slightly worse result
(accuracy: 82.01% vs. 85.99%) than the one with one class per
website. We assume that this happens because of overfitting,
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Fig. 11: Closed-world website classifier: confusion matrices for different scenarios

the classifier becomes trimmed to detect single webpages it
has already seen and not to generalize characteristics of the
website.

To sum up, website classification in a closed-world sce-
nario is significantly more difficult compared to index page
classification as it is typically performed in the related work.
In reality, it is to be expected that for certain websites the
adversary is not able to train on all sub-pages due to their
number, similar to the case that he cannot train a webpage
classifier on the whole universe. We experimented reducing
the number of pages available for training to 20 and tested
against the remaining 30 pages. As expected, the accuracy
degraded to 69.65%. None of our evaluated strategies improved
the probability of success. However, the results do not indicate
that website fingerprinting is generally infeasible (since several
websites, e.g., KICKASS or XNXX are reliably detectable in
this setting, see Figure 11).

Moreover, the transition of results obtained in closed-
world to the realistic open-world setting is typically not trivial.
We evaluated website fingerprinting in the open world, using
the WEBSITES dataset as the foreground and RND-WWW as
the background. Figure 12 shows the average precision and
recall (together with 95% confidence intervals) for increasing
background set sizes. For comparison, we derived the same
visualization also for the (unfiltered) webpage fingerprinting
scenario (i.e., from the data shown in Figures 7b and 8b).
As the results indicate, website fingerprinting scales better
than web page fingerprinting, although also for this objective
precision and recall decline for increasing background set
sizes. However, it appears that the precision stabilizes on a
high level in the case of website classification. Although the
results obtained in closed-world settings suggested that website
classification is less promising than webpage classification
(here represented by index-page classification), the results in
the open world reveal the contrary. This also substantiates
our assumption that closed-world results cannot be trivially
generalized. In summary, to optimize his probability to succeed
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Fig. 12: RND-WWW: precision and recall for increasing back-
ground set sizes, classification of websites (left-hand) vs. web-
pages (right-hand)

in website fingerprinting, the attacker should crawl many
different pages of a site in favor of crawling many instances
per page or of overestimating the importance of the index page.

VIII. CONCLUSION AND FUTURE WORK

In this paper we proposed a novel website fingerprinting
approach, which we showed to be superior both in terms of
detection accuracy and computational efficiency. For a com-
prehensive evaluation of attacks in this domain we compiled
the most representative large-scale datasets of webpages that
are actually retrieved on the Internet known to date. This
allows for the first time the evaluation of the WFP attack
against Tor using realistic background noise. By publishing our
datasets and tools we want to advance the ongoing research and
discussion in this important field. We are the first to evaluate
the WFP attack at Internet scale by avoiding the simplification
made in the related work that particularly background traffic
only consists of the transmission of index pages of popular
websites. As we showed, webpage fingerprinting does not scale
for any considered page in our datasets and any state-of-the-art
classifier. Hence, the attack cannot be reliably used to convict
users, but it may be used to limit the set of possible suspects.
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The attack scenario to fingerprint websites, i.e., a collection
of webpages served under the same domain, is not only more
realistic but also significantly more effective using our attack
method. We investigated several strategies to improve the
success probability and emphasized the most promising tactics.
Using our realistic datasets, a fact to be considered in future
work is that users often remain on a website, i.e., they retrieve
multiple pages of that site consecutively, e.g., by following
links. We assume, that exploiting this information can further
increase the adversary’s confidence.
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APPENDIX

1 http://www.aljazeera.net/ Arabic news site
2 http://www.amazon.com/ Retailer
3 http://www.bbc.co.uk/ British news site
4 http://cnn.com/ American news site
5 http://www.ebay.com/ Online auction platform
6 http://www.facebook.com/ Social website
7 http://www.imdb.com/ Online database
8 http://kickass.to/ Torrents
9 http://www.loveshack.org/ Dating board

10 http://www.rakuten.co.jp/ Japanese retailer
11 http://www.reddit.com/ Entertainment, social news
12 http://rt.com/ Russian news site
13 http://www.spiegel.de/ German news site
14 http://stackoverflow.com/ Knowledge market
15 http://www.tmz.com/ Celebrity news
16 http://www.torproject.org/ Online Anonymity
17 http://twitter.com/ Microblogging
18 http://en.wikipedia.org/ Internet encyclopedia
19 http://xhamster.com/ Adult content
20 http://xnxx.com/ Adult content

Listing 1: Sites included in the WEBSITES dataset

15

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps
http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/projects/final-reports/ronathan-heyning.ps
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
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