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Abstract—Automatic emotion recognition is an interdisci-
plinary research field which deals with the algorithmic detection
of human affect, e.g. anger or sadness, from a variety of sources,
such as speech or facial gestures. Apart from the obvious usage
for industry applications in human-robot interaction, acquiring
the emotional state of a person automatically also is of great
potential for the health domain, especially in psychology and
psychiatry. Here, evaluation of human emotion is often done
using oral feedback or questionnaires during doctor-patient
sessions. However, this can be perceived as intrusive by the
patient. Furthermore, the evaluation can only be done in a non-
continuous manner, e.g. once a week during therapy sessions.

In contrast, using automatic emotion detection, the affect state
of a person can be evaluated in a continuous non-intrusive
manner, for example to detect early on-sets of depression.
An additional benefit of automatic emotion recognition is the
objectivity of such an approach, which is not influenced by the
perception of the patient and the doctor. To reach the goal of
objectivity, it is important, that the source of the emotion is not
easily manipulable, e.g. as in the speech modality. To circumvent
this caveat, novel approaches in emotion detection research the
potential of using physiological measures, such as galvanic skin
sensors or pulse meters.

In this paper we outline a way of detecting emotion from
brain waves, i.e., EEG data. While EEG allows for a continuous,
real-time automatic emotion recognition, it furthermore has the
charm of measuring the affect close to the point of emergence:
the brain. Using EEG data for emotion detection is nevertheless
a challenging task: Which features, EEG channel locations and
frequency bands are best suited for is an issue of ongoing
research. In this paper we evaluate the use of state of the art
feature extraction, feature selection and classification algorithms
for EEG emotion classification using data from the de facto
standard dataset, DEAP. Moreover, we present results that help
choose methods to enhance classification performance while
simultaneously reducing computational complexity.

I. INTRODUCTION

The goal of automatic emotion recognition is the retrieval
of the emotional state of a person in a specific point in time
given a corresponding data recording. It has great potential for
applications in the eHealth domain, such as the early detection
of autism spectrum disorder (ASD) [1] or depression [2].
Examples like Paro, a robot modeled after a baby seal which
is being used in therapy for Alzheimer patients, or Robear,
a robot designed to help in elderly care, show that emotion
recognition is also on the verge of entering the eTherapy
domain.

In the process of setting up an automatic emotion recog-
nition system one has to choose the modality for the input,
for instance speech, facial gestures or physiological measures.
Each is coupled to certain advantages and difficulties. Modal-
ities like speech, facial gestures or body pose are relatively
easy to pick up (e.g. via a microphone or a camera) and
to interpret by humans. On the other hand, physiological
measures are more difficult to interpret by humans (e.g.
sweating because of fear or due to temperature?), but much
harder to directly manipulate by the sender (e.g. the heartbeat).
Therefore, physiological modalities offer a great potential for
unbiased emotion recognition.

In this paper we will focus on brain waves, i.e. electroen-
cephalography (EEG), as a way to detect the emotional state
of a person. Disadvantages of EEG data are noisy recordings
due to artifacts caused by muscular activity and poor electrode
contact. Owing to the complexity of the brain, EEG signals
are not well understood in regard to emotions. Consequently,
EEG-based emotion recognition is a field of active research for
which many comparisons of possible algorithms are still to be
done. The goal of this work is to evaluate the suitability of
different feature extraction methods, EEG channel locations
and EEG frequency bands in order to build an EEG-based
emotion classification system. Set by another research project
this work was conducted in, three disjunct emotion classes are
chosen: anger, surprise and other (which includes all emotions
except anger and surprise).

In this work Support Vector Machines (SVM) and Random
Forests (RF) are applied as two very different state of the art
classification algorithms which are trained using features based
on statistics, Short-time Fourier Transform (STFT), Higher
Order Crossing (HOC) and Hilbert-Huang Spectrum (HHS).
Elimination of uninformative features which can result in
faster training and classification as well as enhanced classi-
fication performance is applied using the mRMR algorithm.
On the basis of this we aim to find indications for important
frequency bands, feature types and EEG channel locations.

The remainder of this paper is organized as follows: First,
related work is discussed in section II. In this section we
point out the diversity and complexity of research in this
field. Next, we describe the building blocks of our EEG-
based emotion recognition system as they were implemented



using Matlab (see sectionIII). After a short description of the
used dataset in section VI, we present the metrics we used
in the evaluation and the corresponding results (sections VII
and VIII). In section IX, the paper is summarized in a brief
conclusion.

II. RELATED WORK

The usage of EEG signals for emotion retrieval was first
introduced by [3]. Since then, owing to advances in pattern
recognition, machine learning and the availability of lower
priced EEG devices, research in this field is becoming more
accessible in recent years. In the field’s early days signals
have been analyzed for linear relationships based on neuro-
scientific knowledge. Due to the brain’s complexity recent
publications [4] consider an increasing amount of non-linear
features like Higher Order Crossings [5] or Fractal Dimensions
[6]. Still, simple features like band powers have become almost
omnipresent notwithstanding the fact, that they are based on
different underlying algorithms and sometimes referred to for
sole comparison reasons.

A similar picture emerges for feature selection in EEG
emotion recognition. The focus shifts from well studied (mul-
tivariate) analysis of variance ((M)ANOVA) methods to recent
filter methods like (mRMR [7], [8]) or embedded methods like
tree-based approaches. Feature selection can be used to find
the most informative frequency bands and locations on the
scalp ([9], [10]).

Study of related work yields a tough conclusion: despite
much effort in the field of EEG-based emotion recognition, it is
still a long way for “cookbook recipes” and best practices that
could assure high performance. This is owed to a number of
factors that make this field particularly complex. For instance,
studies about emotion recognition from EEG are very hard to
compare. The parameters being optimized or reviewed differ
among publications.

Classification accuracy is given by many studies as a means
of representing classifier performance. However the class
distribution of training and test sets at hand are sometimes
not clearly specified (for example [10]), which limits the
test reliability of such results. [4] gives a good comparison
(using a Naive Bayes classifier) of possible feature extraction
and selection methods. However, their study is based on a
single dataset for which emotions were induced by showing
pictures from the International Affective Picture System to the
probands. Though, it can not be fully applied to every use-
case. Moreover, it poses another problem: [11] showed that
EEG responses are indeed different varying with the modality
of induction.

Despite these limitations [4] is the most holistic overview
of feature extraction and selection methods we found so far.
Thus some choices regarding feature selection and extraction
in this work are made with respect to this particular work.

III. FEATURE EXTRACTION

As a first step towards an EEG-based emotion recognition
system the EEG channels and features which are to be ex-
tracted from the EEG signal have to be identified. In our work

we consider the EEG channel locations AF3, F7, F3, FC5,
T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4. This channel
locations are widespread, and even available in low cost
consumer devices, e.g. the Emotiv EPOC device. In order to
evaluate the relevance of different frequency bands, the signals
were decomposed into the commonly used θ ((4Hz, 7.5Hz]),
α ((8Hz, 13Hz]), β ((13HZ, 30Hz]) and γ (> 30Hz) bands1.
We omit using the δ (≤ 4Hz) band since this information has
been removed in the DEAP dataset [13] which we use in our
experiments (see section VI).

From each band statistical, HHS and HOC features were
extracted. STFT-based features were obtained from the original
signal which is being internally decomposed (see section about
STFT). HOC features were additionally retrieved from the
original signal.

The following paragraphs give a brief description of each
extracted feature.

Butterworth filters are commonly used to extract frequency
ranges from a discrete-time signal and have been applied
in previous studies on EEG emotion recognition [14], [5],
[15]. To retain comparability with these we take advantage of
Matlab’s butter function to design 6th order Butterworth
bandpass filters. With the frequency ranges chosen according
to the frequency bands, the filters yield four new signals from
the original recording.

We apply Short-Time Fourier Tranform (STFT) with the
spectrogram function that can give a spectrogram repre-
sentation of the signal as well as power spectral densities of
frequency bins. Similar to [4] we apply a Hamming window
of 1 second length, that is 128 samples. Since the PSDs are
returned for 1 Hz bins, we first sum the PSDs of the according
bands. For each resulting band PSD we extract the minimum,
maximum and variance as features. Additionally we average
over time to arrive at a time-independent representation of
band powers which is added to the feature vector as well as
the α/β-power ratio.

Similar features as for STFT were produced from the
decomposed signals, meaning for each frequency band. Again,
the features are minimum, maximum and variance of the
signals as well as their mean band powers. We employ the
implementation by [16]. With this the intrinsic mode functions
(IMFs) are computed. Then the Matlab hilbert function is
applied to each IMF and the instantaneous frequencies are
calculated similarly to [17]. First the instantaneous frequen-
cies are averaged and then the mean (in regard to time) of
instantaneous frequencies is computed and used as a feature
[4]. This is done for every frequency band.

We implemented simple HOC and execute it for each
frequency band signal using the difference filter applied k-
times for k = 1, .., 10 similarly to [4]. Additionally simple
HOCs of the original signal were computed. This decision
was made on the fact that the iterative application of the
difference filter removes high frequencies in each step, thus

1We follow the frequency band definition according to [12]. Different
authors use slightly varying definitions between publications.



has the characteristic of a frequency decomposition itself. This
process returns ten features for a input signal corresponding
to the number of zero crossings for the k-times filtered signal.

IV. FEATURE SELECTION

Feature Selection is used to select a relevant subset of all
available features which yields not only smaller dimension-
ality of the classification problem but can also reduce noise
(irrelevant features). We further deduce which feature types are
suitable for EEG emotion recognition by inspecting features
that are being selected by the applied algorithm.

In order to do so, we apply a Matlab implementation [18]
of mRMR [7]2. It being a filter method gives us advantages
such as ranked features and classifier-independence while also
being less computationally intensive than wrapper methods.
[4] and [8] have successfully applied mRMR for EEG emotion
classification. Following [19] who report its better stability, we
use the Mutual Information Difference version.

Random Forests are also applied for classification (see
section V) which is a representative of the feature selection
class of embedded methods meaning that these kinds of
classification algorithms also do feature selection internally.

SVMs don’t perform well on unscaled features since the
decision hyperplane can be heavily influenced by just one
single feature with large values. RFs do not require this
preprocessing step but do not suffer from it either. Thus
we first z-normalize and afterwards scale to [0, 1] on the
training set and apply the normalization and scaling with
the same parameters to the test set. For consistency we use
the normalized features for both RF and SVM. For mRMR
discretized features are strongly recommended. In order to
loose as little information as possible, we deploy discretized
(20 steps, similar to [4]) features only for mRMR itself and
from its results select a subset of the z-normalized but non-
discretized features.

V. CLASSIFICATION

For the classification task, we use two popular algorithms:
Support Vector Machines and Random Forests. For the SVM
implementation we decided for the widely used LIBSVM
[20] of which a Matlab port is freely available. It can also
handle multi-class problems by applying the one-against-one
method which was shown to give comparable classification
performance but shorter training time then one-against-all
[21]. The Matlab provided TreeBagger class is used for
construction of RFs.

Both implementations support cost-sensitive learning which
we use to mitigate the problem of imbalanced data. LIBSVM
is limited to the assignment of different weights to the classes
where TreeBagger offers the possibility to define a full
cost-matrix. To account for the imbalanced class distribution
we choose higher costs/weights for classes anger and surprise

2Due to an error in the source code, the implementation can not be compiled
right away but all calls to log have to be passed a float or double in
the C++ source files. To fix this, every occurrence of log(2) was replaced
by log(2.0) and the source files subsequently recompiled.

TABLE I
VALUES USED FOR MAPPING FROM DEAP PAD VALUES ([0, 9]) TO

DISCRETE EMOTIONS.

Emotion Valence Arousal Dominance

Anger < 5 > 5 > 5

Surprise [0, 9] > 5 ≤ 5

Other [0, 9] ≤ 5 [0, 9]

compared to other. We tested3 different costs/weights and
chose them such that the diagonal element of each entry of
the confusion matrix was the largest per row.

For RF we construct the cost matrix with:

C(anger, surprise) = C(anger, other) = 38

C(surprise, anger) = C(surprise, other) = 7

C(other, anger) = C(other, surprise) = 1

and zero cost for correct classification. For SVM wanger = 7.7,
wsurprise = 4.2 and wother = 1.01 are used.

VI. DATASET DESCRIPTION

We use preprocessed 128Hz EEG signals from the Database
for Emotion Analysis using Physiological data (DEAP) [13]
for training and testing. It further offers different biosignals
and front face video of participants. In the course of their
data acquisition thirty-two subjects were to watch forty one-
minute samples of music videos which have been chosen
specifically for their high capability of eliciting emotions.
After each video the participant gave feedback about their
levels of arousal, valence, dominance and liking using the Self-
Assessment Manikin (SAM) [22], [23] technique. To yield
discrete emotion classes we converted the continuous valence,
arousal and dominance values according to Table I.

There are other data sets offering similar data, for example
eNTERFACE’06 [24] (N = 5, all male) and MAHNOB-
HCI [25] (N = 27, 11 male). However DEAP has the
most participants (N = 32) of which 50% are male and
eNTERFACE does not include a dominance dimension.

VII. EVALUATION METRICS

Depending on the use-case or underlying data different
evaluation metrics are used to test the classification perfor-
mance. While it is often used, accuracy may, depending on the
data at hand, not be a suitable representation of classification
performance. Due to imbalanced data, meaning that there is
not an equal amount of data belonging to each class, this is
the case in our work. Hence, we analyse results using recall,
precision and confusion matrices according to the following
definition of true/false positives/negatives:

Many measures are based on these values but thus are
limited to binary classification problems. We extend the def-
initions in a one-vs-all manner to account for multi-class
problems as well. The definitions are therefore always relative

3This was done using 10-fold cross-validation on the top 100 features as
determined by mRMR.



to the examined class i. Given the examined class i a true
positive (TP) is thus the number of instances that have been
predicted correctly as an instance of class i, a false positive
(FP) corresponds to a instances of true class j with j 6= i and
predicted class i. Consequently, a true negative (TN) is an
instance of true class j with j 6= i and predicted class t with
t 6= i. In conclusion a false negative (FN) is an instance of
true class i and predicted class j with i 6= j. Given a sequence
of true labels and predicted classes the total number for one
of these measures is computed as the sum of the values for
the particular measure over all classes.

In order to evaluate the importance of different feature
bands, feature types and EEG channels, we first run the
mRMR feature selection ten times each on a random subset
of 90% (that equals 1152 instances) of the data and record
the number of occurrences of the according property for each
run. From this the mean and standard deviation of the number
of occurrences is computed. A corresponding bar plot can
then give indication whether the different selection frequencies
are significant. Each feature corresponds to either one of the
frequency bands or the original signal. For a feature chosen
by the feature selection the corresponding band count is then
simply incremented. Features linked to the different θ- and
γ-bands are represented in equal amounts but since the α/β-
ratio features are linked to these two bands, we count these
for both bands as well. To account for these differences, we
plot the occurrences and standard deviations divided by the
number of feature types that are based on a particular band.

We analyze the types of features returned by feature se-
lection with the help of histograms that are scaled to clarify
which types were favored and which were disfavored. The
procedure is equivalent to the steps applied for comparison of
the frequency bands.

For each EEG channel location an equal number of features
are extracted therefore we simply present histograms with the
absolut number of occurrences and standard deviations as well
as topographic heat maps to convey which scalp locations were
selected more often.

VIII. RESULTS

Based on the results of the mRMR feature selection this
section highlights the most important features in regard to
extraction methods, frequency bands and EEG locations.

In Figures 1 and 2 it can be seen that classification for
SVM is the most robust and successful between the top 80 and
top 125 features (as selected by mRMR) but tends to decline
when using a larger amount of features. This presumably arises
from the sensitivity of SVMs to noise (e.g. irrelevant features).
Precision, recall and accuracy values (Figure 1) show that
from the top 5 to top 125 features, classification performance
improves for both SVM and Random Forest indicating that
features which are not in any of these sets have low or no
relevance for EEG emotion recognition. Random forests show
very robust results even when adding all up to 900 features
which is indication of the robustness of RFs to non-relevant
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Fig. 1. From left to right: Classification accuracy, recall and precision values
based on the mean of 10-fold CV for the top N features.
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Fig. 2. Classification accuracies for SVM and corresponding standard
deviations for the top N features.

features. Overall, standard deviations of measurements were
smaller for Random Forests than for SVMs.

Figure 4 shows that γ-band features are strongly represented
in the top features selected by mRMR. Up to the top 50
features θ-band features are slightly favored over α and β. For
even larger feature subsets there is no big difference between
the selection frequency of θ and α. Further the selection
of only few features based on the original signal is easily
recognizable up to the top 200 features. Starting from the plot
for the top 30 features, standard deviations are rather small
compared to the corresponding histogram bar which supports
the significance of the previous statements.

The main point that can be taken from these results is an
increased importance of the γ band for emotion recognition
given the emotion classes defined in this work. Figure 6
supports this: classification performances are overall worse
when removing γ band features. This coincides with results
from [14] and [4] but are inconsistent with work by [9]
who consider α and β to be more suitable for EEG emotion
recognition.

Furthermore these results indicate that frequency band de-
composition can be beneficial since features based on the
original signal were seldom selected in for the top features.

The topographic heat maps in figure 5 show a tendency
of mRMR to select features linked to the (pre)frontal lobe,
especially from the left hemisphere. Features corresponding
to the T7 location, that is from the left temporal lobe, are
strongly represented in the top 30 to top 600 features. The
indication of these locations being suitable for EEG emotion
recognition agrees with results by [14] and findings from
neuroscience [26]. However standard deviations are rather high
up to the selection of top 100 features, especially for features
from the F7 location. It should be noted though that (pre-
)frontal locations are prone to recording Electrooculogram
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Fig. 3. Classification accuracies for RF and corresponding standard deviations
for the top N features.
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Fig. 4. Weighted relative occurrences of frequency bands in the top N features
selected by mRMR. From upper left to lower right corresponding values are
N = 10, 30, 50, 100, 200, 300, 600, 900.

(EOG) artifacts [27] which may not be perfectly removable
although attempted in the DEAP data [28]. Thus classification
may to some degree be based on eye movements rather than
brain activity.

During our experiments we found that mRMR favors STFT-
based features heavily compared to their statistical counter-
parts when choosing the top 10 to top 200 features. Especially
up to the top 50 features, STFT band minimums are repre-
sented very frequently. Classification performance in figure
7 after removal of the STFT minimum features support the
increased importance of these features as indicated by the
mRMR selection. While RFs are not significantly influenced
by this removal SVMs show much weaker performance espe-
cially in terms of classification accuracy. HHS-based features
are dominant from the top 30 to top 300 features. When
removing HHS-based features from the top feature sets (see
figure 8) the best classification performance (which is similar
to the performance using all feature types) is between 200
and 250 features for both SVM and RF. This indicates that
the loss of information from removing HHS features can be
compensated for by adding other features.

From the set of statistics-based features, band powers are
the most frequently chosen features in the top 10 to top
300 features however, from the top 100 features on there
is not much difference to band variances. HOC features,
statistical band minimums, maximums and α/β-ratios are
sparsely represented in the top 10 to top 300 features. From the
differences between the distribution of features in the top 600
and top 900 sets can be taken that HOCs are predominantly
in the lower midfield of the mRMR ranking. As most of the
statistical features are added between the top 300 and top 900

Fig. 5. Topographic heat maps showing how many features based on the
particular EEG channel were chosen during mRMR feature selection for the
top N features. The color green represents none selected and dark red that
many were chosen.
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Fig. 6. From left to right: Classification accuracy, recall and precision values
based on the mean of 10-fold CV for the top N features after removing
features based on the γ band.

features, they are also mostly in the (according to mRMR)
worse half of features. It is also striking that even in the top
900 features STFT-based band variances hardly occur, thus
they are very low in the mRMR ranking.

IX. CONCLUSION

In this paper, we tested different frequency bands, EEG
channel locations and feature extraction algorithms for their
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Fig. 7. From left to right: classification accuracy, recall and precision values
based on the mean of 10-fold CV for the top N features after removal of
STFT minimum features.
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Fig. 8. From left to right: classification accuracy, recall and precision values
based on the mean of 10-fold CV for the top N features after removal of
HHS features.



suitability in EEG-based emotion recognition. Various feature
extraction algorithms were applied, mRMR was used for
feature selection and classification was done using SVM an
Random Forests. HHS- and STFT-based features were found
to be valuable feature extraction algorithms for classifying
EEG data according to emotions felt.

Further we showed the increased importance of γ features
and EEG locations corresponding to the (pre-)frontal and left
temporal lobe for EEG emotion classification which coincides
with findings from neuroscience [26] and related work [14],
[4]. In the course of this work we have also found Random
Forests to be much more robust and simpler to use than
Support Vector Machines for the use-case of EEG emotion
recognition.

In our future work, we will expand EEG-based emotion
recognition to continuous automatic depression detection,
which will be done with the authors of [2]. This research will
then be evaluated within a clinical trial.
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