

Secure and Anonymous Decentralized Bitcoin Mixing

<u>Jan Henrik Ziegeldorf</u>, Roman Matzutt, Fred Grossmann, Martin Henze, Klaus Wehrle Communication and Distributed Systems (COMSYS), RWTH Aachen, Germany

Bitcoin in a nutshell

Bitcoin: A decentralized crypto-currency.

The Bitcoin Hype Cycle

Is it used at all?

Pro's and Con's

Why is Bitcoin used?

- Investment (a really bad one)
- Fast (and simple)
- More secure (in a way)
- Cool & hip
- ...

VS.

- Scams, crime, theft
- Volatility
- Low adoption
- ...

Because it offers ...

ANONYMITY / FINANCIAL PRIVACY

(No, it doesn't)

Downfall of Silkroad

Follow The Bitcoins: How We Got Busted Buying Drugs On Silk Road's Black Market

Andy Greenberg, FORBES STAFF

Covering the

FOLLOW ON

Opinions express

ANDY GREENBERG

SECURITY 01.29.15 1:55 PM

PROSECUTORS TRACE \$43.4M IN BITCOINS FROM THE SILK ROAD TO ULBRICHT'S LAPTOP

anonymous internet money, the US government just offered what may be the clearest demonstration yet that it's not. A former federal agent has shown in a courtroom that he traced hundreds of thousands of bitcoins from the Silk Road anonymous marketplace for drugs directly to the personal computer of Ross Ulbricht, the 30-year-old accused of running that contraband bazaar.

Financial Privacy in Bitcoin

PSEUDONYMITY

Virtually unlimited amount of addresses.

Input: QWxpY2U

Output: Qm9iYnk

Value: 0.2 BTC

How to re-establish Bitcoin's broken promise of financial privacy?

DE-ANONYMISATION

Blockchain taint analysis + side channels.

Input: Alice
Output: Bob
Value: 0.2 BTC

Bitcoin Mixing by Example

Bitcoin Mixing by Example

1st Gen: Centralized mixing / eWallets / Improvements

- Pros: Easy to use, scalable, big anonymity sets
- Cons: TTP is single point of failure, involved mixing & Transaction fees
- Improvements: Mixcoin, BlindCoin

2nd Gen: Decentralized Mixing (CoinJoin, CoinShuffle, ...)

- E.g. CoinJoin, CoinShuffle (implemented in NXTcoin?), XIM
- Pros: Secure, anonymity against insiders, no TTP, no SPoF
- Cons: Small anonymity sets, no deniability, (scalability)

Desiderata

Requirements for an ideal mixing service

SECURITY

No theft, double spending or loss of funds. No DoS.

ANONYMITY

Anonymous against in- and outsiders. Big anonymity sets.
Unbiased randomness.

DENIABILITY

Means of plausible deniability. No cryptographic evidence.

MISUSE PREVENTION
Prevent money-laundering, ...

SCALABILITY

Large numbers of users.

Low impact on Bitcoin network.

COST EFFICIENCY

No mixing fees.

Minimal transaction fees.

APPLICABILITY & USABILITY

Compatible with Bitcoin network. No additional software.

This presentation

Centralized mixing

Decentralized mixing

OUR APPROACH

- Threshold ECDSA
- Single instead of group transactions
- Separate input and mixing peers

Security

Anonymity

Deniability

Scalability

Costs

Usability

CoinParty Protocol Overview

CoinParty Protocol Overview

Commitment Phase

Goal 1: Shared control addresses

- Gennaro et al. adapted to EC
 - Shared private key d = Recombine([d]₁,[d]₂,[d]₃)
 - Full public key D = dG
- Indistinguishable from normal Bitcoin address
- Precompute ~ 80 % of overhead

Goal 2: Receive commitments

- Mixing peers provide web interface
- User checks mixing parameters
- User commits funds in standard transaction

Gennaro, Rosario, et al. "Secure distributed key generation for discrete-log based cryptosystems." EUROCRYPT'99. Springer, 1999.

CoinParty Protocol Overview

Shuffle Phase

Goal: Unlink users from supplied addresses. Shuffle addresses.

Solution: Verifiable shuffle

Shuffle Phase (cont'd)

Shuffling Phase (cont'd)

Handling malicious behavior

Case 1: Mix M₂ did not decrypt correctly

- Reconstruct M₂'s private key and check decryption
- Skip and punish dishonest mix M₂

Case 2: Users supplied inconsistent verification information

```
Users' verification information = Checksum of shuffle stage 

Reconstruct(\begin{bmatrix} C_1^1 \end{bmatrix} + \begin{bmatrix} C_1^2 \end{bmatrix} + \begin{bmatrix} C_3^1 \end{bmatrix}) = H(\bigcirc O_3) + H(\bigcirc O_2) + H(\bigcirc O_1) 

C_1' := C_1^1 + C_1^2 + C_1^3 = C_1 := C_1^3 + C_1^2 + C_1^4
```

- Reconstruct all checksums C^j₁ on shuffle stage
- Identify and punish all misbehaving users j
- Need to abort shuffle

CoinParty Protocol Overview

Transaction Phase

- Precompute ~ 75 % of overhead
- Threshold transactions are indistinguishable from normal Bitcoin transactions

Reminder

Requirements for an ideal mixing service

SECURITY

No theft, double spending or loss of funds. No DoS.

ANONYMITY

Anonymous against in- and outsiders. Big anonymity sets.
Unbiased randomness.

DENIABILITY

Means of plausible deniability. No cryptographic evidence.

MISUSE PREVENTION
Prevent money-laundering, ...

SCALABILITY

Large numbers of users.

Low impact on Bitcoin network.

COST EFFICIENCY

No mixing fees.

Minimal transaction fees.

APPLICABILITY & USABILITY

Compatible with Bitcoin network. No additional software.

Discussion: Security

Proof Sketch

- Use secure primitives: Secret sharing, ECDKG, TECDSA
 - Security of Commitment and Transaction phase follows directly
- Shuffle stage
 - Malicious behavior is detected
 - Skip malicious mixes ©
 - Malicious users can DoS ☺
 - But we can punish them effectively

Security Thresholds

- Secret Sharing, ECDKG, TECDSA are essentially MPC problems
 - Need guaranteed output
 - Don't have broadcast channel
- *m/3 malicious mixes* is theoretic upper bound
- Any number of malicious users

Discussion: Anonymity

Anonymity against

• Mixing peers: # of users

• Other users: # of users - # of sybils

• Passive observers: Analyze blockchain

Discussion: Scalability

MIXING OVERHEAD in CLOUD SETTING

Hosts

Azure Cloud A1 Instances 1 virtual core, 1.75 GB RAM

Network

US and EU Locations
50 - 100 ms intracontinental
150 - 200 ms intercontinental

MIXING OVERHEAD in LAN SETTING

Host

16 CPUs / 32 Threads 32 GB RAM

Discussion: Deniability

Deniability against ...

- Passive observers: Full Mixing TXs are indistinguishable from normal TXs
- Mixing peers: None MPs can identify their own mixing transactions
- Other users: Reduced Sybil attacks threaten deniability

Conclusion

OUR APPROACH

Mixing in single transactions using Threshold ECDSA. Refined shuffling for deniability.

FUTURE WORK

Applications

PREVENTING MISUSE

Deniability

