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ABSTRACT
Bitcoin is a digital currency that uses anonymous crypto-
graphic identities to achieve financial privacy. However, Bit-
coin’s promise of anonymity is broken as recent work shows
how Bitcoin’s blockchain exposes users to reidentification
and linking attacks. In consequence, different mixing ser-
vices have emerged which promise to randomly mix a user’s
Bitcoins with other users’ coins to provide anonymity based
on the unlinkability of the mixing. However, proposed ap-
proaches suffer either from weak security guarantees and
single points of failure, or small anonymity sets and missing
deniability. In this paper, we propose CoinParty a novel,
decentralized mixing service for Bitcoin based on a com-
bination of decryption mixnets with threshold signatures.
CoinParty is secure against malicious adversaries and the
evaluation of our prototype shows that it scales easily to a
large number of participants in real-world network settings.
By the application of threshold signatures to Bitcoin mix-
ing, CoinParty achieves anonymity by orders of magnitude
higher than related work as we quantify by analyzing trans-
actions in the actual Bitcoin blockchain and is first among
related approaches to provide plausible deniability.

Categories and Subject Descriptors
K.4.4 [Electronic Commerce]: Cybercash, digital cash

Keywords
Bitcoin; Anonymity; Secure Multi-Party Computation

1. INTRODUCTION
Bitcoin was proposed in 2008 by Nakamoto [24] as a decen-

tralized digital currency. The market cap of circulating Bit-
coins amounts to nearly $5 Billion [4] as of December 2014
which shows the wide adoption of Bitcoin. Instead of using
central entities, i.e., banks, to establish trust in the currency,
Bitcoin stores all transactions in a distributed public ledger,
the blockchain, to prevent double spending and keep track
of the balances. Bitcoins are stored at and transferred be-
tween addresses, cryptographic identities corresponding to
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Elliptic Curve Digital Signature Algorithm (ECDSA) pub-
lic keys. Addresses and thus transactions are anonymous
as long as addresses cannot be linked to their owners. It is
especially this promise of financial privacy that has drawn
great interest towards the Bitcoin currency.

However, this promise is broken, as recent works [2, 22,
25, 26] show how a user’s transactions and addresses can
often be linked back together by analyzing the transaction
graph in the publicly available blockchain. Though, any
user, Alice, can generate fresh unlinkable addresses, trans-
ferring funds to them would again link the address back to
her. Basically, what Alice needs is a way to send funds
to her new address in an unlinkable manner. As of today,
bitcoin.it lists no less than thirteen commercial mixing
services [6] that promise to provide exactly this: If Alice
sends her funds to the mixing service, the mix will, for a
small fee, pay her back with the funds of some random other
user after a certain waiting period. To any outsider observ-
ing the blockchain the resulting mixing transactions are in-
distinguishable from other contemptuous transactions in the
blockchain. This property is desirable since it provides for
large anonymity sets and allows users to plausibly deny their
participation in the mixing operation.

This first generation of mixes, however, suffers from two
severe drawbacks which are well-known to the Bitcoin com-
munity: First, users need to blindly trust the operators
not to steal their funds. Second, the mixing service knows
how funds were mixed and may be forced or otherwisely in-
centivized to reveal this knowledge. This has led to new
decentralized approaches that promise better security and
stronger anonymity [20, 28, 31]. However, most of these ap-
proaches require that all mixing transactions are issued in
one single atomic transaction with multiple inputs and out-
puts. This serves to prevent malicious peers from aborting
the protocol after they have received their funds thereby
leaving another peer unpaid. However, the characteristic
form of such group transactions renders them easily iden-
tifiable in the blockchain. This introduces two severe lim-
itations when they are used in mixing services: First, the
resulting anonymity set of the mixing is limited to the num-
ber of users participating in a particular mixing operation.
Second, since such bundled mixing transactions are clearly
identifiable in the blockchain, users have no means of plau-
sibly denying that they participated in the mixing.

Our contribution. In this paper, we propose Coin-
Party , an efficient decentralized Bitcoin mixing service with
stronger anonymity guarantees, plausible deniability, and
lower costs. CoinParty takes a two stage approach. Our
core idea is to introduce a set of mixing peers that in a decen-
tralized yet secure fashion carry out the mixing in multiple
one-to-one Bitcoin transactions thereby replacing the disad-



vantageous group transactions used in the related work. The
key challenge is to ensure that all mixing transactions suc-
ceed even when mixing peers fail or behave maliciously. We
show how to achieve this by employing a threshold variant
of the ECDSA scheme realized using general Secure Multi-
Party Computation (SMC) protocols. This scheme allows
to distributedly create Bitcoin addresses from which funds
can only be redeemed in a threshold transaction, i.e., only
when a majority of the controlling peers agrees to do so.
CoinParty can thus realize the advantages of both the early
centralized approaches and of the later decentralized ap-
proaches, achieving notable improvements compared to the
related work:

Improved anonymity: To outsiders and the fellow mix-
ing participants observing the blockchain, CoinParty ’s
threshold transactions are indistinguishable from other
non-threshold transactions. Thus, CoinParty ’s mixing
transactions are anonymous among all contemptuous
transactions with the same value. We conduct a quan-
titative analysis on the blockchain to show that this
increases anonymity by orders of magnitude.

Plausible deniability: In [9] the authors briefly mention
deniability as one desirable property for mixings. Coin-
Party is first among related approaches for mixing Bit-
coins to provide its users with plausible deniability.

No fees: CoinParty issues multiple small transactions that
do not require transaction fees. Since CoinParty is run
in absence of any trusted third party, i.e., a service
provider, no mixing fees are charged either. Related
approaches require at least transaction or mixing fees.

Applicability: CoinParty is fully compatible with the ex-
isting Bitcoin network. We evaluate a proof-of-concept
implementation in a real-world network setting to show
that CoinParty incurs only small overheads even when
scaling to large numbers of participants.

The remainder of the paper is structured as follows: We
present background information on the Bitcoin digital cur-
rency and SMC in Section 2. Section 3 formalizes the prob-
lem and requirements of Bitcoin mixing. Section 4 describes
the protocol and system design of CoinParty . Section 5 pro-
vides a comprehensive analysis, evaluation, and discussion of
the mixing correctness, performance, anonymity, and further
system requirements. Finally, Section 6 compares CoinParty
to related work and Section 7 concludes this paper.

2. BACKGROUND
We briefly cover the relevant background on Bitcoin and

SMC as the underlying foundation of our approach.

2.1 Bitcoin
Bitcoin is best understood as a decentralized P2P net-

work that keeps track of all money transfers between its
users. Transfers are recorded in a public ledger, the block-
chain, which is constantly validated by the Bitcoin partici-
pants through a proof-of-work. Double spending of Bitcoins
is thereby ruled out as long as the majority of computation
power is contributed by honest, non-colluding participants.

Addresses. Bitcoin users can have a virtually unlimited
amount of cryptographic identities, called addresses. Ad-
dresses are used to store and receive Bitcoins. An address

is basically the hash of an ECDSA public key and a user in
possession of the corresponding private key is said to own
the address. Addresses serve as pseudonyms and frequently
using fresh ones is the basis for anonymity in Bitcoin.

Transactions. A transfer of Bitcoins between addresses
is called a transaction. To issue a transaction, a user spec-
ifies one or more input addresses I1, ...In from where the
transaction amount is collected. The transaction amount
can be distributed arbitrarily to one or more output ad-

dresses, O1, ..., Om. We formally write {I1, ..., In}
ν1,...,νm→

{O1, ..., Om}, for a transaction of νi Bitcoins to Oi, respec-

tively, or simply I
ν→ O when only one particular input and

output address is relevant in the transaction. The user signs
the transaction with the private key corresponding to the
input address to proof that she indeed owns the respective
address. The complete transaction is then broadcasted into
the Bitcoin network where it is grouped and validated to-
gether with other transactions in blocks. The transaction
is usually considered valid by the other Bitcoin participants
after six further blocks have been processed. Blocks are lin-
early chained in the blockchain which represents the com-
plete accepted history of Bitcoin transactions and has been
the primary target for deanonymization attacks.

Transaction fees. The difference between the sum of a
transaction’s input and output values can be collected as a
transaction fee. Transaction fees motivate Bitcoin miners,
i.e., users who invest computing power to find new blocks,
to include the transaction in the blockchain. Fees are not
mandatory and many transactions are indeed processed with
no fee at all, e.g., those not exceeding a size of 1 KB [7].

2.2 Secure Multi-Party Computation
SMC considers the basic problem of how a group of peers

can compute some known functionality F(x1, .., xn) in ab-
sence of a trusted third party without anyone learning the
private inputs x1, ..., xn. Among the different proposed solu-
tions, constructions based on linear secret sharing are widely
used and we quickly cover the basics here. At the beginning,
each input party creates [x] := (fx(1), ..., fx(i), ..., fx(m)), a
sharing of her private input x where fx ∈ Zp[X] is a random
t-degree polynomial with fx(0) = x. [x] is called a t-out-of-n
secret sharing of x, where [x]i is called the i-th share of x.
Any subset of t or less shares does not reveal anything about
the secret, while any t + 1 or more shares are sufficient to
reconstruct x using Lagrange interpolation. t is thus often
called the reconstruction threshold:

x = fx(0) =

it+1∑
i=i1

[x]i ·
∏

j=0 j 6=i

j

i− j︸ ︷︷ ︸
=:λi

(1)

To realize the desired functionality F securely, it is first
expressed as an arithmetic circuit which is subsequently
evaluated by a set of privacy peers. The input peers share
their secrets to the m privacy peers, i.e., privacy peer Pi re-
ceives [x]i, and the privacy peers then compute the required
additions and multiplications on these shares, i.e., without
learning the secret inputs. In linear secret sharing schemes,
addition and thus also scalar multiplication can be com-
puted locally, i.e., [x] + [y] = [x+ y] and thus [x] · s = [x · s].
Multiplication of two secret-shared values [x] and [y] can be
implemented in a simple protocol which requires one round
of communication between the privacy peers. Based on ad-



dition and multiplication, theoretically any functionality can
be implemented, while practically processing and communi-
cation overheads limit what is feasible.

Adversary models. Security of SMC protocols is usu-
ally analyzed in either the semi-honest adversary or the
malicious adversary model [18]. Semi-honest adversaries,
also referred to as passive adversaries, are assumed to fol-
low the protocol correctly, but may analyze the protocol
transcript to gain additional information about the partici-
pants’ private inputs, e.g., to break anonymity. In the semi-
honest model, we typically set the reconstruction threshold
to t = b(m − 1)/2c which achieves security against an ad-
versary that corrupts any minority of the m privacy peers.
Contrarily, a malicious adversary is not bound by the pro-
tocol specifications and may actively try to cheat. Because
of the involved monetary values, we argue that it is manda-
tory to provide security against malicious adversaries in the
context of our work. Notably, all of the SMC primitives we
use in this work are based on Damg̊ard et al.’s protocol for
general Secure Multi-Party Computation [14]. Damg̊ard’s
construction builds on linear secret sharing and is secure
against a malicious adversary that corrupts less than m/3
of the m privacy peers, i.e., the reconstruction threshold is
t = b(m − 1)/3c. An efficient implementation of [14] exists
in the VIFF framework [30] on which we base our protocol
implementation.

3. PROBLEM STATEMENT
Motivated by recent work on de-anonymization of Bit-

coin transactions [2, 22, 25, 26], we consider the problem of
how a user can mix Bitcoins with other users to preserve
her financial privacy. Formally, n input peers which each
have a certain amount of ν Bitcoins available at input ad-
dresses I1, ..., In want to mix that amount to a set of output
addresses O1, ..., On such that (1) each input peer receives
back ν Bitcoins on her output address, and (2) input and
output addresses are unlinkable, i.e., only input peer i knows
that Ii and Oi belong together. Essentially, this means that
each input peer i issues the transaction Ii

ν→ Oπ(i) where π
is a random and secret permutation over {1, ..., n}. Such a
mixing service needs to fulfil the following requirements:

Mixing correctness: Bitcoins must not be lost, stolen, or
double-spent by any inside or outside party even in the
presence of a malicious adversary. Honest input peers
should receive their funds in a timely manner.

Anonymity: The mixing must be anonymous, i.e., a mali-
cious adversary must not be able to create a link be-
tween input address Ii and output address Oi for any
input peer i.

Deniability: Input peers should be able to plausibly deny
having participated in a mixing operation.

Performance: The protocol should scale to large numbers
of input peers without imposing prohibitive overheads
upon the mixes or the Bitcoin network.

Compatibility: The mixing protocol must be fully com-
patible with the current Bitcoin network and produce
legitimate Bitcoin transactions.

Cost-efficiency: The protocol must be cost-efficient in terms
of involved transaction and mixing fees.

Figure 1: Overview of CoinParty with three participants.
The shuffling and transaction (grey) are executed collabora-
tively by the mixing peers M1,M2 and M3.

Clearly, the first generation of centralized mixes [5,6,8,11]
does not provide correctness in the presence of a malicious
mix that steals funds. Furthermore, anonymity is provided
not even against weaker passive adversaries because the mix-
ing service knows the permutation applied to the output
addresses. The improvements proposed in [9, 20] protect
against theft from malicious adversaries, but users still need
to entrust the mix with their anonymity. Recent works on
decentralized mixes provide anonymity also in the presence
of a malicious adversary corrupting the mixing service itself.
However, they are either inefficient [21, 23, 31], uneconomi-
cal [21], achieve only suboptimal anonymity and deniability
[20, 28], are incompatible with the current Bitcoin network
without substantial modifications [3,23], or have not evolved
beyond discussions on forums and blogs [16,21,27,31]. Thus,
secure and anonymous mixing of Bitcoins is an open prob-
lem. In the following, we propose CoinParty which combines
the advantages of centralized and decentralized approaches
to Bitcoin mixing and fulfils the stated requirements.

4. PROTOCOL DESIGN
CoinParty takes a decentralized approach at Bitcoin mix-

ing by introducing a set of mixing peers which emulate a
Trusted Third Party through SMC to realize a secure and
anonymous mixing of Bitcoins between the participating
users. Note that in the context of this work, we refer to
the privacy peers executing the SMC protocol as mixing
peers. Figure 1 gives an overview of one exemplary pro-
tocol run of the CoinParty system with three participants.
CoinParty runs in three phases, (1) commitment (Section
4.1), (2) shuffling (Section 4.2), and (3) transaction (Section
4.3). A fourth error and reversion protocol phase (Section
4.4) is invoked when an error or malicious behaviour is de-
tected in the three previous phases. We describe each of
these phases in detail now, while deferring discussions of
security and anonymity to Sections 5.1 and 5.2.

4.1 Commitment
The goal of the commitment phase is to make the input

peers commit the required funds for mixing to a tempo-
rary escrow address Ti. Of course, the escrowed funds must
be protected against theft by malicious mixing peers. To
achieve this, Ti is generated from a fresh threshold ECDSA
key pair so that Ti is under joint control by the mixing peers
and a majority of mixing peers must collaborate to create
a valid signature in order to transfer funds. Inspired by the



scheme of Ibrahim et al. for threshold signatures [17], we
show how to generate escrow addresses Ti and the corre-
sponding key pair in a distributed fashion so that no central
trusted entity is required:

(C1) Using Pseudo-Random Secret Sharing (PRSS) [13],
each mixing peer Mj obtains a share [di]j of an un-
known random value di that represents the private key.

(C2) Each Mj computes locally her share of the public key
Qi: [Qi]j = [di]j ·G, withG the generator of the elliptic
curve (i.e., secp256k1 in the case of Bitcoin).

(C3) Each mixing peer Mj broadcasts her share [Qi]j to the
other mixing peers.

(C4) Each Mj receives the shares of the other peers and re-
constructs the public key Qi =

∑m
j=1 λj [Qi]j =∑m

j=1 λj [di]jG = diG, with λj the Lagrange basis
polynomial at point x = 0.

(C5) Each Mj creates the address Ti from Qi according to
the technical specifications of the Bitcoin protocol.

Mixing peers precompute a set of escrow addresses in ad-
vance and announce a different escrow address Ti to each in-
put peer i on demand. If an input peer receives two different
escrow addresses Ti 6= T ′i , e.g., from a malicious mixing peer
that tries to divert funds to her own address, the input peer
aborts the protocol immediately and notifies the other mixes
of the equivocation. Otherwise, the input peer transfers the
required funds ν from her input address Ii to the escrow ad-
dress Ti, i.e., issues transaction Ii

ν→ Ti. The mixing peers
wait the recommended six blocks until the commitment is
considered accepted by the Bitcoin network.

4.2 Address Shuffling
The goal of the shuffling phase is to permute the set of

output addresses given by the input peers under a secret
permutation π, such that nobody, not even the mixing peers,
can link input addresses I1, ..., In to the corresponding out-
put addresses O1, ..., On. Verifiable shuffling is a well-known
problem, e.g., in anonymous communications, and can be
solved using decryption mixnets as proposed in [10, 12] and
applied to Bitcoin mixing in [28]. While our use of decryp-
tion mixnets for address shuffling is inspired by [10, 12, 28],
we use a different approach to verify the integrity of the shuf-
fling which allows for deniability and improves performance.
We first outline our shuffling protocol and then discuss our
modifications.

(S1) Each input peer i encrypts and broadcasts her out-
put address Oi using the public keys K1, ...,Km of
the mixing peers in a layered encryption JOiKK1:Km :=
EK1(EK2(...EKm(Oi))). Also, each input peer i secret-
shares the hash H(Oi), i.e., sends [H(Oi)]j to Mj=1..m.

(S2) The mixing peers now enter m rounds of decryption
and shuffling. Mj removes the outermost decryption
EKj , then applies a private permutation πj and sends

Sj = JOπj◦...◦π1(1)KKj+1:Km , ..., JOπj◦...◦π1(n)KKj+1:Km

to the next mixing peer Mj+1.

(S3) Mm removes the last layer of encryption Em. Mm then
sorts the output addresses lexicographically (permuta-
tion πm) and broadcasts the resulting Sm.

(S4) Each Mj computes a share of a checksum [C]j :=
[
∑n
i=1H(Oi)]j =

∑n
i=1[H(Oi)], broadcasts [C]j to the

other mixes, waits for the other peers’ shares and then
reconstructs C.

(S5) Each Mj validates that (1) Sm is lexicographically or-
dered and (2) the correctness of the checksum C =∑n
i=1H(Oπm◦...◦π1(i)) by hashing the addresses in Sm.

Otherwise, Mj enters the error and reversion phase.

(S6) On success, each Mj seeds a pseudo-random number
generator (PRNG) with the checksum C to obtain a
common final permutation πm+1 that is applied to Sm

to get Sm+1 = Oπ(1), ..., Oπ(n) with π := πm+1 ◦ πm ◦
... ◦ π1.

Though our shuffling protocol is inspired by the related
work [10,12,28], we introduce two core modifications. First,
we use secret sharing to validate the correctness of the shuf-
fling in Steps (S4) and (S5). This obsoletes involving input
peers in the verification of the shuffling which strengthens
anonymity guarantees and allows for deniability as analyzed
in Sections 5.2 and 5.3. Second, in [28] the last mixing peer
controls the outcome of the shuffling which is undesirable as
we explain in Appendix A. In [10,12] this is prevented at the
costs of a second encryption layer. Our Steps (S3) and (S5)
prevent Mm from controlling the shuffling while Step (S6)
ensures that the final shuffling is indeed random. We thus
fix this vulnerability of the shuffling protocol in [28] while
maintaining its superior performance compared to [10,12].

4.3 Transaction
In the transaction phase, the mixing peers create trans-

actions Ti
ν→ Oπ(i) which requires them to compute one

ECDSA signature per transaction. Since the private key
di corresponding to an escrow address Ti is shared across
the mixing peers, the standard ECDSA algorithm cannot
be used. Instead, the mixing peers need to collaboratively
sign the transaction to spend any of the funds located at
Ti. We employ a threshold variant of the ECDSA algorithm
according to Ibrahim et al. [17], which we use to create and
sign a Bitcoin transaction as follows:

(T1) The mixing peers use PRSS [13] to obtain shares [k]i of
an unknown random value k. They use the reciprocal
protocol from [17] to obtain [k−1]i.

(T2) Each mixing peer Mj creates e = SHA-1(Ti
ν→ Oπ(i))

according to the Bitcoin protocol specifications.

(T3) Using the generator of the curve G, each Mj computes
[kG]j = [k]jG and broadcasts her share [kG]j . Mj

receives the other peers’ shares and reconstructs kG.

(T4) With (x, y) := kG and R := x mod n, the mixing peers
compute [S] = [k−1] ∗ (e+ [d] ·R) and reconstruct S.

(T5) The mixing peers output the ECDSA signature (R,S)

and with it build and broadcast Ti
ν→ Oπ(i).

We introduce the following modifications to improve the
performance and robustness compared to [17]: The mixing
peers precompute the first part of the signatureR, e.g., along
with the precomputation of the escrow addresses Ti. This
only requires mixing peers to precompute [k], its reciprocal



[k−1] (T1) and then kG (T3). We further split the compu-
tation of the second signature part S (T4) into two parts,
i.e., [S] = [k−1] ∗ e + [k−1] ∗ [d] · R. Then, also the critical
multiplication on shares [k−1] ∗ [d] ·R can be precomputed.
To create the actual signature, the mixing peers now only
need to compute locally the hash e (T2), the scaler mul-
tiplication [k−1] · e (T4) and then reconstruct [S]. Thus,
signature generation becomes much faster and more robust
against halting or failing peers.

4.4 Error and Reversion
When an error is detected during the commitment or shuf-

fling phase, the mixing peers transfer all funds from the es-
crow addresses Ti back to the input addresses Ii. The nec-
essary steps are the same as in the transaction phase. As we
analyze in Section 5.1, these transaction are guaranteed to
succeed even in the presence of malicious adversaries such
that no funds can be stolen, diverted, or lost.

Detecting a malicious mix that announces a different T ′i 6=
Ti to input peer i in the commitment phase is straightfor-
ward. It is slightly more difficult to hold mixing peers ac-
countable for malicious behaviour during the shuffling phase.
However, as this has been previously explained in [12, 28],
we restrict ourselves to briefly sketch the basic idea. Other
than for mixnets used for anonymous communications [12],
the shuffled messages, i.e., the output addresses, need not be
kept secret in case of an error. If the mixing fails, input peers
simply dispose of the potential contaminated, yet unused
output addresses Oi. They can then reveal the randomness
used to produce the layered encryptions JOiKK1:Km which
allows honest mixing peers to trace the malicious mix by
successively reconstructing the intermediate shufflings Sj .
Because mixing peers need to sign all their messages, they
can then be held accountable for their wrong doing. Note
that as a consequence input peers need to generate fresh out-
put addresses for the next mixing, which is accpeted good
practice even for correct protocol runs.

5. DISCUSSION OF SYSTEM PROPERTIES
In this section, we show that CoinParty fulfils the require-

ments presented in Section 3. We explain why CoinParty
achieves a random and correct mixing even in the presence
of malicious adversaries in Section 5.1. In Section 5.2 we
quantitatively evaluate the achieved anonymity. This is also
the basis for our discussion of deniability in Section 5.3. We
present a comprehensive performance evaluation of Coin-
Party in Section 5.4. Finally, Sections 5.5 and 5.6 briefly
discuss compatibility and cost-efficiency of CoinParty .

5.1 Mixing correctness
To prove the correctness of our protocol in the presence

of malicious adversaries, we now show that each protocol
phase, i.e., commitment, shuffling, and transaction, is either
completed correctly or an error is detected and funds are
restored to the input addresses of the participants.

5.1.1 Commitment phase
Malicious Input Peers. In the commitment phase, in-

put peers transfer the required mixing amount to the escrow
addresses Ti. The correctness of the commitment phase only
depends on the correctness of the transactions Ii

ν→ Oi,
which is ensured by the Bitcoin network itself and indepen-
dent of our system. Further, we note that input peers cannot

stall this protocol phase, since refusal to commit funds just
means that the mixing starts without the particular input
peer. An input peer could DoS our system by repeatedly
requesting escrow addresses, however this can be thwarted
using standard puzzle mechanisms. Thus, the commitment
phase is secure against any number of malicious input peers.

Malicious Mixing Peers. A malicious adversary that
controls a fraction of the mixing peers can try to corrupt the
ECDSA key generation and with it the generation of escrow
addresses Ti. However, to implement the key generation
we use the general SMC protocol from [14], which is secure
against a malicious adversary that corrupts less than m/3 of
the mixing peers. In other words, the protocol in Section 4.1
will generate a valid address Ti with the honest mixing peers
holding consistent shares of the corresponding private key
di, even if one third of the mixing peers are compromised
and behave arbitrarily, e.g., submit wrong inputs. Thus,
the commitment phase is secure against an m/3 malicious
adversary.

5.1.2 Shuffling phase
We show that the shuffling finishes and that its integrity

holds even in the presence of a malicious adversary. Un-
linkability and randomness of the shuffling are proved in
Section 5.2. We define integrity analogous to [10]: Either
exactly the given output addresses are contained in the fi-
nal shuffling, or the honest mixing peers are informed that
some input peer’s output address has been substituted. Note
that though our shuffling phase is inspired by [10,12,28], our
method of verifying the integrity of the shuffling is different
and thus requires a dedicated proof of correctness.

Malicious Input Peers. Input peers only broadcast a
layered encryption of their output address and secret-share
its hash value. Other than related work based on decryption
mixnets [10, 12, 28], the input peers are not involved in the
verification of the shuffling. Malicious input peers have no
incentive in announcing a wrong or broken address, since
this would only result in the loss of their own funds. How-
ever, malicious input peers can share out a wrong hash value
in order to mount a DoS attack against the verification step.
In this case, the protocol proceeds by transferring back the
funds to the input addresses, which is the same as one run
of the transaction phase and thus not further analyzed here.
While such malicious behaviour of input peers can be traced
back to the peer, e.g., by reconstructing the hashes from the
sharings [H(Oi)] on error, it cannot be prevented. We note
that related work [10, 12, 28] is also vulnerable to such DoS
attacks by single malicious input peers. However, unlike re-
lated work which involves the input peers in the verification
of the shuffling, our approach is robust against halting input
peers or random failures.

Malicious Mixing Peers. Any malicious mixing peer
Mj can substitute the outputs in the shuffling with her
own output addresses by encrypting them with the known
public keys of the remaining mixes and announcing S′j =
JO′1KKj+1:Km , ..., JO

′
mKKj+1:Km . However, this will be de-

tected in (S5) unless the attacker finds O′1, ..., O
′
m with C =∑m

i=1H(Oi) =
∑m
i=1H(O′i). For all but the last mixing

peer, this is clearly infeasible since Mj , j < m, needs to
announce the shuffling Sj before even learning C in (S4).

The last mixing peer Mm, however, removes the last layer
of encryptions and learns the output addresses in clear. Mm

can thus derive the checksum C before announcing the shuf-



fling Sm. To steal the mixed funds, Mm must thus find
suitable output addresses O′1, ..., O

′
n that sum up to the same

checksum C. Since the attacker can generate an arbitrary
amount of addresses, this corresponds to solving a high den-
sity Random Modular Subset Sum (RMSS) problem, which
is likely to have a solution. However, we show in Appendix
B that large problem instances as involved in CoinParty are
not practically solvable in reasonable time and thus the at-
tack is thwarted by limiting the time for Step (S3). We can
also prevent the attack on the protocol level by introducing
random nonces into the hashes, i.e., the input peers share
[H(Oi|ni)] in (S1). Since the nonces ni link in- and output
addresses, the nonces need to be encrypted as well. By shuf-
fling and decrypting them only after mixing peer Mm has
committed to the final shuffling Sm in (S3), Mm cannot pre-
dict the checksum C and mount the RMSS attack anymore.
Note that this comes at the cost of a complete shuffling.

The chances of the attacker to recover C do not increase,
even if he can compromise up to n − 1 of the input peers
and up to t mixing peers, where t + 1 is the reconstruction
threshold of the secret sharing scheme. Aside from sub-
stituting addresses, a malicious attacker can announce an
incorrect share of C in Step (S4) to let the verification fail.
As in the commitment phase, we can tolerate up to t < m/3
inconsistent shares of malicious mixing peers and still cor-
rectly reconstruct C. We conclude that the shuffling phase
is secure against an m/3 malicious adversary.

5.1.3 Transaction phase
The transaction phase does not involve input peers and

thus we focus on malicious mixing peers. Steps (T1), (T3),
(T4), and (T5) of the transaction phase involve only ad-
dition, multiplication, and reconstruction of shares. Thus,
as with the commitment phase, the security of theses steps
against a m/3 malicious adversary follows directly from the
security guarantees of Damg̊ard’s general SMC protocol [14].
Computing a wrong hash m′ 6= m in Step (T2) and using it
to construct S in Step (T4) results in inconsistent shares of
S. As long as no more than m/3 shares are inconsistent, the
inconsistent shares can be filtered out using techniques from
error detection codes. Since, our modifications shift all criti-
cal operations to the precomputation phase, the transaction
phase succeeds even if up to 2m/3 mixing peers fail or halt
the protocol, i.e., without announcing inconsistent shares,
because reconstruction requires only t+ 1 = b(m−1)/3c+ 1
consistent shares. Finally, a malicious peer could announce
an incorrect signature and thus an invalid transaction in
Step (T5), which will then be rejected by the Bitcoin net-
work. However, since the protocol finishes correctly under
the mentioned assumptions, the remaining honest mixing
peers will announce the correct transaction to the Bitcoin
network.

5.2 Anonymity
We first argue why CoinParty performs a random and

unlinkable shuffling and then analyse in detail which level of
anonymity is guaranteed by this shuffling.

5.2.1 Unlinkability and randomness
We note that unlinkability and randomness depend only

on the shuffling phase (Section 4.2). If there is an error in
this phase, the protocol enters the error and reversion phase
(Section 4.4) and funds are restored to the inputs while the

output addresses are considered burnt and are discarded.
Thus, errors during the shuffling phase have no impact on
unlinkability and we only need to consider correct runs of
this phase in our anonymity analysis.

The proof for unlinkability is then basically the same as for
Brickell and Shmatikov [10] and we only sketch it here. The
argument for unlinkability of in- and output addresses is that
by using an encryption scheme E which is IND-CCA2 and
length regular, the ciphertexts JOi=1...mKKj :Km are indistin-
guishable. Concretely, the attacker, given the public key Kj

of mix Mj , cannot decide which ciphertext JOi′=1...mKKj :Km

corresponds to the encryption of JOi=1...mKKj+1:Km . Thus,

the attacker cannot link ciphertexts in Sj and Sj+1, i.e.,
he cannot observe the permutation πj applied by Mj . Fur-
thermore, the decryption mixnet ensures participation of all
mixing peers in the shuffling, i.e., in particular that Mj can-
not be skipped. Hence, a single honest mixing peer can
ensure the unlinkability of the shuffling.

We now show that the shuffling is random. The permuta-
tions πj<m only ensure that the last mix Mm decrypts the
output addresses under an unknown shuffling, but do not
contribute towards the randomness of the shuffling since the
permutation πm applied by Mm is a lexicographic ordering
and thus fixed. The lexicographical ordering is verifiable by
all other peers, thus preventing any attempt of Mm to un-
dermine the randomness of the shuffling (cf. Appendix A).
The source of randomness is the final permutation π which
is obtained from a PRNG seeded with the checksum C, i.e.,
the sum over the hashes of all output addresses. Thus, if
at least one honest input peer chooses a random output ad-
dress, C is random within the range of the hash function and
hence π is a also random. We conclude that CoinParty per-
forms a random and unlinkable shuffling as long as at least
one input and one mixing peer honestly follow the protocol.

5.2.2 Anonymity Level
Based on observations of the blockchain an attacker can

try to guess the mapping between a mixing participant’s
input and output address. The set of addresses among which
the attacker has to guess is the anonymity set and its size
the achieved anonymity level. A larger anonymity set leads
to a smaller probability of a correct guess and hence more
anonymity. In the following, we analyze an input peer’s
anonymity against (i) outside attackers who only observe
the blockchain, (ii) other input peers, and (iii) the mixing
peers.

Outsiders. Our threshold transactions are indistinguish-
able from standard Bitcoin transactions. Thus, CoinParty ’s
mixing transactions can only be identified as such by (i) their
correlation in time and (ii) the reoccurring output value of
ν Bitcoins, i.e., the mixing amount. Generally, CoinParty
produces mixing transaction chains of length two: First, in-
put peer i commits at least ν funds to the escrow address
Ti during [t0, t1] in one transaction Ii

ν→ Ti. In the transac-
tion phase [t1, t2], ν Bitcoins from Ti are mixed to another
participant’s output address Oπ(i) in a second transaction

Ti
ν→ Oπ(i). Note that the mixing amount ν is known to

the input peers and we thus assume it is also known to the
attacker. The question is whether this transaction pattern is
unique enough to distinguish mixing from non-mixing trans-
actions in the blockchain.

To establish a lower bound for the anonymity level, we
first assume that an attacker is able to distinguish the n



(a) BTC 0.001 over 1 month (b) BTC 0.01 over 1 month (c) BTC 0.1 over 1 month (d) BTC 1.0 over 1 month

(e) BTC 0.001 over 1 year (f) BTC 0.01 over 1 year (g) BTC 0.1 over 1 year (h) BTC 1.0 over 1 year

Figure 2: Size of the anonymity set (minimum, average, and maximum) for different mixing windows w = 1, ..., 24 hours and
mixing values ν = 0.001, 0.01, 0.1, 1.0 BTC in June 2014 (top (a)-(d)) and from June 2013 to July 2014 (bottom (e)-(h)).

mixing transaction chains produced by CoinParty from all
other transactions in the blockchain during the time frame
[t0, t2] for commitment and transaction. The attacker how-
ever cannot distinguish between the n transactions belong-
ing to the same mixing operations. Thus, the anonymity
level against outsiders is at least n, or even k · n if there are
k contemptuous mixing operations with n participants each.

We now show that our approach of mixing in multiple
one-to-one transactions instead of using one single group
transaction significantly increases the anonymity set to sizes
similar to those realized by the early centralized mixing ser-
vices. We note that input peers can vary the transaction
amount in the commitment phase by transferring arbitrary
amounts ν′ ≥ ν to Ti (they just receive the leftovers ν′ − ν
after the mixing on a fresh change address). The commit-
ment Ii → Ti thereby becomes indistinguishable from all
other transactions in [t0, t1] with an amount ≥ ν. However,

we cannot hide the tell-tale ν transaction Ti
ν→ Oπ(i) dur-

ing the transaction phase [t1, t2] with the same trick, since
our current design of the shuffling phase limits us to mix
the same amount ν between all mixing participants. The
size of the anonymity set for the transactions Ti

ν→ Oπ(i) is
thus the number of other transactions with an output value
of ν BTC in the time frame [t1, t2]. We have analyzed the
transactions in the blockchain between June 2013 and July
2014 (long term) and in June 2014 (short term) in order
to determine how to sensibly choose ν to provide a high
anonymity level. We choose a long and short observation
period to show that results are consistent for the past and
present and are thus also good indication for the future. Al-
though some differences can be observed, 1, 0.1, 0.01, and
0.0001 BTC are notably popular output values in both time
spans. E.g., there are 120 318 transactions for 0.01 BTC in
June 2014. These values are promising choices for ν.

Even when using these popular values, releasing all mixing
transactions at the same time would render them easily dis-
tinguishable from non-mixing transactions by their strong
correlation in time. Thus, the length of the transaction
phase [t1, t2] over which transactions are released to the Bit-

coin network, referred to as mixing window, has to be chosen
reasonably in order to hide CoinParty ’s mixing transactions
among normal Bitcoin transactions. We again analyzed the
blockchain to quantify how much different mixing windows
increase the anonymity level. Figure 2 plots the minimum,
average, and maximum anonymity level for mixing windows
of 1 up to 24 hours for the four popular transaction values
1, 0.1, 0.01, and 0.001 BTC. We moved a sliding window of
the respective size, i.e. 1 to 24 hours, over the blockchain and
calculated minimum, maximum, and average over all win-
dow positions. We observe that increasing the mixing win-
dow greatly increases the achieved minimum, average, and
maximum anonymity levels. Already a mixing window of 3
hours provides for nearly all cases (except (e)) a minimum
additional anonymity level > 0 and an average additional
anonymity level of 100 to 500. Results for the long (past)
and short (present) observation period are consistent and
thus provide a good indication for choosing mixing windows
also in future. It is important to note that these anonymity
levels, denoted by N , are in addition to the anonymity level
of the mixing operation itself, i.e., the lower bound estab-
lished above. Thus, even in case (e) with a mixing window
of 3 hours where non-mixing transactions do not necessar-
ily offer additional anonymity, i.e., N = 0, the anonymity
level is still at least k · n, if k parallel mixings each with n
participants take place within this mixing window.

Input peers. If all input peers are honest, anonymity of
one input peer against the others is practically the same as
for protocol outsiders, since input peers do not know which
other input peers participate in the shuffling. We achieve
this by introducing dedicated mixing peers and modifying
the verification of the shuffling to not require involvement of
any input peer (Section 4.2), unlike related work [28].

The case is different, when an attacker compromises c of
the n input peers. He can then distinguish a mixing trans-
action from the other non-mixing transactions in the block-
chain, if one of the compromised input addresses is mapped
to an honest input peer’s output address or vice versa. This
allows the adversary to tie one transaction with probability



p = 1 − (1 − c/n)2 to the mixing. A plot of p versus c/n
is included in Appendix C, e.g., showing that the attacker
needs to compromise only c/n = 50% of the input peers to
identify 75% of the mixing’s transactions. We now assume
the attacker has thereby tied input address Ii to the mixing
and now tries to link it to the corresponding output address
Oi. It can be showed using basic probability theory that in
our approach the attacker then has a success probability of
p′ = p/(n− c) + (1− p)/(n− c+N ′) where N ′ := N/(1− p)
to guess the corresponding output address. In related work
this probability is 1/(n−c). Our scheme thus provides equal
anonymity for N ′ = 0 and is better for N ′ > 0. To give an
example, for n = 100 participants of which c/n = 10% are
compromised, the attacker guesses correctly with p = 0.011
for the related work and only p = 0.003 for our scheme with
N = 500 (e.g., for a mixing amount of 0.01 or 0.1 BTC and
a mixing window of at least 3 hours according to Figure 2).

Such sybil attacks seem endemic to Bitcoin mixes where
participation is free or very cheap (cf. Section 5.6): The
adversary can use the mixing service to generate untraceable
Bitcoin addresses which can then be used as input addresses
to attack anonymity in another mixing. An obvious solution
is to make such attacks expensive by charging mixing fees,
resulting in a trade-off with our cost efficiency requirement.

Mixing peers. The mixing peers inevitably learn which
input and output addresses are involved in the mixing opera-
tion, as they have to sign the corresponding transactions and
release them to the Bitcoin network. However, since mixing
peers do not learn which output belongs to which input ad-
dress as proved in Section 5.2.1, the anonymity level against
mixing peers is equal to the number of participants in the
mixing n which is as good as the related work [28, 31] and
significantly better than [9,20].

We conclude our analysis with the remark that our results
are consistent with the results from the field of anonymous
communications: Mixing inputs and outputs must occur
over a sufficiently long time span, the longer the time span
the higher the achieved level of anonymity. Here, our re-
sults provide concrete indication that time windows around
3 hours are reasonable and practical for Bitcoin mixing ser-
vices. More importantly, the results show that CoinParty
can provide levels of anonymity that are orders of magni-
tude higher than those achieved by related work [20,28,31],
even when a fraction of the input peers is compromised.

5.3 Deniability
A user can simply deny having participated in a mixing if

she can plausibly deny owning a Bitcoin address. However,
the recent works on identifying ownership of addresses and
even real identities of Bitcoins users render this option ques-
tionable. Indeed, these results are the main motivation for
the development of mixing services. Thus, instead we need
to analyze whether a user can plausibly deny that one of her
addresses was part of a mixing operation.

Outsiders. Deniability against outsiders is achieved by
the indistinguishability of mixing and normal transactions.
We argue that if there are at any point many more non-
mixing than mixing transactions in the Bitcoin network, a
user can plausibly deny having participated in a mixing. Our
analysis of the blockchain in the previous section shows that
there are indeed many non-mixing transactions of the same
form as those issued by CoinParty , if a mixing window of
sufficient size and popular mixing values are used.

Input peers. In our anonymity analysis, we have showed
that an adversary that corrupts c input peers can tie a frac-
tion of p = 1− (1− c/n)2 of the transactions to the mixing.
Thus, an honest input peer is not bound to the mixing with
probability 1−p = (1−c/n)2 and can deny her participation.
Again, we refer to Appendix C for a plot of c/n versus p.
Note that due to our modifications to the shuffling protocol
(cf. Section 4.2, Appendix A) it is ensured that the shuffling
is random. Thus a targeted attack on a specific input peer
only succeeds with probability p.

Mixing peers. Deniability against mixing peers is not
achieved because they learn which in- and output addresses
participated in the mixing during the shuffling phase. Achiev-
ing deniability against the mixes would require blindly sign-
ing transactions. The cryptographic primitives for blind sig-
natures exist but we consider this future work.

5.4 Performance Evaluation
In this section, we analyze whether CoinParty fulfils the

performance requirement as presented in Section 3. To this
end, we present a quantitative evaluation of our prototype
in a real world network setting. A qualitative analysis is pre-
sented in Appendix D due to space constraints. Input peers
in the CoinParty protocol only need to compute a small
constant amount of ECDSA signatures and encryptions of
their output addresses during the commitment phase. We
include a brief evaluation of their overhead in Appendix E
and concentrate our analysis here on the mixing peers which
shoulder most of the overhead. We also consider only suc-
cessful protocol runs, as the performance of the error and
reversion phase (excluding mechanisms for tracing malicious
peers) is the same as for a successful transaction phase run.

Quantitative Analysis. We have implemented a proto-
type of CoinParty in Python 2.7 based on the VIFF SMC
framework [30] which provides primitives secure against ma-
licious adversaries. We use the Elliptic Curve Integrated En-
cryption Scheme (ECIES) over the secp256k1 curve as en-
cryption scheme E in the shuffling phase. ECDSA is used for
signatures on protocol messages in the shuffling phase. VIFF
uses the asynchronous communication framework Twisted to
handle communication between peers while communication
in the shuffling phases is implemented using separate TCP
sockets between each pair of mixing peers. Functionality re-
lated to the Bitcoin protocol, e.g., generating addresses and
transactions, has been implemented using bitcointools [1].
All functionality related to elliptic curves cryptography is
based on pyelliptic [15].

We have carried out an extensive evaluation on Microsoft’s
Azure Cloud, varying the number of mixing and input peers.
Each mixing peer runs in a small (A1) instance with one
virtual core and 1.75 GB RAM running Ubuntu 12.04 LTS.
In all evaluation settings, virtual machines are distributed
over different geographical locations in Western and North-
ern Europe as well as Western and Eastern US. The pairwise
round trip times (RTTs) between mixing peers are 50 - 100
ms for Europe ↔ Europe and US ↔ US as well as 150 -
200 ms for Europe ↔ US. Bandwidth measurements range
from 5 to 15 MBit/s. Each evaluation setting is aggregated
over 10 runs. We repeated all experiments on a single ma-
chine (32 cores, 32 GB RAM, Ubuntu 12.04 LTS), running
each mixing peer as a separate process on one of the cores
and all communication between peers over the local loop-
back interface. The experiments in the local setting serve



(a) Performance in the cloud network setting. (b) Performance in the local network setting.

Figure 3: Performance in the cloud (left) and local network setting (right) for 50 to 300 input and 3 to 15 mixing peers.

to distinguish time spent for processing from time spent for
communication which is difficult to measure separately due
to the asynchronous communication model in VIFF.

Figure 3 shows the time for the complete protocol, i.e.,
including precomputations, for both the cloud (a) and the
local network setting (b). We show the performance for
m = 3, 5, 7, 9, 11, 13, 15 mixing peers, respectively, running
a mixing over n = 50, 100, 150, 200, 250, 300 inputs including
the standard deviation which was clearly below 1 s for all ex-
periments. The results show that the runtime scales approx.
linearly with the number of inputs to mix. Furthermore, the
runtime is higher and grows stronger in n if a larger number
of mixing peers m is chosen due to the increased number of
communication rounds. The comparison with the local set-
ting clearly shows that at least half of the overhead is due
to communication. In all settings, CoinParty finishes in less
than three minutes which clearly shows that CoinParty is
feasible in real world settings. The online runtime of Coin-
Party is even faster because approx. 70 % of the runtime in
both settings are spent on precomputations. In all settings,
the communication overhead ranges from a few hundreds of
KBs to a few MBs per mixing peer. Hence, we conclude that
CoinParty fulfils the stated performance goals.

5.5 Compatibility
CoinParty deviates from standard Bitcoin clients in two

ways: First, CoinParty implements a distributed generation
of Bitcoin addresses with shared private keys while in stan-
dard Bitcoin clients addresses are generated locally and the
client owns the complete private key. Apart from the correct
format, generating a valid Bitcoin address thus boils down
to generating a correct ECDSA key pair. We have recon-
structed the private keys and tested that the generated pri-
vate and public keys form correct ECDSA key pairs. Second,
CoinParty replaces the standard ECDSA signature with a
threshold ECDSA signature computed collaboratively by
the mixing peers. In order to form correct Bitcoin transac-
tions, the generated signatures need to be verifiable using the
public key corresponding to the escrow addresses Ti which
we have successfully tested. Thus, transactions created by
CoinParty are fully compatible with the Bitcoin protocol.

5.6 Cost efficiency
A Bitcoin mixing service can principally involve two kinds

of fees, (i) transaction fees which are paid for including the

issued mixing transactions in the blockchain and (2) mixing
fees demanded by the mixing services themselves.

Transaction fees. Unlike other decentralized Bitcoin
mixing protocols, CoinParty does not bundle mixing trans-
actions into one joint transaction with many inputs and out-
puts. Instead, CoinParty issues one transaction with one
input and a few outputs per mixing input, i.e., n separate
transactions. As of today, Bitcoin transactions smaller than
1 KB can be safely sent without fees [7]. Transactions in
CoinParty do not exceed this size and would not require
any transaction fees at all. If desired, transaction fees τ can
be paid nevertheless. Input peers then commit at least ν+τ
funds to Ti but only ν funds are transferred in the mixing
transaction Ti

ν→ Oπ(i).
Mixing fees. Anyone can set up a CoinParty mixing

peer and collaborate with others to provide mixing services.
Even the input peers themselves can function as mixing
peers. Thus, CoinParty does not require any third party
services that could charge mixing fees. On the other side,
as we note in Section 5.2, it might be reasonable to charge
fees to make sybil attacks expensive money-wise. Mixing
fees must be handled with care so that they do not identify
mixing transactions which would decrease anonymity and
chances of deniability. This effect and possible solutions
have been discussed in detail in [9].

6. RELATED WORK
In the following we analyze previously proposed approaches

to secure and anonymous Bitcoin mixing and highlight the
differences to CoinParty , as summarized in Table 1.

1st Generation Bitcoin mixes [5,6,8] operate centrally and
do not provide any guarantees that Bitcoins are actually
mixed or even returned. Furthermore, a centralized mix
can link input to output addresses and could be forced to
reveal this information, e.g., by subpoena. Most of the 1st

Generation mixes also demand significant mixing fees. How-
ever, mixing transactions cannot be distinguished from non-
mixing transactions, if the mixing service provides fresh ad-
dresses for each input. Thus, deniability is provided against
outsiders but not against the mix itself. Also, sybil at-
tacks can be mounted by malicious participants to decrease
anonymity as shown in Section 5.2.

Mixcoin [9] still depends on a centralized mixing service
but introduces a mechanism to hold a mix accountable if
funds are not returned. However, anonymity against the



Approach Security Anonymity Level Deniability Mixing Delay Fees Comp.

1st Generation [5, 8] None 0 >> n >> n Yes 1 window Mix fees Yes
Mixcoin [9] Accountability 0 >> n >> n Yes 1 TX + 1 window Mix fees Yes
CoinJoin [20] Group TX 0 n− c n No 1 TX TX fees Yes
CoinShuffle [28] Group TX n n− c n No 1 TX TX fees Yes
SMC [27, 31] Group TX n n− c n No 1 TX TX fees Yes
ZeroCash [3, 23] ZKPs ∞ ∞ ∞ Yes - - No
CoinParty 2/3 honest n > n−c n+N (1− c/n)2 2 TX + 1 window None Yes

Table 1: Comparison of our CoinParty system to the related works by the most important design requirements. The denoted
anonymity level denotes the anonymity an input achieves against (1) the mixing peers (2) c of n malicious input peers, and
(3) outsiders, where N depends on the mixing windows as analyzed in Section 5.2.

mix is not provided and the authors propose as a fix to chain
multiple mixes. While this potentially achieves anonymity
levels similar to CoinParty , chaining mixes incurs signifi-
cant mixing fees and increases the risk of theft as well as the
mixing delay. Transactions issued by Mixcoin are indistin-
guishable from those created by 1st generation Bitcoin mixes
and thus Mixcoin provides the same means for deniability.

CoinJoin [20] was first to achieve security against stealing
mixes by using group transactions. Still, CoinJoin depends
on a central service to shuffle the output addresses and thus
provides no anonymity against insiders. Furthermore, the
use of group transactions limits the anonymity level to the
number of participants n, prevents plausible deniability and
requires transaction fees for larger mixing groups.

CoinShuffle [28], like CoinJoin, uses group transactions to
ensure correctness and thus shares the corresponding disad-
vantages, i.e., limited anonymity levels, no deniability, and
potential transaction fees. CoinShuffle improves over Coin-
Join by using decryption mixnets for address shuffling which
achieves anonymity against insiders. However, in CoinShuf-
fle the last peer is in the unique position to determine the
outcome of the shuffling and might exploit this to select pre-
ferred input addresses to her own outputs addresses. Our
proposed shuffling protocol fixes this issue.

The applicability of SMC to Bitcoin mixing was first rec-
ognized by member hashcoin of the bitcointalk forum [16]
who brought up the crude idea to use SMC for shuffling
output addresses. Later, Rosenfeld [27] and Yang [31] elab-
orated on this idea in blog posts. However, the presented
schemes do not scale with the number of inputs and have not
been thoroughly specified. Furthermore, all of the proposed
schemes rely on group transactions with the mentioned dis-
advantages w.r.t. anonymity, deniability, and costs.

Finally, ZeroCoin [23] and later ZeroCash [3] have been
proposed which basically replace Bitcoin’s public transac-
tion history by Zero-Knowledge Proofs (ZKPs) to ensure
validity of transactions. A payment in ZeroCash is fully un-
linkable since it reveals neither the origin or destination nor
the amount of the transaction. However, those approaches
are extensions to Bitcoin that cannot be deployed without
significant modifications to the Bitcoin system.

Compared to related work, CoinParty introduces several
improvements. First and most important, CoinParty lever-
ages threshold ECDSA signatures for Bitcoin mixing, in-
stead of depending on group transactions. This allows the
mixing to take place in one-to-one transactions which in-
creases the achievable anonymity level by orders of magni-
tude as analyzed in Section 5.2 and additionally provides
plausible deniability against outsiders (Section 5.3). Sec-
ond, due to the improved shuffling verification scheme the

increased anonymity level and deniability are, with some
restrictions, also guaranteed against malicious input peers,
other than in CoinShuffle where input peers actively partic-
ipate in the protocol. Finally, using several small transac-
tions as opposed to one large group transaction requires no
transaction fees at all. The mixing delay is slightly larger
than for CoinJoin, CoinShuffle, and the approaches by Yang
and Rosenfeld which require only one transaction. Espe-
cially, waiting the desired mixing window [t1, t2], as analyzed
in Section 5.2, increases the mixing delay. However, we be-
lieve this can and must be tolerated if strong anonymity
is desired. Compared to MixCoin which provides a similar
anonymity level when chaining multiple mixes, CoinParty ’s
mixing is by orders of magnitude faster and fully secure.

7. CONCLUSION
Different works successfully attacked anonymity of Bit-

coin addresses by analyzing transactions in the blockchain
[2,22,25,26,29]. Those works make evident the necessity of
mixing services and several such systems have been recently
proposed [9,20,28]. However, a detailed analysis reveals dis-
advantages with each of those systems (Sections 3 and 6).

In this paper, we have thus presented CoinParty , a novel
mixing service for Bitcoins that improves significantly over
the related work by combining the advantages of central-
ized and decentralized mixes in a single system. CoinParty
achieves this by employing two existing building blocks, i.e.,
threshold ECDSA [17] and decryption mixnets [12, 28]. We
introduce several modifications that improve on robustness,
anonymity, and deniability that are relevant also beyond the
scope of our work. Importantly, we show by analyzing the
actual Bitcoin blockchain how our single transaction pat-
tern provides anonymity by orders of magnitude higher than
what is achieved by the group transaction pattern that the
majority of related work depends on. An extensive evalua-
tion of our implemented prototype demonstrates that Coin-
Party scales better than related work, e.g., [28], due to the
possible separation of input and mixing peers. The thresh-
old ECDSA scheme implemented as part of the prototype
is efficient and secure against malicious adversaries and can
be used beyond our work, e.g., for securing Bitcoin wallets.
Finally, although we focused on Bitcoin, our work is directly
compatible with other crypto-currencies which use the same
ECDSA primitive, e.g., Litecoin and Mastercoin.
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APPENDIX
A. RANDOMNESS OF SHUFFLING

The randomness of the performed shuffling (Section 4.2)
is an important property. If an attacker can control the
outcome of the shuffling, he can (i) select which output ad-
dress receives funds from which input address and (ii) break
deniability for specific users in a targeted fashion (Section
5.3). As we show, the closely related CoinShuffle [28] does
not achieve a random shuffling. After the first m − 1 shuf-
fling steps in CoinShuffle, the mixing peer Mm receives from
Mm−1 the shuffling Sm−1, with only one layer of encryption
left, i.e., EKm . Note that a malicious Mm can first lift EKm

and then, with knowledge of the output addresses, apply
a final permutation πm. By choosing πm accordingly, Mm

can thus completely determine the outcome of the shuffling.
This cannot even be detected by the other mixing peers.

CoinParty fixes this issue by requiringMm to apply a pub-
licly verifiable permutation, i.e., a lexicographic sorting. The
randomness of the final shuffling π then depends only on the
sum of the hashed output addresses, i.e., C =

∑n
i=1H(Oi).

To control π, an attacker needs to choose all output ad-
dresses O1, ..., Om which is clearly neither a realistic nor
rational attack scenario (as this would also mean that the
attacker controls all input addresses).

B. OUTPUT ADDRESSES SUBSTITUTION
We show how a malicious adversary can steal funds dur-

ing the shuffling phase (Section 4.2), if he can solve an in-
stance of the Random Modular Subset Sum problem. The
last mixing peer Mm can substitute the original output ad-
dresses O1, ..., On with his own O′1, ..., O

′
n without being de-

tected iff C =
∑n
i=1H(Oi) =

∑n
i=1H(O′i). Finding such

a sequence O′1, ..., O
′
n requires solving a Random Modular

Subset Sum (RMSS) problem, with modulus M = 2len(H),
random elements {a1, ..., aN} ∈U [0,M) and target sum C.
δ = N/log(M) is called the density of the problem and high
density RMSS instances are very likely to have a solution.
The attacker can generate such a high density instance of
the problem by pre-generating a large number of addresses
O′i and corresponding hashes ai = H(O′i) ∈ [0,M). The
best known algorithm for solving such instances has run-
time MO(1/log(N)) [19]. Clearly, the runtime decreases if N
grows, i.e., if we generate a larger pool of hashes to select
the n addresses O′i from. Contrarily, as M , the length of the
hash function, grows, the runtime increases.

We make a practical estimate, which sizes of the RMSS
problem are solvable in reasonable time. As a concrete ex-
ample, we assume our checksum C is computed from 512-
bit hashes, i.e. M = 2256. Then, generating 1012 hashes
amounts to roughly 58 TB of storage and we assume it is
not feasible to generate more than N ≤ 1012 such hashes.
Thus, setting N = 1012 gives a lower bound on the runtime.
Assuming there is a solution at all, it can then be found in

(2512)1/log(10
12) = 2512/12 = 252 operations, which is already

quite challenging to solve practically. Using 1536-bit hashes,
i.e. M = 21536, we get a runtime of 2128 operations which
is comparable to the complexity of breaking keys for long
term security for AES. Note that using 1536-bit or even
longer hashes for the checksum computation does not sig-
nificantly increase the overhead of the protocol. Thus we
conclude that the RMSS attack can be thwarted by putting
a time-bound on the Step (5) of the shuffling phase 4.2.



Figure 4: Fraction of identified mixing transactions vs frac-
tion of compromised input peers.

C. SYBIL ATTACKS
An attacker that controls c of the n input peers can tie a

fraction 1 − (1 − c/n)2 of the n mixing transactions to the
mixing. Figure 4 plots the fraction of identified transactions
versus the fraction c/n of compromised input peers. The
plot, e.g., shows that an attacker can already tie 75 % of
the transactions to the mixing, if he can compromise 50 %
of the participants. Because CoinParty ensures randomness
of the shuffling (Appendix A), the attacker cannot choose
which transactions to tie to the mixing.

D. QUALITATIVE OVERHEAD PER
MIXING PEER

In addition to our quantitative performance evaluation (cf.
Section 5.4), Table 2 qualitatively summarizes the overhead
of CoinParty for the three protocol phases, i.e., commit-
ment, shuffling, and transaction. Communication rounds
contain only the sequential synchronization points between
mixing peers, i.e., message exchanges that cannot be batched
and processed in parallel. We divide our discussion into
precomputation efforts and online overhead. Notably, pre-
computations allow us to speed up the mixing process by
utilizing otherwise idle resources before the actual mixing.

Precomputing the escrow addresses Ti requires n pseudo-
random secret sharings (PRSS) in order to draw the shares
[di] of the secret key di. Then, n scalar-point multiplica-
tions over the elliptic curve (EC-Mul) are required to ob-
tain [Qi] = [diG]. Finally, we obtain the public key Qi
corresponding to Ti in n reconstructions (S-Open) in one
round. For the shuffling phase, it is not possible to ben-
efit from precomputations. For the transaction phase, we
precompute for each Ti, [ki], [k−1

i ], [k−1
i ] ∗ [di] · R and kG

as explained in Section 4.3. This first requires n PRSS for
drawing the [ki]. Computing the inverses [k−1

i ], i = 1...n,
costs n PRSS, n multiplications on shares (S-Mul) batched
into one round, and n S-Open batched into one round. De-
riving [k−1

i ]∗ [di] ·R, i = 1...n, requires n S-Mul in one round
and n EC-Mul. Finally, precomputing kiG, i = 1..n, can be
done in another n EC-Mul and n S-Open in one round.

Because of the extensive precomputations, the online phase
of CoinParty is considerably cheaper. The commitment in-
curs no significant overhead, because the mixing peers only
need to check that all input peers transferred their funds to
the respective addresses Ti. In the shuffling phase, the pro-
cessing overhead per mixing peer consists of one signature
verification (Ver) for the received shuffling, n decryption
operations (Dec) as well as one signature operation (Sig) to

Phase Processing per Mixing Peer Rounds

Precomputation

Commit n PRSS + n EC-Mul + n S-Open 1
Shuffle - -
Transaction 2n PRSS + 2n S-Mul 4

+ n EC-Mul + 2n S-Open

Online

Commit - -
Shuffle 1 S-Open + n Dec + 1 Sig + 1 Ver m + 1
Transaction n S-Open 1

Table 2: Qualitative overhead per mixing peer.

Figure 5: Overhead on one input peer in CoinParty .

create the next shuffling and finally one share reconstruc-
tion for the checksum C. However, the predominant over-
head results from the necessary communication, because the
shuffling requires m consecutive rounds of decryption and
permutation plus one subsequent round for reconstructing
C. Finally, the online overhead of the transaction phase is
comparably small with just n reconstructions batched into
one round to obtain the signature part S from the shares
e[k−1] + [k−1] ∗ [d] ·R.

E. OVERHEAD PER INPUT PEER
Additionally to our performance evaluation of the mixing

peers (Section 5.4), we also consider the performance im-
pact on the input peers in this section. The overhead for
one input peer i to participate in one mixing operation con-
sists of three steps. First, input peer i must compute the
layered encryption of her output address JOiKK1:Km . This
requires m ECIES encryptions, one for each of the m mix-
ing peers. Second, the input peer must compute and share
the hash of her output address to all mixing peers, i.e., dis-
tribute the sharing [H(Oi)]. Third, the input peer must
transfer ν Bitcoins to Ti. Peer i can collect the required
funds from multiple input addresses, i.e., creating a trans-
action {I1i , ..., Ini }

ν→ Ti. For each input address Iji , input
peer i needs to compute one ECDSA signature. Figure 5
shows the resulting processing overhead for a variable num-
ber of n = 5 to 100 input addresses and m = 15 mixing
peers. This does not include the communication overhead
for distributing JOiKK1:Km and [H(Oi)] to the mixing peers,
since this can take place any time during the commitment
phase [t0, t1]. The plain processing overhead is consider-
ably small even when collecting funds from n = 100 input
addresses. Communication will add another 50 − 200 ms,
depending on the latency between the input peer and the
mixing peers. With a total overhead well below 1 second,
the overhead per input peer is small enough to not influence
the applicability of CoinParty .


