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Abstract. Secure Two-Party Computation (STC) allows two mutually
untrusting parties to securely evaluate a function on their private inputs.
While tremendous progress has been made towards reducing processing
overheads, STC still incurs significant communication overhead that is in
fact prohibitive when no high-speed network connection is available, e.g.,
when applications are run over a cellular network. In this paper, we con-
sider the fundamental problem of securely computing a minimum and its
argument, which is a basic building block in a wide range of applications
that have been proposed as STCs, e.g., Nearest Neighbor Search, Auc-
tions, and Biometric Matchings. We first comprehensively analyze and
compare the communication overhead of implementations of the three
major STC concepts, i.e., Yao’s Garbled Circuits, the Goldreich-Micali-
Wigderson protocol, and Homomorphic Encryption. We then propose
an algorithm for securely computing minima in the semi-honest model
that, compared to current state-of-the-art, reduces communication over-
heads by 18% to 98%. Lower communication overheads result in faster
runtimes in constrained networks and lower direct costs for users.

1 Introduction

The increasing collection of sensitive user data provided by mobile devices at
cloud services, e.g., in genetic testing [9], gives rise to significant privacy con-
cerns. However, performing all necessary computations exclusively on the mobile
device, to preserve the user’s privacy, is infeasible as this could disclose business
secrets of the service provider. In this scenario, Secure Two-Party Computation
(STC) presents a generic solution to reconcile these conflicting privacy interests.

The performance of STC has been thoroughly investigated in a static set-
ting with a high-speed LAN connection. In this setting, processing overheads
are the main performance bottleneck and tremendous improvements, both prac-
tical and theoretical, have been made in this regard, mainly focussing on Yao’s
Garbled Circuits approach [35]. STC in more constrained environments, e.g.,
between mobile devices that interact spontaneously, has only recently received
interest [4, 5, 7, 9, 10, 18]. Still, these works assume a network with low latency
and high throughput [5,7,10,18], prior interaction for pre-computations [5,9,18],



additional hardware or third parties [5, 10], or consider only specialized appli-
cations [4, 7]. In contrast, we strive to enable STCs in a purely ad-hoc manner
between mobile devices and/or a cloud service over constrained, e.g., cellular,
networks. In this setting, we argue for bandwidth consumption as a primary
optimization goal. First, high-bandwidth STCs may quickly deplete users’ data
volume, inducing capped bandwidths or significant costs for subsequent commu-
nication. Second, less available bandwidth incurs significant transmission over-
heads which then constitute the main performance bottleneck. We show that this
bottleneck eventually dominates the processing time, as also noted in [4, 7, 37].

In this work, we hence set out to analyze the bandwidth usage of the three
major STC concepts Yao’s Garbled Circuits (GCs) [35], the Goldreich-Micali-
Wigderson (GMW) Protocol [16], and Homomorphic Encryption (HE). We focus
on the fundamental STC problem of computing a minimum and its argument,
since this problem i) has widely been considered in all three STC concepts and ii)
is central to many STC applications, e.g., Nearest Neighbor search [30], Auctions
[22], and Biometric Matching [17]. Our contributions are the following:

Thorough Analysis. We exactly quantify the communication complexity
for state-of-the-art constructions and implementations of the (arg)min problem
in GC, GMW, and HE. In constrained environments, we argue that the induced
communication overheads quickly render mobile STCs infeasible.

Bandwidth-optimized (arg)min. We propose an HE-based, bandwidth-
optimized (arg)min algorithm that reduces the communication overhead by 18%
to 98% compared to state-of-the-art approaches. In constrained networks with
bandwidths ranging from ≤1MBit/s (e.g., Bluetooth, 3G) to ≤12-50MBit/s
(e.g., LTE), this translates to lower costs for end-users and even affords faster
runtimes than bandwidth-heavy algorithms. We demonstrate the feasibility and
performance of our protocol along a prototype implementation.

We discuss background on STC concepts and related work in §2. In §3, we an-
alyze the communication complexity of previous (arg)min protocols. We present
our improved protocol in §4 and its evaluation in §5. §6 concludes this paper.
Note that all results also directly apply to the symmetric (arg)max problem.

2 Background

STC allows two mutually distrusting parties, i.e., a client C with private input x
and a server S with private input y, to compute a known functionality F(x, y)
without anyone learning the private inputs. Three predominant concepts for
STC exist, partly building on Oblivious Transfer: Yao’s Garbled Circuits, the
Goldreich-Micali-Wigderson protocol, and Homomorphic Encryption.

Oblivious Transfer (OT). In the most general form of Oblivious Transfer,
i.e., 1-out-of-n-OTml , S holds m distinct n tuples of l-bit strings and C chooses
exactly one string from each n tuple, while S learns nothing about C’s choices.
Formally, S holds (s11, ..., s1n), ..., (sm1, ..., smn) with sij ∈ {0, 1}l and C holds
m choices r1, ..., rm ∈ {1...n} and obtains the strings siri,1≤i≤m while S has
no output. 1-out-of-n-OTml can be efficiently instantiated by first reducing it to



m log2(n) invocations of 1-out-of-2-OT [27, 28] and then reducing the resulting
large number of long l bit OTs to a small number of short t bit Base OTs,
i.e., 1-out-of-2-OTtt [1, 20] (OT Extension). The communication overhead for 1-
out-of-n-OTml then amounts to mnl + 3m log(n)t bit, with symmetric security
parameter t (e.g., AES key length). Base OTs can be implemented at the costs of
an additional 2t2+tT bit, where T is the asymmetric security level (e.g., bitlength
of an RSA modulus) [27, 28]. The overhead for base OTs is often neglected in
related work as it amortizes over a large number of OT Extensions. To further
increase the communication efficiency of OT, custom OT variants exist. For GCs,
e.g., general 1-out-2-OT can be replaced by correlated 1-out-of-2-OT [11], where
S’s inputs are correlated, reducing communication overhead to m(t+ l) bit per
OT [1]. Similarly, in GMW, random 1-out-2-OT [11] obtains inputs randomly
from a correlation-robust one-way function, reducing communication overhead
to mt bits per OT [1].

Garbled Circuits (GC). Yao’s Garbled Circuits [35] require to repre-
sent (automatically with special compilers) the desired functionality F(·) as a
Boolean circuit. After compiling the Boolean circuit, S garbles the circuit by
encrypting and permuting the truth table entries for each circuit gate. Then S
sends the garbled circuit F̃(·) and its own garbled inputs ỹ to C. C obtains its
own garbled inputs x̃ via correlated OT from S, with parameter m = |x|, the
total bitlength of C’s input. Finally, C evaluates F̃(x̃, ỹ) by decrypting the gar-
bled circuit gate by gate to obtain the result. The communication overhead of
GCs is almost completely due to the transmission of the garbled circuit and of
the garbled inputs (via OT). It is thus critical to construct size-efficient circuits
and to minimize inputs. The size of a circuit is usually measured in the number
of Non-XOR gates, since XOR gates cause virtually no overheads due to the
“free-XOR” optimization [24].

Goldreich-Micali-Wigderson (GMW). The GMW protocol [16], simi-
larly to Yao’s protocol, securely evaluates Boolean circuits. However, instead of
garbling the circuit, it is evaluated jointly by C and S using an XOR-based 2-
out-of-2 secret sharing scheme, i.e., Boolean sharings. The GMW protocol allows
local evaluation of XOR gates while AND gates require interaction between C
and S, i.e., an exchange of 2 bit and one random OT per gate. Thus, while Yao’s
protocol has constant round complexity, the round complexity of GMW corre-
sponds to the multiplicative depth of the circuit, i.e., the maximum number of
AND gates on any path through the boolean circuit. Besides reducing the size
of circuits to reduce the communication overhead, depth-efficient circuits are
crucial to minimize communication rounds.

Homomorphic Encryption (HE). HE-based STC protocols allow to com-
pute specific arithmetic operations under encryption, e.g., the Paillier cryptosys-
tem [29] allows addition. Because Fully Homomorphic Encryption schemes cur-
rently still cause prohibitive overheads, multiplication for Paillier or addition for
ElGamal is more efficiently realized using interactive protocols where C helps S
to perform the respective operation. Using secure addition and multiplication, C
and S can evaluate a representation of F as an arithmetic circuit. Then, S eval-



uates F on C’s encrypted input [x] and its own input y (square brackets denote
encryption throughout this paper, i.e., [x] is an encryption of x). S performs
some operations locally, e.g., addition and scalar multiplication, while other op-
erations, e.g., multiplication or comparison on ciphertexts, require interaction
with C. The overhead of HE-based STC is then due to interaction and public
key operations.

2.1 Related Work

Different general purpose frameworks have been proposed, e.g., a port of the
FastGC framework [19] in [18] and a port of the Fairplay framework [26] in
[7], as well as protocols for specialized functionalities [4, 9]. While addressing
mobile devices, these mostly assume a high-bandwidth network connection and
consider processing and memory requirements as the main optimization goals:
[25, 33] reduce the memory overhead of GC-based STC by more efficient circuit
representations. To reduce processing overheads, [3,36] propose efficient garbling
schemes, [5, 6] outsource GC from mobile devices to the cloud, and [10] use a
hardware security token. In this, communication overhead as an optimization
goal has received only passive or analytical attention. Notably, [4,6] only briefly
argue that bandwidth efficiency is critical to minimize direct costs for users,
energy consumption, and overall protocol runtime. Similar, [7, 37] observe that
communication overhead can dominate the runtime of mobile STC but do not
propose direct improvements. In this paper, we act on these observations by
considering bandwidth consumption as the primary optimization goal.

3 Analysis of Efficient Secure Argmin Protocols

In this section, we analyze the problem of securely computing the minimum and
its argument. We first introduce our problem definitions, security model, and
parameters before we proceed to analyze the most efficient (arg)min protocols
based on GCs §3.1, GMW §3.2, and HE §3.3.

Problem definition. Given a set of n arguments X = (x0, ..., xn−1) and n
corresponding function values Y = (y0 = f(x0), ..., yn−1 = f(xn−1)), the task
is to find x∗, resp., f(x∗) s.t. f(x∗) ≤ f(xi) ∀1 ≤ i ≤ n. We refer to x∗ as
argmin and to y∗ = f(x∗) as min. We assume that the inputs X and Y are
already available in garbled (GC), secret-shared (GMW), or encrypted (HE)
form and the output should be protected accordingly. This represents the usual
case where the (arg)min algorithm is used as a building block within another
secure computation, e.g., a nearest neighbor search which requires to derive
certain distances before finding their argmin [17,30]. In Appendix A, we briefly
discuss a second version where C and S each hold half of the inputs and the
(arg)min should be obtained in clear and only by C.

Adversary model.We assume a semi-honest and computationally bounded
adversary. A semi-honest adversary, other than the stronger malicious one, does
not deviate from the protocol but may try to learn (private) information from



Protocol Communication Overhead Rounds

* Kolesnikov’09 [22] (GC) 2l(n− 1)2t + (n + 1)2t O(1)

Huang’11 [17] (GC) 2l(n− 1)2t + nlt + (n− 1)2t O(1)

Demmler’15 [11] (GC) 3l(n− 1)2t O(1)

* Schneider’13 [31] (GMW) (n− 1)(4l− dlog2(l)e − 2 + dlog2(n)e)(2t + 2) O(log2(n) log2(l))

Demmler’15 [11] (GMW) (n− 1)(5l− dlog2(l)e − 2)(2t + 2) O(log2(n) log2(l))

Erkin’09 [12] (HE) (n− 1)(2l + 8 + 10/C)T O(log2(n))

BOMA (HE+OT) (n− 1)(4 + 6/C)T + 2nT/C + n(l + σ) + 3 log2(n)t O(log2(n))

Table 1: Communication complexity [bit] and rounds for the argmin problem in
related work and in our improved protocol.

the protocol transcript. The semi-honest model, though more restrictive than the
malicious, is widely used as it enables efficient secure computations and often
serves as a stepping stone towards security against malicious adversaries.

Parameter definitions. We denote the symmetric security level by t and
the asymmetric one by T and set t = {80, 112, 128}, T = {1024, 2048, 3072} for
legacy security until 2010, medium security until 2030, and long-term security
beyond 2030, according to the NIST recommendations [2]. We set the statistical
security parameter σ to 40 bit as, e.g., proposed in [11, 14, 17]. Finally, we vary
the bitlength of the inputs l ∈ {32, 64, 128} which represents a subset of frequent
choices in the related literature [6, 10–12].

Overview. In the following, we analyze the most efficient (arg)min proto-
cols for each of the three major STC concepts. The respective communication
and round complexity is summarized in Table 1. Approaches marked with an
asterisk restrict the argmin to {0, ..., n− 1}. This restriction allows for efficiency
improvements but does not fully meet our problem definition, as it would require
further computation to realize the full range of applications. E.g., in biometric
access control applications, the argmin is not only the index of a user but her full
profile including access rights [17]. Nevertheless, we include them in our analysis
since they indicate lower bounds. The last row in Table 1 shows the complexity
for our improved protocol which we present and analyze in §4.

3.1 Garbled Circuits (GC)

The communication complexity of GC-based (arg)min protocols is dominated by
i) the overhead for the input transfers (via OT), ii) the size of the garbled circuit,
and iii) the chosen garbling scheme. We neglect all other minor communication
overheads, e.g., for the establishment of a network connection. The overheads i)
for transferring inputs only occur in the second version of our problem definition
(cf. Appendix A). To quantify the overheads for ii), we analyze the most efficient
circuit constructions and their respective sizes below. Regarding iii), we use
the recent “Half Gates” garbling scheme [36] which allows to garble Non-XOR
gates using only two wire keys, i.e., 2t bits. As proven in [36], “Half Gates” is
currently optimal, i.e., its communication overhead of two keys per Non-XOR



gate constitutes a lower bound. The combination of the most efficient circuit
construction with an optimal garbling scheme then yields state-of-the-art lower
bounds on the communication complexity for GC-based (arg)min protocols.

Kolesnikov et al. present the most widely used (arg)min circuit construction
in [22]. They select the min in a pairwise tournament tree fashion and construct
the argmin while traversing down the tree. The circuit has a size of 2l(M − 1)
gates for finding the min and n + 1 gates for constructing the argmin [22],
resulting in a communication overhead of (2l(n − 1) + (n + 1))2t bit. Notably,
this construction limits the argmin to {0, ..., n− 1}.

Huang et al. [17] propose a different construction to overcome the limitation
of the argmin value space, building on the observation that encoding complex
data structures directly into the circuit is expensive. Hence, while using the
same circuit of size 2l(n− 1) for finding the min as [24], they replace the argmin
functionality with a custom backtracking protocol. This protocol exchanges a
fully encrypted backtracking tree from which exactly one path can be decrypted
using the wire keys obtained during the evaluating of the garbled min circuit. In
[17] C is allowed to recover the argmin in clear. However, to use their construction
as a building block within another secure computation, the argmin must be
garbled. This results in an overhead of nlt for encrypting n l-bit argmin values
in the tree’s leaves and (n − 1)2t bit for the two wire keys in each of the n − 1
inner nodes of the backtracking tree.

Finally, Demmler et al. present the ABY framework for STCs [11] which
implements the min circuit proposed in [22] with 2l(n − 1) gates but does not
supply the argmin. We trivially extend their implementation by adding l MUX
gates per comparison which, analogous to the min, propagates the l bit argmin
to obtain a second construction that fulfills our general problem definition (§3). A
single 1 bit MUX gate can be realized using one Non-XOR gate, hence transmitting
the complete circuit requires 3l(n− 1)2t bit of communication.

3.2 Goldreich-Micali-Wigderson (GMW)

Schneider et al. present depth-optimized circuit constructions for GMW [31].
Their (arg)min circuit is based on the construction by Kolesnikov et al. [22] but
replaces the size-optimized l-bit comparators with depth-optimized comparators
that consists of about two times more gates but allows a logarithmic instead of
linear depth in l. The circuit has (n−1)(4l−dlog2(l)e−2+dlog2(n)e) gates and a
depth of O(log2(n) log2(l)) [31]. To evaluate a single gate, C and S exchange 2 bit
and engage in one random OT at the costs of 2t bit communication overhead
(§2, [11]). Since this construction directly bases on Kolesnikov’s [22], it has the
same limitations regarding the argmin value space.

The ABY framework presented by Demmler et al. [11] also implements GMW
together with the depth-optimized minimum circuit presented in [31] but without
the argmin logic. Again, we extend the implementation using MUX gates to relay
the argmin along with the computation of the min. In contrast to Schneider’s
proposed circuit, this construction fulfills our problem definition. The circuit has
(n− 1)(5l − dlog2(l)e − 2) gates and a depth of O(log2(n) log2(l)).



3.3 Homomorphic Encryption (HE)

Most HE-based (arg)min constructions are based on the well-known DGK com-
parison protocol [8], which allows to compare two Paillier-encrypted integers [a]
and [b] and obtain the result as an encrypted bit [a ≤ b]. It has been used in a va-
riety of applications, e.g., face recognition [12], recommender systems [14], bioin-
formatics [15], and clustering [13]. The most efficient construction that fulfills our
problem definition has been proposed by Erkin et al. [12]. The authors arrange
comparisons of values in a pairwise tournament fashion and propagate the min
and argmin by multiplying with the encrypted comparison bit, i.e., [min(a, b)] =
[a ≤ b] ∗ [a − b] + [b] and [argmin(a, b)] = [a ≤ b] ∗ [ida − idb] + [idb]. Each
DGK comparison needs to exchange 2l DGK ciphertexts and 3 Paillier cipher-
texts. To propagate the min and argmin through one comparison, two ciphertext
multiplications are required, causing transmission overheads of 6 Paillier cipher-
texts [23]. This amounts to a communication complexity of (n−1)(2l+ 8 + 10)T
bit. While Erkin et al. [12] do not use ciphertext packing in their original work,
applying packing to the Paillier ciphertexts exchanged from the server to the
client reduces the communication complexity to (n − 1)(2l + 8 + 10/C)T bit.
Here, C = bT/(l+σ+ 2))c is the compression rate achieved by packing multiple
ciphertexts into one, as detailed in [14].

4 Bandwidth-optimized Min and Argmin

To address the significant problems arising from high communication overheads
in mobile STC, we propose BOMA, a bandwidth-optimized protocol for the se-
cure (arg)min computation on homomorphically encrypted inputs. We emphasize
that by using efficient conversions between encrypted, shared, and garbled val-
ues [11], BOMA can also be used as a building block to improve (mobile) STC
frameworks, e.g., [11,19]. Following, we first present an efficient comparison pro-
tocol and based on this propose an efficient (arg)min protocol.

Efficient secure comparison: As an important building block, we use Ker-
schbaum’s multi-party comparison protocol [21]. The core idea is to compute the
encrypted distance [d] = [a − b] between two encrypted inputs [a] and [b] and
let all participants multiplicatively blind [d] while preserving its sign before de-
crypting it and deciding the comparison. We adapt this multi-party protocol
to the two-party setting as follows: S selects two large random numbers r1 and
r2 ∈ {0, 1}l+σ with r1 > r2 and computes [d̃] = [r1 ·(a−b)−r2] under encryption.
Note that the multiplicative blinding preserves the sign, i.e., d̃ ≤ 0 ⇔ a ≤ b. S
then sends the blinded encrypted distance [d̃] to C who decrypts it and sends back
the encrypted comparison bit [a ≤ b] to S. To prevent C from learning the real
outcome of the comparison, S chooses at random to compare a ≤ b or b ≤ a and
flips the received comparison bit [a ≤ b] accordingly by computing [1− (a ≤ b)]
under encryption. Our two-party version of Kerschbaum’s comparison exchanges
only 2 ciphertexts, i.e., 4T bit, between C and S.

Efficient secure (arg)min: As a first step, we replace the DGK compar-
ison protocol in Erkin’s (arg)min algorithm [12] with our two-party version of



Input C: None
Input S: n encrypted values [Y ] = [y0], ..., [yn−1], n encrypted indices [X] = [x0], ..., [xn−1]
Output S: [yj∗ ], [xj∗ ] with yj∗ = minj=0..n−1{y0, ..., yn−1}

Preparation: 0 S permutes values and arguments: [Y ]← π([Y ]); [X]← π([X])

Client Server
Minimum Phase

3 Decrypt and decide

d̃i
Dec← [d̃i]

[bi]
Enc← (d̃i ≤ 0)

2 Send m0,m2,...,mn−2←−−−−−−−−−−−−−−−−−−−

1 Compute and blind distance
for pairs of values
[d̃i] = [ri(yi − yi+1)− ri+1]

[ȳi] = [yi − r′i]
[ȳi+1] = [yi+1 − r′i+1]

mi ← [d̃i], [ȳi], [ȳi+1]

4 Rerandomize [ȳi], [ȳi+1]

5 Choose and send back:
if d̃i ≤ 0 : m′i ← [bi], [ȳi]

else: m′i ← [bi], [ȳi+1]

C keeps track of position
of minimum and finally learns
j∗ = argmin yπ(0), ..., yπ(M−1)

6 Send m′0,m
′
2,...,m

′
n−2−−−−−−−−−−−−−−−−−−−→

7 S receives m′i as [bi], [ȳi] and
unblinds for all i:
[y∗i ]← [ȳi+ biri+ (1− bi)ri+1]

8 Reiterate 1 - 7 until
only one value [yj∗ ] is left.

Minimum Argument Phase
10 Send [x̄0],...,[x̄n−1]
←−−−−−−−−−−−−−−−−−−−

9 Double blind all indices:
[x̄j ] = [xj − rj − r]

11 Input: Perm. min. index j∗

Output: Blind value rj∗
11 1-out-of-n-OT

←−−−−−−−−−−−−−−−−−→
11 Input: r0, ..., rn−1

Output: None

12 Remove one blind:
[x̄j∗ ]← [x̄j∗ + rj∗ ]

13 Send [x̄j∗ ]
−−−−−−−−−−−−−−−−−−−→ 14 Return [yj∗ ] and [x̄j∗ + r]

Protocol 1: Bandwidth-optimized (arg)min protocol: The min and its permuted
position is calculated. Then, C and S run an OT protocol to unblind the argmin.

Kerschbaum’s comparison protocol. By simply using a more efficient comparison
protocol, we reduce the communication complexity to (M − 1)(6 + 10/C)T bit,
i.e., save (M−1)(2l+2)T bit (cf. Table 1). This represents a significant reduction
by 90 % to 97 % depending on the chosen security level t and bitlength l.

We now improve this construction with respect to both processing and com-
munication overhead. In the first phase, the minimum phase, we determine the
min [y∗] = [f(x∗)] in pairwise comparisons arranged in a tournament fashion as
before in [12]. However, we significantly reduce processing overheads and save
2 log2(n) rounds by interleaving comparison and selection steps, thereby shaving
off the costly ciphertext multiplications. Our second significant improvement is
due to the observation that C learns the position of the min as a byproduct of
this phase. With this information, we construct an efficient OT-based protocol
for the second phase, the minimum argument phase, in which C helps S to obtain
an encryption of the argmin [x∗]. In the following, we describe the two phases of
our BOMA protocol, as depicted in Protocol 1, in detail.

Minimum phase: At the beginning, S holds the encrypted values [y0], ..., [yn−1]
and corresponding arguments [x0], ..., [xn−1] and applies the same permutation
π to both 0 . This permutation prevents C from learning side knowledge, but
has no effect on the outcome of the computation. For reasons of simplicity, we



thus leave π out in the following notation. At the core of 1 - 7 are the batched
pairwise comparisons according to our two-party version of Kerschbaum’s com-
parison protocol. In 1 , S computes the distances [di] over the n/2 pairs of
values [yi] and [yi+1], i = 0, 2, .., n − 2, and blinds the distances as well as the
values. S then sends the blinded distances together with the blinded values [yi]
and [yi+1] to C 2 . C decrypts the distances and encrypts the binary result of
the comparison 3 , re-randomizes [ȳi] and [ȳi+1] 4 , and chooses the smaller
element 5 . Finally, C sends back the binary result of this comparison together
with only the smaller element of each comparison to S 6 . Note that S cannot
distinguish which elements were received due to the re-randomization and IND-
CPA property of the cryptosystem. After unblinding the received values in 7 ,
S now holds encryptions of the n/2 smaller values of the previous comparisons
and repeats 1 to 7 dlog2(n)−1e times until only the min [y∗] remains 8 . Our
way of interleaving comparison and selection steps not only makes ciphertext
packing more efficient, but significantly reduces processing costs and saves two
communication rounds per level of the comparison tree, i.e., 2 · log2(n) rounds
in total, as compared to the construction of Erkin et al. [12] which implements
selection steps via costly ciphertext multiplication.

Minimum argument phase: We further significantly improve the communica-
tion overhead by the observation that during the minimum phase it is easy for C
to keep track of the position of the outcomes of the comparisons and thereby ob-
tain the position j∗ of the min in the permuted vector Y . This knowledge is not a
security violation since the permuted position does not disclose any information
to C. In the minimum argument phase, C now helps S to obtain an encryption of
the argmin [xj∗ ]. S first blinds all encrypted arguments [xj ], j = 1...M individu-
ally by subtracting random values rj ∈ {0, 1}l+σ and a second time with a single
random value r ∈ {0, 1}l+σ 9 . S packs the double blinded arguments and sends
them to C 10 . C and S subsequently engage in 1-out-of-n-OT1

l+σ after which C
obtains rj∗ , the distinct blind of the argmin, without S learning j∗ 11 . Then, C
removes this blind from [x̄j∗ ] by adding rj∗ (which automatically re-randomizes
the value) 12 and sends the value (still blinded by r) to S 13 . Finally, S removes
the second blind by adding r and obtains an encryption of the argmin [xj∗] 14 .

Communication complexity. The minimum phase of BOMA costs only
(n − 1)(4 + 6/C)T bit. By applying bandwidth-efficient OT protocols (§2), the
minimum argument phase costs n2T/C bit for transferring the blinded argu-
ments and n(l + σ) + 3 log2(n)t bit for the 1-out-of-n-OT1

l+σ of the blind rj∗ .

4.1 Security Discussion

We show that our proposed protocol is secure in the semi-honest adversary
model based on the security of the employed OT and comparison primitives. In
particular, we show that i) C learns nothing and ii) S only learns an encryption
of the min and argmin but nothing else.

Security against C. From the messages received in 2 , C learns nothing
about the values yi from ȳi since they are additively blinded with random num-
bers r′i ∈ {0, 1}l+σ. Furthermore, C learns nothing from d̃i about the distance di



between yi and yi+1 due to the multiplicative and additive blinding. From the
messages received in 10 , C learns nothing since the arguments xj are additively
blinded using rj , r ∈ {0, 1}l+σ. The security of 11 directly follows from the se-
curity proofs of the employed base OT protocol [1, 20, 27, 28]. After the OT has
finished 11 , C learns xj − r which however is still additively blinded. Finally, C
learns the position of the minimum. However, due to the random permutation
π applied by S in 0 this knowledge is useless to C as long as S keeps π secret.

Note that we use statistical blinding, i.e., with low probability ∼ 1/2l+σ C
learns a small amount of information about the magnitude of the blinded values.
We can achieve perfect security against C by choosing σ = T and substituting
Kerschbaum’s statistically secure protocol [21] with a perfectly secure protocol,
e.g., [34]. However, this significantly increases the communication overhead.

Security against S. From the messages received in 6 , S learns the en-
crypted comparison bit and the encrypted smaller element of the comparison.
Due to the IND-CPA property of the employed Paillier cryptosystem and the
applied re-randomization, S can neither decide whether [bi] is an encryption of
0 or 1 nor distinguish [ȳi] from [ȳi+1]. Again, S learns nothing from the OT
in 11 due to the security of the employed OT primitives [1, 20, 27, 28]. Finally,
S receives [x̄j∗ ] which it cannot distinguish from the other arguments [x̄i 6=j∗ ]
due to the IND-CPA property of the cryptosystem. Since S can always try to
break encryption to learn the inputs, we can only achieve computational security
against S.

5 Evaluation

We first compare the communication overhead of existing circuit and protocol
constructions against an implementation of our optimized protocol BOMA in
§5.1. Since BOMA trades increased local processing for a significant reduction
in communication overhead, we evaluate processing overheads in §5.2 and show
that BOMA achieves superior performance under constrained network speeds.

5.1 Quantitative Communication Overhead Analysis

Table 2 shows the communication overhead in MiB of each algorithm over in-
creasing input lengths of l = 32, 64, 128 bit in each of the three security levels. We
derive the results for Koleschnikov’09 [22], Huang’11 [17], and Schneider’13 [31]
based on their theoretical complexities (cf. Table 1), since we could not ob-
tain an actual implementation. Kolesnikov’09 and Schneider’13, the approaches
marked with an asterisk, only realize the constrained argmin functionality and
solely indicate lower bounds. For ABY-YAO’15 and ABY-GMW’15, we obtain
the listed results using the C++ ABY framework [11], which we extended with
the missing argmin circuits (cf. §3.2). We implement a prototype of BOMA (our
own protocol), in Python 2.7. Additionally, we re-implement the (arg)min algo-
rithm by Erkin et al. in our framework, since the available implementation in
SeComLib [32] provides neither network support nor ciphertext packing.



n = 1000
Elements

short medium long
32 64 128 32 64 128 32 64 128

* Koles’09 1.24 2.46 4.90 1.73 3.44 6.86 1.98 3.93 7.84
(GC) 193% 370% 629% 154% 299% 554% 123% 240% 456%

Huang’11 1.54 3.07 6.12 2.16 4.30 8.56 2.47 4.91 9.79
(GC) 240% 462% 786% 192% 373% 692% 153% 299% 569%

ABY-YAO’15 1.87 3.73 7.45 2.61 5.21 10.41 2.98 5.95 11.90
(GC) 291% 562% 957% 232% 452% 840% 185% 363% 693%

* Schneider’13 2.53 4.98 9.90 3.53 6.94 13.81 4.03 7.93 15.76
(GMW) 394% 749% 1271% 314% 603% 1115% 250% 483% 917%

ABY-GMW’15 3.07 6.25 12.63 4.26 8.68 17.53 4.86 9.90 19.99
(GMW) 478% 941% 1622% 379% 754% 1416% 302% 603% 1163%

Erkin’09 9.37 17.60 34.13 18.14 34.18 66.31 26.92 50.77 98.49
(HE) 1460% 2650% 4383% 1614% 2967% 5355% 1672% 3094% 5730%

BOMA 0.64 0.66 0.78 1.12 1.15 1.24 1.61 1.64 1.72
(HE+OT) 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 2: Communication overhead [MiB] for varying security levels and input
sizes. Gray rows denote theoretical estimates, all other values are measured. Ap-
proaches marked with an asterisk realize only a constrained argmin functionality.

For all available implementations, we initially compare the measured and
theoretical communication overhead to analyze i) the accuracy of our theoretical
complexity estimates and ii) the realization of these complexities in the actual
implementations. We find that the measured overhead exceeds our estimate by
at most 0.5% for ABY-YAO, 1.5% for ABY-GMW, 2% for BOMA (our own
protocol), and by less than 6% for our re-implementation of Erkin’s protocol.
This deviation stems from the fact that our theoretical complexity estimates do
not consider a decrease in packing efficiency when only few ciphertexts are left
at the last levels of the comparison tree. Our way of interleaving comparison and
selection (§4) greatly reduces this effect compared to Erkin’s protocol design.

Table 2 then shows the communication overhead comparison of existing ap-
proaches and our (arg)min protocol (BOMA). We base our evaluation of existing
approaches on the best available, i.e., most efficient, constructions of circuits, gar-
bling schemes, and oblivious transfer primitives. BOMA achieves a significant
reduction in communication overhead over all settings and even in comparison to
the constrained argmin circuits by Kolesnikov’09 (GC) or Schneider’13 (GMW).
Specifically, BOMA achieves the largest reductions for small security levels and
high bitlengths of the input. With increasing security levels, the relative improve-
ment, in comparison to GC- and GMW-based approaches that rely on symmetric
crypto, decreases while still outperforming said approaches. Conversely, larger
input bitsizes benefit BOMA. While packing efficiency for communication from
S to C only degrades slightly, communication from C to S, which cannot be
packed, remains the same since a single l bit value always fits into one cipher-
text for l ≤ T . In contrast, the communication overhead in GC and GMW scales
linearly with l. Finally, BOMA outperforms Erkin’s HE-based protocol by one
to two orders of magnitude in every setting.



n = 1000

Elements
short medium long

32 64 128 32 64 128 32 64 128
A

B
Y

-Y
A

O 1 Mbit/s 16.70 33.50 67.02 23.35 46.71 93.64 26.71 53.46 107.21

2 Mbit/s 8.44 16.90 33.75 11.70 23.54 46.85 13.48 26.81 53.51

5 Mbit/s 3.38 6.92 13.86 4.81 9.68 19.21 5.32 10.91 21.78

10 Mbit/s 1.76 3.72 7.19 2.56 5.13 9.92 2.81 5.68 11.17

A
B

Y
-G

M
W 1 Mbit/s 27.61 56.15 113.45 38.28 77.95 157.46 43.54 88.79 179.21

2 Mbit/s 13.87 28.14 56.69 19.08 38.94 78.55 21.76 44.39 89.51

5 Mbit/s 5.74 11.56 23.10 7.86 15.84 31.79 8.95 18.03 36.21

10 Mbit/s 3.12 6.09 11.90 4.17 8.25 16.33 4.72 9.40 18.50

B
O

M
A

1 Mbit/s 8.96 9.41 11.00 22.74 23.88 27.20 42.86 45.59 51.57

2 Mbit/s 6.65 7.09 8.28 18.03 19.20 22.38 36.34 38.84 44.33

5 Mbit/s 5.33 5.72 6.74 15.34 16.54 19.39 32.46 34.92 40.23

10 Mbit/s 4.88 5.34 6.24 14.43 15.69 18.41 31.29 33.68 38.99

Table 3: Protocol runtimes [s] for varying security levels, input lengths and band-
widths for state-of-the-art GC-, GMW- and HE-based argmin protocols.

5.2 Performance Evaluation

We measure the runtime for ABY-YAO, ABY-GMW, Erkin’09, and BOMA for
varying bandwidth and latency in a local setup between a desktop client (Intel
i7, 8 × 2.93 GHz, 4 GB RAM) and a server (Intel Xeon, 16 × 2.6 GHz, 32 GB
RAM) connected through a middlebox running OpenWRT. We choose a desktop
instead of a mobile client to maintain comparability as no ABY implementation
for Android or iOS exists. While ABY is fully threaded and thus employs all cores
on the client device, we deliberately do not parallelize the client-side functionality
in our BOMA implementation to emulate processing resources comparable to
those of a mobile device, e.g., a smart phone. Since all overheads scale linearly in
the number of elements n, we fix n = 1000. This is sufficiently large to eliminate
small scale effects but also maintains short runtimes allowing for a repeated,
thorough evaluation, i.e., averaging all results over 30 runs.

Network Bandwidth. We first vary the bandwidth between 1 Mbit/s and
10 Mbit/s using netem on the middlebox. Table 3 gives an overview of the result-
ing runtimes. For short-term security and at a bandwidth of 10 Mbit/s, BOMA
performs in the same order of magnitude as ABY-YAO and ABY-GMW. Reduc-
ing to 1 Mbit/s, the runtime of BOMA doubles while the runtimes of ABY-YAO
and ABY-GMW increase by roughly one order of magnitude. Communication
overhead clearly dominates the runtime in these approaches and BOMA hence
outperforms them. As indicated by the theoretical complexity, the approach by
Erkin et al. [12] is by orders of magnitude slower. For l = 32 and short term
security, the algorithm required almost 1min, even already without bandwidth
constraints. Due to this prohibitive runtime, we waived further measurements.

Increasing the security level to medium impacts BOMA more than ABY-
YAO or ABY-GMW, due to the use of asymmetric crypto. Here, BOMA roughly
matches the runtime of ABY-YAO for l = 32, 64, 128 at bandwidths between



1 Mbit/s and 5 Mbit/s and ABY-GMW between 2 Mbit/s and 10 Mbit/s. Still,
we observe that BOMA outperforms these approaches in constrained networks
(1 Mbit/s to 2 Mbit/s) and/or higher input sizes l = 64, 128.

Increasing to long term security, we observe that processing overheads begin
to dominate the performance of BOMA, i.e., the relative difference of the per-
formance at speeds of 10 Mbit/s and 1 Mbit/s is much smaller than for shorter
security levels. Contrarily, for ABY-GMW and ABY-YAO, which exhibit very
low processing overheads, bandwidth restrictions continue to dominate the over-
all protocol runtime. In comparison, BOMA still outperforms ABY-YAO up to
bandwidths of 2 Mbit/s and ABY-GMW up to 5 Mbit/s for l = 128 bit inputs.
For l = 32, 64 and larger bandwidths, BOMA’s performance is slower but in
general lies within the same order of magnitude as ABY-YAO and ABY-GMW.

Network Latency. Latency has the biggest impact on GMW-based proto-
cols which have a high round complexity of O(log2(n) log2(l)). Assuming, e.g., a
relatively high latency of 200 ms, this adds 10 s to 14 s to the overall runtime for
computing the argmin over n = 1000 and l = 32, 128 bit values, respectively. Un-
der the same assumptions, BOMA’s runtime increases only by approximately 2 s
due to its lower round complexity of O(log2(n)). GC-based protocols experience
nearly no increase in runtime due to their constant round complexity. Hence, set-
tings with higher network latencies favor BOMA over GMW-based approaches
while the overhead compared to GC-based approaches is almost negligible.

In summary, the evaluation results support our initial design goals of support-
ing STC in mobile environments where network bandwidths are neither constant
nor comparable to fixed, high-performance settings. Specifically, the improved
performance of BOMA under the reduced network speeds of 3G or LTE networks,
i.e., 1 Mbit/s – 10 Mbit/s as found in typical current urban scenarios, highlights
the suitability of our protocol for spontaneous interaction and applications.

6 Conclusion

In this paper, we address the important problem of securely computing the
(arg)min in a mobile ad-hoc setting where protocol participants had no prior
interaction. Our analysis of the most efficient GC-, GMW-, and HE-based so-
lutions reveals significant communication overheads that can be prohibitive in
constrained, e.g., cellular, networks in terms of direct costs, energy consumption,
and overall protocol runtime. We hence propose BOMA, a novel (arg)min pro-
tocol based on HE and OT that reduces communication overheads by orders of
magnitude compared to related work (by 18% – 98%). Specifically, our approach
trades communication overhead for local processing. Our quantitative evaluation
shows a better performance by our protocol in many settings compared to state-
of-the-art GC- and GMW-based solutions, e.g., in constrained networks oper-
ating at speeds below 1 Mbit/s to 10 Mbit/s, depending on the chosen security
level and bitlength of the inputs. Using efficient conversion between encrypted,
shared, and garbled values [11] our protocol can be used as a valuable building
block for efficient mobile STCs in GC or GMW-based frameworks [11,19].



Protocol Communication Overhead Rounds

* Kolesnikov’09 [22] (GC) 2l(n− 1)2t + (n + 1)2t + 3/2nlt O(1)

Huang’11 [17] (GC) 2l(n− 1)2t + n ·max{l, t} + (n− 1)2t + 3/2nlt O(1)

Demmler’15 [11] (GC) 3l(n− 1)2t + 3nlt O(1)

* Schneider’13 [31] (GMW) (n− 1)(4l− dlog2(l)e − 2 + dlog2(n)e)(2t + 2) + nl O(log2(n) log2(l))

Demmler’15 [11] (GMW) (n− 1)(5l− dlog2(l)e − 2)(2t + 2) + 2nl O(log2(n) log2(l))

Erkin’09 [12] (HE) (n− 1)(2l + 8 + 10/C)T + nT O(log2(n))

BOMA (HE+OT) (n− 1)(4 + 6/C)T + 2nT/C + n(l + σ) + 3 log2(n)t + nt O(log2(n))

Table 4: Communication complexity [bit] and rounds for the second problem
definition, i.e., min and argmin computation with shared inputs.

A Min and Argmin with Shared Inputs

In §3, we define the secure min/argmin problem as a building block within an-
other secure computation. This definition neglects those parts of the overheads
which are due to sharing inputs between client and server. We thus shortly dis-
cuss a second version of the problem where C and S each hold half of the inputs
and the client obtains the output.

For GCs, S sends its garbled inputs to C, amounting to nlt bit of communi-
cation. C obtains its own inputs via correlated OT from S at a cost of 2nlt bit.
These overheads are halved for Kolesnikov’09 [22] where the arguments are im-
plicit and not part of the inputs as well as for Huang’11 where the arguments are
encrypted in the backtracking tree. Sharing inputs in GMW-based approaches
requires only 2nl bit, i.e., 1 bit per input bit. Again, this overhead is halved for
the restricted (arg)min circuit of Schneider’13 [31]. For both Erkin’s protocol
and ours, only C’s inputs need to be sent to S in encrypted form, requiring 2nT
bit of communication. We summarize the overall complexity in Table 4.

We implement and evaluate this second (arg)min problem. As before, we
observe an implementation overhead of at most 3% compared to the complexities
in Table 4. Only the measurements for ABY-YAO significantly deviate by 14%
and 27% coupled with a large standard deviation in the send traffic. Since this
renders the measurements incomparable, we present only a comparison of the
theoretical communication overhead in Table 5. The results are qualitatively
very similar to the results for our initial problem definition (Table 2 in §5.1).
Furthermore, the processing required for sharing the inputs is very low in all
approaches. Thus, for our second problem definition, we expect qualitatively
very similar results to those presented in §5.2.
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