
WARPsim: A Code-Transparent Network Simulator
for WARP Devices

Andreas Schumacher, Martin Serror, Christian Dombrowski
Chair of Communication and Distributed Systems

RWTH Aachen University, Germany
{serror, dombrowski}@comsys.rwth-aachen.de

James Gross
School of Electrical Engineering

KTH Royal Institute of Technology, Sweden
james.gross@ee.kth.se

Abstract—Analyzing a communication protocol by means
of simulation and real-world experimentation requires careful
protocol implementation in both domains. Differences in the
implementation may lead to significantly diverging performance
results, which may affect the protocol design process adversely. A
code-transparent simulation and experimentation framework for
Wireless Access Research Platform (WARP) devices is proposed,
which is called WARPsim. By extending the simulation engine
appropriately, the same application code that runs on WARP
devices can be used for simulation. This work studies the
implications of this approach using the example of implementing
time-critical Medium Access Control Layer (MAC) protocols on
WARP devices. In the demonstration, various MAC protocols
will be simulated using WARPsim, while changing protocol
parameters, but also crucial aspects of the emulated hardware.
A graphical representation integrated into the framework allows
for an intuitive examination of the protocol behavior.

I. MOTIVATION

Designing and implementing new communication protocols
is a challenging task for engineers [1]. After having analyzed
and specified the requirements of a communication process, a
suitable protocol is designed to carry out this process. Typical
tools involve Finite State Machines (FSMs), Unified Modeling
Language (UML), Specification and Description Language
(SDL) [2], and Message Sequence Charts (MSCs) [3]. Sim-
ulating parts of a protocol or the entire protocol is often
done prior to prototypical deployments to avoid challenges
in manual or automated tests in a potentially highly dynamic
environment. Simulations ensure a controllable environment
to validate general conformance to the specification, while
abstracting from certain real-world details [4], e. g., processing
times of an embedded device. Besides providing a controllable
environment, larger topologies can be evaluated for which not
enough devices may be available. In the next step, a prototypi-
cal implementation is derived that allows for the consideration
of those previously neglected aspects. Results of simulations
and experimentation are compared to the specification. In
case of discrepancies, adjustments to the protocol design and
implementation are done iteratively.

Transforming the protocol design description into a running
implementation, be it for simulation or experimentation, is
time-consuming and typically prone to errors as complexity
rises. Despite the possibility to generate executable program
code from certain descriptions in an automated fashion, e. g.,
by using SDL or UML, this automatic approach requires

additional tools to make rigorous timing statements [5]. Yet,
these approaches are constrained by environmental conditions
imposed by the devices, especially in case of embedded de-
vices [6]. Expert knowledge and experience is required to tailor
a protocol description to a specific implementation platform.
If program code used for simulation does not comply to the
specification in the same way as the program code of the
experimentation does, complex errors may occur. This is in
particular true as simulation tools and real-world target devices
usually differ quite significantly in terms of programming
language, implementation paradigms, and side constraints.

In this paper, we investigate a way to reduce the risks of
evaluating divergent implementations of the same protocol in
simulation and on real hardware by utilizing a code-transparent
simulation engine. The goal is to use the same program code
that is generated by humans according to the specification
to perform evaluation studies in a controlled simulation envi-
ronment and on a real-world experimentation device. Hence,
we propose WARPsim, a code-transparent simulator that em-
ulates the underlying hardware of WARP devices [7]. This
requires a careful consideration of which device-dependent
software or hardware blocks to emulate, and how to match
behavior of the emulated blocks to the experimentation device.
Emulation is identified to offer huge benefits in the protocol
development process [8] as it is an intermediate step between
the simulation domain and the real-world. As an example,
we consider the development process of time-critical Medium
Access Control Layer (MAC) protocols on WARP devices
based on the OFDM REFERENCE DESIGN. To the best of the
authors knowledge, the simulation and evaluation in a real-
world deployment using the same protocol implementation
has not gained much attention yet. Various frameworks exist
that combine emulation and simulation [8], [9] (and references
therein). Related efforts to automatically generate simulation
code from formalized descriptions [10] also exist, but they lack
the consideration of a code-transparent execution on a real-
world device to ensure comparability of evaluation results.

The remainder of this work is structured as follows. In
Sec. II, we provide a brief overview of the WARP device that
needs to be emulated, as well as the general simulation engine.
Sec. III gives an overview of how the audience can interact
with the presented demonstration.

II. SYSTEM DESCRIPTION

The WARP device [7] was developed by the Rice Uni-
versity and Mango Communications to provide an open-978-1-4799-8461-9/15/$31.00 ©2015 IEEE

Emulation

MAC Application

WARPPHY / WARPMAC

Hardware Drivers

Wireless
PHY Timer Radio

Controller
Ethernet

MACGPIO

Radios Buttons/
Switches EthernetUART

PLB

}
}
}

PPC
 Code

FPGA
Logic

Hardware

(a) The emulation of the OFDM Reference Design.

Linux Process

MAC Application

Linux Process

WARPsim Engine

…

Linux Process

MAC Application

…IPC

Emulated Hardware Simulated PHY

(b) The simulation environment of WARPsim.

Fig. 1: The architecture of WARPsim. Most parts of the OFDM REFERENCE MODEL are emulated by WARPsim (Fig. 1a).
Each MAC application instance runs in its own forked process, using IPC for communication to the WARPsim engine (Fig. 1b).

access platform that allows students and researchers to conduct
research in wireless communication and especially on the
physical and MAC layers. Since the initiation of the project in
2006, three hardware versions of the WARP devices have been
released. The main components of a WARP device include:

• a Xilinx Field-Programmable Gate Array (FPGA);
• a microprocessor;
• several clocking resources;
• digital I/O ports, e. g., Ethernet, UART and I/O pins; and
• user I/O, e. g., LEDs, buttons and switches.

Additionally, the WARP project provides several open-source
reference designs that include an FPGA implementation and
some basic MAC protocols created using the C programming
language. For simulation, we propose WARPsim,1 a code-
transparent network simulator, that emulates a selected subset
of hardware used in WARP’s OFDM REFERENCE DESIGN to
allow the efficient development and implementation of MAC
research applications.

A high-level overview of the WARPsim architecture is
given in Fig. 1. The simulation engine is a first prototype
following a real-time simulation paradigm. As stated in Sec. I,
WARPsim is a transparent debug and evaluation tool for MAC
protocol researchers. Hence, the MAC application code, which
can interchangeably run on actual WARP devices and in the
simulator, should not be modified in order to be executed
in the different environments. As the simulation exclusively
runs on a host Linux machine, the behavior of most reference
design components has to be mimicked to realize a coherent
behavior. The biggest building blocks are the main simulation
engine, a simulated channel, and an emulation of major parts
of the OFDM REFERENCE DESIGN. WARPsim is completely
written in C, which allows a MAC application to transparently
access the same functions of the WARPPHY and WARP-
MAC API as on the real hardware. However, note that only
a selected subset of the API is emulated. The emulation of
custom hardware functionality needs to be added if required.
WARPsim allows simulating MAC protocols designed for

1Available at http://www.comsys.rwth-aachen.de/research/projects/warpsim

all WARP hardware versions as long as WARP’s OFDM
REFERENCE DESIGN is employed.

To support evaluation setups with multiple WARP devices,
the WARPsim engine can start an arbitrary number of device
instances, where each instance runs its MAC protocol in a
forked process. Using the shared memory simulation paradigm
for the device instances is not possible since the WARP-
compatible code allows to create global variables which would
be shared by all simulated devices. Hence, the device instances
use Interprocess Communication (IPC) to exchange messages
with the simulation engine, which likewise runs in its own
process. Furthermore, the simulation engine may also commu-
nicate to the simulated device instances using IPC, e. g., to
forward signals from the simulated channel or the emulated
hardware via the WARPPHY and WARPMAC libraries to
a MAC application instance. Within each forked process, the
typical polling structure of the MAC application is preserved.
Callback functions have to be registered as in the OFDM
REFERENCE DESIGN, but they are triggered by IPC messages.

The Physical Layer (PHY) of the WARP devices is also
part of the emulation in WARPsim. Depending on the MAC
protocol, stations send packets of various types at certain points
in time. The simulation engine receives the packets via an IPC
call from the originating MAC process. In turn, the simulation
engine forwards this call to a dedicated process that models the
wireless channel on a packet basis. Hence, it entirely abstracts
from OFDM specifics and allows to study different PHYs as
transmission lengths of packets can be adjusted. Symbol level
or even waveform level simulation may be added if required.
The channel simulation process keeps track of the current state
of the channel, i. e., if the channel is free or occupied. In case
it is occupied, the channel process indicates which part of
a transmission is currently going on, i. e., preamble, packet
header and packet payload. This is useful in the event of
transmission collisions, as it allows to model which parts of
the transmission will be affected by the collision. Additionally,
depending on the type of wireless channel, the process is able
to drop or even corrupt (parts of) packets with a predefined
probability p to model transmission errors caused by fading

Fig. 2: A screen shot exemplifying the GUI features, i. e.,
showing received packets and certain markers for a running
MAC protocol.

or interference on the channel. In accordance with the actually
simulated condition, the channel process notifies the simulation
engine to send the respective messages to the actual device
processes via IPC calls such that the corresponding callback
functions will be called. In case a packet is lost entirely, no
IPC message will be issued for the affected stations.

To provide developers of MAC protocols with enhanced
debug and code analysis capabilities, a Graphical User Inter-
face (GUI) is attached to the main simulation engine. During
a simulation run, certain IPC messages will be displayed in
the GUI by default, e. g., the duration of a transmitted packet
or a packet collision. In addition, WARPsim further supports
the definition of markers that can be placed at arbitrary
positions in the MAC application code. Markers can be thought
of as breakpoints in the execution of the protocol, which
allow developers to thoroughly analyze the behavior of their
MAC application and eventually to detect conceptual errors.
A marker consists of an event type, an ID of the station
that invoked the marker and a timestamp that stores when
the marker was reached (in simulated time). Including these
markers can be made code-transparent by adding appropriate
preprocessor switches.

To summarize, the simulation engine is responsible for the
following tasks:

• handle the IPC among all components;
• start and terminate MAC application instances;
• emulate FPGA and hardware components, as well as

selected low-level software functionalities;
• simulate a wireless communication channel;
• provide extended debug capabilities by using code mark-

ers; and
• enable aggregation of evaluation metrics.

III. DEMONSTRATION DESCRIPTION

In the demonstration, we will show how MAC applications
can be simulated using WARPsim. Therefore, we will provide
a set of different MAC applications, whose code can be
ported readily also to a WARP device. To show that the
same application code may be executed on WARP devices
and in a simulator, we will use a remote desktop connection

to execute it on real WARP devices located in our research lab
in Aachen, Germany. Further, we load that same code into the
simulator to allow for a deeper inspection of our simulation
design. In particular, the audience will be able to select a MAC
application and to modify simulation parameters, such as

• the number of stations;
• the emulated latency of WARP’s software execution; and
• the channel error probability.

This will enable the audience to observe the impacts of
parameter changes on the system behavior depending on the
chosen MAC application. This applies in particular to the
WARP device-specific parameters. The audience will be able
to observe how a false parameterization or how an imprecise
emulation of the WARP device will lead to false conclusions
about the correctness of a protocol. Moreover, the audience
may set code markers at decisive positions in the application
code, e. g., once a higher layer signals a packet to be transmit-
ted, to verify the protocol behavior. For this, a GUI window
will display for each simulated device a timeline with received
packets and illustrate the occurrence of a marker.

In Fig. 2, a screen shot exemplifying the GUI features is
shown. The upper part of the window contains the timeline
that includes a trace of received packets for each running
device instance. When a marker is reached in the code, a
colored bar is created at the time of the event. The lower part
of the window contains a text field that provides timestamps
and precise descriptions given by the programmer. Hence, the
audience may scroll through the timeline, zoom in/out and
click on markers to highlight their description in order to better
understand the behavior of the MAC application.

REFERENCES

[1] A. Mitschele-Thiel, Systems Engineering with SDL – Developing
Performance-Critical Communication Systems. John Wiley, 2001.

[2] “Specification and Description Language. ITU-T Z. 100,” International
Telecommunications Union, Geneva, Switzerland, vol. 184, 2000.

[3] “Message Sequence Charts (MSC). ITU-T Z. 120,” International
Telecommunications Union, Geneva, Switzerland, 1996.

[4] K. Wehrle, M. Günes, and J. Gross, Modeling and Tools for Network
Simulation. Springer Science & Business Media, 2010.

[5] M. Pradella, M. Rossi, and D. Mandrioli, “A UML-Compatible Formal
Language for System Architecture Description,” in SDL 2005: Model
Driven. Springer, 2005, pp. 234–246.

[6] R. Ernst, “Codesign of Embedded Systems: Status and Trends,” IEEE
Design & Test of Computers, vol. 15, no. 2, pp. 45–54, 1998.

[7] “WARP Project.” [Online]. Available: http://www.warpproject.org
[8] M. Kropff, T. Krop, M. Hollick, P. Mogre, and R. Steinmetz, “A

Survey on Real World and Emulation Testbeds for Mobile Ad hoc
Nnetworks,” in Int’l Conf. on Testbeds and Research Infrastructures
for the Development of Networks and Communities (TRIDENTCOM),
2006, pp. 447–453.

[9] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks,” SIGOPS Oper.
Syst. Rev., vol. 36, no. SI, pp. 255–270, Dec. 2002.

[10] M. Brumbulli and J. Fischer, “SDL Code Generation for Network Sim-
ulators,” in System Analysis and Modeling: About Models. Springer,
2011, pp. 144–155.

