
Santa: Faster Packet Delivery

for Commonly Wished Replies

Florian Schmidt, Oliver Hohlfeld, René Glebke, Klaus Wehrle
Communication and Distributed Systems Group

RWTH Aachen University, Germany
{schmidt,hohlfeld,glebke,wehrle}@comsys.rwth-aachen.de

ABSTRACT
Increasing network speeds challenge the packet processing
performance of networked systems. This can mainly be at-
tributed to processing overhead caused by the split between
the kernel-space network stack and user-space applications.
To mitigate this overhead, we propose Santa, an application
agnostic kernel-level cache of frequent requests. By allow-
ing user-space applications to o✏oad frequent requests to
the kernel-space, Santa o↵ers drastic performance improve-
ments and unlocks the speed of kernel-space networking for
legacy server software without requiring extensive changes.

CCS Concepts
•Networks ! Programming interfaces;

1. THE QUEST FOR SPEED
Increasing line rates challenge the packet processing per-

formance of current network stacks. These performance
challenges can be attributed to two main overhead factors:
i) memory allocations and copy operations, and ii) over-
heads by performing system calls and the required context
switches. These costs particularly take e↵ect at high line
rates (e.g., multiple 10G interfaces) where many (small) re-
quests need to be processed (e.g., DNS tra�c). Thus, dras-
tic increases in network line speeds significantly challenge
packet processing in commodity hard- and software where
CPU speeds do not scale with increasing line speeds.

One line of research addresses this problem by proposing
kernel optimizations. Proposed optimizations involve to i)

channelize processing [4], to ii) slim down socket bu↵ers [2],
or to iii) use batching to reduce overheads [5].

More radical approaches to tackle this challenge involve
(partially or completely) bypassing the kernel by either i)

o✏oading packet processing to specialized hardware (see
e.g., [2, 7]) or by ii) shifting packet processing to user-land
stacks (see e.g., [3, 6, 8]). The latter represents an active
line of research that achieved drastic performance increases
and lower CPU footprints by avoiding kernel based packet

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCOMM ’15 August 17-21, 2015, London, United Kingdom
c� 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3542-3/15/08.

DOI: http://dx.doi.org/10.1145/2785956.2790014

processing overheads [6]. These advances have proved to be
useful for accelerating software switches [9], HTTP [3,6] and
DNS servers [6].

However, the drastic performance increases of user-land
stacks also come at a price. Concretely, they require special-
ized microstacks running in dedicated applications to show
their full potential. We complement this work by propos-
ing a middle ground. That is, we trade o↵ some of the
potential performance increases of microstacks for the abil-
ity to rely on the well-established and full-featured network
stack implementation of Linux. Instead of moving all net-
work stack logic to the application, we enable applications to
move parts of their logic into the stack. In contrast to earlier
approaches that implement full server-specific logic in kernel
space (e.g., khttpd [1]), we propose Santa, an application-
agnostic mechanism allowing user-level server applications
to o✏oad requests to common replies to a kernel-level cache.

We exemplify the benefit of Santa by using a standard
DNS server and o✏oading frequent DNS requests to our
kernel cache. In this evaluation, we achieve drastic im-
provements in both response time (almost 2⇥ faster) and
throughput (up to 4⇥ higher) even with a standard stack.
Thus, Santa unlocks the speed of kernel-space networking for
legacy server software without requiring extensive changes
or specialized implementations. By this, we aim to pave the
way for new packet processing pipelines and complement the
ongoing discussion on user-level network stacks.

2. SANTA ARCHITECTURE
We show the Santa architecture in Figure 1 (c) and com-

pare it to (a) a traditional network stack and (b) netmap [8]
as a well-known approach to bypass the kernel for realizing
user-land protocol stacks. The Santa architecture involves
realizing a kernel-level cache that is instrumented by appli-
cations to o✏oad replies to frequent requests. This way,
we achieve performance increases by avoiding costly context
switches to the user-space for frequent requests.

To enable reply o✏oading to the kernel cache, Santa ex-
tends the Linux kernel socket interface to enable applications
to control the kernel-level cache. This cache control requires
application modifications and comprises ways to install, up-
date, and remove cache entries. Each cache entry includes
a filter rule applied to incoming packets. If a rule matches,
the kernel replies with a pre-cached response instead of for-
warding the packet to the user-level process. Otherwise, the
packet is handed over to the application via the socket in-
terface, so that the server can create and send the reply.

Since the installed filter rules do not involve application



NET!

MAC!

TRANS!

user!
kernel!

HW!
kernel!

APP!

(a) Standard

NET!

MAC!

TRANS!

μSTACK!

APP!

user!
kernel!

HW!
kernel!

ne
tm
ap
!

(b) Netmap

NET!

MAC!

TRANS!

APP!

cache!1!

2!
user!

kernel!

HW!
kernel!

1!
2!

cache hit!
cache miss!

cache control!

(c) Santa

Figure 1: In a standard network stack, all packets are pro-
cessed in both kernel and user space. Netmap bypasses the
kernel to process packets in user space, requiring specialized
microstacks. Santa provides a kernel cache to answer com-
mon requests without passing the packet to the application.

 0

 1

 2

 3

 4

 5

 6

Santa kernel cache BIND 9

R
TT

 [m
s]

Figure 2: In a local network, the server’s processing time
forms a sizable part of the RTT. The Santa kernel cache
provides significantly faster response times.

logic and match on packet contents, the Santa architecture
is application agnostic. That is, every application can uti-
lize the Santa API to o✏oad packet processing to the kernel
cache. In case that no cache items are installed, Santa be-
haves as a standard Linux kernel, i.e., all incoming packets
get forwarded to the user-space process.

Santa is especially beneficial for applications that receive
frequent requests that can be answered with pre-cached replies.
A typical example application is DNS servers, where a small
number of resource records is requested very frequently.

3. USE CASE EVALUATION: DNS SERVER
In our preliminary evaluation, we focus on accelerating

BIND 9, a widely used DNS server.
Our experimental setup comprises one server (quad-core

3GHz with 8GB RAM) running the BIND 9 DNS server
on top of our Santa kernel and four DNS clients with stock
kernels generating DNS queries, connected via an Ethernet
switch. Each machine is equipped with a 1Gbit/s inter-
face. We emulate a maximum-load scenario in which the
clients send requests as fast as possible, saturating the link
from the switch to the server. Figure 2 shows box plots of
the round-trip time (RTT) distribution of requests, as seen
by the client. Santa provides a significantly lower response
time, with median values of 1.95ms vs. 3.7ms.

In a second set of experiments, we sent requests that hit
the kernel cache with a certain probability (0%, 25%, 50%,

 0

 20000

 40000

 60000

 80000

 100000

0% 25% 50% 75% 100%

Th
ro

ug
hp

ut
 [r

ep
lie

s/
s]

Percentage of requests served from cache

Figure 3: Serving requests with pre-cached replies drasti-
cally improves the request throughput of a server.

75%, 100%), and otherwise fell through to BIND. We then
measured the number of requests that the server could pro-
cess. Figure 3 shows that not only does Santa increase the
throughput on our test machine by a factor of 4.4. It also
shows throughput increases especially at lower cache hit
rates: at 25% cache hits, throughput already increases by
258%, more than half the way to the maximum achieved
increase. Thus, even in scenarios where our cache can only
serve a small fraction of all requests, significant throughput
improvements can be expected.

Concluding, our preliminary evaluation shows that drastic
performance improvements are possible without clean-slate
user-land network stack approaches.

4. FUTURE WORK
As next steps, we plan to evaluate the performance of

Santa on real-world traces from major DNS servers, as well
as to compare our solution with user-level network stacks.
Furthermore, since Santa is currently limited to UDP, we
plan to extend it to support TCP so that additional server
applications can benefit from its caching.

Acknowledgments
This work has received funding from the European Union’s
Horizon 2020 research and innovation program 2014–2018
under grant agreement No. 644866 (SSICLOPS) and DFG
CRC 1053 (MAKI). It reflects only the authors’ views and
the European Commission is not responsible for any use that
may be made of the information it contains.

5. REFERENCES
[1] M. Bar. Kernel Korner: kHTTPd, a Kernel-Based Web

Server. Linux Journal, 2000(76), Aug. 2000.
[2] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: A

GPU-accelerated software router. In ACM SIGCOMM, 2010.
[3] M. Honda, F. Huici, C. Raiciu, J. Araujo, and L. Rizzo.

Rekindling Network Protocol Innovation with User-level
Stacks. SIGCOMM CCR, 44(2):52–58, Apr. 2014.

[4] V. Jacobson and B. Felderman. Speeding up Networking.
linux.conf.au, 2006.

[5] T. Marian, K. S. Lee, and H. Weatherspoon. NetSlices:
Scalable Multi-Core Packet Processing in User-Space. In
ACM/IEEE ANCS, 2012.

[6] I. Marinos, R. N. Watson, and M. Handley. Network Stack
Specialization for Performance. In ACM SIGCOMM, 2014.

[7] I. Pratt and K. Fraser. Arsenic: A User-Accessible Gigabit
Ethernet Interface. In IEEE INFOCOM, 2001.

[8] L. Rizzo. netmap: A Novel Framework for Fast Packet I/O.
In USENIX Security Symposium, 2012.

[9] L. Rizzo and G. Lettieri. VALE, a Switched Ethernet for
Virtual Machines. In CoNEXT, 2012.


