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Abstract

The Internet of Things (IoT) envisions an unprecedented interleaving of the physical
with the virtual world to enhance automation and to improve comfort in a variety of
application domains ranging from home automation to healthcare and smart cities.
Based on recent advances in standardization, many of these application domains
are expected to employ IP-enabled embedded devices to realize the envisioned in-
terconnection of the physical world. Such IP connectivity, however, also exposes
networked embedded devices to similar network attacks as conventional IP-enabled
hosts or services. The severity of these attacks is considerably aggravated in the
IoT as attacks in the virtual world suddenly can have detrimental physical impact.
Hence, e↵ective network security is a vital precondition for a secure IP-based IoT.

Standard end-to-end security protocols such as TLS have the potential to provide an
important building block for interoperable network security in the IoT. The device
and network constraints in the embedded domain and the resource asymmetry in
the IoT, however, challenge the design of existing security solutions. The resource
constraints of embedded devices, e.g., require these solutions to be applicable in the
context of only a few MHz of computational power, several kB of RAM, and several
tens of kB of ROM. Similarly, energy constraints and low-power wireless commu-
nication demand for a high transmission e�ciency. Research and standardization,
thus, recently started to adapt standard IP security solutions to IoT requirements.

In this thesis, we contribute to these adaptation e↵orts by addressing emerging pro-
tocol design challenges for end-to-end IP security in the context of the IoT. In this,
we specifically consider the IoT security protocol adaptations DTLS, HIP DEX, and
Minimal IKEv2 that are currently proposed for standardization at the IETF. No-
tably, while these protocol adaptations should already satisfy IoT requirements, we
identify several design-level e�ciency and security issues that render the deployment
of these protocols in their current state ine�cient, infeasible, and even insecure.

First, the high computation overhead of DTLS, HIP DEX, and Minimal IKEv2 sig-
nificantly hampers the availability and response time of networked embedded devices
during the protocol handshake. We present three complementary protocol extensions
that account for these computation overheads in the overall protocol design. Second,
the extensive message wire-format of these protocol adaptations leads to undesirable
transmission overheads in the embedded domain. We devise the Slimfit compres-
sion layer that addresses message conciseness issues in the context of HIP DEX.
Combined, these two contributions considerably reduce the run-time overheads and
improve the security properties of the considered end-to-end security protocols.

Third, extensive RAM and ROM requirements render the use of DTLS, HIP DEX,
and Minimal IKEv2 infeasible for a wide range of memory-constrained embedded
devices. To still enable these devices to communicate securely, we introduce the
handshake delegation architecture that also provides an authorization framework for
the embedded domain. Fourth, the 6LoWPAN packet fragmentation of the DTLS,
HIP DEX, and Minimal IKEv2 handshake messages is vulnerable to DoS attacks.
To protect against these attacks, we present two lightweight defense mechanisms.

Overall, our contributions in this thesis e↵ectively complement each other and, in
combination, achieve significant security and e�ciency improvements for the consid-
ered standard end-to-end security protocols in the context of the IP-based IoT.



Kurzfassung

Die Vision des Internets der Dinge ist eine bisher unerreichte Vernetzung der physi-
schen mit der virtuellen Welt. Hiervon sollen zum Beispiel die Hausautomatisierung
aber auch neuartige Anwendungsbereiche wie die intelligente Stadt profitieren. Ak-
tuelle Fortschritte bei der Standardisierung deuten dabei auf einen verstärkten Ein-
satz von IP-fähigen eingebetteten Systemen hin. Die einhergehende Erreichbarkeit
macht vernetzte

”
Dinge“ jedoch ähnlich wie herkömmliche Rechner und Dienste über

das Netzwerk angreifbar. E↵ektive Sicherheitslösungen sind daher eine wesentliche
Voraussetzung für die sichere Vernetzung der physischen mit der virtuellen Welt.

Standardprotokolle für die Ende-zu-Ende-Sicherheit wie TLS haben das Potenzial
einen wichtigen Bestandteil für diese sichere Vernetzung zu liefern. Die Geräte- und
Netzwerkbeschränkungen im Bereich der eingebetteten Systeme sowie die Ressourcen-
Asymmetrie im Internet der Dinge stellen bestehende Sicherheitslösungen jedoch vor
enorme Herausforderungen. So setzen die knappen Ressourcen eingebetteter Syste-
me voraus, dass Lösungen bei stark beschränkter Rechenleistung und begrenztem
Speicherplatz einsetzbar sind. Ebenso erfordern Energiebeschränkungen eine hohe
Verarbeitungs- und Übertragungse�zienz. Daher müssen existierende Sicherheitslö-
sungen an die speziellen Anforderungen im Internet der Dinge angepasst werden.

Diese Arbeit adressiert grundlegende Herausforderungen beim Entwurf von Ende-zu-
Ende-IP-Sicherheitsprotokollen im Internet der Dinge. Hierbei liegt der Fokus auf
den Protokollanpassungen DTLS, HIP DEX und Minimal IKEv2. Während diese
Lösungen bereits den Anforderungen des Internets der Dinge genügen sollten, iden-
tifiziert diese Arbeit diverse E�zienz- und Sicherheitsfragen, die den Einsatz dieser
Protokollanpassungen ine�zient, unmöglich, oder gar unsicher machen. Um diesen
Problemstellungen zu begegnen, umfasst diese Arbeit insgesamt vier Beiträge.

Die durchgeführten Protokollanalysen zeigen, dass der erhebliche Berechnungsauf-
wand während der Protokollaushandlung die Verfügbarkeit und die Antwortzeit von
eingebetteten Systemen deutlich beeinträchtigt. Der erste Beitrag besteht daher aus
Protokollerweiterungen, die eine Berücksichtigung dieser Berechnungskosten ermög-
lichen. Darüber hinaus deuten die Analyseergebnisse auf umfangreiche Kompressi-
onspotenziale bei den ausgetauschten Nachrichten hin. Zur Umsetzung dieser Poten-
ziale bei HIP DEX führt der zweite Beitrag die Slimfit-Kompressionsschicht ein. Die
Kombination dieser beider Beiträge erreicht eine deutliche Reduktion der Laufzeit-
kosten sowie eine wesentliche Verbesserung der Protokoll-Sicherheitseigenschaften.

Weiterhin decken die vorgenommenen Protokollanalysen umfangreiche Speicheran-
forderungen im Bezug auf die betrachteten Ende-zu-Ende-Sicherheitsprotokolle auf.
Diese Anforderungen machen deren Einsatz auf stark speicherbeschränkten einge-
betteten Systemen unmöglich. Der dritte Beitrag stellt eine Delegationsarchitektur
vor, um diesen Geräten dennoch eine sichere Ende-zu-Ende-Kommunikation zu er-
möglichen. Schließlich identifiziert die Analyse der 6LoWPAN-Anpassungsschicht die
Anfälligkeit des dort eingesetzten Fragmentierungsmechanismus für DoS-Angri↵e bei
der DTLS-, HIP DEX- und Minimal IKEv2-Protokollaushandlung. Zum Schutz vor
diesen Angri↵en präsentiert der vierte Beitrag leichtgewichtige Abwehrmechanismen.

Die vorgestellten Beiträge lassen sich wirkungsvoll miteinander kombinieren und er-
zielen so erhebliche Sicherheits- und E�zienzsteigerungen für die betrachteten Ende-
zu-Ende-IP-Sicherheitsprotokolle im Kontext des Internets der Dinge.
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1
Introduction

Since its introduction in the early 1980s, the Internet Protocol (IP) suite [Bra89] has
become the foundation for the interconnection of a vast variety of network entities
ranging from mobile personal devices to cloud-based services. With the proliferation
of the Internet of Things (IoT), a new class of network entities – objects from the
physical world – is about to join the existing IP infrastructure. This interconnection
is envisioned to enable an unprecedented interleaving of the physical with the virtual
world [MF10]. Home appliances, e.g., are at the verge of being networked and
controllable via smartphones or cloud-based services. Likewise, industrial machines
increasingly become interconnected in factory networks. This connectivity, in turn,
enables their autonomous organization as well as human monitoring and control from
anywhere on the factory floor. Similar to these examples, the interconnection of the
physical world in the IoT is foreseen to benefit a wide range of other application
domains including healthcare, logistics, and smart cities [AIM10, KKV12].

Many of these application domains are expected to employ networked embedded
devices for the envisioned interconnection of the physical world [WTJ+11, SB10].
Such embedded devices often are designed for small size, low cost, and low en-
ergy consumption, thus enabling long-term autonomous operation. This design, in
turn, leads to devices with highly limited computation power and scarce memory
resources [BEK14]. Similarly, the low-power radio technologies employed by wire-
lessly networked embedded devices typically are limited to short-range links, low
bandwidth, and small packet sizes [IEEE11b, BT13]. These device and network
constraints, however, render viable networking solutions for the IoT challenging.

To facilitate the interconnection of networked embedded devices, research in the
field of Wireless Sensor Networks (WSNs) as well as first commercial IoT prod-
ucts primarily focused on the development of application-specific solutions [YMG08,
homematic]. The high specialization of the devised network stacks, the lack of a
uniform addressing scheme, and the resulting need for application-level gateways,
however, thwart the interoperability between a growing number of application- and
vendor-specific solutions. Prompted by research showing the practicability of IP
technology for networked embedded devices [Dun03], the Internet Engineering Task
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Force (IETF) began adapting the IP network architecture and its supporting pro-
tocols to the special device and network characteristics in the embedded domain in
2005 [6lowpan]. With the goal to continue the eminent success of the Internet in
the embedded domain, these standardization e↵orts most notably aim at providing
interoperable and e�cient IP connectivity for networked embedded devices. The
resulting converged network architecture enables seamless end-to-end communica-
tion in an IP-based IoT1 by employing standardized protocols at the network layer
and above. In addition, this architecture also accommodates for domain-specific
networking solutions below the network layer. Such flexibility a↵ords an e�cient
operation of IP technology in the context of networked embedded devices [HC08].

The achieved IP connectivity, however, also exposes networked embedded devices
to similar network attacks as conventional IP-enabled hosts or services. These at-
tacks particularly include eavesdropping, impersonation, Denial-of-Service (DoS),
and system compromise. The potentially devastating physical impact of these at-
tacks in the context of the IoT has recently been shown by the Stuxnet virus [Lan11],
the first known digital attack targeting objects from the physical world. This attack
led to the complete destruction of the targeted industrial machinery by injecting
malicious actuation commands into their embedded control units. As objects from
the physical world increasingly rely on information from remote entities to perform
their tasks in the physical environment, similar incidents are prone to occur on much
larger scales (e.g., smart grid) as well as in highly individual scenarios (e.g., personal
health services). Consequently, e↵ective network security is a crucial requirement
for the secure interconnection of objects, hosts, and services in the IP-based IoT.

With the goal to tackle these security requirements, an active community in the
field of IoT security currently investigates the applicability of standard end-to-end
IP security protocols such as Transport Layer Security (TLS) [DR08] for networked
embedded devices. However, while initial results prove the general feasibility of such
interoperable network security [GMF+05], existing security protocols were originally
designed with extensibility and flexibility as well as with the protection of compara-
bly powerful Internet hosts and services in mind. As a result, their protocol specifi-
cations contain design decisions that hinder the e�cient operation of these protocols
in the context of networked embedded devices. Hence, research and standardization
recently started adapting end-to-end IP security protocols to the special device and
network characteristics in the embedded domain. On the one hand, these e↵orts
comprise the development of protocol profiles and variants such as the Host Iden-
tity Protocol Diet EXchange (HIP DEX) [MH14] that reduce protocol complexity
by limiting the flexibility of the original protocol specification. On the other hand,
they involve the integration of alternative cryptographic primitives, e.g., polyno-
mial schemes [KKG10, GMKK+13b] and implicit certificates [PKG+13], in existing
end-to-end IP security protocols to reduce their cryptographic overhead.

1.1 Problem Space and Goal of This Thesis

IP-enabled networked embedded devices a↵ord seamless end-to-end communication
in the IoT. The device and network characteristics in the embedded domain, how-
ever, significantly di↵er from those typically encountered in conventional IP net-

1From now on, we use the terms “IoT” and “IP-based IoT” synonymously.
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Figure 1.1 Main factors that challenge the design adequacy of standard end-to-end IP security
protocols in the context of networked embedded devices and the IP-based IoT.

works. As shown in Figure 1.1, these disparate characteristics challenge the design
adequacy of standard end-to-end IP security solutions in the context of the IoT.

More precisely, the device constraints in the embedded domain require end-to-end
security solutions to be applicable in the context of only a few MHz of computational
power, several kilobytes of RAM, several tens of kilobytes of ROM, and limited en-
ergy resources [BEK14]. At the same time, these solutions have to provide adequate
security guarantees to protect network communication in the context of conventional
hosts or services. Hence, while end-to-end security solutions for the IoT specifically
have to be designed for computation, energy, and memory e�ciency, the employed
cryptographic primitives still need to provide a level of security that complies with
current security recommendations for Internet-based communication. Moreover, the
security protocol design has to account for the inherent resource asymmetry between
networked embedded devices and conventional hosts or services, which an adversary
may exploit, e.g., to mount a DoS attack against embedded devices in the IoT.

In addition, the design of end-to-end security solutions also has to cater to the net-
work constraints that are caused by the low-power radio technologies of wirelessly
networked embedded devices. These particularly include low-bandwidth links and
small packet sizes, e.g., 250 kbit/s and 127 byte in case of IEEE 802.15.4 [IEEE11b],
respectively. Moreover, the employed radio technologies often exhibit packet loss ra-
tios that exceed those of conventional IP networks [SDTL10]. The e�cient utilization
of network resources, thus, is another important aspect for the design of end-to-end
security solutions. This observation especially holds for energy-constrained embed-
ded devices as radio transmissions consume a significant amount of energy [PK00].

Considering these device and network constraints in the embedded domain as well as
the high resource asymmetry between networked embedded devices and conventional
hosts or services, our main goal in this thesis is to comprehensively address the
emerging protocol design challenges for end-to-end security in the context of the
IP-based IoT. In this, we specifically focus on the following two key aspects:

1. Security protocol e�ciency with respect to the device and network constraints
in the embedded domain and

2. Protocol security regarding the resource constraints in the embedded domain
as well as the resource asymmetry in the IoT.

We now continue with a brief overview of our core contributions in this thesis and
then describe how these contributions address the above goal with its two aspects.
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1.2 Contributions

In pursuing the main goal of this thesis, we aim at contributing to the on-going e↵orts
of adapting IP technology to IoT requirements. Hence, we leverage recently proposed
IoT security protocol adaptations of the Datagram Transport Layer Security (DTLS)
protocol [RM12], the Host Identity Protocol Version 2 (HIPv2) [MHJH15], and the
Internet Key Exchange Protocol Version 2 (IKEv2) [KHN+14] as a starting point.

Complementary to related work, our research focuses on protocol design and ar-
chitectural considerations beyond protocol profiling and based on standard crypto-
graphic primitives. Moreover, we acknowledge the fact that a comprehensive security
analysis also requires a thorough review of the underlying transport mechanisms.
We, therefore, additionally investigate the security implications of the Internet Pro-
tocol version 6 (IPv6) adaptations performed at the IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPAN) layer inside the embedded domain2. Overall,
the contributions in this thesis fall into the following two categories:

Protocol analyses: We identify protocol e�ciency and security issues in the
design of the DTLS profile for the IoT3 [TF15], HIP DEX [MH14], and the
Minimal Internet Key Exchange Protocol Version 2 (Minimal IKEv2) [Kiv15]
as well as in the design of the 6LoWPAN adaptation layer for IPv6. We
note that we selected these protocols for our analyses as they denote general-
purpose, application-independent network security and protocol adaptation
approaches that can be employed in a wide range of IoT application domains.

Solution design: We develop resource-conscious, standard-compliant protocol
mechanisms and a security architecture for the IP-based IoT that resolve the
design-level protocol issues identified in the performed protocol analyses.

Our research contributes to the main goal of this thesis from di↵erent perspectives.
Specifically, we investigate and address design-level issues of the considered end-to-
end IP security protocol adaptations from a computation, transmission, and mem-
ory overhead point of view. Moreover, we analyze and resolve security issues of the
6LoWPAN fragmentation mechanism in the context of resource-constrained embed-
ded devices. Hence, combined, our contributions significantly improve the e�ciency
and security of end-to-end security concerning the device and network constraints in
the embedded domain as well as the high resource asymmetry in the IoT. We now
provide a more detailed description of the four core contributions of this thesis as
highlighted in Figure 1.2 and discuss the interplay between our developed solutions.

1.2.1 Tailored Protocol Handshake Mechanisms

The DTLS, HIP DEX, and Minimal IKEv2 protocol profiles and variants all man-
date or recommend the use of public-key cryptography in their protocol specifica-
tions. As we will show in Chapter 4, the use of public-key cryptography in the

2The use of IPv6 is commonly preferred over IPv4 within the context of networked embedded
devices due to the larger address space, the improved auto-configuration capabilities, and the
general migration to IPv6 [HC08]. Hence, we focus our research on the IPv6 protocol adaptations.

3In this thesis, we use the term “DTLS” as a reference to the DTLS profile for the IoT [TF15]
if not mentioned otherwise.
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Figure 1.2 IoT network scenario consisting of networked embedded devices (D), intercon-
necting gateways (GW) and a cloud-based service. The layers in the network stack that are
a↵ected or newly introduced by our contributions are marked in gray. The arrows represent
communication paths via local network infrastructure and potentially the global Internet. The
dashed lines indicates handshake delegation via the newly introduced delegation server (DS).

context of networked embedded devices, however, causes several design-level proto-
col security and performance issues. Most importantly, we find that the processing
time of public-key operations ranging from several hundred milliseconds to a few
seconds significantly hampers the availability and response time of networked em-
bedded devices during the protocol handshake. Hence, the design of end-to-end se-
curity protocols in the IoT must be tailored to reduce the need for computationally
expensive cryptographic operations, to protect networked embedded devices against
DoS attacks targeting these operations, and to account for the varying processing
times of the di↵erent handshake messages. To this end, we present three complemen-
tary, lightweight protocol extensions for DTLS, HIP DEX, and Minimal IKEv2, i.e.,
a flexible session resumption mechanism, a collaborative puzzle-based DoS protec-
tion mechanism, and an adaptive retransmission mechanism. The evaluation results
show that these protocol extensions a↵ord significant computation and transmission
reductions as well as security improvements at moderate RAM and ROM trade-o↵s.

1.2.2 Message Wire-Format Compression

A chief design goal of the DTLS, HIP DEX, and Minimal IKEv2 protocol specifi-
cations is to preserve the original protocol semantics of TLS, HIPv2, and IKEv2,
respectively. TLS, HIPv2, and IKEv2, however, were primarily developed with ex-
tensibility and flexibility in mind. Message conciseness, consequently, only was a sec-
ondary goal. As a result, fixed-length header fields, e.g., were chosen conservatively
large. To tackle these message conciseness issues, related work proposes compression
mechanisms that primarily focus on the DTLS protocol [RSH+13, RSD14] and the
Internet Protocol Security (IPsec) suite [GMSS10, RDC+11, RVJ12, MG14].

Similar to these approaches, the Slimfit compression layer, which we will present in
Chapter 4, addresses message conciseness issues in the context of HIP DEX. Slimfit
i) elides message content that is statically defined in the HIP DEX specification,
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ii) rearranges the message wire-format to achieve a higher compression e�ciency,
and iii) introduces compression profiles to a↵ord evolvability of the devised com-
pression scheme. Notably, the latter two aspects distinguish the Slimfit compression
layer from related compression mechanisms for end-to-end IP security protocols. The
evaluation results show that Slimfit significantly reduces the transmission overhead,
decreases retransmissions, and even marginally reduces the overall computation over-
head compared to the standard HIP DEX protocol at a modest ROM overhead.

1.2.3 Handshake Delegation Architecture

Besides the computationally expensive handshake operations and the lack of a con-
cise message wire-format, DTLS, HIP DEX, and Minimal IKEv2 also have signifi-
cant RAM and ROM requirements when employing public-key cryptography during
the connection establishment. As we will point out in Chapter 5, these memory
overheads render the use of public-key cryptography in the design of end-to-end IP
security protocols infeasible for a wide range of memory-constrained embedded de-
vices. To still enable these devices to communicate securely via standard end-to-end
IP security protocols, we present the design of the handshake delegation architecture.

The key idea behind this architecture is to separate the connection establishment
from the protection of application data and to o✏oad the connection establishment
handshake to an o↵-path, trusted delegation server (see “DS” in Figure 1.2). By
subsequently handing over the established connection context from the delegation
server to the networked embedded device, the handshake delegation architecture
enables this device to only implement a subset of the entire protocol specification as
well as e�cient symmetric-key cryptography for the protection of application data.

Moreover, the handshake delegation architecture naturally provides an authorization
framework by leveraging the central role of the delegation server during the initial
connection establishment handshake. Overall, the evaluation results confirm that the
handshake delegation architecture considerably increases the feasibility of standard
end-to-end IP security in the context of memory-constrained embedded devices.

1.2.4 Secure 6LoWPAN Fragmentation

As a final aspect, we will show in Chapter 6 that the packet processing of the DTLS,
HIP DEX, and Minimal IKEv2 handshake messages at the lower layers in the net-
work stack of networked embedded devices also impacts the security properties of the
considered end-to-end IP security protocol adaptations. More precisely, we observe
that the size of the messages that are transmitted during the various security pro-
tocol handshakes commonly causes fragmentation at the 6LoWPAN layer inside the
embedded domain. Our security analysis of the 6LoWPAN fragmentation mecha-
nism, however, reveals two design-level fragmentation-based DoS attacks that enable
an adversary to prevent the correct reassembly of fragmented handshake messages
at a target device by only sending a single protocol-compliant 6LoWPAN fragment.

To defend against these fragmentation attacks, we present two complementary,
lightweight security mechanisms, i.e., a content-chaining scheme and a split bu↵er ap-
proach. The evaluation results confirm the practicability of the identified 6LoWPAN
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Figure 1.3 Mapping from our contributions to the main factors challenging the design adequacy
of end-to-end IP security protocols and the resulting protocol e�ciency and security issues.

fragmentation attacks and show the e↵ectiveness of our defense mechanisms at mod-
erate trade-o↵s. Importantly, 6LoWPAN packet fragmentation is not limited to
end-to-end IP security protocols and equally applies to the wider scope of large data
transfers, e.g., in case of firmware updates or incompressible sampling data [TH14].
Consequently, the above defense mechanisms also provide protection for other types
of network tra�c that are not specifically considered in the context of this thesis.

1.3 Interplay of our Contributions

Combined, the solutions devised as part of the four core contributions of this thesis
comprehensively account for the e�ciency and security issues that we identify in
our protocol analyses. The contributions thereby address the main goal of this
thesis from di↵erent perspectives. Hence, we now discuss the mapping from the four
contributions to this main goal and highlight the relationships between them.

As depicted in Figure 1.3, the first contribution tailored protocol handshake

mechanisms (C1) addresses both aspects of the main goal, i.e., security protocol e�-
ciency and protocol security, by accounting for the high run-time overheads of DTLS,
HIP DEX, and Minimal IKEv2 in the context of networked embedded devices. In
this, the flexible session resumption and adaptive retransmission mechanisms re-
duce the computation and transmission overheads that are caused by the protocol
handshake, thus specifically accounting for the device and network constraints in
the embedded domain. Moreover, the collaborative puzzle-based DoS protection
mechanism mitigates attacks against the protocol handshake that exploit the re-
source asymmetry in the IoT. The second contribution message wire-format

compression (C2) likewise concerns the identified run-time overheads. This con-
tribution, however, focuses on improving the utilization of the available network
resources. C2, therefore, contributes to the sub-goal security protocol e�ciency.

The handshake delegation architecture (C3) leverages the resource asym-
metry in the IoT to address the device constraints in the embedded domain by
o✏oading the connection establishment handshake to the unconstrained delegation
server. This allows to address the prohibitive code size of the considered end-to-end
security protocols for memory-constrained embedded devices. Thus, C3 primarily
contributes to the sub-goal security protocol e�ciency. Finally, secure 6lowpan
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Figure 1.4 Interplay between our four core contributions C1 to C4 in this thesis. C4 provides
the foundation for our remaining contributions. C1 and C2 complement each other. Moreover,
C3 depends on one of our developed solutions from C1 and may additionally leverage C2.

fragmentation (C4) addresses the sub-goal protocol security by defending net-
worked embedded devices against fragmentation attacks at the 6LoWPAN layer.

Regarding the relationships between the four contributions of this thesis (illustrated
in Figure 1.4), contribution C4 builds the foundation for the remaining three contri-
butions by securing 6LoWPAN as the underlying transport mechanism for DTLS,
HIP DEX, and Minimal IKEv2 in the embedded domain. The complementary con-
tributions C1 and C2 then provide for the e�cient and secure operation of these
protocols in the context of networked embedded devices. Contributions C1 and C2,
however, assume these devices to be equipped with su�cient RAM and ROM re-
sources for a comprehensive protocol implementation with support for public-key
cryptography. Hence, to also cater to networked embedded devices with insu�cient
memory resources for such a comprehensive protocol implementation, contribution
C3 additionally addresses the high memory requirements of the considered end-to-
end IP security protocols. In doing so, contribution C3 builds on the flexible session
resumption mechanism from contribution C1. Similarly, the message compression
facilities from contribution C2 could also be employed in contribution C3 to fur-
ther reduce the transmission overhead in the embedded domain. As such, the con-
tributions in thesis e↵ectively complement each other and, combined, significantly
improve the e�ciency and security of end-to-end security in the context of the IoT.

1.4 Genesis and Attribution of our Contributions

In this section, we outline the genesis and the attribution of the four core contribu-
tions of this thesis. Overall, these contributions were developed in collaboration with
several students in the context of their Bachelor’s, Master’s, and Diploma theses at
COMSYS and include the input of various co-authors concerning the respective pub-
lications. If not mentioned otherwise, the author of this thesis was responsible for
the initial conceptual ideas, the detailed solution design, and the final publication.

The flexible session resumption extension and an early version of the collaborative
puzzle-based DoS protection mechanism of contribution C1 were developed jointly
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with Jens Hiller in the context of his Bachelor’s thesis [Hil12]. Jens Hiller imple-
mented and evaluated the devised protocol extensions. Similarly, he realized the
adaptive retransmission mechanism. The feedback of the co-authors allowed to im-
prove the presentation of the devised protocols extensions in a scientific publica-
tion [HWZ+13] and several standardization documents [HGS13, HHH13, MH14].

The abstract idea of contribution C2 was published in [HHW11]. Here, Tobias Heer
contributed with valuable discussions about the adaption requirements of end-to-end
security in the IP-based IoT. The author of this thesis further substantiated these
initial design ideas in collaboration with Jens Hiller in the context of his Bachelor’s
thesis [Hil12]. In doing so, the author of this thesis identified the compression po-
tentials with respect to the HIP DEX message wire-format. Afterwards, Jens Hiller
implemented the devised Slimfit layer and evaluated the corresponding prototype.
The results were published in [HHHW13]. In this context, Martin Henze contributed
to the comparison of the Slimfit layer with various generic compression mechanisms.

Contribution C3 is the result of early work with Christian Röller in the context of
his Diploma thesis [Röl12] and several discussions at the IETF based on [HRW12].
The author of this thesis further improved on these initial ideas in collaboration
with Hossein Shafagh in the context of his Master’s thesis [Sha13]. In this, Hossein
Shafagh implemented the handshake delegation architecture according to author’s
design decisions and compared the resulting architecture with standard DTLS hand-
shakes. The feedback of the co-authors contributed to the presentation of this work in
scientific publications [HZS+13, HSR+14] and standardization documents [HGS13].

Finally, contribution C4 was published in [HHW+13]. Here, Timo Boetcher and
the author of this thesis jointly performed the security analysis of the 6LoWPAN
fragmentation mechanism in the context of a Diploma thesis [Boe11]. The corre-
sponding defense mechanisms then were partially implemented by Timo Boetcher.
Moreover, Hossein Shafagh and Jens Hiller contributed to the implementation and
the evaluation of the devised defense mechanisms as part of their work at COMSYS.

1.5 Thesis Outline

The remainder of this thesis is structured as follows. In Chapter 2, we lay the foun-
dation of our work by introducing the basic network scenario and by describing the
general network architecture as well as the protocol landscape of the IP-based IoT.
Chapter 3 then motivates the need for network security in the IoT and introduces
the cryptographic primitives and the IP security protocols that provide the basis for
our contributions. Based on the provided protocol descriptions and an analytical
protocol comparison, we derive the problem statement of this thesis. Chapters 4
through Chapter 6 then present the four core contributions. Because two of these
contributions focus on run-time-related protocol issues, we cover these contributions
in a single chapter. For each contribution, we analyze the problem space, describe
the solution design, discuss the security considerations as well as related work, and
present the evaluation results. We conclude this thesis in Chapter 7 by revisiting
the key challenges regarding our contributions and by identifying future work.
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2
The IP-based Internet of Things

Our main goal in this thesis is to contribute to the secure communication of net-
worked embedded devices in the IP-based IoT. IP technology thereby enables the
transparent interconnection of these devices with the existing IP infrastructure and
a↵ords interoperable communication across application and network domains. The
special device and network characteristics in the embedded domain, however, render
an unmodified adoption of IP technology in the IoT ine�cient. The IETF, therefore,
currently standardizes dedicated protocols and protocol adaptations for the IoT.

In this chapter, we lay the foundation of this thesis by introducing the basic network
scenario and its enabling IP technology. Specifically, we first outline exemplary IoT
application scenarios and common IoT tra�c flows in Section 2.1. We describe
the special device and network characteristics concerning the embedded domain of
these scenarios in Section 2.2. Section 2.3 then presents the adapted IP network
architecture for networked embedded devices and highlights the relationship of its
comprising protocols to our contributions. Section 2.4 further details the 6LoWPAN
adaptation layer for IPv6 as this new protocol layer is especially relevant within the
context of this thesis. We conclude this chapter with a brief summary in Section 2.5.

2.1 Application Scenarios and Network Tra�c Flows

The key idea behind the IP-based IoT is to transparently interconnect objects from
the physical world with the existing IP infrastructure in order to provide an enhanced
understanding and control over the physical environment and the objects residing in
it. Application scenarios that are destined to benefit from such an interconnection
range from personal health monitoring and home automation solutions to agricul-
tural monitoring, vehicular telematics, and industrial control systems [KKV12]. No-
tably, communication in these scenarios often is envisioned to involve direct device-
to-device interactions. For instance, a thermostat in a building automation scenario
may directly interact with a radiator control unit to adjust the room temperature.
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Figure 2.1 Abstract IoT network scenario consisting of networked embedded devices (D) and
conventional communication end-points such as workstations and servers. Arrows indicate
network tra�c flows with a special focus on interactions that involve networked embedded
devices. Dashed arrows represent tra�c flows that involve conventional IP infrastructure.

Such device-to-device communication can also extend beyond the scope of a single
network domain. This, for example, is the case if spacial (the building automation
solution extends beyond the scope of a few adjacent rooms) or technical restrictions
(the involved devices employ di↵erent radio technologies) need to be accounted for.
As depicted in Figure 2.1, the interconnection of the di↵erent devices in such inter-
domain scenarios then often involves conventional IP infrastructure.

Interactions in the IoT, however, are not limited to communication between net-
worked embedded devices (see Figure 2.1). Direct end-to-end communication be-
tween networked embedded devices and conventional communication end-points such
as workstations or mobile devices, for example, has the potential to ease the config-
uration, monitoring, and on-site maintenance of these embedded devices. Moreover,
networked embedded devices may also report their sensed information to a central
data collector such as a local server or a cloud-based service as depicted in Fig-
ure 2.1 (see rightmost arrow) [HHCW12]. With respect to industrial monitoring,
the machinery in a production plant, for instance, may report critical equipment
parameters such as temperature or vibrations to its manufacturer with the goal to
extend periodic maintenance cycles and to trigger short-term maintenance opera-
tions in case of sensed abnormalities that are indicative of an impending equipment
failure. Similarly, networked embedded devices may also tap into the vast number
of information sources on the Internet to fulfill their tasks in the physical world. For
example, an automated sprinkler system of an agricultural monitoring solution may
schedule its watering cycles depending on an Internet-based weather forecast.

As highlighted by the examples given above, IP technology for networked embed-
ded devices enables objects from the physical world to seamlessly interact with the
existing IP infrastructure as active network participants. The special device and
network characteristics in the embedded domain, however, necessitate adaptations
to the employed IP protocols in order to guarantee their e�cient operation in the
IoT. We now first describe these special characteristics in more detail and then
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provide an overview of the standardization e↵orts at the IETF that aim at adapting
IP technology to the device and network constraints in the embedded domain.

2.2 Special Characteristics in the Embedded Domain

Networked embedded devices often exhibit resource constraints that di↵erentiate
these devices from conventional IP-enabled hosts or services. To highlight this fact,
we denote resource-constrained networked embedded devices with their short form:
constrained devices1. Similarly, we call the networks formed by constrained devices –
which then become constrained nodes in these networks – constrained node networks.
We now continue with a description of the most important properties of constrained
devices. Moreover, we introduce the network technologies that typically are used for
the interconnection of constrained devices, focusing on wireless technologies.

2.2.1 Constrained Devices

With annual sales in the order of billions of units [Ins15], embedded devices build
the basis for most of today’s electronic consumer goods and industrial equipment.
These embedded devices are typically designed for small size and low power con-
sumption. Moreover, low production costs often play a vital role in the design of
embedded devices: As these devices are produced on a massive scale, savings in the
order of a few cents per device constitute considerable cost reductions with respect
to the production of billions of units. As a result, the design of embedded devices
commonly trades a small size, low costs, and high energy e�ciency for low clock
frequencies and limited memory resources [BEK14]. More precisely, embedded de-
vices typically employ microcontrollers (MCUs) that operate at clock frequencies
in the order of a few MHz and provide memory resources in the order of several
kilobytes of RAM and several tens of kilobytes of ROM. These limited resources
stand in stark contrast to the vast amount of hardware resources of conventional
IP-enabled hosts or services. For example, even mobile devices such as smartphones
nowadays are equipped with a few GBs of RAM, tens of GBs of persistent storage,
and multi-core CPUs that provide computation power in the order of GHz. Hence,
these conventional communication end-points vastly outperform embedded devices.

With continuing advances in low-power radio technology, embedded devices are in-
creasingly supplemented with wireless radio modules [HC02]. This enables embedded
devices to also consider information from other devices in their vicinity when per-
forming their tasks in the physical world. To investigate challenges originating from
the low-power wireless interconnection of networked embedded devices, several ex-
perimentation platforms were created over the past decade within the scope of WSN
research. In this thesis, we utilize i) the TelosB [PSC05], ii) the WiSMote [wismote],
and iii) the Zolertia Z1 [zolertia] platforms as instances of constrained devices for our
prototyping and evaluation purposes. These platforms are built from o↵-the-shelf
components that are also used in commercial embedded devices. We now briefly
describe the most important properties of these hardware platforms to provide a
more detailed impression of the device constraints in the IP-based IoT.

1We note that this terminology follows established terminology at the IETF [BEK14].
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The TelosB platform is equipped with a 16-bit MSP430-based MCU that operates
at 8 MHz and provides 10KB of RAM and 48KB of ROM. It is one of the most
widely used platforms in WSN research. Both, the WiSMote and the Zolertia Z1
platform, constitute revised variants of the TelosB platform. More precisely, they
are based on newer generations of the 16-bit MSP430 MCU that operates at 16MHz
and supports 20-bit memory addressing. Thus, the WiSMote and Z1 platforms can
address a larger memory region than pure 16-bit platforms such as the TelosB. This
allows to equip the WiSMote platform with 16KB of RAM and 128 to 256KB of
ROM. Similarly, the Zolertia Z1 platform has 8 kB of RAM and 92 kB of ROM.

We note that more powerful platforms such as the 32-bit System on a Chip (SoC)
ARM Cortex-M3 have also become available on the embedded market. These plat-
forms, however, do not yet achieve the same low production cost and high energy
e�ciency as their 8-bit or 16-bit counterparts [KKR+12]. Hence, these platforms
currently are primarily intended for application scenarios with comparably high com-
putation demands such as medical sensing scenarios. In contrast, our work focuses
on application scenarios that do not necessitate the high processing power of these
more powerful platforms. Still, it is worth noting that the contributions of this thesis
may also find their application in the context of these more powerful platforms.

2.2.2 Wireless Technologies and Constrained Node Networks

Similar to embedded devices, their designated radio technologies are also designed
for low-power operation and cost-e�cient production of the corresponding radio
modules. To this end, these technologies, e.g., employ low-bandwidth wireless links
and simple radio components. Furthermore, radio duty cycling techniques are com-
monly employed in order to achieve an energy-e�cient utilization of the transceiver
by switching o↵ the radio module for most of the time [MBC+01, PSC05]. As a result
of these design traits, the radio links between constrained devices, however, often ex-
hibit a higher packet loss ratio than observed in conventional IP networks [SDTL10].

To achieve interoperable communication within the embedded domain, a small num-
ber of radio standards specifies the physical and the data link layers for the wireless
links between networked embedded devices. IEEE 802.15.4 [IEEE11b] is one of the
most prominent standards. It forms the basis for several other standards including
ZigBee [ZB12], ISA100.11a [ISA11], and WirelessHART [WH13]. IEEE 802.15.4
allows to transmit data with a rate of up to 250 kbit/s. Moreover, it defines a max-
imum frame size of 127 byte. Concerning upper layer payload data, these 127 byte
are further reduced by a minimum of 9 byte and a maximum of 46 byte for header
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Figure 2.2 IEEE 802.15.4-2003 frame format at the physical and the link layer. The frame
space available for upper layer protocol data is marked gray. Size indications are given in byte.
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(a) Star topology (b) Mesh topology

Figure 2.3 Network topologies supported by the IEEE 802.15.4 radio standard. The node
marked in black provides the uplink to an adjacent network for all other nodes.

information at the data link layer depending on the employed addressing and secu-
rity modes (see Figure 2.2). Hence, in the worst case, no more than 81 byte of upper
layer protocol data can be transmitted in a single IEEE 802.15.4 frame [IEEE03].

We note that the IEEE 802.15.4 protocol revisions from 2006 [IEEE06] and later
add additional information to the security header. As a result, the overall header
overhead with these revisions further increases by up to 9 byte. Correspondingly, the
worst case payload size decreases to 72 byte. Importantly, the CC2420 [cc2420] radio
modules of the TelosB and Zolertia Z1 platforms only support the IEEE 802.15.4-
2003 standard, whereas the CC2520 [cc2520] radio interface of the WiSMote platform
supports IEEE 802.15.4-2006. Hence, our evaluation setups in this thesis exhibit
di↵erent per-frame payload lengths depending on the employed hardware platform.

With respect to the supported network topologies, the networks formed by IEEE
802.15.4-enabled constrained devices can either take the shape of a star topology or
of a multi-hop mesh topology (see Figure 2.3). One node in these topologies then
commonly provides the interconnection with potential adjacent networks for all other
nodes of the constrained node network. In contrast to the star topology, the multi-
hop characteristics of the mesh topology also allow the constrained node network
to span beyond the range of a single radio link. The intermediate nodes in this
topology then, however, require additional routing information to forward packets
between end-points. It is worth noting that we do not make specific assumptions
about the underlying topology of the constrained node networks in this thesis.

Finally, a few alternatives to IEEE 802.15.4 exist with respect to the wireless inter-
connection of constrained devices. These include Bluetooth Low Energy [BT13] and
cellular network technologies such as GPRS [BDHS+11]. However, as the experi-
mentation platforms employed in this thesis are equipped with IEEE 802.15.4 radio
modules, we perform our research based on this wireless standard as one specific ra-
dio technology for constrained node networks. Still, we note that the contributions
in Chapters 4 and 5 are independent from the employed link layer technology and,
thus, also apply in application scenarios with alternative radio technologies.

2.3 Interconnecting Constrained Devices with IP

The above device and network characteristics render an unmodified adoption of IP
technology in the IoT ine�cient. The IETF, therefore, currently standardizes ded-
icated protocols and protocol adaptations for the IP-based IoT. We now describe
the network architecture that a↵ords the seamless integration of constrained devices
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Figure 2.4 The network scenario in scope of our work. IP-enabled constrained devices (D) form
constrained node networks. Border routers connect these networks, e.g., to a local area network
or to the Internet. The connectivity a↵ords communication between constrained devices from
separate network domains and enables the interconnection with local/remote hosts or services.

with the existing IP infrastructure. This architecture denotes the basic network
scenario of our work. Moreover, we introduce the adapted IP network stack for con-
strained devices that enables the e�cient operation of IP technology in constrained
node networks. Its comprising protocols denote the enabling foundation of our work.

2.3.1 Network Architecture of the IP-based Internet of Things

One of the core architectural principles of the Internet is to interconnect indepen-
dent network domains by forming a network of networks [KR12]. Following this
idea, IP-enabled constrained devices can be interconnected by forming independent
constrained node networks and by attaching these networks to the existing IP in-
frastructure. As shown in Figure 2.4, this network attachment can, e.g., be a direct
uplink to an Internet Service Provider (ISP) or to a Local Area Network (LAN).

The separation into independent network domains allows each network domain to
operate its preferred link layer technology. Interconnecting border routers then trans-
late between the di↵erent link layer technologies and leverage routing information
at the IP layer for packet forwarding purposes. Thus, communication of constrained
devices is no longer confined to the local wireless network, but may also transparently
take place across network domains without the need for dedicated application-level
gateways. In fact, this transparent communication may involve interactions with
other constrained devices as well as with conventional hosts or services that are
situated in adjacent LANs or that are reachable via the Internet. These hosts and
services as well as the interconnecting routers typically rely on commodity, mains-
powered hardware and do not exhibit the same resource limitations as constrained
devices. Hence, they denote comparably powerful network entities in the IoT.

Regarding the network layer protocol that enables such transparent communication
in the IoT, the IPv6 standard is commonly preferred over the Internet Protocol
version 4 (IPv4) [HC08]. This is primarily due to the limited IPv4 address space
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Figure 2.5 Stateless address autoconfiguration for constrained devices (D) with IPv6. The
border router disseminates the IPv6 prefix inside the constrained node network. The constrained
devices then complement this prefix to an IPv6 address, e.g., based on their MAC address.

and the improved auto-configuration mechanisms of the IPv6 standard [SB10]. The
latter is especially important as constrained devices may follow an unattended mode
of operation and often do not provide user interfaces other than their wireless links.

To enable forwarding of IP packets to or from a constrained device with IPv6, each
constrained node network is assigned an IPv6 address prefix. This prefix must be
valid and unique within the scope of the interconnecting uplink in order to provide
connectivity with remote communication end-points. The management of this prefix
is delegated to a border router. This router is located at the boundary of the
constrained node network (see Figure 2.5). As one of its main tasks, the border router
disseminates its IPv6 prefix inside the wireless network, e.g., via the IPv6 Neighbor
Discovery (ND) mechanism [SCNB12]. Thus, all constrained devices belonging to
the same constrained node network share a common IPv6 prefix, i.e., the first 64 bit
of the IPv6 address. When learning this prefix, a constrained device complements
the prefix to a complete IPv6 address by appending a 64 bit interface identifier
that must be unique for a given constrained node network [MKHC07]. Hence, an
external network packet sent to a constrained device can first be forwarded to the
corresponding border router based on the IPv6 prefix of the destination address.
From there, the packet is forwarded to the final destination inside the constrained
node network based on network-internal routing information. This information must
be provided by an additional routing protocol, e.g., the IPv6 Routing Protocol for
Low-Power and Lossy Networks (RPL) [WTB+12]. Similarly, a network packet sent
to an end-point that is located in an external network domain is first forwarded to
the border router since the IPv6 destination address prefix is not used inside the
constrained node network. The border router then forwards the received packet
towards its final destination based on the border router’s local routing information.

To summarize, the IP network architecture enables a constrained device to uniquely
address another constrained device, host, or service independent from the network
that this communication end-point belongs to. Similarly, the communication end-
point can address the device once its IP address is known. This addressability enables
transparent end-to-end communication across network domains in the IP-based IoT.

2.3.2 The Adapted IP Network Stack for Constrained Devices

The IP network architecture a↵ords transparent end-to-end communication in the
IoT. Its supporting protocols, however, were not developed with the special device
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Figure 2.6 Comparison of the IP network stacks for constrained devices, border routers, and
conventional hosts or services. Protocols that are specifically designed for the IP-based IoT are
marked in gray. Notably, the IPv6 adaptation layer 6LoWPAN and the RPL routing protocol
are only deployed on constrained devices and border routers, whereas the application protocol
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and network limitations of constrained node networks in mind (see Section 2.2). As
a result, these protocols make assumptions about properties of the underlying link
layer that often do not hold in the context of constrained node networks. Several
standardization e↵orts at the IETF, therefore, aim at adapting the IP network stack
to the special device and network characteristics in the embedded domain. The main
goal of these protocol adaptations is to reduce the header overhead, the processing
requirements, and consequently the power consumption for constrained devices.

For IEEE 802.15.4 networks, these standardization e↵orts resulted in a network stack
that primarily di↵ers from conventional network stacks with respect to the following
three protocols: i) the RPL routing protocol, ii) the 6LoWPAN adaptation layer for
IPv6 [MKHC07], and iii) the Constrained Application Protocol (CoAP) [SHB14].

As depicted in Figure 2.6, the deployment of RPL and 6LoWPAN is limited to the
constrained node networks. Consequently, the use of these protocols is transparent to
the communication end-points that are located outside a constrained node network.
In contrast, CoAP is intended to be used in an end-to-end fashion and, thus, must be
supported by all communication partners of constrained devices. We now provide a
brief overview of these protocols and highlight their relationship to our contributions
in this thesis. We then describe the 6LoWPAN adaptation layer in more detail as
this newly introduced protocol layer is highly relevant in the context of this thesis.

The RPL routing protocol for multi-hop mesh topologies

Multi-hop mesh topologies require routing information at each intermediate hop
in the constrained node network in order to a↵ord packet forwarding towards the
final destination. To establish this routing information, the IP network stack for
constrained devices includes the RPL routing protocol. RPL builds a tree-based
routing topology on top of the available wireless links. This routing tree is typically
rooted at the border router. To build this tree, RPL facilitates a distance vector
routing approach [TdOV10]. We note that alternatives to RPL may also be used for
routing purposes in constrained node networks as the routing protocol is not exposed
to adjacent networks and therefore is network-specific. In our work, we assume
the deployment of a routing approach that a↵ords multi-hop packet forwarding in
constrained node networks. Still, we do not rely on a specific routing protocol.
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IPv6 protocol adaptations in the context of the 6LoWPAN layer

As shown in Figure 2.6, the 6LoWPAN layer is located between the data link layer
and the IPv6 layer. Its main task is to adapt the IPv6 packet format for transmission
over IEEE 802.15.4 links. To this end, the 6LoWPAN layer provides a header com-
pression mechanism that trades an increased computation overhead for a reduced
transmission overhead. This specific trade-o↵ is highly advantageous in constrained
node networks as the costs of transmissions largely outweigh the cost of compu-
tations with respect to their energy expenditure [PK00]. In addition, compression
and decompression typically only have to be performed by the communication end-
points, whereas transmissions often involve several constrained devices in multi-hop
topologies. Hence, packet compression has the potential to not only improve the
lifetime of the source and the destination of a packet flow, but also to increase the
overall lifetime of an entire constrained node network. Following the same goal, we
will present the Slimfit compression layer as one of the contributions of this thesis.

The 6LoWPAN standard additionally introduces a fragmentation mechanism for
IPv6 packets. This mechanism a↵ords the standard-conform use of the IPv6 protocol
in constrained node networks and enables the transmission of IPv6 packets that
exceed the maximum frame size of IEEE 802.15.4. As a second contribution, we will
show that this mechanism is vulnerable to potential DoS attacks. For further details
about the 6LoWPAN fragmentation mechanism, we refer to Section 2.4.2.

Further modifications of the IPv6 standard in the context of the 6LoWPAN adap-
tation layer concern the IPv6 Neighbor Discovery mechanism [SCNB12]. These
modifications include the limitation of the IPv6 Neighbor Discovery mechanism to
host-initiated protocol interactions as well as the elimination of multicast tra�c.
This allows to reduce unsolicited network transmissions inside constrained node net-
works and enables the use of radio duty cycling techniques to decrease the energy
expenditure on constrained devices. Moreover, the adapted IPv6 Neighbor Discovery
mechanism also includes the possibility to disseminate 6LoWPAN header compres-
sion contexts. As a result, the 6LoWPAN layer can apply additional context-based
header compression mechanisms to IPv6 packets. We refer to Section 2.4.1 for fur-
ther information about these context-based header compression mechanisms.

The CoAP protocol for web services in the IoT

For end-point interactions at the application layer, the adapted IP network stack
includes the CoAP protocol. CoAP is specifically designed to realize web services in
the field of machine-to-machine (M2M) communication [She10]. As such, it is cen-
tered around the same RESTful client/server architecture as the Hypertext Transfer
Protocol (HTTP). Specifically, CoAP provides a subset of the request methods of-
fered by HTTP, i.e., GET, PUT, POST, and DELETE, and is based on a Uniform
Resource Identifier (URI) addressing scheme. However, in contrast to HTTP, CoAP
uses the User Datagram Protocol (UDP) as its underlying transport protocol in
order to avoid the complexities of a reliable transport protocol such as the Trans-
mission Control Protocol (TCP). Moreover, it employs a compact header format
to reduce the transmission overhead in the context of constrained node networks.
CoAP additionally extends the synchronous pull interaction model of HTTP with
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an asynchronous subscription-based model [Har14b]. As a result, continuous polling
is no longer required to detect changes to a REST resource of a constrained device.

In this thesis, we do not rely on a specific application layer protocol. Instead, we
focus on general-purpose security solutions that allow to protect a wide range of
application protocols and application data. Still, the CoAP specification has key
implications on our work as it mandates an equal level of security as currently rec-
ommended for regular Internet-based communication. As a third and fourth contri-
bution, we will introduce lightweight protocol extensions and a security architecture
that allow to realize this level of security in the context of constrained devices.

2.4 The 6LoWPAN Adaptation Layer for IPv6

We now provide a detailed description of the 6LoWPAN header compression and
fragmentation mechanisms. Regarding the 6LoWPAN header compression mecha-
nism, it is our intention to familiarize the reader with related e↵orts to the Slimfit
compression layer that we will present in Chapter 4. The discussion of the 6LoWPAN
fragmentation mechanism, in turn, aims at providing a basic understanding of the
protocol issues below the network layer that we will address in Chapter 6.

2.4.1 6LoWPAN Header Compression Facilities

A central goal of the 6LoWPAN standard is to reduce the packet overhead of the IPv6
and UDP headers. This overhead reduction is highly desirable for constrained node
networks as the IEEE 802.15.4 standard only allows for IPv6 packet sizes of up to
81 byte for network setups involving maximum-size link layer headers (assuming the
IEEE 802.15.4-2003 standard). An IPv6 header in its shortest form, i.e., excluding
IPv6 extension headers, however, already requires 40 byte of this payload space. An
8 byte UDP header further reduces this payload space, thus leading to a maximum
of only 33 byte or about 26% of an IEEE 802.15.4 frame for the actual application
data. As a result of these header overheads, each link layer frame would primarily
convey protocol header information instead of the intended application data.

To improve this payload ratio, the 6LoWPAN standard defines a number of header
compression mechanisms for the IPv6 and UDP protocols [MKHC07]. These mech-
anisms operate on a hop-by-hop basis and follow a per packet approach. This de-
sign decision denotes a trade-o↵ between an optimal compression ratio and low
requirements regarding the RAM and ROM resources needed on constrained de-
vices. In fact, flow-based compression mechanisms such as RObust Header Com-
pression (ROHC) [SPJ10] commonly achieve better compression results than purely
packet-based approaches as these mechanisms can additionally exploit redundancies
across a continuous packet flow. However, these approaches often incur extensive
book-keeping and synchronization overheads for the recovery mechanisms that are
needed to handle packet loss in a continuous packet flow. Thus, packet-based ap-
proaches were considered preferable in constrained node networks when standardiz-
ing the 6LoWPAN layer at the IETF [SB10]. We note that we follow this assessment
in the design of the Slimfit compression layer for the HIP DEX protocol.
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Figure 2.7 IPv6 and UDP header structure. Header fields that always are compressible are
marked in gray. All other fields are only compressible depending on upper or lower layer header
information or require the header field to contain specific values for compression purposes.

The 6LoWPAN standard initially defined two stateless compression mechanisms,
i.e., LOWPAN HC1 for IPv6 and LOWPAN HC2 for UDP. Both mechanisms com-
press typically unused or redundant header fields. As depicted in Figure 2.7, such
compressible header fields, e.g., include the IP version field, which is expected to
commonly refer to version 6 in the context of the 6LoWPAN. Similarly, the IPv6
and UDP length information can typically be derived from link layer header infor-
mation and thus can be omitted for transmission inside a constrained node network.

The LOWPAN HC1 mechanism, however, is limited to the compression of link-local
IPv6 addresses. This is because link-local IPv6 addresses commonly are based on
the well-defined IPv6 prefix fe80::/64 and the link layer address of a constrained
device, which also is contained in the link layer header for link-local communica-
tion [MKHC07]. In contrast, the compression of network-external, globally routable
IPv6 addresses would require additional shared knowledge of the IPv6 prefix and the
complementing interface identifier as this information is not readily available inside
a constrained node network. To address this short-coming, a context-based com-
pression mechanism called LOWPAN IPHC recently replaced the stateless LOW-
PAN HC1 approach [HT11]. This compression mechanism employs compression
contexts that are configured on a network-wide basis and that identify omissible IPv6
address information, e.g., the prefix of a globally routable IPv6 address. The dissem-
ination of these context inside a constrained node network can, e.g., be achieved via
the adapted IPv6 Neighbor Discovery mechanism for constrained devices [SCNB12].

Notably, the LOWPAN IPHC mechanism does not leverage other redundancies in
a packet flow beyond IPv6 addresses that behave in a predictable manner, e.g.,
sequence numbers. As a result, it does not incur the extensive book-keeping and
synchronization overheads of flow-based compression mechanisms. For the same
reason, the Slimfit compression layer, which we will present in Chapter 4, employs
compression contexts to a↵ord evolvability of the devised compression scheme.

When extending the 6LoWPAN header compression facilities with LOWPAN IPHC,
a new upper layer header compression mechanism called LOWPAN NHC also was
defined as a replacement of LOWPAN HC2. Compared to LOWPAN HC2, LOW-
PAN NHC additionally a↵ords the compression of IPv6 extension headers as well
as stacks of compressed IPv6 extension and transport protocol headers. More-
over, LOWPAN NHC allows to indicate the compression mechanism employed in
a 6LoWPAN packet via a dedicated Next Header Compression (NHC) ID. We lever-
age this NHC ID field to signal the use of our Slimfit compression layer.



22 2. The IP-based Internet of Things

Achievable 6LoWPAN compression ratios

We now provide a brief overview of the compression ratios that can be achieved with
the LOWPAN IPHC and LOWPAN NHC mechanisms. These ratios are important
with respect to the evaluation of our contributions in Chapters 4 to 6.

The compression ratios with LOWPAN IPHC and LOWPAN NHC strongly de-
pend on the header information at the data link layer, the transport layer, and
the availability of additional 6LoWPAN compression contexts. In the best case,
LOWPAN IPHC reduces the IPv6 header size to 2 byte with link-local communica-
tion [HT11]. Similarly, LOWPAN NHC allows to compress UDP headers to 2 byte.
Hence, 77 byte of payload remain for application data on a per-frame basis, i.e., as-
suming IEEE 802.15.4-2003. In the worst case, however, the IPv6 header can only
be compressed from 40 to 39.5 byte and the UDP header from 8 to 7 byte. Thus, a
single 6LoWPAN packet may still be limited to 34.5 byte of application data.

As the actual compression ratio is network- and scenario-specific, we consider a
conservative compression ratio for our evaluation that lies in between these two
extremes. Specifically, we assume the common case that the Tra�c Class, the Flow
Label, and the Next Header fields in the IPv6 header as well as the port information
and the checksum field in the UDP header can be compressed (see Figure 2.7).
Moreover, we assume that no end-point-specific 6LoWPAN compression contexts
are available that would allow to omit network-external IP addresses in the IPv6
header via the LOWPAN IPHC mechanism. As a result, IEEE 802.15.4 frames in
our evaluation setups in Chapters 4 and 6 can carry a maximum of 42 byte (i.e., with
IEEE 802.15.4-2003). Conversely, our evaluation setup in Chapter 5 has a maximum
per-frame payload size that is further reduced by 9 byte to a total of 33 byte since
this setup employs IEEE 802.15.4-2006 inside the constrained node network.

2.4.2 6LoWPAN Packet Fragmentation

The IPv6 standard mandates a minimum Maximum Transmission Unit (MTU) of
1280 byte from the underlying data link layers that carry IPv6 packets [DH98]. As a
result, IPv6-compliant communication end-points only fragment packets that exceed
this well-defined threshold. However, even with maximum header compression, the
available frame size of link layer technologies such as IEEE 802.15.4 does not su�ce
to transmit IPv6 packets of 1280 byte in an unfragmented manner. For such situ-
ations, the IPv6 standard specifies that link-specific fragmentation and reassembly
mechanisms must be provided below the IPv6 layer. The 6LoWPAN standard de-
fines these mechanisms for IEEE 802.15.4 and similarly constrained data link layers
with the goal to split exceedingly large IPv6 packets into frame-sized fragments.

The 6LoWPAN fragmentation mechanism operates on readily compressed IPv6
packets. Hence, the 6LoWPAN layer first applies its header compression mecha-
nisms to the original IPv6 packet and then performs the necessary packet fragmen-
tation operations. The 6LoWPAN fragmentation mechanism thereby first checks
if the compressed IPv6 packet exceeds the available payload size of the underly-
ing link layer. In case of an exceeding size, it treats the entire packet as a single
data field and iteratively segments this field into frame-sized 6LoWPAN fragments.
In doing so, the fragmentation mechanism prefixes each fragment with a fixed-size
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Figure 2.8 The packet structure before (top) and after (bottom) after the 6LoWPAN header
compression and packet fragmentation mechanisms were applied to an IPv6 packet. The addi-
tional 6LoWPAN fragmentation headers are marked in gray. Notably, only the first 6LoWPAN
fragment (i.e., the FRAG1) contains routable IPv6 header information.

6LoWPAN fragmentation header (see Figure 2.8). The fragmentation header of the
first 6LoWPAN fragment, called FRAG1, thereby contains the datagram size of the
entire uncompressed IPv6 packet and a datagram tag, which is unique per sender
and fragmented IPv6 packet, for packet identification purposes. The remaining
6LoWPAN fragments, called FRAGNs, additionally include a datagram o↵set that
indicates the position of the fragment payload in the uncompressed IPv6 packet.

Upon reception at a reassembling node, the information contained in the 6LoWPAN
fragmentation header a↵ords an e�cient in-place reassembly of the fragmented IPv6
packet. More precisely, the conveyed datagram size enables a receiving node to re-
serve the necessary bu↵er space for the reassembly and decompression of the original
IPv6 packet. The order, in which 6LoWPAN fragments are received, thereby does
not impact the reassembly procedure as all fragments carry size information about
the original IPv6 packet and, thus, a↵ord the reservation of the necessary bu↵er
space. Moreover, the fragment o↵set contained in the FRAGN header enables a
reassembling node to immediately store the payload of the received 6LoWPAN frag-
ments at the correct position in the reserved reassembly bu↵er. To verify that a
newly received 6LoWPAN fragment indeed belongs to the same IPv6 packet as the
ones already occupying the reassembly bu↵er, the reassembling node matches the
datagram tag, the datagram size, and the link layer source and destination addresses
of the received 6LoWPAN fragment to the partially reassembled IPv6 packet in the
reassembly bu↵er. These header fields uniquely identify a fragmented IPv6 packet.

Concerning the reassembly procedure, the 6LoWPAN standard recommends that
overlapping fragments in the reassembly bu↵er should cause this bu↵er to be flushed.
The newly received fragment then may be used to begin the reassembly of a new
fragmented packet. Moreover, the standard mandates a reassembly timeout of up
to 60 seconds to free the reassembly bu↵er in case of an incomplete reception of a
fragmented IPv6 packet, e.g., due to fragment loss. As we show in Chapter 6, an
adversary can exploit these design decisions to block the reassembly of fragmented
packets inside a constrained node network. This is especially critical as end-to-
end IP security protocols typically require the transmission of packets that exceed
the available frame size of IEEE 802.15.4 links during their protocol handshakes.
Consequently, the identified 6LoWPAN fragmentation attacks enable an adversary
to block the establishment of secure end-to-end communication in the IP-based IoT.



24 2. The IP-based Internet of Things

2.5 Summary

IoT network scenarios commonly involve the interconnection of constrained devices,
hosts, and services. IP technology for constrained devices realizes this interconnec-
tion in an end-to-end manner and transparently across application and network do-
mains. However, while largely enabled by the same network architecture as employed
in conventional network scenarios, the special device and network characteristics of
constrained node networks necessitate the adaptation of existing IP protocols. Such
protocol adaptations must specifically consider the following three aspects:

Device constraints: Constrained devices are equipped with only a few MHz of
computational power, several kilobytes of RAM, and several tens of kilobytes
of ROM. Moreover, they may be battery-powered or employ energy harvesting
techniques. Thus, constrained devices potentially only have a very limited
energy budget. In addition, these devices often follow unattended modes of
operation and do not provide user interfaces other than their radio modules.

Network constraints: Network transmissions within constrained node networks
typically involve low-power, short-range wireless links. These links exhibit se-
vere bandwidth and packet size limitations as well as packet loss rates that ex-
ceed these of conventional link layer technologies. For example, IEEE 802.15.4
links are limited to a maximum frame size of 127 byte at the link layer. As a
result, header information and application data that extend beyond this frame
size must be fragmented for transmission inside a constrained node network.

Resource asymmetry: Network interactions in the IoT not only involve commu-
nication between constrained devices but also a↵ords end-to-end communica-
tion with conventional hosts or services. In contrast to constrained devices,
these conventional communication end-points are equipped with comparably
powerful hardware including multi-core CPUs with computational power in
the order of GHz and memory resources in the order of several GBs of RAM
and several hundred GBs of persistent storage. Moreover, these conventional
end-points are attached to their networks via regular wired or wireless links.
These links, however, typically do not exhibit the same bandwidth and packet
size limitations as the wireless links employed in constrained node networks.

As we will discuss in the next chapter, these three aspects lead to several proto-
col e�ciency and security issues in the context of standard end-to-end IP security
solutions for the IoT. The detailed analysis of these protocol issues and the devel-
opment of lightweight protocol extensions and a security architecture that resolve
these design-level issues constitute the main contribution of this thesis.



3
Network Security in the IP-based IoT
and Problem Statement

Global addressability in the IP-based IoT a↵ords constrained devices, hosts, and
services from independent network domains to interact with each other in an end-to-
end manner. The achieved IP connectivity, however, also enables malicious network
entities to communicate with these IP-enabled constrained devices. This is espe-
cially true for Internet-based interactions because such communication scenarios
commonly lack global supervision and control of the interconnected communication
end-points. As a result, constrained devices in the IoT are prone to be subject to
a variety of network attacks. Hence, to protect constrained devices against such
network attacks, authentication, authorization, and secure communication are vital
preconditions for the secure interconnection of constrained devices in the IoT.

In this chapter, we motivate the need for end-to-end security and introduce the cryp-
tographic mechanisms and IP security protocols that provide the basis of our work.
To this end, Section 3.1 describes the underlying attacker model that we assume
throughout the course of this thesis and outlines di↵erent types of network attacks
that an adversary can mount with respect to this attacker model. We then present
how cryptography can assist in mitigating these attacks in Section 3.2. A single
cryptographic primitive, however, often does not su�ce to comprehensively defend
constrained devices against all types of network attacks. Security protocols, there-
fore, typically combine multiple cryptographic primitives and incorporate additional
defense mechanisms in their protocol design. In Section 3.3, we first provide a brief
overview of IP-based network security protocols for the IoT. We then describe the
most prominent general-purpose end-to-end IP security protocol adaptions that cur-
rently are devised at the IETF, i.e., DTLS, HIP DEX, and Minimal IKEv2. These
protocol adaptations denote the starting point of our work in this thesis. Based on
these protocol descriptions and an analytical protocol comparison, we conclude this
chapter with the definition of the problem statement for this thesis in Section 3.4.
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Figure 3.1 Overview of the network attacks that an adversary can mount in the assumed
attacker model. The dark gray circle indicates the radio range of adversary A2. A2 can
eavesdrop on network tra�c from D1. A1, A3, and D0

3 can mount injection, eavesdropping,
dropping, modification, impersonation, and DoS attacks against the constrained devices Dj.

3.1 Network Threats in the IP-based IoT

In this section, we describe the Internet Threat Model [RK03] and outline high-
level network attacks that an adversary can mount in this attacker model. We
also discuss the relevance of these attacks in the context of the IoT and highlight
their relationships to our contributions in this thesis. While not comprehensive, the
provided overview contains the most prominent attacks for end-to-end security in
the IoT. We note that the following descriptions are based on [RK03, TK05].

3.1.1 The Internet Threat Model

The Internet Threat Model describes the capabilities of an adversary when targeting
communication end-points in Internet-based network scenarios. The model assumes
that the target end-point itself is not compromised. The adversary, however, is
given full control over the network infrastructure, which the target end-point uses
for communication purposes. This implies that the adversary can inspect network
packets at any layer of the network stack as well as drop, modify, and inject forged
network packets. Consequently, the Internet Threat Model can be summarized as
the network infrastructure itself being the adversary. Still, it is worth noting that
the adversary is not granted indefinite computation or storage resources. Hence, the
adversary is unable to break cryptographic mechanisms with brute force that are
put in place to prevent potential network attacks. As depicted in Figure 3.1, the
granted capabilities enable an adversary to mount several types of network attacks.
We now briefly introduce these network attacks in the following sections.

3.1.2 Eavesdropping and Tra�c Analysis

During an eavesdropping attack, an adversary overhears network packets that are
transmitted between legitimately communicating end-points (see Figure 3.1). This
enables the adversary to retrieve information that may not be intended for disclosure
to a third party. In case of personal health monitoring, for instance, such information
may consist of privacy-sensitive data from a networked heart-rate monitor. In addi-
tion to such immediate attacks on the transmitted information itself, eavesdropping
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often also denotes a first step towards further attacks [RKA09]. For example, as we
will show in Chapter 6, eavesdropping is a prerequisite to mount an attack against
the 6LoWPAN fragmentation mechanism, i.e., the fragment duplication attack.

Eavesdropping is a passive attack that does not require the adversary to be able
to communicate in a specific network. The di�culty of mounting an eavesdrop-
ping attack strongly depends on the type of network. For wired, switched networks,
eavesdropping is hard to accomplish as the adversary first has to subvert the network
infrastructure to be placed on the packet forwarding path, i.e., on-path. In contrast,
broadcast media, e.g., wireless channels as typically employed in constrained node
networks, provide a shared communication platform. Hence, in these networks, an
adversary can overhear legitimate communication while located besides the forward-
ing path, i.e., o↵-path, but within radio range of the target device (see Figure 3.1).

3.1.3 Packet Injection and Modification Attacks

Packet injection and modification attacks aim at interfering with legitimate commu-
nication or at disguising the identity of an adversary. In a packet injection attack,
the adversary generates maliciously crafted network packets and injects these pack-
ets into the interconnecting network substrate. Such malicious packets may, e.g.,
contain a forged source address to hide the adversary’s true point of network attach-
ment. This falsifying of the source address is commonly referred to as spoofing.

Conversely, the adversary directly operates on legitimate network packets when
mounting a packet modification attack. Hence, the adversary may delay, drop, or
reorder packet transmissions as well as modify the original packet content. In the
context of the IoT, an adversary can, e.g., exploit packet injection and modification
attacks to maliciously inject new or modify legitimate control commands to achieve
harmful actuation in the physical world [LRA09]. Moreover, we will show in Chap-
ter 6 that an adversary can mount a 6LoWPAN fragmentation attack by overhearing
fragmented IPv6 packets and sending a spoofed 6LoWPAN fragment in response.

Similarly important within the scope of this thesis, an adversary may also try to
adversely influence the selection of the security mechanisms and parameters, e.g.,
during the connection establishment phase of end-to-end IP security protocols. In
such downgrading attacks, the adversary eavesdrops on the connection establishment
handshake and modifies the content of the corresponding handshake packets. In case
of an insecure design of the negotiation mechanisms, the adversary then can enforce
the selection of a weaker security mechanism than mutually desired without the
end-points noticing. A key requirement for the security mechanisms, which we will
present in Chapters 4, 5, and 6, is not to be a↵ected by such downgrading attacks.

Packet injection and modification both denote active network attacks. Packet in-
jection, thereby, does not necessitate eavesdropping capabilities from the adversary.
However, without eavesdropping, the adversary is typically restricted to injecting
forged packets blindly. Thus, the adversary may need to guess certain state infor-
mation, e.g. sequence numbers, at the target device when trying to interfere with
legitimate communication. In contrast, an eavesdropping adversary does not require
guessing and can directly react to overheard packets. Importantly, packet modifica-
tion attacks typically require an on-path adversary who performs the desired action
on traversing packets before forwarding them towards the target device.
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3.1.4 Impersonation Attacks and Access Violations

Most networked systems are not intended to be equally accessible by all communi-
cation end-points. This is also true for constrained devices. While resources such
as interfaces to uncritical sensor information may be publicly accessible, resources
serving sensitive information or exposing actuation and configuration interfaces will
commonly be restricted to a confined set of communication end-points. An adversary
may try to access such restricted resources by impersonating a privileged end-point
such as a device administrator [RL09]. To this end, the adversary may, e.g., spoof
the IP source address if access restrictions are solely based on IP Access Control
Lists (ACLs). Such access violations can enable the adversary to retrieve sensitive
information or may even allow to take over the constrained device by overwriting
its firmware via compromised configuration interfaces. To prevent impersonation
attacks, the security protocols in focus of this thesis employ authentication mecha-
nisms that cryptographically identify the communicating end-points. Moreover, the
handshake delegation architecture, which we will present in Chapter 5, allows to
restrict resource access based on cryptographically assured end-point identities.

Notably, replay attacks may enable an adversary to subvert security mechanisms put
in place to prevent impersonation attacks. To this end, the adversary first eavesdrops
and records packets transmitted between two legitimately communicating end-point.
The adversary then replays these packets – potentially delayed, re-ordered, in parts,
or from a di↵erent network location – to one of the legitimate end-points thereby
impersonating the other end-point. Another important requirement for our security
mechanisms in Chapters 4, 5, and 6, therefore, is to also consider such subsequent
attacks that may follow upon secure legitimate communication.

3.1.5 Denial of Service Attacks

The goal of DoS attacks is to exhaust the available system resources of a target
device in order for this device to be unable to o↵er its services to other end-points. In
doing so, an adversary typically targets scarce resources of a target device, e.g., CPU
cycles, and exploits resource asymmetries in the design of the employed protocol.
Even if the resources of the target device are similar to these of a single adversary
and if the employed protocol does not exhibit any significant resource asymmetries,
the adversary may still be able to artificially generate resource asymmetries that are
required to mount a DoS attack. To this end, the adversary orchestrates a large
number of compromised communication end-points to simultaneously interact with
the target device. Such Distributed Denial-of-Service (DDoS) attacks are typically
used in large-scale network attacks that target high-value Internet services.

An adversary can mount a DoS attack against any device that accepts inbound
network connections. This property is often true in the IoT, especially in case of
M2M communication scenarios. Moreover, the inherent resource asymmetry between
a single adversary, who is, e.g., equipped with commodity workstation hardware, and
a resource-constrained device enables this adversary to mount a DoS attack without
the need to resort to DDoS attacks [RNL11]. This fact is further aggravated in
the context of cryptographic protocol operation as these operations often incur a
considerable computation overhead on constrained devices (see Section 3.2.3).
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Crypto
Threat Eaves-

dropping
Paket

Injection
Modifi-
cation

Imperso-
nation

Access
Violation

DoS

Authentication x x
Confidentiality x
Data Integrity x
Non-repudiation

Table 3.1 Overview of the fundamental objectives of cryptography and the presented net-
work attacks. Non-repudiation beyond authentication is out-of-scope of this thesis. Notably,
cryptography alone does not su�ce to rigorously protect against network attacks.

It is important to note that DoS attacks in the IoT are not limited to the scarce
computation resources of a constrained device. In fact, an adversary may also aim
at exhausting its limited memory resources. To this end, the adversary, e.g., opens
several network connections to the target device and exploits the corresponding pro-
tocol state. In addition, an adversary may also try to prevent an energy-constrained
device from sleeping, thus draining its scarce energy resources and potentially limit-
ing the overall lifetime of the entire constrained node network. In Chapter 4, we will
introduce a DoS protection mechanism for end-to-end IP security protocols that we
specifically design with the resource asymmetry in the IoT in mind. Moreover, we
require the security mechanisms, which we will present in Chapters 4, 5, and 6, not
to open new attack vectors that an adversary can exploit in a DoS attack.

3.2 Cryptography and Constrained Devices

Cryptography provides an algorithmic approach to protect communication end-
points against the network attacks discussed in the previous section. We now first
introduce the fundamental objectives of cryptography and highlight their relevance
for the presented network attacks. We then continue with a brief overview of the
main cryptographic primitives realizing these objectives. We thereby focus on the
presentation of the basic ideas of the considered cryptographic primitives and discuss
recent considerations regarding their use in the context of constrained devices.

3.2.1 Fundamental Objectives of Cryptography

Cryptographic primitives are designed to fulfill at least one of the following fun-
damental objectives of cryptography: i) authentication, ii) confidentiality, iii) data
integrity, and iv) non-repudiation [DK07]. As shown in Table 3.1, each of these ob-
jectives mitigates one or more of network attacks that we presented in the previous
section. We now discuss the individual objectives in more detail [DK07]:

Authentication: Authentication typically is further di↵erentiated into peer au-
thentication and data origin authentication. With peer authentication, the
main goal is to establish the identity of the remote communication end-point
when initiating network interactions. Thus, peer authentication protects against
packet injection and impersonation attacks if also subsequent network trans-
missions are ensured to originate from the same authenticated end-point. Such
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correlation of subsequently received network packets to a previously established
identity is also known as data origin authentication. Important in the scope of
the IP-based IoT, global addressability necessitates peer and data origin au-
thentication to restrict network communication to unambiguously identifiable
end-points. One of the main contributions in Chapters 4 and 5 is the design
of protocol mechanisms and a delegation architecture that a↵ord secure and
e�cient authentication in the context of constrained node networks.

Confidentiality: The key objective of confidentiality is to conceal transmitted
information from network participants that are not the intended recipients.
Thus, confidentiality is of particular importance in the IoT when network pack-
ets traverse untrusted network infrastructure or are transmitted over broad-
cast media with untrusted network participants. Confidentiality then prevents
adversaries from eavesdropping on privacy-sensitive or otherwise critical infor-
mation that is exchanged between constrained devices, hosts, and services.

Data Integrity: The underlying purpose of data integrity protection is to allow
the recipient of network packets to verify that the content of these packets
was received without modification on the communication path. Similar to
confidentiality, data integrity, therefore, is crucial when constrained devices
transmit sensitive information in untrusted network environments. We note
that confidentiality and data integrity are both commonly provided by the
end-to-end IP security protocols that denote the main focus of this thesis.

Non-repudiation: With non-repudiation, a communication end-point should not
be able to falsely deny its participation in network communication towards a
third party. Non-repudiation is especially important in the context of network
accounting. Reliable non-repudiation mechanisms, however, often require sub-
stantial infrastructure support, e.g., for secure remote logging [RK03]. In this
thesis, we consider non-repudiation beyond authentication to be out-of-scope.

We now proceed with a brief overview of the most important cryptographic primi-
tives in this thesis and highlight their special considerations for constrained devices.

3.2.2 Symmetric-Key Cryptography

In the context of network security, symmetric-key cryptography is typically used
to provide confidentiality and integrity protection of the transmitted information.
The employed algorithms are built from computationally e�cient arithmetic, logi-
cal, permutation, or bit-shift operations. The security properties of symmetric-key
algorithms then stem from a complex arrangement of these basic building blocks
and from their iterated application in multiple rounds. Important in the scope
of constrained devices, symmetric-key algorithms exhibit among the fastest imple-
mentations in software and hardware [DK07]. Hence, symmetric-key cryptography
constitutes a well-suited cryptographic primitive in the context of the IoT. One
of the most popular symmetric-key algorithms is the Advanced Encryption Stan-
dard (AES) [NIST01]. This specific cryptographic algorithm is used, e.g., in the
IEEE 802.15.4 standard to protect transmitted information at the data link layer.
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As a basic design trait, symmetric-key algorithms use the same secret key for the
encryption of a plaintext and the decryption of the encrypted ciphertext. Thus,
symmetric-key algorithms require the communication end-points to share a common
secret key prior to secure communication. This requirement, however, raises the
problem of securely exchanging the secret key without revealing it to untrusted
infrastructure or malicious network participants. The current best practice on the
Internet, therefore, is to employ public-key cryptography for a secure exchange of
the secret key [BH05, SHSA15]. This use of public-key cryptography in end-to-end
security protocols for the IP-based IoT is a key aspect of our research in this thesis.

3.2.3 Public-key Cryptography

Public-key cryptography provides authenticity, confidentiality, integrity protection,
and non-repudiation via encryption or signing of transmitted information. Unlike
symmetric-key cryptography, the main idea of public-key cryptography is that com-
munication end-points are not required to share a common secret key prior to secure
communication. Instead, each end-point possesses its own public/private key-pair.
The private key is secret information that must not be revealed to a third party. In
contrast, a core property of public-key cryptography is that the knowledge of the
public key does not a↵ord computation of the corresponding private key. Hence, end-
points can exchange their public keys as plaintext over untrusted infrastructure and,
thus, use public-key cryptography to bootstrap symmetric-key-based primitives. The
most prominent public-key algorithms are the Ron Rivest, Adi Shamir, and Leonard
Adleman (RSA) [RSA78] and the Digital Signature Algorithm (DSA) [NIST13b].

Public-key cryptography commonly involves big number operations in order to ren-
der algorithmic approaches to solve the underlying mathematical problems, e.g., the
computation of the discrete logarithm, infeasible. Due to these big number opera-
tions, public-key-based algorithms, however, are significantly more resource demand-
ing than their symmetric-key counterparts [DK07]. Consequently, the application
of public-key cryptography was long assumed to be impractical for constrained de-
vices [PSW04]. In 2004, Watro et al. [WKC+04], however, showed that public-key
cryptography is indeed feasible in the context of constrained devices if used sparsely.
Moreover, Elliptic Curve Cryptography (ECC) [Mil86, Kob87] – a special approach
to public-key cryptography – allows to further reduce the overhead of public-key
cryptography in the context of constrained devices. A key goal of our contributions
in Chapter 4 is to enable the computationally e�cient and secure use of public-
key cryptography in end-to-end IP security protocols for the IoT. Moreover, the
handshake delegation architecture, which we will present in Chapter 5, enables se-
cure communication in the IoT for constrained devices with insu�cient memory
resources for a complete protocol implementation and public-key cryptography.

3.2.3.1 Elliptic Curve Cryptography

ECC is based on the algebraic structure of elliptic curves over finite fields. For
this algebraic structure, the best algorithms, which are known to solve the discrete
logarithm problem as the underlying mathematical foundation of ECC, currently
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have an exponential run-time [HMV04]. This stands in stark contrast to the sub-
exponential run-time for the underlying mathematical problems of traditional public-
key crypto-systems. As a result of this increased computational hardness, ECC-
based primitives o↵er an equal level of security at shorter key sizes compared to
traditional public-key primitives. A 224 bit ECC key, for example, is believed to be
cryptographically as secure as a 2048 bit RSA key [NIST12a]. This characteristic
of ECC allows to considerably reduce the computation and transmission overheads
involved in using public-key cryptography for end-to-end security purposes.

Moreover, recent optimization techniques such as point addition and point doubling
based on projective coordinate systems [LN08] a↵ord a further reduction of the
computation overhead of ECC primitives. These properties make ECC primitives
such as the Elliptic Curve Digital Signature Algorithm (ECDSA) especially suitable
for constrained devices [MWS04, LN08]. We note that the end-to-end IP security
protocols considered in this thesis all support ECC in their protocol specifications.

3.2.3.2 Di�e-Hellman Key Exchange

The Di�e-Hellman (DH) key exchange [DH76] is a public-key protocol that enables
two end-points to securely establish a shared symmetric key despite their interaction
over untrusted network infrastructure. To this end, the DH key exchange does not
require the communication end-points to have prior information about each other.
Moreover, it resists passive network attacks. As such, it is often used as one of the
underlying cryptographic primitives in the design of end-to-end IP security protocols.

As depicted in Figure 3.2, the DH key exchange requires both communication end-
points to be in the possession of a public/private key-pair (x

i

, gxi). This key-pair may
either be freshly generated or static across multiple key exchanges. In the first step of
the DH key exchange, the communication end-points exchange their public DH keys
gxi . The end-points then establish a common secret key gxAxB = (gxA)xB = (gxB)xA

based on their own private key x
i

and the received public key gxj . At this point, the
end-points can use the derived secret key to protect subsequent communication via
symmetric-key primitives. Importantly, both the computation of the private key x

i

from an overheard public key gxi and the calculation of the secret key gxAxB given
the public keys gxA and gxB are assumed to be computationally infeasible [DK07].
This prevents an eavesdropping adversary from deriving the established secret key.

With respect to the applicability for constrained devices, the DH key exchange
revolves around the same mathematic foundation as the previously discussed tradi-
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Figure 3.3 The Merkle-Damg̊ard construction. The hash computation starts with a fixed
initialization vector (IV) that is algorithm-specific. For each input block, the compression
function f is applied to the current input block and the intermediate value of the previous
iteration. The result of this operation is the intermediate value for the next iteration. The last
input block contains padding information that encodes the length of all input blocks.

tional public-key primitives and, thus, similar considerations apply (see Section 3.2.3).
Still, there also exists an ECC variant of the DH key exchange, i.e., the Elliptic Curve
Di�e-Hellman (ECDH) key exchange [NIST13a]. This variant allows to significantly
reduce the computation and transmission overheads that are caused by the DH key
exchange. As a result, an infrequent application of the ECDH key exchange is often
considered viable in the context of constrained devices [MWS04].

3.2.4 Cryptographic Hash Functions

Cryptographic hash functions constitute a third category of cryptographic primitives
that is predominantly used in the context of network security to provide integrity
protection of the transmitted information. As their main characteristic, hash func-
tions map an arbitrary input space to a fixed-length output space. A cryptographic
hash function then additionally must provide the following three properties:

1. Pre-image resistance. Pre-image resistance states that a cryptographic hash
function is irreversible, i.e., one-way. Hence, given a hash value y, it must be
computationally hard to find a pre-image x such that H(x) = y. Notably, we
leverage the pre-image resistance property of cryptographic hash functions in
the design of the content-chaining scheme, which we will present in Chapter 6.

2. Second pre-image resistance. Second pre-image resistance demands that
no pre-image x0 that di↵ers from the original pre-image x can e�ciently be
computed. Hence, given x and y = H(x), it must be computationally hard to
find x0 6= x such that H(x0) = H(x) = y. Similar to pre-image resistance, this
property also is important for the design of the content-chaining scheme.

3. Collision resistance. Collision resistance requires that finding two or more
values with the same image is infeasible. Hence, it must be computationally
hard to find x and x0, such that H(x) = H(x0). Otherwise, public-key signa-
tures1, for instance, would not be able to provide the non-repudiation property
as the signer could pretend to have signed a colliding value x0 instead of x.

Many cryptographic hash functions used in practice employ the Merkle-Damg̊ard
construction [Mer90, Dam90] depicted in Figure 3.3 as their underlying foundation.

1In digital signature schemes such as ECDSA, the data to be signed is first hashed to a fixed-
length representation. The private key of the signature scheme then is used to sign the hash.
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Prominent examples include the Secure Hash Standard version 1 (SHA-1) and the
Secure Hash Standard version 2 (SHA-2) [NIST12b]. The Merkle-Damg̊ard construc-
tion is based on the observation that the arbitrary-length input domain of a hash
function can e↵ectively be handled by a function with a fixed-length input domain
via an iterated application of this function to fixed-sized blocks of the original hash
function input (see Figure 3.3). This observation allows to reduce the problem of
building a cryptographic hash function to finding a collision resistant function f with
finite input domain {0, 1}r+s and fixed-length output domain {0, 1}r, where s 2 N
and s > 0. Such collision resistant functions f are called compression functions.

Hash functions based on the Merkle-Damg̊ard construction typically use customized
compression functions that are designed for high performance. Still, symmetric-key
primitives such as AES can also be used as compression functions in the Merkle-
Damg̊ard construction [BÖS11]. In Chapter 6, we employ such an AES-based con-
struction to leverage the AES hardware support of many constrained devices.

3.2.4.1 Hash Chains

Hash chains are based on the iterated application of a hash function to an initial
seed value in order to generate a chain of e�ciently verifiable one-time authentication
tokens. Hash chains were first proposed by Lamport [Lam81] to protect remote pass-
word authentication against an eavesdropping or replaying adversary. Gennaro et
al. [GR97] subsequently showed that hash chains can also be employed to e�ciently
sign digital streams of finite length. Since then, hash chains have been applied
to various communication scenarios including broadcast and multicast authentica-
tion [PTSC00, PST+02] as well as end-to-middle authentication [HHK+09, Hee11].

As illustrated in Figure 3.4, the basic idea behind a hash chain is to provide an inter-
linked chain of one-time tokens that can be revealed sequentially for authentication
purposes. To this end, a hash chain is created by first drawing a random seed value
h
0

. The hash function H(·) then is applied to this seed value to generate the first
interlinked one-time token. Subsequently, the hash function is iteratively applied to
the previous hash chain element until a hash chain of the desired length n is derived.
The resulting hash chain then consists of the token sequence (h

0

, h
1

, h
2

, . . . , h
n�1

).

The last element h
n�1

of this sequence is also known as the anchor element. To use
the created hash chain for authentication purposes, the sender, who is the creator of
the hash chain, first has to securely transmit the anchor element of the hash chain to
the verifier. To this end, public-key signatures over the anchor element are typically

h1 = H(h0) h2 = H(h1) hn-1 = H(hn-2) 

h1 h2      h0 hn-2   hn-1 

Direction of generation 

Direction of disclosure 

Figure 3.4 A hash chain consisting of n elements. The generation of the hash chain elements
proceeds from the seed to the anchor element, whereas token disclosure advances from the
anchor to the seed element in order to prevent token forgery by an adversary.
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used to bind the created hash chain to the cryptographic identity of the sender. The
remaining hash chain elements, however, have to be kept secret at this stage.

Once this setup phase has completed successfully, the sender traverses the hash
chain in reverse order to authenticate itself to the verifier. That is, if the hash chain
element h

i

was revealed during the last authentication procedure, the sender selects
h
i�1

in order to re-authenticate itself to the verifier. When receiving h
i�1

, the verifier
can validate the authenticity of the sender due to the following two properties:

1. Given a previously verified hash chain element h
i

, the verifier can e�ciently
validate that a newly received element h

i�1

belongs to the same hash chain by

performing a single hash calculation, i.e., h
i

?

= H(h
i�1

), as shown in Figure 3.4.

2. Given h
i

, the verifier can also validate that an element h
i�j

for 0 < j 
i belongs to the same hash chain by iteratively applying the hash function

H(·) to the received element j times: h
i

?

= Hj(h
i�j

). Hence, the iterative
construction of the hash chain also enables the verifier to validate hash chain
elements that are not immediate predecessors of a previously verified element.

An adversary cannot compute an undisclosed hash chain element h
i�2

that is closer
to the seed value than a just revealed element h

i�1

. This is due to the pre-image
resistance property of the underlying hash function (see Section 3.2.4). Moreover,
the adversary also cannot forge a hash token h0

i�1

that would validate against a
previously disclosed hash chain element h

i

, i.e., H(h0
i�1

) = H(h
i�1

) = h
i

, as a result
of the second pre-image resistance property of the employed hash function. These
security guarantees along with the ability to e�ciently generate and verify their
comprising one-time tokens make hash chains an e↵ective cryptographic primitive
for data origin authentication in the context of constrained devices. We note that,
for this reason, we leverage the basic concept of a hash chain as the underlying
foundation for the content-chaining scheme, which we will present in Chapter 6.

3.2.5 Message Authentication and Integrity Protection

The main goal of Message Authentication Codes (MACs) is to enable data origin
authentication as well as integrity protection of network transmissions [DK07]. MAC
constructions are commonly based on symmetric-key primitives or cryptographic
hash functions. Moreover, they employ a shared secret to prevent an adversary from
modifying the packet payload without invalidating the appended MAC value.

An often-used MAC construction is the Hash-based Message Authentication Code
(HMAC) that employs a cryptographic hash function such as SHA-1 as its main
building block [BCK96, KBC97]. As an alternative to hash-based MACs, symmetric-
key-based constructions such as the Cipher-based MAC (CMAC) [NIST05] can also
be used for e�cient authentication and integrity protection. Such symmetric-key-
based approaches are increasingly demanded in the context of the IoT. This is for the
following two reasons. First, constrained devices that are equipped, e.g., with IEEE
802.15.4 radio modules often provide hardware support for the AES block cipher.
Thus, by relying on an AES-based MAC construction, the computation and memory
overheads of the underlying cryptographic algorithm can significantly be reduced by
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Security
Threat Eaves-

dropping
Paket

Injection
Modifi-
cation

Imperso-
nation

Access
Violation

DoS

Authentication x x
Confidentiality x
Data Integrity x
Non-repudiation

Authorization x
Availability x
Freshness x

Table 3.2 Overview of main objectives of network security and the presented network at-
tacks. By combining multiple cryptographic primitives and by incorporating additional security
mechanisms, security protocols o↵er protection against a wide range of network attacks.

leveraging this hardware support. Second, even without such hardware support,
the scarce memory resources of constrained devices can e↵ectively be conserved by
building the MAC primitive based on the same underlying symmetric-key algorithm
as the encryption primitive. This shared implementation then allows to abate most of
the memory overhead that would otherwise be caused by a separate hash algorithm.

3.3 Network Security in the IP-based IoT

The cryptographic primitives outlined in the previous section constitute basic build-
ing blocks to assure the authenticity, confidentiality, data integrity, and non-repu-
diation of transmitted information. A single cryptographic building block, however,
often does not su�ce to protect communication end-points against the wide range of
network attacks that these end-points may be exposed to. Thus, security protocols
typically combine multiple cryptographic primitives in their protocol design. More-
over, they incorporate additional security mechanisms to fulfill security objectives
that include but extend on the fundamental objectives of cryptography [LRA09].

We now first present these additional objectives of network security in Section 3.3.1
and discuss their relevance in the context of the network attacks in Section 3.1 and
our contributions in this thesis. We then provide an overview of the di↵erent types of
network security that realize these objectives in Section 3.3.2. Our main goal thereby
is to highlight the role of end-to-end security with respect to other network security
solutions for the IP-based IoT. Following this overview, we introduce the DTLS,
HIP DEX, and Minimal IKEv2 protocol profiles and variants for the IP-based IoT
in Section 3.3.3 to Section 3.3.5. These end-to-end IP security protocol adaptations
build the basis for our work in Chapters 4 and 5. Finally, we analytically compare
these protocol adaptations and highlight their main commonalities and di↵erences.

3.3.1 Additional Objectives of Network Security

As summarized in Table 3.2 (see last three rows), security protocols commonly realize
additional objectives that extend on the main objectives of cryptography. These
additional security objectives most notably are [WAR06]:
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Authorization: The main objective of authorization is to enable an end-point
to determine if its communication partner is allowed to access a requested
resource. As such, the primary goal of authorization is to mitigate access vi-
olations. Importantly, while authentication is an essential pre-condition for
authorization, it does not explicitly restrict network interactions to approved
communication end-points. Instead, additional authorization mechanisms and
policies are required to limit access to restricted resources based on the authen-
ticated identity of the communication partner. We note that the handshake
delegation architecture, which we will present in Chapter 5, e�ciently provides
such authentication and authorization in the context of constrained devices.

Availability: The central goal of availability is to protect communication end-
points against attacks that aim at degrading its provided services, i.e., DoS
attacks. Availability is a highly critical security objective in the IoT as con-
strained devices are commonly equipped with largely inferior hardware com-
pared to what might be at the disposal of a potential adversary [RL09]. Hence,
one of the key contributions in Chapter 4 is the introduction of a DoS pro-
tection mechanism for end-to-end IP security protocols that we specifically
designed with the high resource asymmetry of the IoT in mind.

Freshness: The main objective of freshness is to assure that network packets are
constructed at the time of interaction instead of being replayed packets of
prior communication. Freshness is especially important regarding end-to-end
IP security protocols as these protocols commonly verify the authenticity of the
communicating end-points. If freshness was neglected by these protocols, an
adversary could simply undermine the employed authentication mechanisms
by replaying authentic recorded messages of prior communication. For our
contributions in Chapters 4, 5, and 6, we require that freshness of packets can
be verified whenever relying on the authenticity of transmitted information.

We now continue with a brief overview of security protocols for the IP-based IoT that
realize the above security objectives. We note that the objective of authorization
is typically provided by dedicated Authentication, Authorization, and Accounting
(AAA) protocols such as Diameter [FALZ12], which are not discussed below.

3.3.2 Overview of Protocol-based Security Solutions

While several specialized network security approaches exist in the context of WSN
research [WLSC07, ZV10], we focus our discussion in this section on IP security
protocols that are currently considered or are already deployed within the scope of
IoT network scenarios. These protocols denote widely accepted standards that are
specifically designed to fit the IP networking paradigm. We note that the overview
provided here is based on previous work published in [HGMH+11, GMKK+13a].

For our discussion, we categorize the di↵erent IP security protocols according to the
lifecycle of a constrained device. This lifecycle starts with a bootstrapping phase and
cycles through iterated operational and maintenance phases once the device is read-
ily bootstrapped. The security protocols employed during the bootstrapping phase
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typically fulfill the following two purposes. On the one hand, they facilitate authen-
tication of a joining device towards the constrained node network. On the other
hand, they enable the network to provision the joining device with the necessary
keying material to securely interact with other communication end-points.

The Extensible Authentication Protocol (EAP) [ABV+04] is a prominent example of
a network admission and key provisioning protocol that is currently employed in con-
strained node networks, e.g., for the bootstrapping procedure in ZigBee IP [ZBIP13].
EAP is an authentication framework that supports a wide range of authentication
methods including pre-shared keys. Important in the scope of constrained node
networks, EAP directly operates at the data link layer and only supports unfrag-
mented packet transmissions. Hence, when deployed in these networks, it typically
needs to be encapsulated by the Protocol for Carrying Authentication for Network
Access (PANA) [FOP+08], a network-layer transport for EAP. This encapsulation
a↵ords IP-based multi-hop forwarding and 6LoWPAN fragmentation of EAP mes-
sages in constrained node networks. Notably, EAP and PANA can also be used to
re-bootstrap a constrained device after completing a maintenance phase, e.g., if a
firmware update necessitates the re-provisioning of the network security material.

After bootstrapping or maintenance, the constrained device transitions to its op-
erational state. Here, the device uses the provisioned keying material as well as
potentially pre-provisioned security material to securely interact with other commu-
nication end-points. For our discussion, we further divide network security protocols
in the operational phase into hop-by-hop and end-to-end approaches.

Hop-by-hop security is classically provided at the data link layer. The IEEE 802.15.4
standard, e.g., specifies dedicated security mechanisms that enable a constrained
device to encrypt and to protect the integrity of the frame payload. Such protection
then prevents a network-external adversary, who is within radio range of the targeted
constrained node network, from eavesdropping on legitimate communication and
from injecting malicious packets into that network. At the same time, hop-by-hop
encryption still a↵ords legitimate on-path devices, e.g., to forward packets based
on IP header information. This is because each intermediate hop decrypts network
packets upon reception and re-encrypts them before packet forwarding.
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Figure 3.5 Network scenario consisting of two interconnected constrained node networks.
Protection is based on link layer security between constrained devices (D) and a VPN link
between the involved gateways (GW). Potential adversaries are marked in dark gray. Notably,
on-path adversaries can eavesdrop or modify traversing network packets unnoticed as hop-
by-hop security is applied on a per-hop basis. Moreover, hop-by-hop security cannot provide
end-to-end security guarantees that sensitive information was protected on the entire packet
forwarding path and does not allow the end-points to cryptographically authenticate each other.
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While providing adequate protection inside a constrained node network with trust-
worthy network participants, hop-by-hop security often does not su�ce to protect
network interactions over untrusted network infrastructure or in network environ-
ments with malicious network participants. This is for the following three reasons
(see Figure 3.5). First, payload decryption at each hop on the forwarding path ex-
poses the packet content to potentially malicious on-path network entities. Second,
as each hop strips and applies packet protection, there are no end-to-end guaran-
tees that sensitive information was actually protected on the entire forwarding path.
Third, the per-hop semantics of hop-by-hop security do not allow the end-points to
cryptographically authenticate each other. Thus, hop-by-hop security requires the
end-points to fully trust each hop on the forwarding path. This also includes poten-
tially unknown network entities in case of communication across network domains.

The goal of end-to-end IP security protocols is to provide these missing end-to-
end security guarantees to the communication end-points. This renders end-to-end
security specifically important for IoT network scenarios that involve cross-domain
interactions. End-points that belong to independent network domains, however,
may be configured with di↵erent preferences regarding cryptographic primitives and
protocol mechanisms as well as the pursued level of security. Hence, besides peer
authentication and key agreement, end-to-end security protocols regularly also need
to negotiate the protocol parameters that are mutually supported by the end-points.

Concerning the location in the network stack, end-to-end IP security protocols are
commonly located above the network layer. This a↵ords packet forwarding based
on IP header information. At the same time, this circumstance also allows to pro-
tect protocol and application data in an end-to-end manner. The most prominent
end-to-end IP security protocols that are situated on top of the network layer are
HIPv2 [MHJH15] and IKEv2 [KHN+14]. Similarly, TLS [DR08] provides end-to-end
security above the transport layer, e.g., as the default security protocol in the world
wide web. Importantly, HIPv2, IKEv2, and TLS all provide channel security guar-
antees that are largely independent from the protected applications. Hence, these
protocols constitute general-purpose solutions for end-to-end security.

Similar to these general-purpose protocols, object security mechanisms such as
JSON Object Signing and Encryption (JOSE) [Bar14] also allow to provide end-to-
end security at the application layer, e.g., for the Extensible Messaging and Presence
Protocol (XMPP) [SA11, MW14]. Authentication and key management for these
object-based approaches, however, typically are highly application and scenario-
specific. We, therefore, consider these application-specific approaches out-of-scope
in this thesis. Instead, we investigate the applicability of general-purpose protocols
such as TLS, HIPv2, and IKEv2. More precisely, we focus on their protocol profiles
and variants, i.e., DTLS, HIP DEX, and Minimal IKEv2, that are currently devised
at the IETF with the special device and network constraints of the IoT in mind. We
now proceed with a detailed description of these IP security protocol adaptations.

3.3.3 Datagram Transport Layer Security

DTLS [RM12] is the datagram variant of the widely used TLS protocol. DTLS was
originally developed to provide TLS-like network security for streaming applications
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Figure 3.6 Sequence diagram of the DTLS handshake. Messages marked with a dagger (†)
implement a return-routability test for DoS protection purposes. Starred messages (?) are
optional and are only required depending on the negotiated cryptographic primitives.

such as VoIP [MR04]. To this end, the underlying reliable transport of TLS was
replaced with an unreliable transport such as UDP. Besides this modification, one
of the main goals of the DTLS specification is to preserve the protocol semantics
and security guarantees of TLS. This allows to re-use most existing TLS protocol
extensions for DTLS, e.g., session resumption without server-side state [SZET08].

The DTLS protocol specification assumes a connection-oriented client/server archi-
tecture. Hence, a client and a server must first perform a connection establishment
handshake before securely transmitting application data. During this handshake,
the peers most notably negotiate the mutually supported cryptographic primitives
and protocol mechanisms, authenticate each other, and agree on secret keying ma-
terial for the subsequent protection of application data. We now briefly outline the
DTLS connection establishment handshake as the main protocol component under
investigation in this thesis. An overview of this handshake is illustrated in Figure 3.6.

The DTLS handshake consists of 10 to 15 messages. These handshake messages
are subsumed in six message flights. The handshake is triggered by the client with
the ClientHello message. When receiving this message, the server responds with
a HelloVerifyRequest that starts a return-routability test for DoS protection pur-
poses. This test is designed to prevent spoofing-based DoS attacks against computa-
tionally or memory-wise expensive handshake operations at the DTLS server as well
as an amplification-based DoS attack against the DTLS client [MR04]. Specifically,
the return-routability test enables the DTLS server to verify that the source IP ad-
dress of the first ClientHello message is actually reachable and that the end-point
located behind this address indeed wants to establish a DTLS connection. Message
flights 3, 4, and 5 then constitute the central part of the DTLS handshake. Here,
the peers first negotiate the cryptographic primitives and key sizes for the subse-
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quent cryptographic protocol operations. With respect to these operations, DTLS
supports a wide range of public-key primitives and optionally provides for a purely
symmetric-key-based handshake [ET05]. The peers then authenticate each other and
carry out a key agreement for the protection of subsequent handshake messages.

The handshake concludes with the Finished messages in flights 5 and 6. These
messages allow both peers to verify the correctness of the performed handshake. To
this end, the peers compute a cryptographic hash over the exchanged handshake
messages and transmit this information to the communication partner in encrypted
form. Successful decryption and hash verification then validate the derived session
keys and the integrity of the entire handshake. After the handshake has completed,
the peers use the derived session keys for the protection of application data.

Unlike TLS, DTLS messages are transmitted over an unreliable transport channel.
Hence, handshake messages that are lost on the communication path must be recov-
ered by the DTLS protocol itself. To this end, DTLS defines a simple retransmission
mechanism that operates on a per-flight basis. This per-flight semantic implies that
the loss of a single handshake message leads to the retransmission of the entire cor-
responding message flight. To determine whether a handshake message was lost,
the DTLS specification recommends the use of a retransmission timeout that should
initially be set to 1 s. Hence, if a peer does not start receiving the expected re-
sponse flight within 1 s after the transmission of its own message flight, it considers
the handshake messages from its own message flight lost and must retransmit these
handshake messages. Moreover, the peer doubles the timeout for each additional
retransmission of the same message flight until it reaches a maximum timeout value
of 60 s. This back-o↵ mechanisms is designed to avoid network congestion [Jac88].

Importantly, the DTLS protocol currently receives significant attention at the IETF
in the context of the IoT. The CoAP specification, for example, recommends DTLS
as the preferred solution to secure the CoAP protocol [SHB14]. Moreover, the DTLS
In Constrained Environments (DICE) working group at the IETF currently defines
a DTLS profile for the IoT [TF15]. This profile prescribes or precludes certain
cryptographic cipher suites and protocol extensions to decrease the memory overhead
of a DTLS protocol implementation as well as to reduce the transmission overhead
incurred by the protocol handshake. We note that we use the term “DTLS” as a
reference to this DTLS profile in this thesis if not mentioned otherwise.

3.3.4 Host Identity Protocol Diet EXchange

HIP DEX [MH14] is a protocol variant of HIPv2 and is specifically developed with
constrained node networks in mind. As such, its protocol specification makes two key
concessions that are exclusively motivated by IoT device and network constraints.
First, while the original HIPv2 protocol design employs public-key signatures, an
ephemeral DH key agreement2, and a cryptographic hash function, the HIP DEX
protocol specification forfeits these cryptographic primitives to reduce the overhead

2The ephemeral DH key agreement is based on a temporary DH key-pair that is freshly generated
for each handshake. As a result, a compromise of the DH key-pair does not compromise the security
of previous connections (perfect forward secrecy) [Shi07]. The repeated generation of DH key-pairs,
however, causes a considerable computation overhead in the context of constrained devices [LN08].
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I1: negotiation params

R1: puzzle challenge, static DH key, negotiation params

I2: puzzle solution, static DH key, session key share,
negotiation params, MAC

R2: session key share, negotiation params, MAC

IPsec-protected payload transmission

Initiator Responder

Figure 3.7 Sequence diagram of the HIP DEX handshake. Cipher suite negotiation, peer
authentication, and key agreement are performed in a four-way message exchange.

incurred by the protocol handshake. Instead, HIP DEX defines an adapted con-
nection establishment handshake that is based on static DH keys for mutual peer
authentication and key agreement purposes (see Figure 3.7). Moreover, the protocol
design restricts itself to purely symmetric-key-based primitives for confidentiality
and integrity protection. Second, the HIP DEX specification defines an aggressive
retransmission mechanism that is intended to handle the increased packet loss in
constrained node networks when compared to conventional IP networks [Mos12].
This retransmission mechanism requires the Initiator to continually send I1 or I2
messages in short succession until the reception of the corresponding R1 or R2 re-
sponse, respectively. In contrast, the Responder does not trigger retransmissions and
simply must reply to each received Initiator message. Beyond these modifications,
the HIP DEX specification aims at preserving the general HIPv2 protocol semantics,
similar to DTLS. We now briefly describe the HIP DEX connection establishment
handshake as the most important protocol component in scope of this thesis.

As shown in Figure 3.7, the HIP DEX protocol handshake consists of four messages
and is triggered by the Initiator via the I1 message. The Responder replies to this ini-
tial handshake message with an R1 response that contains a cryptographic challenge
among other information. This challenge is part of a cryptographic puzzle-based
DoS protection mechanism that requires the Initiator to spent a Responder-defined
amount of computational resources before proceeding with the protocol handshake.
Consequently, the reception of a correct puzzle solution in the I2 message allows
the Responder to deduce that the Initiator is sincere in performing the protocol
handshake because it churned the requested amount of computational resources.

In addition to this DoS protection mechanism, the Initiator and the Responder also
perform a DH key exchange (see Section 3.2.3.2). To this end, the peers exchange
their public static DH keys in the R1 and I2 messages. Afterwards, the peers use the
derived secret for a MAC-based integrity protection of the I2 and R2 messages. The
successful verification of these MAC values then not only confirms the integrity of
the corresponding handshake messages, but also authenticates the communication
partner. This is because only the legitimate communication end-points are in the
possession of the private DH keys that correspond to the previously exchanged public
DH keys. Hence, only these end-points can derive the secret keying material that is
required to generate a valid MAC value for a given handshake message.

Finally, the peers leverage the derived secret to encrypt randomly chosen key shares
for each other. The concatenation of these key shares then is the basis for the session
key that is used for the subsequent protection of application data. HIP DEX thereby
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does not define its own protection mechanism for application data but employs an
IPsec-protected payload channel similar to the original HIPv2 protocol [JMM15].

3.3.4.1 Remarks

The HIP DEX protocol is currently proposed for standardization at the IETF and
is still under active development. As a result, an updated protocol revision has
been released since our work in Chapter 4. The protocol revision employed in this
thesis [Mos12] primarily di↵ers from the most recent protocol specification [MH14]
with respect to the following two modifications. First, we identified a potential
downgrading attack targeting the negotiation of the supported cipher suites and
of the application data protection mechanisms in the unprotected R1 message. To
mitigate this attack, we proposed to re-include the a↵ected negotiation parameters
in the integrity-protected R2 message. This change enables the communication end-
points – even though with potentially weaker cryptographic primitives than mutually
desired – to verify if these negotiation parameters were altered during transmission
of the R1 message. Second, the refined retransmission mechanism, which we will
present in Chapter 4, recently replaced the original aggressive retransmission strat-
egy of HIP DEX due to the improved retransmission properties of our approach.

3.3.5 Minimal Internet Key Exchange Protocol Version 2

Minimal IKEv2 [Kiv15] is a profile of the IKEv2 protocol for the IoT that has re-
cently been proposed for standardization at the IETF. The main goal of this profile
is to reduce the complexities involved in implementing the IKEv2 protocol. To this
end, it excludes most optional functionality of IKEv2, e.g., the creation of multi-
ple child security associations within a single session context. This allows to limit
the Minimal IKEv2 handshake to the first four messages of the IKEv2 handshake
(see Figure 3.8). Moreover, the Minimal IKEv2 specification focuses on the use
of symmetric-key instead of public-key cryptography for peer authentication pur-
poses. Still, Minimal IKEv2 does not completely eliminate the need for public-key
cryptography as it continues to rely on an ephemeral DH key agreement for the es-
tablishment of a confidentiality- and integrity-protected channel. We now continue
with an overview of the Minimal IKEv2 connection establishment handshake.

Similar to HIP DEX, the Minimal IKEv2 protocol handshake consists of a four-way
message exchange that is triggered by the Initiator. The handshake proceeds in

IKE SA INIT: eph. DH key, negotiation params

IKE SA INIT: eph. DH key, negotiation params

IKE AUTH: PSK authentication, negotiation params

IKE AUTH: PSK authentication, negotiation params

IPsec-protected payload transmission

Initiator Responder

Figure 3.8 Sequence diagram of the Minimal IKEv2 handshake. The IKE AUTH exchange and
the IPsec payload channel are protected based on an ephemeral DH key agreement. The peer
authentication performed during the IKE AUTH exchange is based on Pre-Shared Keys (PSKs).
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two message pairs, i.e., the IKE SA INIT followed by the IKE AUTH exchange (see
Figure 3.8). During the IKE SA INIT, the Initiator and the Responder primarily
negotiate protocol parameters and exchange their ephemeral DH keys. These keys
allow the peers to establish a secure channel for the following IKE AUTH message
exchange as well as to derive secret keying material for the subsequent establishment
of an IPsec-protected payload channel. The peers then authenticate each other
during the IKE AUTH exchange and finally setup the aforementioned IPsec channel
for the secure transmission of application data. In this context, it is worth noting that
the communication end-points are expected to use symmetric-key cryptography for
peer authentication purposes. Hence, the end-points have to be in the possession of a
common secret prior to the establishment of a secure connection via Minimal IKEv2.

Like DTLS and HIP DEX, the Minimal IKEv2 protocol design incorporates a re-
transmission mechanism for lost handshake messages. This retransmission mecha-
nism is a hybrid solution of the strategies employed by DTLS and HIP DEX. Specif-
ically, retransmissions in Minimal IKEv2 are triggered by the Initiator whereas the
Responder reacts to retransmissions, equal to HIP DEX. Similar to DTLS, repeated
message loss leads to an exponential back-o↵ of the retransmission timeout. More-
over, while IKEv2 provides a return-routability test for DoS protection comparable
to DTLS, Minimal IKEv2 forgoes this optional mechanism in its protocol design.

3.3.6 Protocol Comparison

We now analytically compare the main handshake properties of the DTLS, HIP DEX,
and Minimal IKEv2 protocols. By doing so, our goal is to determine the strengths
and weaknesses of the considered protocols with respect to the special device and
network characteristics in the IoT. We then leverage this gained understanding in
order to guide our research in Chapters 4 and 5. We refer to Table 3.3 for an overview
of the main results of the following brief analytical protocol comparison.

The most prominent di↵erence between the DTLS, HIP DEX, and Minimal IKEv2
protocols is the required number of handshake messages. More precisely, while DTLS
commonly requires the transmission of 10 to 15 handshake messages, the HIP DEX
and Minimal IKEv2 handshakes only consist of a total of four messages. Still, it is
worth noting that all three protocols have to transfer similar handshake information.
Moreover, DTLS allows multiple handshake messages to be sent in a single network
packet. Thus, the overall transmission overheads of the di↵erent handshakes do
not di↵er to the significant extend indicated by the diverging number of handshake
messages. Similarly, the retransmission of a DTLS message flight resembles the
retransmission of a HIP DEX or Minimal IKEv2 handshake message when sending
entire DTLS message flights in a single packet. Still, DTLS end-points also have to
be able to process message flights that are transmitted via multiple network packets
as this likewise constitutes protocol-compliant transmission behavior. The DTLS
handshake, therefore, exhibits an increased message processing complexity and may
incur higher transmission overheads compared to HIP DEX and Minimal IKEv2.

The main strength of the DTLS protocol is its agility with respect to the sup-
ported cryptographic primitives for peer authentication and key agreement purposes.
Here, the DTLS protocol specification allows to either use public-key or symmetric-
key cryptography. As a result, the DTLS protocol design provides for an e�cient
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Property
Protocol

DTLS HIP DEX Minimal IKEv2

Handshake messages 10 - 15 4 4
Retransmissions Flight-based Packet-based Packet-based
Public-key primitives Recommended Mandatory Mandatory
Other primitives Hash, Sym.-key Sym.-key crypto Sym.-key crypto
DoS protection Return routability Cryptogr. puzzle –
Additional protocol
mechanisms

Fragmentation,
Compression

Mobility,
Multi-homing

–

Table 3.3 Comparison results for the main handshake properties of the DTLS, HIP DEX, and
Minimal IKEv2 protocols. HIP DEX and Minimal IKEv2 mandate the use of public-key cryp-
tography during the protocol handshake, whereas DTLS also provides for a purely symmetric-
key-based handshake. The extensive handshake length and the per-flight retransmission se-
mantics, however, render DTLS more complex than HIP DEX and Minimal IKEv2.

symmetric-key-based handshake if the communication end-points already possess a
common secret prior to the actual handshake. However, such pre-shared secret keys
often are not readily available, e.g., when constrained devices communicate with
other constrained devices, hosts, or services in remote network domains. For such
scenarios, the DTLS protocol a↵ords the use of public-key cryptography for authen-
tication and key agreement across potentially untrusted network infrastructure.

In contrast to the DTLS protocol, HIP DEX and Minimal IKEv2 both mandate the
use of public-key cryptography for a DH key exchange. In doing so, Minimal IKEv2
is computationally more demanding than HIP DEX as it requires an ephemeral DH
key agreement that – compared to the static DH keys in HIP DEX – additionally
necessitates the peers to generate new DH keys for each protocol handshake. Despite
their mandatory use of public-key cryptography, it is worth noting that HIP DEX
and Minimal IKEv2 eliminate the need for a cryptographic hash function in their
protocol design. This allows to slightly reduce the memory overhead of the employed
cryptographic primitives. Still, we note that this overhead reduction typically does
not su�ce to compensate for the memory requirements of public-key cryptography.

Concerning DoS attacks against the protocol handshake, HIP DEX incorporates the
most sophisticated protection mechanism of the considered protocols. The employed
puzzle-based mechanism enables a resource-constrained Responder to demand a re-
source commitment from the Initiator before proceeding with expensive handshake
operations. This mechanisms also implicitly incorporates the challenge/response-
based return-routability test that is employed in the DTLS protocol design. Inter-
estingly, Minimal IKEv2 does not include a DoS protection mechanism in its protocol
design. Thus, with Minimal IKEv2, constrained devices are exposed to DoS attacks
during the protocol handshake that HIP DEX and DTLS can protect against.

In addition, DTLS and HIP DEX also provide further protocol mechanisms that are
not strictly required for end-to-end security purposes. For DTLS, these mechanisms
include message compression and fragmentation. HIP DEX additionally supports
end-point mobility and multi-homing. We note that we do not specifically consider
these protocol mechanisms in this thesis for the following reasons. Content compres-
sion before encryption has been shown to leak information about the uncompressed
packet content [Kel02] and, thus, is no longer considered secure [SHSA15]. More-
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over, message fragmentation at the DTLS layer is less e�cient than fragmentation
at the 6LoWPAN layer as each DTLS fragment contains IP and UDP header infor-
mation [Har14a]. Finally, mobility and multi-home are out-of-scope of our work.

3.4 Problem Statement and Research Challenges

The main goal of this thesis is to contribute to the e�cient and secure operation of
end-to-end security protocols in the IP-based IoT. To achieve this goal, a suitable
network security solution must account for the special device and network character-
istics in the embedded domain as well as for the high resource asymmetry in the IoT
(see Section 2.5). The DTLS, HIP DEX, and Minimal IKEv2 protocol adaptations
constitute candidate solutions that should already satisfy the above requirements as
they are intended to provide secure end-to-end communication between constrained
devices, hosts, and services. Based on our brief analytical protocol comparison and
our practical experimentation experience, we, however, identify three open research
challenges (RCs) with respect to the secure and e�cient operation of these end-to-
end IP security protocol adaptations in the context of constrained devices:

RC1 - High handshake computation and transmission overheads
DTLS, HIP DEX, and Minimal IKEv2 all mandate or recommend the use of
public-key cryptography in their protocol design. As we will show in Chap-
ter 4, this use of public-key cryptography, however, causes several design-level
security and performance issues in the context of constrained devices. Most
importantly, we find that the long processing times of public-key operations
significantly hamper the availability and response time of constrained devices
during the protocol handshake. Hence, the design of end-to-end security pro-
tocols for the IP-based IoT must be adapted to reduce the need for computa-
tionally expensive cryptographic operations, to protect networked embedded
devices against DoS attacks targeting these operations, and to account for the
varying processing times of the di↵erent handshake messages.

In addition, a key design goal of the DTLS, HIP DEX, and Minimal IKEv2
specifications is to preserve the original protocol semantics of TLS, HIPv2,
and IKEv2, respectively. TLS, HIPv2, and IKEv2, however, were designed
for extensibility and flexibility, whereas protocol conciseness only was a sec-
ondary goal. As a result, certain design decisions in the DTLS, HIP DEX,
and Minimal IKEv2 specifications, e.g., the conservatively large size of fixed-
length header fields, stand in direct conflict with the requirement for protocol
conciseness in the IoT. This requirement stems from the fact that the radio
modules constitute a major energy consumer on constrained devices [PK00].

In Chapter 4, we will provide a detailed analysis of the above protocol e�ciency
and security issues as well as quantify their impact based on the HIP DEX
protocol. Moreover, we will present the design of our four complementary,
lightweight protocol extensions that address the identified protocol issues.

RC2 - Prohibitive code size for memory-constrained devices
The contributions in research challenge RC1 account for the extensive run-time
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requirements, i.e., the high handshake computation and transmission over-
heads, of the DTLS, HIP DEX, and Minimal IKEv2 protocols in the context
of constrained devices. As we will show in Chapter 5, these protocols, however,
also cause significant RAM and ROM overheads when employing public-key
cryptography in the protocol handshake. These memory requirements render
the use of public-key cryptography in the design of the above end-to-end IP
security protocols infeasible for a wide range of memory-constrained devices.

To still enable such memory-constrained devices to employ standard end-to-end
IP security protocols for secure communication in the IoT, we will introduce
the handshake delegation architecture in Chapter 5. The key idea behind this
architecture is to physically separate the connection establishment phase from
the subsequent protection of application data and to o✏oad the connection
establishment handshake to an o↵-path, trusted delegation server.

RC3 - Vulnerable 6LoWPAN fragmentation of handshake messages
Our contributions in research challenges RC1 and RC2 enable the secure and
e�cient operation of DTLS, HIP DEX, and Minimal IKEv2 at the security
protocol level. However, we observe that the packet processing at the lower
layers in the network stack for constrained devices also needs to be considered
in order to fully provide for the secure operation of the DTLS, HIP DEX, and
Minimal IKEv2 protocols in the embedded domain. Specifically, we find that
select handshake messages need to be fragmented at the 6LoWPAN layer for
transmission inside a constrained node network. As we will show in Chapter 6,
this fragmentation mechanism, however, is vulnerable to potential DoS attacks.
An adversary can exploit these fragmentation-based DoS attacks to block the
correct reassembly of fragmented handshake messages and, thus, can prevent
the DTLS, HIP DEX, and Minimal IKEv2 handshakes from completing.

In Chapter 6, we will provide a detailed security analysis of the 6LoWPAN
fragmentation mechanism and we will discuss the identified fragmentation at-
tacks. Moreover, we will present two complementary defense mechanisms that
protect constrained devices against these attacks. The devised defense mech-
anisms then a↵ord the missing protection of fragmented handshake messages.

We now continue with the presentation of our lightweight security protocol exten-
sions and architectural considerations that address the above research challenges.
Combined, these contributions provide a comprehensive, yet e�cient solution for
authentication, authorization, and secure communication in the IP-based IoT.
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4
Tailoring the Protocol Design

The DTLS, HIP DEX, and Minimal IKEv2 protocol adaptations (see Sections 3.3.3
to 3.3.5) are proposed for standardization at the IETF with the intention to adapt
standard end-to-end security to the IP-based IoT. In principle, these protocol adap-
tations should already consider the special device and network characteristics in the
embedded domain as well as the high resource asymmetry in the IoT. However,
based on our analysis, we identify several design-level e�ciency and security issues
that render the deployment of these protocols in the IoT ine�cient and insecure.

Our contributions in this chapter are twofold. First, we present the results of our
protocol analyses and quantify the identified design-level protocol issues for the
HIP DEX protocol. We chose HIP DEX for our detailed protocol analysis as it
already features a highly adapted protocol handshake (see Section 3.3.6). As a
second contribution, we then present three complementary, lightweight protocol ex-
tensions that address the identified design-level e�ciency and security issues. These
mechanisms adapt the HIP DEX protocol design to the extensive computation re-
quirements on constrained devices. Moreover, we show how the core ideas of these
protocol extensions also translate to DTLS and Minimal IKEv2. We additionally
introduce an evolvable compression layer called Slimfit that we specifically design to
reduce the high transmission overhead of the HIP DEX protocol. Combined, these
contributions tailor the protocol design of HIP DEX in particular and of standard
end-to-end IP security in general to the special device and network characteristics
in the embedded domain as well as to the high resource asymmetry in the IoT.

The remainder of this chapter is structured as follows. In Section 4.1, we address the
protocol handshake issues that are caused by the high computation overhead in the
context of constrained devices. Section 4.2 then focuses on the transmission overhead
of the HIP DEX handshake and presents the design of the Slimfit compression layer.
In both sections, we provide a detailed analysis of the problem space, describe the
design of the devised solutions, discuss their security considerations as well as their
related work, present the evaluation results, and review the main contributions.
Finally, we conclude this chapter in Section 4.3 with a brief summary. We note that
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the contents of this chapter is based on our published work in [HHW11, HWZ+13,
HHHW13] and our on-going standardization e↵orts in [HGS13, HHH13, MH14].

4.1 Designing for High Computation Requirements

Concerning the computation overhead of DTLS, HIP DEX, and Minimal IKEv2, the
cryptographic operations that constrained devices must perform during the protocol
handshake typically outweigh the remaining non-cryptographic message processing
costs. This is especially true in case of public-key cryptography as discussed in
Section 3.2. Public-key cryptography, however, plays a vital role for peer authen-
tication and key agreement purposes across independent network domains. This is
predominantly due to its high scalability – a single public/private key-pair su�ces to
authenticate a communication end-point to multiple communication partners – and
its unchallenging key management properties. More precisely, public-key cryptogra-
phy allows to exchange the public portion of a public/private key-pair over untrusted
network infrastructure without revealing sensitive information to a third party (see
Section 3.2.3 for more information). Based on these credentials, a communication
end-point then can securely authenticate the owner of the corresponding private key.

Moreover, by further augmenting the public key with additional information such as
a domain name via certificates, the public key can also be bound to a specific device
or network domain. Contrary to symmetric-key cryptography, public-key primitives,
therefore, do not require the communication end-points to be in the possession of
pre-shared keying material prior to the actual protocol handshake. In fact, as noted
in Section 3.2.2, public-key cryptography commonly is used in network security
protocols to establish the keying material that is required for the e�cient protection
of handshake messages and application data via symmetric-key primitives.

The important role of public-key cryptography also manifests in the design of the
DTLS, HIP DEX, and Minimal IKEv2 protocols. As discussed in Section 3.3.6,
their protocol specifications all mandate or recommend the use of public-key primi-
tives. However, we identify several performance and security issues that are directly
attributable to these public-key operations during the protocol handshake. Most
importantly, we find that public-key operations significantly hamper the availabil-
ity and response time of constrained devices. The design of DTLS, HIP DEX, and
Minimal IKEv2, therefore, must be tailored to reduce the need for these expensive
handshake operations and to account for the high processing time of the individual
handshake messages in order to fully adapt these protocols to IoT requirements.

4.1.1 Impact on the Protocol Handshake

We now discuss the identified protocol performance and security issues with respect
to the computation requirements of the DTLS, HIP DEX, and Minimal IKEv2 pro-
tocols. We quantify their impact for HIP DEX and refer to Section 4.1.6 for detailed
information about the evaluation setup. To structure our discussion, we distinguish
between the following three aspects: (i) the choice and strength of the employed cryp-
tographic primitives, (ii) the consideration of the high resource asymmetry in the
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ECDSA
(sign)

ECDSA
(verify)

ECDH
(generate)

ECDH
(compute)

AES SHA-256

399.38ms 1010.70ms 311.17ms 656.25ms 0.23ms 10.49ms

Table 4.1 Comparison of the processing time for a single block operation of various crypto-
graphic primitives. The results denote the average over 100 measurements on the Zolertia Z1
platform. AES operations were performed with 128 bit keys in hardware. All other operations
were based on the relic toolkit [relic]. Concerning ECDSA and ECDH, we employed elliptic
curve SECP160R1. Notably, the overheads of ECDSA and ECDH are prone to grow even further
as NIST currently recommends elliptic curves with a field size of at least 224 bit [NIST12a].

specified DoS protection mechanisms, and (iii) the adaptability of the retransmission
strategies to the varying processing times of the di↵erent handshake messages.

4.1.1.1 Choice and Strength of the Cryptographic Primitives

As shown in Table 4.1, the computation overhead caused by public-key-based primi-
tives on constrained devices dwarfs the overheads of symmetric-key-based primitives
as well as cryptographic hash functions. The HIP DEX protocol therefore forfeits the
use of most public-key primitives in its protocol design. These public-key primitives
include public-key signatures and the ephemeral ECDH key agreement. Instead,
HIP DEX employs a static ECDH key agreement for both peer authentication and
key agreement purposes (see Section 3.3.4). As a result, the HIP DEX handshake
only involves a single ECDH computation per communication end-point. This stands
in stark contrast to DTLS, especially when considering recent cipher suite recom-
mendations for the DTLS-based protection of the CoAP protocol1. Here, current
cipher suite recommendations for public-key cryptography require each communi-
cation end-point to perform two ECDSA operations for signature generation and
verification and two ECDH operations for the generation of an ephemeral ECDH
key-pair and the actual ECDH key agreement. Similar to DTLS, the Minimal IKEv2
protocol handshake also involves the computation overhead of an ephemeral ECDH
key agreement, but forfeits the use of public-key signatures (see Section 3.3.6).

To illustrate the computation overhead on a constrained device that stems from this
use of public-key primitives during the protocol handshake, we now highlight the re-
sulting computation times for the elliptic curve with the smallest field size supported
by HIP DEX, i.e., SECP160R1. For this curve, the HIP DEX handshake incurs a
public-key-related computation overhead of about 1.31 s for both communication
end-points combined (see fourth column in Table 4.1). This overhead increases to
1.93 s for Minimal IKEv2 and to 4.76 s for DTLS. Importantly, these substantial
overheads are about to grow even further as protocol implementations migrate to el-
liptic curves with larger field sizes to adopt higher levels of security. Such a migration
is highly advisable as the National Institute of Standards and Technology (NIST)
currently recommends curves with a field size of at least 224 bit for the protection

1The CoAP protocol specification recommends the use of an ephemeral ECDH key agree-
ment, ECDSA signatures, and the AES block cipher with the Counter with CBC-MAC (CCM)
mode of operation, with 128 bit keys, and with 8 byte authentication tags (i.e., cipher suite
TLS ECDHE ECDSA WITH AES 128 CCM 8) [SHB14] during the DTLS protocol handshake.
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of sensitive information [NIST12a]. NIST P-256 is the elliptic curve with the small-
est field size that satisfies this recommendation and that also is supported by the
HIP DEX protocol. With this curve, already the static ECDH key agreement of
HIP DEX, however, requires about 1.86 s per communication end-point.

Identified protocol issue:

As shown above, public-key operations block the MCU of constrained devices for
extended periods of time during the protocol handshake. This, however, inevitably
leads to situations where these devices cannot fulfill their original tasks, e.g., the
processing of sensed information or packet forwarding, in a reliable manner due to
their intermittent availability. In addition, sleep deprivation considerably decreases
the lifetime of energy-constrained devices if they have to perform expensive crypto-
graphic operations on a regular basis. These adverse e↵ects of public-key cryptogra-
phy are even further aggravated when taking current security recommendations and
increased levels of security into account. Hence, to preserve the scarce resources of
constrained devices for their original tasks, it is important to reduce the amount of
public-key operations during the DTLS, HIP DEX, or Minimal IKEv2 handshake.

4.1.1.2 DoS Protection and the Resource Asymmetry in the IoT

The high resource asymmetry in the IoT enables a even single adversary such as
a conventional Internet host to mount a flooding-based DoS attack against a con-
strained device. To amplify this attack, the adversary can exploit asymmetries in
the design of the DTLS, HIP DEX, or Minimal IKEv2 handshake. For example, the
adversary may initiate multiple handshakes in parallel, thus exploiting the expensive
public-key operations during the protocol handshake with the goal to exhaust the
target’s scarce computation resources. Similarly, the adversary may initiate multiple
handshakes in short succession to continually occupy these scarce resources.

DTLS and HIP DEX both employ protection mechanisms that aim at countering
such DoS attacks against the protocol handshake. The DTLS protocol design inte-
grates a cookie-based return-routability test that requires the Initiator of a protocol
handshake to echo back a Responder-defined nonce before the Responder invests
computation or memory resources into the continuation of the handshake. This
allows to identify spoofed handshake messages and to blacklist communication end-
points that behave maliciously if they can uniquely be identified by their IP address.
Return-routability tests, however, often do not su�ce to protect against DoS attacks
for IPv6-based network communication as typically encountered in the IP-based IoT
(see Section 2.3.1). This is because the address assignment with IPv6 for an individ-
ual site is based on a large address space of at least 64 bit, even for small-scale home
networks [NHR11]. As a result, a single IPv6 host can be equipped with multiple
globally routable addresses or can change its address over time, e.g., for privacy rea-
sons [dVPC+08]. An adversary can exploit this fact to pretend to represent multiple
end-points, thus thwarting the blacklisting capabilities of the return-routability test.

In contrast, puzzle-based DoS protection mechanisms as, e.g., used by the HIP DEX
protocol, require the Initiator of a connection establishment handshake to solve a
Responder-defined cryptographic challenge. This enables the Responder to demand
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an adjustable resource commitment from the Initiator before performing expensive
handshake operations. Specifically, as DoS protection is no longer based on virtual
information that can be tampered with but instead relies on the actual physical
resources of the adversary, the Responder can protect against DoS attacks from a
single adversary by rendering the connection establishment expensive.

Identified protocol issue:

As discussed above, mere return-routability tests often do not su�ce to thoroughly
protect constrained devices against DoS attacks that target the protocol handshake.
Puzzle-based DoS protection mechanisms, however, invariably impact legitimate
Initiators that aim at establishing a secure connection with a Responder who is
currently under attack. More precisely, the Responder is required to demand the
same resource commitments from both legitimate and malicious Initiators as it can-
not distinguish between them during the protocol handshake. While puzzles with a
high di�culty may eventually be solved by unconstrained legitimate Initiators, these
puzzle, however, quickly become impractical for constrained Initiators. As a result,
handshakes with resource-constrained Initiators are prone to fail. Vice versa, low
puzzle di�culties account for resource-constrained Initiators but do not protect the
Responder against DoS attacks mounted by an unconstrained adversary. Thus, DoS
protection in the IoT must require a small resource commitment from constrained
devices, while demanding a high resource commitment from unconstrained communi-
cation end-points. Cipher suites and other HIP DEX protocol information, however,
do not carry su�cient semantic meaning to make an informed decision about the
Initiator’s available resources and consequently an appropriate puzzle di�culty. This
renders the protection against DoS attacks in the IoT challenging.

4.1.1.3 Retransmissions and Varying Message Processing Times

The DTLS, HIP DEX, and Minimal IKEv2 specifications all define retransmission
strategies to handle lost handshake messages. These strategies aim for the oppos-
ing goals of minimizing premature retransmissions as well as reducing the handshake
delay that is caused by the loss of a handshake message. Notably, premature retrans-
missions are highly undesirable in constrained node networks as they waste scarce
energy resources on the forwarding path and needlessly occupy the wireless medium.
The processing time of individual handshake messages, however, varies significantly
depending on the triggered handshake operations and the device that performs these
operations. For example, our evaluation shows that the processing times of the I1
and I2 messages di↵er by about 0.7 s on a constrained device. Similarly, a static
ECDH key agreement on a desktop-class communication end-point takes less than
0.02 s, whereas the same operation requires about 0.66 s on a constrained device.
Consequently, response messages, which also signal message reception, may exhibit
delays that exceed purely network delay-based retransmission timeouts.

Identified protocol issue:

The retransmission mechanisms specified for DTLS, HIP DEX, and Minimal IKEv2
predominantly employ fixed, message-independent retransmission strategies that do



54 4. Tailoring the Protocol Design

not account for the computation time of public-key operations. HIP DEX, for in-
stance, specifies an aggressive retransmission strategy that triggers retransmissions
in the order of a few milliseconds. Yet, public-key operations may take seconds
to complete on a constrained device. As a result, overly aggressive retransmission
strategies inevitably cause premature retransmissions despite the successful reception
of a given message at the handshake peer. The DTLS specification, in turn, rec-
ommends a retransmission timeout of 1 s that the communication end-point should
double for each repeated retransmission of the same message flight. However, while
this strategy causes less premature retransmissions, it quickly delays the conclusion
of a handshake for a significant amount of time if consecutive retransmissions are
lost. Moreover, it is important to note that public-key operations based on elliptic
curves such as NIST P-256 cause computation times on constrained devices that
are well above 1 s. Thus, the retransmission mechanism defined for DTLS also pro-
vokes premature retransmissions when following current security recommendations.
In contrast, the Minimal IKEv2 specification does not recommend specific timeout
values for retransmission purposes. Still, it presumes retransmissions to only employ
local knowledge. Consequently, these existing retransmission strategies are unable
to take the message processing time at the handshake peer into account and, thus,
are prone to cause premature retransmissions in the context of constrained devices.

We now continue with the presentation of our three complementary protocol exten-
sions that alleviate the identified protocol issues. We first introduce a flexible session
resumption mechanism that allows to amortize the expensive public-key operations
of an initial protocol handshake across repeated connection establishments. We then
show how to extend the puzzle-based DoS protection mechanism of HIP DEX for
collaborative protection in network scenarios with high resource asymmetries. Fi-
nally, we present an adaptive retransmission mechanism that accounts for the varying
processing times of the di↵erent handshake messages on constrained devices.

4.1.2 Reducing the Cost of Repeated Connection Establishments

The high computation overhead of public-key operations during the DTLS, HIP DEX,
and Minimal IKEv2 handshakes leads to the inclination of using an established con-
nection over extended periods of time. To this end, a constrained device may, e.g.,
set up long-lived connections during its bootstrapping phase (see Section 3.3.2).
These connections then are anticipated to last for the remaining device lifetime.

Internet 
 

< 2 min 

Constrained 
device 

On-path 
middlebox 

Cloud-based 
Service 

Figure 4.1 Network scenario with an on-path middlebox that employs a soft-state approach
for maintaining information about active connections. The arrow indicates periodic keep-alive
messages sent by the communication end-points to keep the connection open.
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Such an approach, however, has several drawbacks that often necessitate repeated
connection establishment handshakes. First, the cryptographic keys that are used
for the protection of bulk data must occasionally be refreshed to prevent overuse
and degradation of the security properties of the underlying symmetric-key algo-
rithm [BH05]. Second, on-path middleboxes such as firewalls typically employ soft-
state approaches to store information about traversing data flows [Woo11] (see Fig-
ure 4.1). As a result, communication end-points must transmit periodic keep-alive
messages to ensure uninterrupted forwarding of bidirectional data flows. These keep-
alive messages must be sent at least once every two minutes according to recent rec-
ommendations for on-path middleboxes [Woo11]. Thus, the transmission overhead
required for keeping a connection alive eventually exceeds the overhead for a new
connection establishment with respect to the resulting energy expenditure. This is
especially true for application scenarios that only involve sporadic data transmis-
sions. Third, constrained devices may only be able to maintain very few connections
in parallel due to the memory requirements of the corresponding session states. As a
result, constrained devices may need to discard session state for completed requests
and perform a new protocol handshake for repeated interactions with prior commu-
nication partners if the available memory space for session state is fully occupied.

4.1.2.1 Handling Repeated Handshakes with Session Resumption

Our main goal in this section is to reduce the computation overhead caused by such
repeated connection establishment handshakes. To this end, we introduce a novel
session resumption mechanism for HIP DEX that is inspired by similar mechanisms
for TLS [DR08] and IKEv2 [ST10]. The basic idea behind session resumption is to
enable the handshake peers to reuse their session state from an initial connection
establishment handshake with expensive public-key operations across subsequent
handshakes. The handshake peers, therefore, keep their established session state
even after the connection is torn down. The peers then e�ciently re-authenticate
each other and re-establish the previous session context based on their stored session
state in an abbreviated session resumption handshake. Moreover, a variant of this
basic session resumption type additionally allows the Responder to securely o✏oad
its session state to the Initiator for safe-keeping purposes [SZET08, ST10]. This
enables the Responder to remain stateless while the connection is inactive.

We observe that such Responder-side state-o✏oading is motivated by the fact that
traditional client-server systems commonly involve a small number of powerful servers
that handle a multitude of clients. Hence, Responder-side state-o✏oading improves
the scalability of the overall system by unburdening the Responder at the cost of its
connected Initiators. In the IoT, this mindset, however, puts resource-constrained
Initiators at a considerable disadvantage. For example, in case of a connection
between a constrained Initiator and a powerful Responder such as a Cloud-based
service, o✏oading the Responder’s session state to the Initiator further draws on
the Initiator’s scarce memory resources instead of unburdening them. Moreover,
the role of a constrained device typically is not pre-determined in M2M scenarios,
where this device can act as the Initiator or the Responder during a connection es-
tablishment handshake. State-o✏oading, therefore, must be based on the available
resources at the handshake peers instead of their role during a given handshake.
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I1

R1 Initial
session
establ.

I2: + RESUMPTION NEGOTIATION

R2: + RESUMPTION NEGOTIATION
IPsec-protected payload transmission

CLOSE: [+ SESSION TICKET]
Session
teardown

CLOSE ACK: [+ SESSION TICKET]

Session inactive

Initiator Responder

Figure 4.2 Initial HIP DEX connection establishment with session resumption type negotiation.
The session state can be o✏oaded during the connection teardown. Brackets denote optional
parameters that are included depending on the actual session resumption type.

To address the above observations, we now present a the design of our flexible
session resumption mechanism that features an additional session resumption type
compared to the existing session resumption mechanisms. This additional session
resumption type enables a resource-constrained Initiator to securely o✏oad its ses-
sion state to the Responder. Moreover, we introduce an explicit session resumption
type negotiation mechanism that enables the communication end-points to agree on
a mutually preferred session resumption type for the next protocol handshake.

4.1.2.2 Initial connection Establishment

As shown in Figure 4.2, the Initiator and the Responder leverage the initial HIP DEX
handshake to negotiate the mutually preferred session resumption type for sub-
sequent connection establishments. Our flexible session resumption mechanisms
thereby di↵erentiates between the following three session resumption types: (i) state
compression, where both communication end-points store their own session state
across connections, (ii) Initiator-side state-o✏oading, where the Responder stores
the session state on behalf of the Initiator, and (iii) Responder-side state-o✏oading,
where the Initiator stores the session state on behalf of the Responder.

Concerning the actual message exchange, the Initiator signals its preferred session
resumption types to the Responder in the I2 handshake message. To this end, the
Initiator includes a RESUMPTION NEGOTIATION parameter that lists its sup-
ported session resumption types in their order of preference. This order can be based
on the Initiator’s memory resources at the time when the handshake takes place or
can be configured statically. Static configuration thereby especially applies for highly
memory-constrained devices and unconstrained communication end-points. Specifi-
cally, while the former preferably o✏oad their session state, we expect the latter to
graciously accept storing session state on behalf of their communication partners.

After receiving and processing the I2 message, the Responder selects and indicates
the negotiated session resumption type in the RESUMPTION NEGOTIATION pa-
rameter of the R2 message. In this, the Responder takes its own as well as the Ini-
tiator’s preferences into account. Importantly, no session resumption is performed
during the subsequent handshakes if at least one communication end-point omits the
negotiation parameter during the initial connection establishment. In this case, the
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initial handshake concludes without modification to the standard HIP DEX protocol
specification. This specific design trait allows to probe the communication partner
for session resumption support and to perform a standard HIP DEX handshake with
legacy end-points that are unaware of our new protocol extension.

When the handshake phase completed successfully, the end-points communicate se-
curely via an IPsec-protected payload channel, i.e., equal to the standard HIP DEX
protocol. The connection teardown exchange then deviates again from the standard
protocol behavior depending on the negotiated session resumption type. This is
because the Initiator or the Responder use the connection teardown to o✏oad their
protected session states (see Figure 4.2). Specifically, if both end-points previously
agreed on Initiator-side state-o✏oading, the Initiator compresses and encrypts its
active session state when triggering the connection teardown exchange. The Ini-
tiator then includes this state in the SESSION TICKET parameter of the CLOSE
message and discards its active session state. On receipt of the CLOSE message,
the Responder compresses its own session state and stores it along with the received
session state from the Initiator. In contrast, with Responder-side state-o✏oading,
the CLOSE message remains unaltered. Instead, the Responder includes its session
state in the SESSION TICKET parameter of the CLOSE ACK message. As a third
option, both end-points may also agree on session resumption with state compres-
sion. In this case, no session tickets are exchanged during connection teardown and
both end-points store their own compressed states while the session is inactive.

4.1.2.3 Remarks concerning the Delayed State-O✏oading

We note that we intentionally delay state-o✏oading until the end of the connection
lifecycle in order to relieve the communication end-points from storing a peer’s of-
floaded session state while the session is still active. This design decision enables
even constrained devices to store a limited amount of session state for constrained
communication partners as the compressed and the o✏oaded session states com-
bined are smaller than the state of an active session (see Section 4.1.6.1). Still,
an end-point may temporarily loose connectivity, thus preventing the communica-
tion partners from performing the negotiated state-o✏oading during the connection
teardown exchange. In case of an intermittent connection failure, the end-points,
therefore, always employ session resumption with state compression independent
from the negotiated session resumption type in order to e�ciently re-establish and
re-synchronize the session context without the need for public-key cryptography.

4.1.2.4 Abbreviated Session Resumption Handshake

The abbreviated session resumption handshake enables the communication end-
points to leverage the stored session state from a previous connection to e�ciently
re-authenticate each other and to establish a fresh session key for payload protection.
The abbreviated handshake thereby di↵ers depending on which end-point stores the
session states and which end-point triggers the connection re-establishment. We now
first introduce the abbreviated handshake with state compression. The two hand-
shakes involving state-o✏oading then constitute variants of this basic handshake.
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Figure 4.3 The abbreviated session resumption handshake for HIP DEX. Brackets denote
optional messages and parameters that depend on the actual session resumption type.

The abbreviated handshake with state compression consists of the I1 and SR R1
messages as well as their mandatory parameters depicted in Figure 4.3. The I1
message most notably contains a RESUMPTION NEGOTIATION parameter. This
parameter allows the end-points to negotiate the session resumption type for the next
session resumption handshake and indicates the current session resumption type to
the Responder. Moreover, this message includes a fresh encrypted key share that
is part of a new session key for the subsequent protection of application data (see
Section 3.3.4). Finally, the I1 message contains a MAC parameter that protects the
message integrity and allows the Responder to authenticate the Initiator.

When receiving the I1 message, the Responder inspects the included session resump-
tion type negotiation parameter and looks up its own compressed session state. The
Responder then uses this state to authenticate the Initiator and to verify the in-
tegrity of the I1 message. To this end, the Responder leverages the fact that the
Initiator is the only other party in possession of the necessary keying material that
allows to compute a correctly verifiable MAC value. Specifically, both end-points
previously derived this keying material during the initial ECDH key agreement and
store it as part of their compressed session states while the session is inactive. In
case of a successful verification, the Responder then decrypts the received Initiator-
side key share and concludes the session resumption handshake with a new SR R1
message. This message confirms the subsequent session resumption type in the RE-
SUMPTION NEGOTIATION parameter and includes the Responder-side key share
in the ENCRYPTED KEY parameter. Combined, both key shares build the basis
for a new session key. Hence, each session resumption handshake also includes a
rekeying operation that updates the session key for the protection of application
data. Moreover, the SR R1 message contains a MAC parameter that enables the
Initiator to authenticate the Responder and to verify the SR R1 message integrity.

We note that we introduce the dedicated SR R1 message type for the abbreviated
session resumption handshake in order to further reduce the transmission overhead
for repeated connection establishments. This is because the specification of the
standard R1 message contains mandatory parameters that are not required in the
abbreviated session resumption handshake, e.g., the Responder’s public ECDH key.

4.1.2.5 Session Resumption with State O✏oading

Compared to the basic abbreviated handshake described above, Responder-side
state-o✏oading also requires the Initiator to include the Responder’s o✏oaded ses-
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sion state in the SESSION TICKET parameter of the I1 message. Upon reception,
the Responder verifies the received session state as discussed in the next section
and uses the included keying material to authenticate the Initiator and to verify the
integrity of the received message. The Responder then generates an SR R1 response
with an ECHO REQUEST parameter. This parameter allows the Responder to de-
termine the freshness of the abbreviated handshake by requiring the Initiator to echo
back a Responder-defined challenge value in the ECHO RESPONSE parameter of
the new SR I2 message. The successful verification of the MAC value as well as of the
re-included challenge value in the received SR I2 message then assures the Respon-
der that the handshake is not a replay of a previously recorded session resumption
handshake. This assurance is based on the fact that only the legitimate Initiator
can compute correct MAC values for messages with Responder-defined content.

Finally, in case of session resumption with Initiator-side state-o✏oading, the Initia-
tor sends a standard I1 message to the Responder as it is unaware of the previously
established session state. The Responder then looks up its own compressed and the
Initiator’s o✏oaded session states. For look-up purposes, the Responder leverages
the fixed-length representation of the sender’s public ECDH key, i.e., the Host Iden-
tity Tag (HIT), that is included in the header of all HIP DEX protocol messages. In
case of a successful session state look-up, the Responder then takes over the role of
the Initiator for the subsequent handshake messages and sends an I1 message that
contains the same parameters as the I1 message in the session resumption handshake
with Responder-side state-o✏oading. When receiving this message, the original Ini-
tiator also changes its role and the handshake concludes as described above.

4.1.2.6 Required Session State Information

While the HIP DEX session state is implementation and scenario-specific, it must
meet a few requirements to ensure the secure operation of the introduced session
resumption mechanism. Most importantly, it has to include a locally unique iden-
tifier of the communication partner. Without such an identifier, an adversary, who
previously established session state with the target device, could impersonate an-
other end-point during a subsequent abbreviated session resumption handshake, thus
potentially escalating its access privileges at the target device. This privilege esca-
lation attack is possible because, in contrast to the public-key-based peer authenti-
cation during the standard HIP DEX handshake, the communication end-points re-
authenticate each other in the session resumption handshake based on their common
knowledge of the previously established session state. This session state, however,
is not bound to a specific end-point identity per se. Hence, to protect against this
attack, we require the HIT of the state-receiving peer to be part of the stored or the
o✏oaded session state. This inclusion of the peer’s HIT explicitly binds the main-
tained session state to a specific HIP DEX connection. In addition, the session state
must include the derived ECDH keying material and the negotiated cipher suites
of the initial connection establishment in order to be able to compute valid MAC
values and to correctly encrypt the key shares during the abbreviated handshake.

In case of state o✏oading, the transferred session state first must be encrypted as
well as integrity protected and the corresponding session-state protection key must
only be known to the o✏oading communication end-point. Otherwise, an adver-
sary could modify existing or create forged o✏oaded session state. As a result,
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the adversary could impersonate other communication end-points towards the of-
floading end-point by pretending to resume a previously established connection. To
protect state o✏oading against such attacks, we recommend the use of AES in com-
bination with the CCM mode of operation [WHF03] for the protection of o✏oaded
session state. This authenticated encryption mode allows to leverage potential AES
hardware support on constrained devices. Furthermore, this mode also requires the
o✏oading communication end-point to only store a single cryptographic key for both
the encryption and the integrity protection of its o✏oaded session state.

Finally, o✏oaded session state may need to be revoked, e.g., when the communication
partner is compromised. In a näıve approach, such revocation can be achieved
by simply changing the session-state protection key at the o✏oading end-point.
Revocation then, however, also implies that all other inactive connections have to
be re-established with a standard protocol handshake. We refer to Section 5.2.3.3
for a more e�cient approach to handle the revocation of individual session state.

4.1.2.7 Integration with DTLS and Minimal IKEv2

The existing session resumption mechanisms for DTLS and Minimal IKEv2 currently
lack the possibility for a resource-constrained Initiator to o✏oad its session state to
the Responder for safe-keeping purposes. Similarly, these approaches do not provide
the necessary protocol functionality to explicitly negotiate the mutually preferred
session resumption type. Hence, we propose to integrate these two additional aspects
of our approach with the existing mechanisms for DTLS and Minimal IKEv2.

ClientHello (+ ResumptionType)
Flight 1

HelloVerifyRequest
Flight 2

ClientHello (+ ResumptionType)
Flight 3

ServerHello (+ ResumptionType)

Certificate
ServerKeyExchange

Flight 4
CertificateRequest

ServerHelloDone

Certificate
ClientKeyExchange

CertificateVerify

Flight 5 NewSessionTicket
[ChangeCipherSpec]

Finished
[ChangeCipherSpec]

Flight 6Finished
Protected payload transmission

Client Server

Figure 4.4 Session resumption type negotiation and client-side state-o✏oading during the
initial connection establishment handshake of the DTLS protocol. Session resumption-related
information is marked bold. Brackets denote DTLS protocol extensions.
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[ChangeCipherSpec]
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Figure 4.5 Abbreviated handshake with client-side state-o✏oading for DTLS. Session
resumption-related information is marked bold. Brackets denote DTLS protocol extensions.

For DTLS, session resumption type negotiation can be realized as an extension of the
ClientHello and the ServerHello handshake messages (see Figure 4.4). This enables
the handshake peers to explicitly agree on one of the existing session resumption
types, i.e., state compression or server-side state-o✏oading, as well as on our novel
client-side state-o✏oading. If the peers agree on one of the existing types, the
handshake concludes as specified in the corresponding protocol specification [RM12,
SZET08]. In contrast, for client-side state-o✏oading, we propose that the client
transfers its protected session state to the server via the NewSessionTicket message
as illustrated in Figure 4.4. To resume the session, the server then sends the o✏oaded
session state back to the client. To this end, it uses the SessionTicket extension of
the ServerHello message in a newly introduced abbreviated DTLS session resumption
handshake (see Figure 4.5). For more detailed information about this new handshake
and about our above session resumption extensions, we refer to the proposed protocol
specifications in our corresponding Internet-Draft at the IETF [HGS13].

In case of Minimal IKEv2, session resumption type negotiation can be implemented
in the first two messages of the handshake, i.e., the IKE SA INIT exchange, as de-
picted in Figure 4.6. Moreover, Initiator-side state-o✏oading can be realized based

IKE SA INIT: +RESUMPTION NEGOTIATION

IKE SA INIT: +RESUMPTION NEGOTIATION
Initial
handshake

IKE AUTH: +N(TICKET OPAQUE)

IKE AUTH

Session
inactive

IKE SA INIT: +RESUMPTION NEGOTIATION

IKE SA INIT: +RESUMPTION NEGOTIATION

IKE SESSION RESUME Session
resumption
handshake

IKE SESSION RESUME: +N(TICKET OPAQUE)

IKE AUTH: +N(TICKET OPAQUE)

IKE AUTH

Initiator Responder

Figure 4.6 Sequence diagram of the session resumption type negotiation and Initiator-side
state-o✏oading functionalities for Minimal IKEv2. N(·) denotes an IKEv2 notification payload.
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on the IKE SESSION RESUME exchange and the TICKET OPAQUE notification
payload of the existing IKEv2 session resumption mechanism. Specifically, we pro-
pose that the Initiator o✏oads its protected session state to the Responder in the
ticket notification payload in the first message of the initial IKE AUTH exchange (see
Figure 4.6). When resuming a session, the stateless Initiator then first sends a regular
IKE SA INIT message as it is unaware of its o✏oaded session state. This message
also contains a session resumption type negotiation parameter that informs the Re-
sponder about the Initiator’s supported session resumption types. The Responder’s
reply also includes a negotiation parameter notifying the Initiator about the stored
session state. As a result, the Initiator starts the existing IKE SESSION RESUME
exchange and the Responder transfers the session state in the corresponding response
message as shown Figure 4.6. Moreover, the Initiator o✏oads its session state in the
IKE AUTH exchange for use during the next session resumption handshake. We
note that, besides these changes, the existing IKEv2 session resumption mechanism
is una↵ected by our newly introduced session resumption functionality.

4.1.3 DoS Protection Despite Resource Asymmetries

In Section 4.1.2, we showed how our flexible session resumption mechanism unbur-
dens constrained devices from the expensive public-key-related protocol operations
during repeated connection establishments. More precisely, the presented mech-
anism enables constrained devices to purely rely on e�cient symmetric-key cryp-
tography during a session resumption handshake. This circumstance significantly
reduces amplification e↵ects that an adversary can exploit in a DoS attack against
repeated connection establishments. The initial connection establishment as well
as the standard HIP DEX handshake, however, still involve computationally expen-
sive public-key operations. These operations enable even a single unconstrained
adversary to mount a DoS attack against a constrained device (see Section 4.1.1.2).
Hence, to protect constrained devices against such DoS attacks, we now introduce
a collaborative puzzle-based DoS protection mechanism that is tailored to the device
constraints in the embedded domain and the high resource asymmetry in the IoT.

4.1.3.1 DoS Attacks Against the HIP DEX Protocol Handshake

As a first step towards developing this tailored DoS protection mechanism, we ob-
serve that DoS attacks may target two primary operations during the standard
HIP DEX protocol handshake. On the one hand, an adversary may target the ex-
pensive public-key operations with the goal to maliciously occupy the scarce compu-
tation resources of a constrained device. On the other hand, the adversary may tar-
get the device’s state creation process, thereby aiming to exhaust its scarce memory
resources [AN97]. As illustrated in Figure 4.7, the design of the HIP DEX protocol
already mitigates the latter attack by allowing the Responder to remain stateless
until the Initiator’s identity is confirmed during the I2 message processing. This
enables the Responder to only establish session state for successfully authenticated
and authorized communication end-points. Likewise, the Initiator’s state creation
process is commonly not considered a viable target for a DoS attack as the Initia-
tor only creates session state when actively triggering a handshake (see Figure 4.7).
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Figure 4.7 The standard HIP DEX handshake with a specific focus on the expensive protocol
operations and the existing DoS protection mechanisms. PK denotes a public-key operation.

Hence, an adversary would need to force the Initiator into unwillingly establishing
multiple new HIP DEX connections in order to exhaust its memory resources.

An adversary, however, would still be able to attack the peer authentication pro-
cess that is performed during the HIP DEX handshake. This is because the peer
authentication process employs a computationally expensive public-key operation.
Moreover, this expensive operation is imperative for the verification of the peer’s au-
thenticity and, thus, its authorization to communicate with the constrained device.

We note that the Initiator can e↵ectively prevent DoS attacks against its peer au-
thentication process by simply limiting the number of concurrently triggered protocol
handshakes. Likewise, the Initiator can drop unsolicited R1 messages based on the
lack of associated session state (see Figure 4.7). The Responder, however, remains
stateless until the Initiator has been authenticated successfully. As a result, the
Responder has to process all received Initiator-side handshake messages prior to the
creation of the associated session state. This, however, also includes I2 messages
that trigger an expensive peer authentication process at the Responder.

To protect the Responder against DoS attacks that exploit this circumstance, the
HIP DEX protocol employs a puzzle-based DoS protection mechanism that previ-
ously has similarly been used, e.g., to defend against spam e-mail [DN93] or TCP
SYN flooding attacks [JB99]. The key idea behind this puzzle mechanism is to en-
able the Responder to demand an adjustable resource commitment from the Initiator
before performing expensive protocol operations during I2 message processing. By
default, this resource commitment should be insignificant to prevent the Initiator
from unnecessarily churning its resources during normal operation. Yet, once the
Responder suspects to be under attack, the resource commitment must incur non-
negligible costs at the adversary in order to frustrate a potential DoS attack. At the
same time, such non-negligible resource commitments, however, should still allow
for a limited number of legitimate handshakes to conclude successfully. Thus, DoS
protection in the IoT must require a small resource commitment from constrained
devices, while demanding a high resource commitment from unconstrained commu-
nication end-points. The required detection of a DoS attack against the protocol
handshake and the adjustment of the resource commitment depending on the Initia-
tor’s computational resources, however, denote open issues of the puzzle mechanism.

We now address these missing building blocks by introducing two complementary,
low-overhead puzzle extensions. Specifically, we first present an attack detection
mechanism that allows the Responder to follow a default-o↵ policy for the puzzle
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Figure 4.8 Abstract algorithm that the Initiator employs to solve a Responder-issued puzzle
challenge with di�culty K. HITI and HITR denote the Initiator’s and Responder’s HITs.

mechanism. We then devise a collaborative di�culty selection strategy that enables
the Responder to adjust the puzzle di�culty based on additional information from
an on-path gateway. In combination, these extensions allow to employ the HIP DEX
puzzle mechanism as an e↵ective means against DoS attacks in the IoT.

4.1.3.2 Attack Detection Mechanism

As highlighted above, the HIP DEX protocol design exposes the Responder’s com-
putational resources as the primary target of a DoS attack against the protocol
handshake. We, therefore, employ the Responder’s computational load as the key
metric for our attack detection mechanism. More precisely, we use the number of
recently performed peer authentications as an estimator for the Responder’s com-
putational load. This a↵ords to implement our attack detection via a simple sliding
window mechanism. The sliding window thereby counts the number of peer au-
thentications during a fixed-length window period of, e.g., 1min. For each window
period, the Responder then graciously accepts a device- and scenario-specific num-
ber of protocol handshakes without demanding a resource commitment from the
Initiator. We call this number of accepted handshakes the puzzle issuing threshold.

More concretely, as long as the puzzle issuing threshold has not been reached for
a given window period, the Responder demands a puzzle di�culty of zero in the
R1 message. The puzzle mechanism then e↵ectively turns into a return-routability
test as, e.g., employed by DTLS. Thus, the Initiator only needs to echo back the
Responder’s puzzle challenge along with an arbitrary puzzle solution in the I2 mes-
sage (see Figure 4.7). However, once the puzzle issuing threshold is exceeded, the
Responder starts demanding a non-zero puzzle di�culty K from the Initiator. As
illustrated in Figure 4.8, this requires the Initiator to find a puzzle solution such
that an AES-based CMAC operation over the Responder-defined puzzle challenge,
the concatenation of the peers’ HITs, and an Initiator-chosen puzzle solution gener-
ates an output where at least the K lowest order bits are zero. In other words, the
Initiator has to find a pre-image that results in a partial output match of length K.
For a hash function2, this search for a pre-image requires the Initiator to perform
about 2K hash operations3 due to the underlying pre-image resistance property.

2The expected work factor of CMAC-based puzzles in HIP DEX is still under active investiga-
tion. If it should prove to be too low, the CMAC algorithm could, e.g., be replaced with SHA-256
or an AES-based hash function at the expensive of increased computation and memory overheads.

3A pre-image attack against a 128 bit hash digest is assumed to require about 2128 hash oper-
ations and, thus, is considered infeasible with today’s compute power [DK07]. However, finding
pre-images becomes increasingly practical when reducing the length of the required output match.
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Figure 4.9 Example network scenario depicting the interconnection of constrained (C) and
unconstrained (U) communication end-points in the IoT. Gateways (GW) that interconnect a
constrained node network with adjacent network domains are marked in dark gray.

4.1.3.3 Collaborative Puzzle Di�culty Selection

We recollect that the adjustable puzzle di�culty K allows the Responder to de-
mand a non-negligible resource commitment from the Initiator in case of an attack.
The intention thereby is to render the execution of multiple protocol handshakes
exceedingly expensive for a single adversary, while still allowing a benign Initiator
to eventually conclude a legitimate protocol handshake. We note that both proper-
ties require the Responder to be aware of the Initiator’s computational capabilities.
This is because finding a partial output match for a given puzzle di�cultyK requires
highly di↵ering computation times for constrained and unconstrained Initiators. Ci-
pher suites and other HIP DEX protocol information, however, typically do not
convey su�cient semantic meaning for the Responder to determine the Initiator’s
computational capabilities. Instead, we observe that a gateway that interconnects a
constrained node network with adjacent network domains (see Figure 4.9) commonly
possesses additional information about the interacting end-points. Specifically, this
gateway can identify handshakes as originating from outside the Responder’s net-
work domain based on the mere fact that it is located on the forwarding path of
the corresponding handshake messages. In addition, the gateway may also be able
to further classify these handshakes as originating from other constrained node net-
works, e.g., based on the included Virtual LAN (VLAN) tags [IEEE11a] or due to
authenticated tunnels from remote network domains that terminate at the gateway.

To leverage this additional information at the gateway in our collaborative di�culty
selection mechanism, we extend the HIP DEX handshake with a new signaling pa-

I1 +VIA UNKNOWN NETWORK
R1: Puzzle (with a high di�culty)

I2: Puzzle solution

R2

Initiator Gateway Responder

Figure 4.10 The gateway can notify the Responder about an unknown, network-external
Initiator by adding the new VIA UNKNOWN NETWORK parameter to a traversing I1 message.
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Figure 4.11 By demanding a resource commitment of about one window period, the Responder
can push its ECDH operation to a period with potentially less computational load.

rameter. The basic idea behind this parameter is to allow the gateway to inform the
Responder about an unknown and, therefore, potentially untrustworthy Initiator.
To this end, the gateway adds the new VIA UNKNOWN NETWORK parameter
to a traversing I1 handshake message (see Figure 4.10). The absence of this new
parameter then either indicates a handshake with a co-located constrained device
(i.e., no gateway involvement) or a positive identification by the on-path gateway.

The Responder reacts to the absence or the inclusion of the notification parameter
from the gateway as follows. If a received I1 message does not include the notification
parameter, the resource-constrained Responder issues the puzzle based on its own
computational resources. More precisely, the Responder sets the puzzle di�culty
such that the Responder itself would require about one window period to solve the
issued puzzle. In addition to protecting the Responder against other computationally
constrained devices, this selection of the puzzle di�culty also allows the Responder to
push its public-key-related computational load to a later window period as depicted
in Figure 4.11. In contrast, the Responder issues a high puzzle di�culty if the I1
message contains the VIA UNKNOWN NETWORK parameter. This high puzzle
di�culty similarly should incur a resource commitment of about one window period
from an unconstrained adversary. We propose to select this puzzle di�culty based on
the computation power of today’s high-end CPUs. Moreover, to guarantee that the
Responder’s puzzle di�culty reflects the continuing increase in computation power,
we require this configuration parameter of the di�culty selection strategy to be
updated periodically as part of a Responder’s maintenance cycle (see Section 3.3.2).

4.1.3.4 Handling Exceedingly High Puzzle Di�culties

The conservatism of the di�culty selection mechanism may lead to situations where
the Responder issues an exceedingly high puzzle di�culty for a legitimate Initia-
tor. These situations primarily involve: (i) a resource-constrained Initiator that
belongs to an unknown foreign network domain or (ii) a conventional Initiator that
is equipped with a low-end or otherwise computationally weak CPU. In either case,
the issued puzzles are prone to prevent the Initiator from delivering a puzzle solution
in a timely manner. To still a↵ord a successful conclusion of such legitimate hand-
shakes despite an on-going attack, the Responder includes the maximum validity
period of the puzzle, which corresponds to the length of a window period, in the
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Figure 4.12 First part of the DTLS handshake when replacing the cookie-based return-
routability test with our collaborative puzzle-based DoS protection mechanism. Brackets de-
note new DTLS protocol extensions.

puzzle parameter. The Initiator drops puzzles that it cannot solve within the valid-
ity period and requests a new puzzle from the Responder via a repeated I1 message.
This repeated I1 message e↵ectively probes the Responder for a window period with
low load and, thus, a puzzle di�culty of zero. These window periods typically occur
during an attack when the adversary is busy solving a puzzle. We note that this
puzzle solving strategy denotes a race with an adversary for a low sliding window
value as the adversary may also employ such probing in its DoS attack.

4.1.3.5 Integration with DTLS and Minimal IKEv2

As described in Section 3.3.3, the DTLS protocol provides a cookie-based return-
routability test in its protocol design. In addition, it a↵ords the Responder to remain
stateless until receiving the echoed cookie value in the second ClientHello message.
An adversary, however, may often be able to circumvent this return-routability test
as discussed in Section 4.1.1.2. Hence, we propose to improve the DoS protection
capabilities of the DTLS protocol by replacing the current cookie-based approach
with our collaborative puzzle-based DoS protection mechanism. To this end, an on-
path gateway informs the Server about a potentially untrustworthy Client via the
new VIA UNKNOWN NETWORK parameter in the initial ClientHello message as
depicted in Figure 4.12. The Server then issues a cryptographic puzzle according
to our descriptions in Section 4.1.3.3. To convey this puzzle, we propose to use
the puzzle parameters of a recent standardization proposal that aims at integrating
a puzzle-based DoS protection mechanism with TLS [Nir14]. Notably, similar to
HIP DEX, this proposal does not define an attack detection or a di�culty selection
mechanism. Hence, it e↵ectively complements our work in this section.

IKE SA INIT

Stateless
IKE SA INIT: Cookie

IKE SA INIT: Cookie

IKE SA INIT

IKE AUTH

IKE AUTH

Initiator Responder

Figure 4.13 The cookie-based DoS protection mechanism of the original IKEv2 protocol. The
Responder includes a cookie notification payload in its IKE SA INIT response. The Initiator
then has to repeat the IKE SA INIT exchange and echo back the received cookie value.
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In contrast to DTLS and HIP DEX, Minimal IKEv2 currently does not include a
DoS protection mechanism in its protocol design. This renders resource-constrained
Responders vulnerable to DoS attacks that HIP DEX and DTLS can protect against.
Still, we note that the original IKEv2 protocol features a cookie-based DoS protection
mechanism. As depicted in Figure 4.13, this mechanism is realized via a repetition
of the initial part of the IKEv2 handshake and the inclusion of a Responder-defined
cookie value. Moreover, the IP Security Maintenance and Extensions (IPSecME)
working group at the IETF recently started standardizing a signaling extension
that replaces the current cookie-based approach with a puzzle-based DoS protection
mechanism [NS15]. We propose to integrate our presented attack detection and di�-
culty selection mechanisms with this standardization e↵ort. The resulting combined
approach then could also be used to provide DoS protection with Minimal IKEv2.

4.1.4 Accounting for Varying Message Processing Times

As discussed in Section 4.1.1.3, the high computation overhead of the public-key-
based peer authentication process also has significant implications on the retransmis-
sion of handshake messages. More precisely, retransmissions in the IoT must account
for the varying processing times of the exchanged handshake messages. This is to
prevent premature retransmissions in case of computationally expensive handshake
messages while still enabling the handshake peers to quickly recover from packet loss
(see Section 4.1.1.3). DTLS, HIP DEX, and Minimal IKEv2, however, employ fixed,
message-independent retransmission strategies. Hence, to tailor retransmissions to
the special requirements in the IoT, we now present the adaptive retransmission
mechanism that employs multiple worst-case estimates and feedback information
from the handshake peer in order to derive message-specific retransmission time-
outs. In doing so, our adaptive retransmission mechanism allows to significantly
reduce the transmission overhead that is caused by premature retransmissions.

4.1.4.1 Adaptive Retransmission of Handshake Messages

We first observe that handshake messages commonly have a dual role. More precisely,
they typically act as information carrier and reception acknowledgment. The R1
message of the HIP DEX protocol, for example, contains the Responder’s static
ECDH key as part of its carried protocol information (see Figure 3.7). In addition,
this message, however, also implicitly informs the Initiator about the successful
reception of the preceding I1 message at the Responder. This allows the Initiator,
as the handshake peer that is responsible for retransmissions in case of HIP DEX
(see Section 3.3.4), to limit the transmission overhead of retransmissions by waiting
until the expected arrival time of the reception acknowledgement is exceeded.

Notably, the aggressive retransmission mechanism of the HIP DEX protocol4 does
not comply with the above observation. Instead, it employs a fixed-length retrans-
mission timeout that is in the order of a few milliseconds, regardless of the spe-
cific network topology or the current network conditions. This particularly low

4We note that our adaptive retransmission mechanism recently replaced the aggressive retrans-
mission strategy in the HIP DEX specification due to its improved transmission properties [MH14].
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Figure 4.14 Expected delay between the transmission of the Initiator’s and the reception of the
Responder’s handshake messages depending on the message type. The combined transmission
delays of the I2 and the R2 messages along with the I2 processing time at the Responder
quickly exceed a purely RTT-based retransmission timeout.

retransmission timeout, however, inevitably causes premature retransmissions if the
network cannot guarantee an equally low Round-Trip Time (RTT). We therefore
employ a more conservative retransmission strategy for our adaptive retransmission
mechanism. Specifically, we adopt the worst-case anticipated RTT from the HIPv2
protocol [MHJH15]. To derive this worst-case estimate, we propose to sporadically
sample the network via ping messages and to conservatively choose the retrans-
mission timeout according to the observed RTTs while also accounting for a small
message processing overhead. The Initiator then employs this primarily network
delay-based timeout for I1 message retransmissions as this handshake message only
trigger computationally inexpensive protocol operations at the Responder.

In contrast to the I1 message, the I2 message causes a non-negligible computation
overhead at the Responder. This is because it triggers a public-key-based peer au-
thentication process. As a result, the combined transmission delays of the I2 and
the R2 messages along with the Responder’s I2 processing time then quickly ex-
ceed the RTT-based retransmission timeout (see Figure 4.14). Thus, the Initiator
additionally has to account for the Responder’s computation time in our adaptive
retransmission mechanism to prevent premature retransmissions in case of compu-
tationally expensive handshake messages. We, therefore, split the dual role of the
R2 message and introduce an intermediate NOTIFY message that the Responder
transmits before performing any computationally expensive handshake operations
(see Figure 4.15). In doing so, the main intention is to enable the Responder to no-
tify the Initiator about its successful I2 message reception. In addition, this NOTIFY
message also enables the Responder to inform the Initiator about its worst-case an-
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Figure 4.15 The Responder indicates its anticipated I2 message processing time in the I2 ACK
parameter of our newly introduced intermediate NOTIFY message. When receiving this re-
ception acknowledgement, the Initiator adapts its retransmission timeout to the indicated I2
processing time plus half the worst-case anticipated RTT for the transmission of the R2.
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ticipated computation time for the received I2 message. For the derivation of this
second worst-case estimate, the Responder, e.g., observes the maximum I2 process-
ing time of its previous handshakes that involved the same cryptographic primitives.
The Responder then adds this information to the I2 ACK parameter of the NO-
TIFY message as illustrated in Figure 4.15. Finally, the Responder concludes the
handshake with a regular R2 message after it successfully processed the I2 message.

The introduction of a separate I2 reception acknowledgement in our adaptive retrans-
mission mechanism enables the Initiator to first trigger I2 retransmissions based on
the worst-case anticipated RTT. This a↵ords a quick reaction to lost I2 messages
based on the Initiator’s observed network delay. Moreover, the Initiator resets and
adapts the retransmission timeout to the indicated I2 processing time plus half the
worst-case anticipated RTT as soon as it receives the Responder’s intermediate NO-
TIFY message. This extended retransmission timeout then enables the Initiator to
defer I2 retransmissions until the point in time when the Responder should have
completed its I2 message processing and the network should have relayed the corre-
sponding R2 message according to the employed worst-case estimates.

4.1.4.2 Further Considerations Regarding the Reception Acknowledgement

Concerning the extended retransmission timeout for the I2 message, we observe that
the transmission of an R2 message implies the creation of session state at the Re-
sponder. Hence, the Responder no longer has to perform computationally expensive
public-key operations when receiving an I2 retransmission from the Initiator for a
lost R2 message (see Figure 4.16). Instead, the Responder can immediately reply
to this I2 message based on its established session state. To account for this com-
putationally inexpensive circumstance in our adaptive retransmission mechanism,
we require the Responder not to send another NOTIFY message in case of an R2
retransmission. In addition, the Initiator sets the retransmission timeout for I2 re-
transmissions, which follow a NOTIFY message, to the worst-case anticipated RTT.

Moreover, it is worth noting that the additional NOTIFY message constitutes an
unnecessary transmission overhead in case of a protocol handshake with an uncon-
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Figure 4.16 Repeated R2 retransmissions no longer involve computationally expensive public-
key operations. Instead, the Responder can immediately reply to the retransmission-triggering
I2 message based on its previously established session state. Consequently, the Responder does
not send another NOTIFY message in case of an R2 retransmission. Moreover, following a
NOTIFY, the Initiator sets the I2 retransmission timeout to the worst-case anticipated RTT.
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strained Responder. This is because the unconstrained Responder is able to quickly
reply to all handshake messages, include those that trigger computationally expen-
sive protocol operations. Hence, to prevent unnecessary transmissions, we allow
Responders that are able to transmit an R2 message in a timely manner to omit the
additional reception acknowledgement of our adaptive retransmission mechanism.

4.1.4.3 Pre-fetching Fragmented Handshake Messages

As we show in our evaluation in Section 4.1.6, the R1 and R2 messages typically have
to be fragmented for transmission over size-constrained link layer technologies such
as IEEE 802.15.4. Such fragmentation necessitates an additional adaptation of the
introduced retransmission mechanism to further avoid premature retransmissions.
Specifically, the Initiator may already have received parts of a Responder’s hand-
shake message when the retransmission timeout expires. At this point, the remaining
fragments of the Responder’s message may still be in transit. To also account for
such remaining message fragments, the Initiator pre-fetches incomplete handshake
messages from the lower layers of its network stack before triggering a retransmis-
sion with our adaptive retransmission mechanism. If the HIP DEX header is intact,
this allows the Initiator to match a partially received message to the retransmission-
triggering protocol handshake. As a result, the Initiator then further delays its
retransmission based on the reassembly timeout at the lower protocol layers.

4.1.4.4 Integration with DTLS and Minimal IKEv2

As discussed in Section 4.1.1.3, the DTLS retransmission mechanism is prone to
cause premature retransmissions in the context of the IoT, especially when consid-
ering current recommendations for public-key cryptography. Furthermore, it quickly
delays the protocol handshake if consecutive message retransmissions are lost. We,
therefore, propose to replace the existing retransmission approach of the DTLS pro-
tocol with our adaptive retransmission mechanism. To this end, the handshake
peers simply adopt our pre-fetching approach and the RTT-based retransmission
timeout as the components of our adaptive retransmission mechanism that do not
a↵ect interoperability. Moreover, the handshake peers can implement the interme-
diate reception acknowledgement via a DTLS Alert message that the peers send
before performing computationally expensive protocol operations. Importantly, this
Alert message should also contain the sequence numbers of the previously received
handshake messages that belong to the same message flight. This accounts for the
flight-based retransmission semantics of DTLS (see Section 3.3.3). A communication
end-point that receives such an Alert message then deduces that its peer currently
performs an expensive protocol operation and defers its retransmission of the missing
flight messages based on the peer’s indicated message processing time.

The pre-fetching approach and the RTT-based retransmission timeout can also be
integrated with Minimal IKEv2. The separate transmission of a reception acknowl-
edgement for computationally expensive handshake messages, however, currently
cannot directly be adopted for Minimal IKEv2. This is because unsolicited notifi-
cations from the Responder during the initial IKE SA INIT message exchange (see
Figure 3.8) are specified to cause the handshake to fail [KHN+14]. The Responder,
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however, is required to perform a computationally expensive ECDH operation as
part of its IKE SA INIT message processing, thus requiring a reception acknowl-
edgement in the context of our adaptive retransmission mechanism. To still a↵ord
a complete adoption of our adaptive retransmission mechanism for Minimal IKEv2,
we propose that an exception for our reception acknowledgement notification should
be defined as part of the on-going Minimal IKEv2 standardization process.

4.1.5 Security Considerations

We now briefly discuss potential attacks that an adversary can mount against the in-
troduced protocol extensions based on the Internet Threat Model (see Section 3.1.1).

4.1.5.1 DoS Attack Against the Abbreviated Session Resumption Handshake

In contrast to the standard HIP DEX handshake, the I1 message of our abbre-
viated session resumption handshake additionally includes a MAC parameter (see
Figure 4.3). This allows the Responder to re-authenticate the Initiator based on the
previously established session state. Still, an adversary may also be able to exploit
this inclusion of the MAC parameter in an I1 flooding attack against the Responder.
To this end, the adversary would continuously send I1 messages with a forged MAC
parameter to the Responder. The exploitable amplification e↵ects of this attack,
however, are comparable to the amplification e↵ects that can be achieved in an I2
flooding attack against the original public-key-based protocol handshake. This is
because the verification of the MAC parameter is based on e�cient symmetric-key
cryptography. As a result, the computation overhead of verifying the MAC param-
eter resembles the overhead of validating a puzzle solution in the I2 message of the
standard HIP DEX protocol. Hence, our abbreviated session resumption handshake
provides comparable security properties to the unaltered HIP DEX protocol design.

4.1.5.2 Replay Attack Against Session Resumption with State Compression

With session resumption, peer authentication is based on the stored session state
and the fact that the MAC values in the exchanged messages of session resump-
tion handshake can be verified correctly. The session resumption handshake with
state compression, however, does not include variable protocol information. This
prevents the Responder from determining the freshness (see Section 3.3.1) of a cur-
rently performed session resumption handshake. An eavesdropping adversary could
exploit this fact by overhearing and later on replaying a legitimate session resumption
handshake with state compression. As a result, the Responder would re-establish
the corresponding legitimate session state. This enables the adversary to consume
scarce memory resources at the Responder in a memory exhaustion attack.

To mitigate this attack, we require that the session state also contains a session
resumption counter, which the communication end-points increment after each suc-
cessful session resumption handshake. The end-points then use this counter as a
modifier during the key derivation process of the subsequent session resumption
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handshake. As a result, the MAC values di↵er for each session resumption hand-
shake although the conveyed protocol information is the same. This, in turn, allows
the Responder to identify and to silently drop replayed handshake messages.

4.1.5.3 DoS Attacks Exploiting the Session Ticket Parameter

The session resumption handshake with state o✏oading introduces a new session
ticket parameter as part of the I1 message. Notably, any network adversary could
exploit the computation overhead at the Responder that is associated with the de-
cryption and the verification of this parameter. To this end, the adversary would only
have to flood the Responder with I1 messages that contain a forged session ticket.
To e�ciently identify such forged session tickets, we require that o✏oaded session
state includes a (random) plaintext key identifier as part of the session ticket. The
Responder then drops any session ticket with a key identifier that does not match its
current session-state protection key (see Section 4.1.2.6). Thus, an adversary without
overhearing capabilities is no longer able to mount the aforementioned attack.

An eavesdropping adversary, however, could still reproduce the correct key identi-
fier in its forged session tickets after overhearing a legitimate session ticket. We,
therefore, recommend that the Responder additionally rate-limits its processing of
session tickets to further protect itself against this attack. Finally, an eavesdropping
adversary could replay a legitimate session ticket in a session resumption handshake
with state o✏oading. As a result, the Responder would re-establish the received
session state, thus burdening its scarce memory resources. To mitigate this attack,
we integrate a challenge-response mechanism in the design of our session resumption
extension that allows the Responder to verify the freshness of a session resumption
handshake with state o✏oading (see Section 4.1.2.4). Moreover, we note that the
Initiator similarly can verify the freshness of a session resumption handshake with
state o✏oading based on the session resumption counter introduced above.

4.1.5.4 On-path Attacks Against the Puzzle Signaling Extension

Our signaling extension for the HIP DEX puzzle mechanism enables an on-path
gateway to inform the Responder about an unknown and therefore potentially un-
trustworthy Initiator by adding the VIA UNKNOWN NETWORK parameter to
the I1 message of the HIP DEX handshake. The Responder then reacts to this noti-
fication parameter by issuing a puzzle di�culty for an unconstrained Initiator. The
VIA UNKNOWN NETWORK parameter, however, is not cryptographically bound
to a specific on-path gateway. This enables an on-path adversary who is located
in the same constrained node network as the Responder to add this parameter to
a traversing I1 message although both communication end-points are resource con-
strained. As a result, the adversary would be able to maliciously delay the targeted
protocol handshake. The on-path adversary, however, could achieve the same results
more e↵ectively by postponing its message forwarding or even by simply dropping
the messages of the targeted protocol handshake instead of forwarding them. Hence,
our puzzle signaling extension does not degrade the security properties of HIP DEX.
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Figure 4.17 Example of a mixed node network that consists of constrained devices (C) and
unconstrained communication end-points (U). The arrow indicates a protocol handshake that
is triggered by an unconstrained adversary (A) but that does not involve an on-path gateway.

4.1.5.5 Collaborative DoS Protection and Mixed Node Networks

At the expense of diminished energy e�ciency and increased production costs, re-
cent advances in technology allow to equip networked embedded devices with com-
putationally more powerful MCUs (see Section 2.2.1). These more powerful devices,
however, may still employ constrained link layer technologies such as IEEE 802.15.4.
Similarly, computationally constrained devices may be equipped with conventional
wireless technologies such as IEEE 802.11 [IEEE12]. Both of these configurations al-
low network administrators to build mixed node networks that consist of constrained
devices and unconstrained communication end-points. As depicted in Figure 4.17,
this enables an unconstrained, network-internal adversary to exploit the low puz-
zle di�culty of a resource-constrained Responder in order to mount a DoS attack
against this constrained device. This low puzzle di�culty results from the lack of
an on-path gateway for our collaborative puzzle-based DoS protection mechanism.

To mitigate this attack, we propose that network administrators logically sepa-
rate constrained and unconstrained communication end-points into individual IPv6
(sub-)networks. The resulting network structure then resembles Figure 4.9. Hence,
a resource-constrained Responder again is able to select its puzzle di�culty based on
the signaling information from the on-path gateway as described in Section 4.1.3.3.

4.1.5.6 Forged Message Reception Acknowledgements

Our adaptive retransmission mechanism introduces a new NOTIFY message that
the Responder can use to inform the Initiator about the reception of an I2 message.
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by I2 ACK+ 1
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NOTIFY: I2 ACK

NOTIFY: I2 ACK
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Initiator Adversary (o↵-path) Responder

Figure 4.18 Spoofed I2 reception acknowledgments would enable an eavesdropping adversary
to arbitrarily delay the protocol handshake. Importantly, the adversary cannot force the Initiator
into setting the I2 retransmission timeout below half the worst-case anticipated RTT.
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The Responder, however, cannot protect the authenticity of this message as the Re-
sponder did not yet perform the necessary public-key operation for the derivation
of the corresponding keying material. As depicted in Figure 4.18, this enables an
eavesdropping adversary to send a spoofed reception acknowledgement for an over-
heard I2 message and to signal an arbitrary I2 processing time to the Initiator. As
a result, the adversary can, e.g., indicate a lower I2 processing time than actually
required by the Responder in order to cause premature retransmissions.

To protect against this attack, the Initiator sets its computation-based retransmis-
sion timeout to the maximum indicated message processing time in case of conflicting
NOTIFY messages. This allows the legitimate Responder to extend the retransmis-
sion timeout to the intended length. The adversary, however, can still arbitrarily
delay the protocol handshake beyond the Responder’s actual I2 processing time. To
limit the extend of such a maliciously induced handshake delay, we additionally re-
quire the Initiator not to set the computation-based retransmission timeout beyond
a configurable threshold. As this threshold is only required if either the I2 message
is lost after it was observed by the adversary or in case of an R2 message loss, we
propose to use a simple fixed threshold of a few seconds to frustrate this attack.

4.1.6 Evaluation

For our evaluation, we implemented the HIP DEX protocol for Contiki OS [DGV04]
in version 2.5 according to the protocol specifications in [Mos12] and extended this
implementation with our presented protocol extensions. As the underlying hardware
platform for constrained devices, we used Zolertia Z1 motes5 with a 16MHz MSP430
MCU, 8 kB of RAM, 92 kB of ROM, and an IEEE 802.15.4 radio interface. To be able
to evaluate the collaborative puzzle-based DoS protection mechanism in the context
of an unconstrained adversary, we additionally ported this extended HIP DEX im-
plementation to Linux. Moreover, we developed a simple Linux user-space firewall
based on the netfilter framework [netfilter] for the gateway functionality of our pre-
sented DoS protection mechanism. The Linux-based protocol components then were
executed on desktop-class computers with Intel i7 870 CPUs. All public-key opera-
tions relied on the relic toolkit [relic] and were based on elliptic curve SECP160R1.

In our evaluation, we did not consider the computation overhead of active link layer
security. We, however, included the transmission overhead resulting from the max-
imum length of the link layer security header by reducing the available 6LoWPAN
payload size by 21 byte. Moreover, we compressed the IPv6 and UDP header infor-
mation via the LOWPAN IPHC and LOWPAN NHC compression mechanisms to
the extend discussed in Section 2.4.1. As a result, HIP DEX handshake messages
with a size above 42 byte, i.e., excluding lower layer headers, were fragmented by
the 6LoWPAN layer prior to their transmission and reassembled at the fragment
recipient (see Section 2.4.2). FRAG1s then contained up to 32 byte of HIP DEX
protocol information, whereas FRAGNs carried between 1 and 72 byte of HIP DEX
message content. Notably, by accounting for the link layer security header overhead
and by considering modest header compression ratios, our evaluation results indicate
a worst-case overhead regarding the number of message fragment transmissions.

5We refer to Section 2.2.1 for a brief overview and a comparison of the di↵erent experimentation
platforms for constrained devices that we use throughout the course of this thesis.



76 4. Tailoring the Protocol Design

Figure 4.19 Processing time of the handshake and the connection teardown for the standard
HIP DEX protocol (S), session resumption with state compression (C) and session resumption
with Initiator-side state-o✏oading (O) for the Initiator (I) and the Responder (R). The numbers
in brackets denote processing of the i-th and generation of the (i+ 1)-th handshake message.

4.1.6.1 Session Resumption Run-time Performance

To quantify the run-time performance of the session resumption extension, we mea-
sured the processing time and the transmission overhead of two consecutive standard
HIP DEX handshakes (S) with an intermediate connection teardown exchange. We
then compared this baseline against measurements for our session resumption with
state compression (C) as the best-case and Initiator-side state-o✏oading (O) as the
worst-case session resumption types with respect to the involved run-time overheads.
We also evaluated the memory requirements for an inactive connection with session
resumption. The processing overhead results (see Figure 4.19) denote the average
over 100 measurements with two wirelessly connected Z1 motes. The standard devi-
ation for the corresponding measurements was below 16.63ms (i.e., 2.08%) for the
public-key-based operations and below 0.15ms for all remaining protocol operations.

Processing overhead

As depicted in Figure 4.19, the significant reduction of the processing overhead for
repeated connection establishments is the main strength of our session resumption
extension (note the interrupted y-axis). The achieved performance gain primarily
stems from the fact that our extension refrains from the use of public-key cryptog-
raphy during the session resumption handshake. More precisely, the ECDH-based
public-key operation in the standard HIP DEX handshake incurs a computation
overhead of about 656.25ms per communication end-point (see “I(2,3)” and “R(3,4)”
in Figure 4.19). This high cryptographic overhead causes the standard handshake to
amount to a total overhead of about 1469.41ms for both end-points combined. This
total overhead compares to 92.47ms for session resumption with state compression
and to 159.17ms for Initiator-side state-o✏oading. We note that the performance
di↵erence of 66.7ms between the two session resumption types is caused primarily
by the protection of the Initiator’s o✏oaded session state (see“I(2,3)” in Figure 4.19)
and by the extended message processing for the longer session resumption handshake
in case of Initiator-side state-o✏oading (see “R(3,4)” and “I(4,-)” in Figure 4.19).
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Figure 4.20 Message size for two subsequent handshakes with an intermediate connection
teardown (marked with a gray background) for the standard HIP DEX protocol and for session
resumption with state compression as well as with Initiator-side state-o✏oading. The continu-
ous line indicates the 6LoWPAN fragmentation threshold in our evaluation setup. The dashed
lines then indicate the maximum payload size of the individual 6LoWPAN fragments.

Regarding the connection teardown, we observe that session resumption with state
compression exhibits the same processing overhead as the standard HIP DEX pro-
tocol. This is due to the unmodified connection teardown exchange for this type of
session resumption. In contrast, Initiator-side state-o✏oading increases the process-
ing overhead of the connection teardown exchange by 8.42ms (i.e., 64.1%). This is
the result of the additional session state encryption at the Initiator (see “I(-,5)” in
Figure 4.19) and a slight increase of the MAC overhead due to an increased size of
the CLOSE message (see “I(-,5)” and “R(5,6)” in Figure 4.19). To put these num-
bers into perspective, session resumption reduces the overall processing overhead of a
complete connection establishment and connection teardown cycle by at least 85.6%
(i.e., Initiator-side state-o✏oading) and by 91.5% at best (i.e., state compression).

Transmission overhead

As shown in Figure 4.20, our session resumption extension marginally increases the
size of the I1, I2, and R2 messages during the initial connection establishment hand-
shake compared to the standard HIP DEX protocol. This increased transmission
overhead exclusively stems from the additional signaling information for the negoti-
ation of the mutually preferred session resumption type. In case of state compression,
the connection teardown exchange and the subsequent session resumption handshake
allow to compensate and, in fact, to significantly reduce the transmission overhead
for repeated protocol handshakes. Specifically, each cycle of connection teardown
and session resumption requires the transmission of 360 byte (i.e., 8 fragments). This
compares to 632 byte (i.e., 15 fragments) for the standard HIP DEX handshake. In
other words, state compression decreases the transmission overhead by 43.0% and
reduces the number of 6LoWPAN fragments by 46.7%. Our session resumption ex-
tensions predominantly achieves this overhead reduction by abbreviating the session
resumption handshake with state compression from 4 to 2 handshake messages.

Contrary to state compression, Initiator-side state-o✏oading requires the transmis-
sion of an additional 64 byte for the Initiator’s o✏oaded session state in the CLOSE
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message of the connection teardown (see Figure 4.20). Correspondingly, the number
of 6LoWPAN fragments for this message increases from 2 to 3. Moreover, the subse-
quent session resumption handshake consists of 4 handshake messages that also con-
vey the Initiator’s o✏oaded session state. As a result, each connection teardown and
session resumption cycle requires the transmission of 648 bytes (i.e., 15 fragments).
Hence, Initiator-side state-o✏oading slightly increases the transmission overhead by
about 2.5%, while showing an equal number of transmitted 6LoWPAN fragments.

Importantly, the transmission overhead of the standard HIP DEX protocol further
increases when elliptic curves with larger field sizes are employed during the protocol
handshake. In case of NIST P-256, e.g., we find that the transmission overhead of
the standard HIP DEX protocol amounts to 696 byte for a connection establishment
and connection teardown cycle (see Section 4.2.3.1). Our session resumption exten-
sion, contrarily, has a constant overhead. Thus, the relative transmission overhead
reductions that we achieve with the session resumption extension further improve for
an increasing elliptic curve size with the standard HIP DEX handshake. This leads
to an e↵ective 6.9% overhead reduction for session resumption with Initiator-side
state-o✏oading compared to a standard HIP DEX handshake with NIST P-256.

Memory trade-o↵s

With session resumption, the handshake peers have to maintain session state across
inactive connections. In case of session resumption with state compression, this
session state amounts to 38 byte per peer. This compares to 151 byte for an active
HIP DEX connection. We achieve this 74.8% compression of the session state by
omitting protocol information that is re-negotiated during the subsequent session
resumption handshake and by discarding session information that is only relevant for
the initial session establishment. State o✏oading allows to further lift this storage
requirement for one handshake peer. In addition to its own compressed session
state, the other peer then also has to store 57 bytes of encrypted session state. Both
session states combined, however, still result in an overhead reduction by about
37.1% compared to an active HIP DEX connection. Consequently, from a memory
perspective, session resumption always is advantageous to maintaining an active
connection for an extended period of time. Based on the overall evaluation results,
we, therefore, conclude that the session resumption extension provides an e↵ective
mechanism to reduce the run-time overhead of repeated protocol handshakes.

4.1.6.2 DoS Protection Properties

To evaluate the collaborative puzzle-based DoS protection mechanism, we consid-
ered a network setup consisting of three constrained devices C

1

to C
3

and two Linux
machines L

1

and L
2

as depicted in Figure 4.21. L
1

was connected to L
2

via an Eth-
ernet connection and took the role of an unconstrained adversary. We additionally
attached L

2

to C
1

via a USB cable in order to equip L2 with support for the IEEE
802.15.4 radio links. Consequently, C

1

and L
2

combined represented the on-path
gateway in our evaluation setup. The remaining two constrained devices acted as
a benign Initiator (C

2

) and a benign Responder (C
3

). These devices communicated
with each other via IEEE 802.15.4 radio links. Moreover, the adversary L

1

was able
to interact with C

2

and C
3

in an end-to-end manner via the on-path gateway.
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Figure 4.21 Evaluation setup for our collaborative puzzle-based DoS protection mechanism.
Supported by the on-path gateway (C1 and L2), the Responder (C3) was able to protect itself
against an unconstrained adversary (L1). At the same time, the benign Initiator (C2) could
still perform a limited amount of legitimate handshakes with the Responder (C3).

Regarding the configuration parameters of the collaborative puzzle-based DoS pro-
tection mechanism, we set the window period to 64 s. This allowed us to implement
the sliding window with a simple bitfield based on a single uint64 t. Furthermore,
we considered five protocol handshakes per window period to be acceptable for a
resource-constrained Responder and set the puzzle issuing threshold accordingly.

To derive the Responder’s issued puzzle di�culty (see Section 4.1.3.3), we measured
the average computation time of puzzles with varying di�culties on a constrained
device and a Linux machine. In doing so, we assumed that the Linux machines in
our evaluation setup were equipped with state-of-the-art high-end CPUs and, there-
fore, represented the most powerful adversary that the puzzle-based DoS protection
mechanism should defend against. Based on the gathered measurement results, we
derived a puzzle di�culty of 14 for resource-constrained Initiators with an average
computation time of 64.56 s and of 22 for unconstrained Initiators with about 60.44 s.

With this evaluation setup, we then evaluated the impact of a DoS attack from
L
1

against C
3

. To this end, L
1

successively flooded C
3

with standard protocol
handshakes. During this attack, we measured the maximum number of public-key
operations at C

3

during a single window period over a timespan of 15min. In
addition, we analyzed the impact of this attack on legitimate protocol handshakes.
To this end, we also measured the number of successful handshakes between C

2

and C
3

during the above attack. We considered three di↵erent configurations for
comparison purposes: i) an end-point-independent puzzle di�culty of 22, ii) an end-
point-independent puzzle di�culty of 14, and iii) end-point-specific puzzle di�culties
of 14 or 22 assisted by the on-path gateway. As a baseline, we also counted the
number of successful handshakes for a 15min period without an attack.

For the end-point-independent puzzle di�culty of 22, we found that the number of
legitimate handshakes decreased from 332 (i.e., no attack) to 7 within the evalu-
ated time span. This is because the unconstrained adversary L

1

and the resource-
constrained Initiator C

2

competed for the 5 handshakes per window period with a
puzzle di�culty of 0. In addition, C

2

stopped processing puzzles with a di�culty of
22, for which the computation time of finding a solution exceeded the Responder’s
indicated puzzle validity period of 64 s. C

2

then requested a new puzzle from C
3

via
a repeated I1 message as described in Section 4.1.3.4. Moreover, we also observed
a puzzle-related decrease of malicious handshakes. Specifically, the Responder C

3

performed as few as 7 public-key operations per window period for both end-points
L
1

and C
2

combined. Of these public-key operations, 5 belonged to handshakes with
a puzzle di�culty of 0. Hence, the puzzle di�culty of 22 successfully protected the
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Responder’s scarce computation resources during L
1

’s attack against the protocol
handshake. This high puzzle di�culty, however, also prevented a large number of
the legitimate handshakes between C

2

and C
3

from completing successfully.

The end-point-independent puzzle di�culty of 14 similarly decreased the number
of legitimate handshakes to 8. Contrary to the puzzle di�culty of 22, this, how-
ever, was the result of the undemanding puzzle di�culty for L

1

(i.e., 0.21 s) and
the corresponding high load at C

3

. Specifically, C
3

had to perform as many as 29
public-key operations per window period. With the collaborative puzzle-based DoS
protection mechanism, the legitimate end-points performed a total of 14 handshakes.
This increased number of legitimate handshakes was achieved by selectively issuing
a puzzle di�culty of 14 for C

2

and a puzzle di�culty of 22 for L
1

supported by the
on-path gateway. We note that this number is close to the goal of allowing at least
one handshake per communication end-point and window period during an on-going
attack and comprises of 2 handshakes with a puzzle di�culty of 0 as well as 12
handshakes with a puzzle di�culty of 14. Of these 12 handshakes, 6 involved puz-
zles that C

2

solved within a single puzzle validity period, whereas the remaining 6
handshakes required more than one puzzle solving iteration. Importantly, we also ob-
served an equally low number of public-key operations per window period at C

3

(i.e.,
7) as for the end-point-independent puzzle di�culty of 22. Thus, we conclude that
our collaborative puzzle-based DoS protection mechanism can successfully defend
a resource-constrained Responder against attacks from an unconstrained adversary,
while still allowing for a controlled number of legitimate handshakes to succeed.

4.1.6.3 Retransmission Improvements

To determine the performance of the adaptive retransmission mechanism, we im-
plemented the standard HIP DEX and a DTLS-based retransmission strategy as a
baseline. We then compared the observed results to the performance of the adap-
tive retransmission mechanism. To this end, we measured the overall transmitted
bytes and the time until handshake completion for two directly interconnected nodes
in the Cooja network simulator [ODE+06]. We thereby varied the end-to-end loss
probability from 0% to 80% for each transmitted 6LoWPAN fragment. We decided
for simulation over a real testbed to be able to compare the di↵erent retransmis-
sion strategies for well-defined loss probabilities without side-e↵ects on the wireless
medium. The presented results denote the average over 5000 handshakes for each
combination of retransmission mechanism and loss probability.

In a preceding simulation run without network load, we observed an RTT of about
30ms. We still set the aggressive timeout of the standard HIP DEX retransmission
mechanism to 100ms instead of a few milliseconds as lower timeout values caused this
strategy to trigger an excessive amount of premature I2 retransmissions and a high
message processing delay at the simulated nodes, even in case of computationally
inexpensive handshake messages. Similarly, we configured the worst-case anticipated
RTT for our adaptive retransmission mechanism to 100ms in order to account for
moderate network and processing delays. Finally, we set the worst-case anticipated
computation time to 750ms. In doing so, we took the I2 processing overhead in
Section 4.1.6.1 as a basis (also see “S” for “R(3,4)” in Figure 4.19). With these
settings, the standard HIP DEX retransmission mechanism and our own approach
primarily di↵er with respect to the newly introduced I2 reception acknowledgement.
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Figure 4.22 Transmission overhead of the standard HIP DEX, the DTLS-based, and our
adaptive retransmission strategy for di↵erent loss probabilities. The error bars depict the 99%
confidence intervals. The DTLS-based strategy causes the lowest transmission overhead, while
our approach outperforms standard HIP DEX.

As shown in Figure 4.22, the standard HIP DEX retransmission strategy exhibits
the worst transmission overhead of the considered retransmission strategies. In fact,
it requires the transmission of about 1570 byte, i.e., 333% of a standard HIP DEX
handshake, even if no handshake message is lost. The reason for this high transmis-
sion overhead are premature I2 retransmissions that are triggered by the Initiator
despite the fact that the initial I2 message was correctly received by the Responder.
With our adaptive retransmission mechanism, the Responder avoids these premature
retransmissions by sending an I2 reception acknowledgement to the Initiator. As a
result, the transmission overhead of our approach is 526 bytes (i.e., a full handshake
and the NOTIFY-based reception acknowledgement) in case of a 0% loss probabil-
ity. Also with increasing loss probabilities, our adaptive retransmission mechanism
commonly achieves a lower transmission overhead than the standard HIP DEX re-
transmission mechanism (see Figure 4.22). This is because the loss of the newly
introduced (small) NOTIFY message only causes a marginally elevated transmis-
sion overhead compared to the standard HIP DEX retransmission mechanism. In
contrast, the correct reception of the NOTIFY message enables the Initiator to re-
frain from retransmitting while the Responder is busy processing the I2 message.

Besides the above transmission overhead reductions, we also observe that our adap-
tive retransmission mechanism outperforms the standard retransmission mechanism
of HIP DEX with respect to the handshake run-time. For a loss probability of 0%,
our approach, e.g., requires about 1588ms, whereas the standard mechanism needs
about 1607ms. We observe that this observation similarly holds for increasing loss
probabilities (see Figure 4.23). This is because the decreased number message re-
transmissions reduces the fragment processing overhead at the 6LoWPAN layer as
well as the message processing burden at the HIP DEX protocol implementation.

Concerning the DTLS-based retransmission strategy, premature retransmissions can
largely be avoided in our evaluation setup (see 0% in Figure 4.22). However, this
is primarily because the Initiator starts triggering I2 retransmissions after a fixed
timeout of 1 s, whereas the Responder requires about 724.4ms to process a received I2
message and to generate the corresponding R2 response (see“R(3,4)” in Figure 4.19).
Thus, when considering elliptic curves with larger field sizes such as NIST P-256,
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Figure 4.23 Handshake run-time of the standard HIP DEX, the DTLS-based, and our adaptive
retransmission strategy depending on the loss probability. The error bars depict the 99%
confidence intervals. Our approach outperforms the other considered retransmission strategies
for nearly all loss probabilities.

the DTLS-based strategy is also prone to cause premature retransmissions due to
an increased I2 processing time at the Responder (e.g., 1.87 s for NIST P-256). We,
therefore, conclude that the integration of an additional reception acknowledgement
also is desirable in the context of the DTLS-based retransmission mechanism.

Notably, the DTLS-based retransmission strategy shows a lower overall transmission
overhead than our adaptive and the standard HIP DEX retransmission mechanisms
(see Figure 4.22). For example, in case of loss probability of 50%, the DTLS-based
strategy requires the transmission of about 1502 byte, while our approach and the
standard HIP DEX retransmission mechanism incur overheads of about 5062 byte
and 7723 byte, respectively. As the main reasons for this di↵erence in transmis-
sion overhead, we identified the single 6LoWPAN reassembly bu↵er of Contiki OS
and its default reassembly timeout of 8 s. These cause the remaining message frag-
ments of an incompletely transmitted handshake message to occupy the Responder’s
reassembly bu↵er until the reassembly timeout expired. During this timespan, the
Responder drops all other handshake messages due to an already reserved reassembly
bu↵er. The DTLS-based retransmission strategy handles this condition with only a
few retransmissions as its exponential back-o↵ quickly prolongs the retransmission
timeout to a point where retransmissions are no longer dropped by the Responder.
As a result, the DTLS-based retransmission strategy causes a lower transmission
overhead in our evaluation setup than our adaptive or the standard HIP DEX re-
transmission mechanisms, which do not employ an exponential back-o↵.

It is important to note that the trade-o↵ for this lower transmission overhead is a sig-
nificant increase in handshake run-time for the DTLS-based retransmission strategy.
For instance, considering the same 50% loss probability, the DTLS-based retransmis-
sion strategy requires about 189.79 s for the successful conclusion of the HIP DEX
protocol handshake. As shown in Figure 4.23, our adaptive retransmission mecha-
nism contrarily still a↵ords a timely handshake conclusion even for increasing loss
probabilities by triggering retransmissions based on the worst-case anticipated RTT
and computation-related feedback from the handshake peer. This a↵ords our ap-
proach to significantly outpace the DTLS-based retransmission strategy.
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Extension ROM (byte) RAM (byte)

Contiki with HIP DEX 58733 7042
+ Session resumption 63263 [+4530] 7198 [+156]
+ DoS protection 59369 [+ 636] 7066 [+ 24]
+ Retransmissions 59159 [+ 426] 7066 [+ 24]
All combined 64325 [+5592] 7246 [+204]

Table 4.2 Memory requirements of the presented protocol extensions. Numbers in brackets
denote added overhead compared to Contiki OS with an unmodified HIP DEX implementation.
Combined, our extensions require less than 5.6 kB of ROM and about 0.2 kB of RAM.

Overall, we conclude that the adaptive retransmission mechanism consistently im-
proves on the characteristics of the standard HIP DEX retransmission mechanism.
Moreover, our approach allows for a more timely handshake conclusion for lossy
network scenarios than the DTLS-based retransmission strategy. This timeliness,
however, involves a trade-o↵ with respect to an increased transmission overhead that
primarily stems from the ine�cient handling of fragment loss at the 6LoWPAN layer.
We note that the split bu↵er approach for the 6LoWPAN layer, which we will present
in Chapter 6, enables the handshake peers to manage their reassembly resources more
e�ciently and, thus, presumably would allow to reduce the transmission overhead
of the adaptive retransmission mechanism. Moreover, the run-time/transmission
trade-o↵ of our approach can further be adjusted by adding an exponential back-o↵
to the network delay-based retransmission timeout. This back-o↵, however, must be
limited to a few seconds in order to prevent considerable handshake delay in case of
packet loss as demonstrated by the DTLS-based retransmission strategy.

4.1.6.4 RAM and ROM Overhead

As discussed in Section 2.2.1, constrained devices commonly have very limited RAM
and ROM resources. Our evaluation platform, e.g., is equipped with 8 kB of RAM
and 92 kB of ROM. Hence, to evaluate the memory impact of the presented pro-
tocol extensions on a constrained device, we derived RAM and ROM estimates for
their respective implementation. To this end, we analyzed the Contiki OS binaries
used during our evaluation with the msp430-size tool, which is part of the GCC
toolchain for the MSP430 MCU [mspgcc]. The first binary contained an unmodified
HIP DEX implementation, whereas the remaining four binaries also included the
required protocol functionality for (i) the flexible session resumption mechanism,
(ii) the collaborative puzzle-based DoS protection mechanism, (iii) the adaptive re-
transmission mechanism, and (iv) a combination of these protocol extensions.

As shown in Table 4.2, our session resumption extension incurs a moderately in-
creased memory overhead compared to a standard HIP DEX protocol implementa-
tion, i.e., 4530 byte of ROM and 156 byte of RAM6. The ROM overhead primarily
stems from the additional message processing functionality and the CCM mode of
operation for AES that are required for session resumption with state-o✏oading.

6The presented RAM overheads denote statically allocated RAM requirements and do not in-
clude run-time overheads for the stack or the heap. Still, it is worth noting that our implementation
refrains from dynamic memory allocation, e.g., via malloc, to maintain persistent run-time state.
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The increased RAM requirements are caused by the fact that the handshake peers
need to maintain additional session state during an active connection, e.g., the ne-
gotiated session resumption type. Moreover, we configured the constrained devices
to accept two o✏oaded session states of 57 byte each from their handshake peers.

The collaborative puzzle-based DoS protection mechanism and the adaptive retrans-
mission mechanism can be realized at a marginal memory overhead. More precisely,
the overhead for both of these mechanisms combined amounts to less than 1100 byte
of ROM and less than 50 byte of RAM. We achieve this notably low memory over-
head by focusing on existing protocol mechanisms and by adapting them according
to the special device and network characteristics in the embedded domain.

Combined, our protocol extensions require less than 5.6 kB of ROM and about 0.2 kB
of RAM. These overheads denote the main trade-o↵ for addressing the high compu-
tation requirements of the protocol handshake in the context of constrained devices.

4.1.7 Related Work

For our discussion of related work, we distinguish between the following two areas
of research: i) progress in the context of public-key-related cryptographic primitives
and ii) protocol mechanisms that are related to our presented protocol extensions.

4.1.7.1 Progress of Public-Key-Related Cryptographic Primitives

Concerning the overhead of public-key cryptography on constrained devices, Hu et
al. [HCSO09] show that the integration of commodity Trusted Platform Modules
(TPMs) in the hardware design of constrained devices allows to reduce the compu-
tation overhead of RSA-based cryptographic operations. Kothmayr et al. [KSH+12,
KSH+13] subsequently confirm this result with a public-key-enabled DTLS imple-
mentation for TPM-equipped constrained devices. Such hardware-based solutions,
however, further increase the production cost of a constrained device and do not ad-
dress the root cause of the high message processing overhead in the protocol design.
In contrast, session resumption allows to forfeit the use of public-key cryptography
for repeated protocol handshakes and additionally a↵ords to reduce the transmission
overhead. Moreover, session resumption does not mandate the use of special-purpose
hardware for constrained devices. Still, it is worth noting that session resumption
and TPMs can complement each other e↵ectively. Specifically, TPMs allow to re-
duce the computation overhead during the initial session establishment, while session
resumption a↵ords to save the scarce resources of an energy-constrained device by
allowing the TPM to be turned o↵ for the remaining session lifetime.

Various optimization techniques including the Barrett reduction algorithm [Bar87],
projective coordinates [HMV04], and scalar multiplication based on a sliding win-
dow [HMV04] allow to reduce the computation overhead of software-based ECC
implementations. Lui et al. [LN08], however, show that such optimizations also im-
ply a memory trade-o↵ for constrained devices. Implementors, therefore, may choose
to forgo these optimizations in favor of our session resumption mechanism. This is
especially true for memory-constrained devices. Session resumption then limits the
resulting increase in computation time to the initial connection establishment and
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a↵ords an e�cient symmetric-key-based connection re-establishment. In addition,
our adaptive retransmission mechanism adjusts the retransmission timeout for the
initial connection establishment according to the increased computation time.

Implicit authentication schemes allow to reduce the computation and transmission
overhead of public-key cryptography by integrating operations that traditionally are
separated. Implicit certificates [Zav11, PKG+13], e.g., super-impose the attested
public key of a certificate issuer and an attesting signature of a Certificate Authority
(CA). This allows to decrease the size of implicit certificates compared to traditional
X.509 certificates [CSF+08]. Moreover, implicit certificates do not require an explicit
verification of the CA’s signature. Instead, the authenticity of the attested public
key can be verified via the correct use of the corresponding private key during the
protocol handshake, e.g., via a signature. As a result, implicit certificates also exhibit
a lower computation overhead than traditional certificates. Similarly, authenticated
DH protocols such as HMQV [Kra05] allow to implicitly authenticate an ephemeral
DH key agreement via long-term public-key identities without the need to separately
verify these identities. Still, while significantly reducing the overhead of public-
key cryptography by integrating previously separated public-key operations, such
implicit authentication schemes still incur the overhead of at least one public-key
operation. Hence, our presented protocol extensions also apply when employing
these novel cryptographic mechanisms for peer authentication purposes.

In [KKG10, VMZS+13, GMKK+13b], the authors propose to replace the public-key
operations in the DTLS, HIPv2, and HIP DEX protocols with polynomial schemes.
Similar to a purely symmetric-key-based approach, these approaches, however, de-
pend on the secure provisioning of polynomial shares to the communication end-
points prior to the end-to-end handshake (see Section 4.1). Thus, while providing
an adequate solution for isolated networks, these approaches require non-trivial co-
ordination between administrative domains to a↵ord secure communication across
network boundaries. In contrast, our work focuses on standard cryptographic primi-
tives that allow to exchange public key information and to use established Public-Key
Infrastructures (PKIs) for secure communication across network domains.

4.1.7.2 Related Protocol Mechanisms

Several TLS extensions [SB01, SB02, SBR04, Lan10, ST15] have been proposed that
enable the Initiator to cache static handshake information such as the Responder’s
public key during an initial protocol handshake. The handshake peers then omit
the transmission of this cached information during a subsequent handshake. How-
ever, while allowing to reduce the transmission overhead, these approaches do not
address the computation overhead stemming from public-key operations during a
subsequent protocol handshake. Moreover, the memory burden caused by these ap-
proaches during device run-time may be significant for constrained devices depending
on the cached handshake information. This is especially true when caching involves
certificates or even certificate chains. Hence, session resumption typically exhibits a
lower computation and memory overhead than these caching-based approaches.

Cryptographic puzzles were initially presented by Dwork et al. [DN93] as a defense
mechanism against spam email. Juels et al. [JB99] subsequently showed that client
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puzzles also allow to frustrate DoS attacks that aim at exhausting a server’s session-
state resources. Aura et al. [ANL01] similarly apply client puzzles to protect a
server’s public-key-based peer authentication process. In contrast to our collabora-
tive puzzle-based DoS protection mechanism, these approaches focus on the under-
lying puzzle construction and do not consider the selection of an appropriate puzzle
di�culty. Dean et al. [DS01] propose to adopt client puzzles for TLS. Their ap-
proach, however, only employs a single fixed puzzle di�culty for all handshake peers
and introduces separate thresholds to turn puzzle issuing on and o↵ in order to
prevent oscillation around a single puzzle issuing threshold. In contrast, our collab-
orative puzzle-based DoS protection mechanism di↵erentiates between constrained
and unconstrained handshake peers and leverages such oscillation e↵ects to a↵ord
legitimate handshakes to complete despite an otherwise excessive puzzle di�culty.
Similar to our work, Nie et al. [NVHAG11] identify high puzzle di�culties to have
an adverse e↵ect on a HIP DEX handshake involving a constrained device. The au-
thors therefore propose to consider the Received Signal Strength Indication (RSSI)
for received handshake messages to detect an unconstrained adversary that is lo-
cated inside the same constrained node network as the target device. Contrary to
our attack detection mechanism, this approach is based on the assumptions that the
adversary uses a higher transmission power than legitimate constrained devices and
that the adversary is located within the one-hop neighborhood of the target device.

With our adaptive retransmission mechanism, we propose to augment an RTT-based
retransmission timeout with feedback information from the handshake peer in or-
der to prevent premature retransmissions for computationally expensive handshake
messages. Our feedback approach is inspired by similar feedback mechanisms such
as the Explicit Congestion Notification (ECN) mechanism for IP [RFB01] and the
RTP Control Protocol (RTCP) [SCFJ03]. These mechanisms, however, primarily
consider previously observed network characteristics, whereas our approach focuses
on the anticipated message processing time at a handshake peer. As discussed in
Section 4.1.6.3, the network delay-based retransmission timeout of our adaptive re-
transmission mechanism may be extended with an exponential back-o↵ to account
for 6LoWPAN fragment loss. Such an exponential back-o↵ can, e.g., be based on the
latest recommendations for the TCP retransmission timeout [PACS11]. However, in
contrast to this specification, we propose to limit the exponential back-o↵ to a few
seconds in order to prevent a considerable handshake delay in case of packet loss.

Finally, several delegation-based architectures were recently proposed that allow to
o✏oad expensive protocol operations during the handshake phase to a more powerful
network entity. For a detailed discussion of these approaches, we refer to the related
work section of the handshake delegation architecture in Chapter 5.

4.1.8 Summary

In this section, we analyzed the impact of public-key cryptography on the DTLS,
HIP DEX, and Minimal IKEv2 handshakes in the context of the IP-based IoT. Dur-
ing our protocol analyses, we identified three main challenges that directly stem from
the use of public-key cryptography during a protocol handshake with a constrained
device. First, public-key operations require a substantial computation time. Hence,
a public-key-based protocol handshake should only be performed infrequently and
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if not avoidable. Second, expensive public-key operations aggravate the risk of a
DoS attack against constrained devices as even a single unconstrained adversary
can successfully mount such attacks against the protocol handshake. Consequently,
DoS protection mechanisms must account for the high resource asymmetry in the
IoT in order to mitigate such attacks. Third, the di↵erent messages of the protocol
handshake incur a highly varying computation time on a constrained device. Thus,
retransmission mechanisms must no longer only rely on fixed or purely network
delay-based retransmission timeouts in order to prevent premature retransmissions.

To address these protocol design issues, we introduced three lightweight, complemen-
tary protocol extensions for HIP DEX as an exemplary end-to-end security protocol
for the IoT. These three protocol extensions most notably are: i) a flexible session
resumption mechanism, ii) a collaborative puzzle-based DoS protection mechanism,
and iii) an adaptive retransmission mechanism. As the evaluation results show, the
session resumption mechanism allows to reduce the computation overhead by up to
91.5% and transmissions by up to 43.0% for repeated protocol handshakes compared
to the standard HIP DEX protocol. Moreover, the collaborative puzzle-based DoS
protection mechanism e↵ectively accounts for the resource asymmetry in the IoT
and successfully protects constrained devices against a significantly more powerful
adversary. Lastly, the adaptive retransmission mechanism allows for a timely hand-
shake conclusion despite packet loss while preventing premature retransmissions.
In combination, the presented protocol extensions, thus, considerably enhance the
e�ciency and security of the HIP DEX protocol and similarly a↵ord an improved
applicability of DTLS and Minimal IKEv2 in the context of the IP-based IoT.

4.2 Tailoring the Transmission Overhead

As discussed in Sections 3.3.3 to 3.3.5, a core design principle for the specification of
the DTLS, HIP DEX, and Minimal IKEv2 protocol adaptations is to preserve the
protocol semantics and the security guarantees of TLS, HIPv2, and IKEv2, respec-
tively. The TLS, HIPv2, and IKEv2 protocols, however, were primarily designed
with extensibility and flexibility in mind. Consequently, message conciseness only
was a secondary goal during the standardization process. The DTLS, HIP DEX,
and Minimal IKEv2 protocol adaptations, therefore, contain a considerable amount
of dispensable information in their protocol messages that constitutes undesirable
transmission overhead in the context of constrained node networks. As we show in
our evaluation, this dispensable information e↵ectively leads to an increased message
fragmentation during the protocol handshake. The transmission of these additional
fragments, however, commonly wastes the scarce resources of energy-constrained
devices and unnecessarily burdens forwarding nodes on the communication path.

To adapt the message wire-format to IoT requirements, related work proposes com-
pression schemes that focus on DTLS [RSH+13, RSD14] and the IPsec protocol
suite [GMSS10, RDC+11, RVJ12, MG14]. Similar to these approaches, we present
a compression layer called Slimfit that addresses message conciseness for HIP DEX.

We now introduce the HIP DEX message wire-format as the main protocol compo-
nent under investigation in this section and identify dispensable protocol information
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Figure 4.24 Comparison of the connection establishment handshake and the connection tear-
down exchange for HIPv2 and HIP DEX. Notably, both protocols employ the same exchange
structure. This is because HIP DEX inherits the primary message exchanges from HIPv2.

in Section 4.2.1. Based on these results, we present the design of the Slimfit com-
pression layer for HIP DEX in Section 4.2.2. Here, we also highlight the applicability
of Slimfit in the context of HIPv2. Section 4.2.3 then presents our evaluation results
and Section 4.2.4 discusses security considerations. Finally, we address related work
in Section 4.2.5 and conclude this section with a brief summary in Section 4.2.6.

4.2.1 Analysis of the HIP DEX Message Wire-Format

As a result of preserving the HIPv2 protocol semantics (see Figure 4.24), HIP DEX
most notably inherits the general protocol structure for the connection establish-
ment handshake and the connection teardown exchange. In addition, HIP DEX also
adopts the general HIP message wire-format for the individual protocol messages.
In particular, this a↵ords the (optional) integration of existing protocol extensions
such as the support for end-point mobility [HVA15] or the integration of IPsec for
payload protection purposes [JMM15] without the need for further modifications.

As shown in Figure 4.25, the HIP message wire-format includes a fixed HIP protocol
header that is included in all protocol messages. Moreover, the wire-format contains
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Figure 4.25 The HIP message structure consists of a fixed protocol header and a number
of HIP signaling parameters. Each signaling parameter has a type-length-value encoding and
includes individual parameter padding. Compressible information is marked gray. The fields
marked light gray can be handled by existing compression mechanisms at the 6LoWPAN layer.
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a variable number of message-type-dependent HIP signaling parameters that carry
the actual signaling information. In the following sections, we describe these two
HIP message components in more detail and identify dispensable protocol informa-
tion that should be removed or compressed before transmission inside a constrained
node network. We thereby distinguish between the following three types of pro-
tocol information: (i) semantically irrelevant or statically defined information that
should be elided, (ii) variable, redundant information that should be represented in
a compressed form, and (iii) information that cannot or should not be compressed.

4.2.1.1 The Fixed HIP Protocol Header

The HIP header logically7 is designed as an IPv6 extension header [KWK+12]. Thus,
it starts with the mandatory Next Header and Header Length fields and requires an
8 byte alignment of the entire HIP message content (see Figure 4.25). The HIP-
specific part of the protocol header begins with information that is required to iden-
tify the specific message parsing routines at a receiving communication end-point,
i.e., the Packet Type and the protocol Version field. The next three bits are cur-
rently unused. Moreover, the two fixed bits in the HIP header that enclose the
Packet Type and the three reserved bits are set statically to guarantee wire-format
interoperability with the Shim6 protocol8 [NB09]. The HIP header continues with
a Checksum for early message verification as well as a Controls field. The main
purpose of this latter header field is to enable a communication end-point to convey
further information about the message structure. The HIP header ends with a HIT
address pair that a↵ords identification of the handshake peers at the HIP layer.

Conceptually, HITs are a type of an Overlay Routable Cryptographic Hash IDentifier
(ORCHID) [LD14]. An ORCHID, in turn, maps a cryptographic identifier, i.e., the
public key of a communication end-point in case of HIP, into a dedicated subnet of
the IPv6 address space. This a↵ords HITs to be used in combination with IPv6-
capable applications that are unaware of the underlying HIP protocol layer [HNK08].
Following the specification of an ORCHID, a HIT consists of the following three
components: (i) a fixed 28 bit IPv6 prefix that allows to distinguish HITs from
standard IPv6 addresses, (ii) a 4 bit ORCHID generation algorithm identifier, and
(iii) a 96 bit public-key representation that is derived via the indicated ORCHID
generation algorithm. For HIP DEX, the ORCHID generation algorithm is specified
as the left-truncation of a communication end-point’s public ECDH key9.

Dispensable protocol information:

While allowing to di↵erentiate HITs and IPv6 addresses at the HIP layer and above,
the HIT prefix constitutes static information regarding the HIP wire-format as the

7It is worth noting that, although adhering to the requirements of an IPv6 extension header,
HIP protocol messages can also be conveyed over IPv4 links.

8This specification appears to be for historic reasons. For IPv6 implementations adhering
to [KWK+12], HIP and Shim6 protocol messages can uniquely be identified based on the pro-
tocol number in the Next Header field of the preceding IPv6 (extension) header.

9In the latest protocol revision [MH14], the public ECDH key is folded into 96 bit via an iterated
application of an XOR function. This modification, however, does not a↵ect our later assertion
that HIP DEX currently defines only a single ORCHID generation algorithm.
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HIP header exclusively carries HITs in its source and destination fields. Thus, the
HIT prefix can be elided from the source and the destination HIT in the HIP header
of all protocol messages without causing ambiguities. Similarly, HIP DEX currently
only supports a single ORCHID generation algorithm. This also renders the corre-
sponding identifier elidable for all protocol messages. Furthermore, the R1 and I2
handshake messages contain the sender’s public ECDH key (see Figure 3.7). Hence,
the public-key representation of the source HIT constitutes redundant information
in case of these two handshake messages as the ECDH key allows to compute the
public-key representation of the source HIT. Consequently, the entire source HIT
can be elided for the transmission of the R1 and I2 handshake messages.

Concerning the remaining HIP header, the mandatory IPv6 extension fields, i.e.,
the Next Header and the Header Length, can be handled with existing 6LoWPAN
compression mechanisms [HT11]. Moreover, the HIP DEX specification currently
only defines the highest order bit of the Controls field. This bit indicates that the
exchanged public key is anonymous and, thus, should not be stored by the hand-
shake peer. As the memory overhead of maintaining multiple anonymous identities
likely is excessive for constrained devices, the Controls field may often be empty.
An empty Controls field, however, can be elided for transmission purposes. Im-
portantly, the message parsing information, i.e., the Packet Type and the protocol
Version, should remain uncompressed. This is to allow for immediate identification
of retransmitted protocol messages and to a↵ord an early checksum-based message
verification without the need for prior message decompression. Still, we note that
the Checksum has to be computed over the compressed message content instead of
the original HIP DEX message in order to a↵ord such early message verification.

4.2.1.2 The Message-Type-Dependent HIP Signaling Parameters

As illustrated in Figure 4.25, the general HIP parameter layout employs a Type-
Length-Value (TLV) encoding. This encoding enables a protocol implementation
to identify its supported signaling parameters based on the parameter type value.
Unsupported or unneeded parameters then can simply be skipped by advancing the
message parsing o↵set according to the length indication of the skipped parameter.
Moreover, each signaling parameter includes its own padding information. This is
to guarantee the 8 byte alignment that is required for an IPv6 extension header.

For HIP messages with multiple parameters, the HIP message wire-format addition-
ally specifies the order of the included signaling parameters. Specifically, parameters
must be arranged in an ascending order based on their parameter type number. This
well-defined parameter order, e.g., allows to separate a HIP message into an integrity
protected and an unprotected part. The latter is especially useful when aiming to
add further signaling information on the communication path (e.g., see our newly
introduced VIA UNTRUSTED NETWORK parameter in Section 4.1.3.3).

The HIPv2 and HIP DEX specifications employ the above message wire-format to
define a limited set of mandatory parameters that all handshake peers must under-
stand to establish or to tear down a connection context. Protocol extensions then
specify further, optional parameters that allow for additional protocol functionality.
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I1: DH GROUP LIST

R1: PUZZLE, HIP CIPHER, HOST ID, HIT SUITE LIST,
DH GROUP LIST, TRANSPORT FORMAT LIST

I2: SOLUTION, HIP CIPHER, HOST ID, ENCRYPTED KEY,
TRANSPORT FORMAT LIST, MAC

R2: DH GROUP LIST, ENCRYPTED KEY, MAC

Initiator Responder

Figure 4.26 Detailed sequence diagram of the HIP DEX handshake. HIP signaling parameters
that are marked bold contain negotiation information that can be compressed. The remaining
signaling parameters mainly contain random data with a low compression potential.

Dispensable protocol information:

Although provided to ensure the 8 byte alignment of the HIP message content, the
semantically irrelevant parameter padding unnecessarily adds up to 7 byte per pa-
rameter to the overall message size. This padding, therefore, should be elided during
message transmission. Moreover, the length information of mandatory parameters
with a static content size denotes redundant information. This is because all protocol
implementations can derive the length of these parameters via the protocol specifi-
cation. Similarly, the type field of the mandatory parameters constitutes redundant
information for protocol messages that do not contain any optional parameters. The
reason for this is that the order of the mandatory parameters then is well-defined.
Hence, the type and the length information of the mandatory parameters should
typically be elided to achieve an e�cient message transmission (see Figure 4.25).

In contrast to mandatory parameters, the occurrence of optional parameters varies
for the same protocol message depending on the employed protocol extensions. Thus,
the type indication of optional parameters constitutes important protocol informa-
tion for the correct parameter parsing and must never be elided. Similarly, optional
parameters are not necessarily supported by all handshake peers. Hence, the length
indication of optional parameters likewise is unavoidable in order to enable hand-
shake peers to skip over unsupported parameters in a received message.

Concerning the value of the TLV-encoded HIP signaling parameters, we observe that
the actual parameter content primarily consists of structured information for pro-
tocol parameter negotiation or random data for the employed cryptographic mech-
anisms. Random data, however, only has a negligible compression potential. We,
therefore, focus on the compressibility of the protocol parameter negotiation.

As shown in Figure 4.26, the protocol parameter negotiation is primarily related to
the agreement on mutually supported cipher suites during the protocol handshake.
In the context of the IoT, we expect these cipher suites to be restricted to a small set
of cryptographic primitives and cipher modes due the limited amount of RAM and
ROM on constrained devices and the memory overhead that each additional cipher
suite incurs. For this reason, the HIP DEX specification, e.g., only defines a single
value for the HIP CIPHER parameter, i.e., the cipher ID AES-128-CTR. Conse-
quently, well-known default values in the corresponding negotiation parameters can
typically be compressed before transmission. Still, such content-specific compression
must not just be limited to the status quo regarding the supported cipher suites. In-
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Figure 4.27 Constrained devices (C) communicate with each other and with local or Internet-
based services (S) via a gateway (GW). Only network entities that belong to a constrained
node network are equipped with our Slimfit compression layer (marked dark in gray). All other
network entities can remain oblivious to the Slimfit-compressed HIP message wire-format.

stead the compression of the cipher suite negotiation parameters has to evolve with
future security recommendations to ensure continuous HIP message compressibility.

4.2.2 The Slimfit Compression Layer

As we showed in Section 4.2.1, the HIP message wire-format still contains several
elements that constitute dispensable protocol information in the context of the IoT.
Hence, to tailor the HIP message wire-format to IoT requirements, we now present
the design of our Slimfit compression layer. We thereby primarily focus on the
HIP DEX protocol. Still, we also tackle the applicability of Slimfit for HIPv2.

The design of Slimfit aims at a↵ording a limited deployment at constrained devices
and interconnecting gateways that belong to a specific constrained node network as
depicted in Figure 4.27. This allows communication end-points and on-path network
elements that are located outside a constrained node network to remain oblivious
to the Slimfit-compressed HIP wire-format due to a message decompression at an
interconnecting gateway. Moreover, this design trait also a↵ords an incremental
deployment of Slimfit on a per-network basis. Still, it is important to note that the
devised compression mechanisms also allow for an end-to-end deployment of Slimfit.

We now continue with a description of how Slimfit integrates with the HIP DEX
message processing at the handshake peers as well as at the interconnecting gateways.
We then present the specific compression mechanisms, which Slimfit employs to
reduce the size of the HIP protocol header and the HIP signaling parameters.

4.2.2.1 Integration of Slimfit in the Network Stack

As illustrated in Figure 4.28, the devised HIP message wire-format compression
mechanisms are bundled in a new layer of the network stack that is located be-
tween the network and the HIP DEX protocol layer. This allows to transparently
integrate Slimfit with an unmodified HIP DEX implementation depending on the
underlying link layer technology. This separation, however, also implies that out-
bound HIP messages must be redirected through the Slimfit compression layer before
they are processed at the network layer. For a constrained device, this redirection
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Figure 4.28 Integration of the Slimfit compression layer with an existing network stack. Arrows
indicate the processing flow for a HIP DEX message with an interconnecting gateway. Slimfit
compresses the HIP header (H), reorders mandatory (Mi) and optional (Oj) parameters, and
compresses or elides these parameters. The dashed arrow indicates that the HIP DEX message
skips the Slimfit and the 6LoWPAN adaptation layers for message transmission.

can typically be realized by inserting a function call to our compression layer at
the corresponding code point in the embedded network stack. A similar integration
can also be achieved for most commodity operating systems by hooking into their
network stacks via dedicated networking facilities such as netfilter [netfilter]. Slimfit
then compresses outbound HIP messages and informs the communication partner
and on-path network entities that the wire-format has changed by indicating the em-
ployed compression mechanisms in the unoccupied bits of the Controls field of the
HIP header as shown in Figure 4.29. After a successful message compression, Slimfit
passes the adapted HIP message down the network stack for further processing.

When the compressed HIP message reaches the 6LoWPAN adaptation layer in the
network stack of the message sender, the LOWPAN NHC mechanism (see Sec-
tion 2.4.1) performs an additional compression step on the traversing message. More
precisely, it removes the need for an 8 byte message alignment from the HIP message
content by indicating that the Header Length field of the HIP header was computed
as a multiple of 1 byte. Hence, this step enables the removal of the per-parameter
padding information from the original HIP message wire-format at our Slimfit layer.

To indicate the modified semantics of the Header Length field, the LOWPAN NHC
mechanism prepends a 1 byte compression header to the adapted HIP message con-
tent [HT11]. This compression header includes an Extension Header ID (EID) that
signals the type of the subsequent IPv6 extension header. We propose to use one of
the free EIDs, e.g., 6, to indicate the Slimtfit-compressed message wire-format. The
sender finally transmits the compressed HIP message without further modification.
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Figure 4.29 The compression bits set in the Controls field of the HIP header indicate a
HIP DEX message with maximum compression. Compression flags for negotiation parameters
are marked with an asterisk. Elidable bits are marked gray. Bits 10 to 14 remain unused.
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Upon reception of a compressed HIP message, a device that forwards this message
inside a constrained node network does not need to perform any Slimfit-related op-
erations. This is because a mere message forwarder commonly does not process the
message content above the network layer. However, once a compressed HIP mes-
sage reaches an interconnecting gateway that bridges the constrained node network
with a conventional IP network, Slimfit decompresses the received HIP message (see
Figure 4.28). To this end, our Slimfit layer has to hook into the network layer at
the gateway, e.g., via netfilter facilities. Slimfit then determines the compression
mechanisms that were applied to the received HIP message via the Controls field
and runs their decompression counterparts. Similarly, when the handshake peer re-
ceives a compressed HIP message, Slimfit decompresses this message according to
the indicated compression mechanisms before passing it up to the HIP DEX layer.

4.2.2.2 Compression of the HIP Protocol Header

As highlighted above, our Slimfit compression layer leverages the 2 byte Controls
field in the HIP header to indicate the compression mechanisms that were applied to
the original HIP message. More precisely, Slimfit uses the first bit of this header field
to signal an active HIP message compression. It then always elides the static prefix
of the source and the destination HIT as well as the public-key representation of the
source HIT for protocol messages that also carry the sender’s public key. Moreover,
Slimfit elides the second byte of the Controls field if it is unused in the processed
protocol message (see Figure 4.29). The Slimfit layer indicates this compression of
the original Controls field in the second bit of the compressed Controls field. We
note that, contrary to our analysis in Section 4.2.1.1, the first byte of the Controls
field cannot be elided. This is because Slimfit uses this byte for signaling purposes.

Finally, Slimfit also elides the ORCHID generation algorithm identifier of the source
and the destination HIT if they contain the HIP DEX-specific HIT suite ID, i.e.,
8. Our compression layer indicates this elision via the third bit of the Controls
field. Importantly, the ORCHID generation algorithm identifier would no longer be
elidable if future HIP DEX protocol specifications defined an additional HIT suite ID
and if this HIT suite ID was used in the protocol message. To address this issue, we
extend Slimfit with the possibility to define compression profiles in Section 4.2.2.4.

4.2.2.3 HIP Signaling Parameter Compression

Regarding the HIP signaling parameters, we further distinguish between the com-
pression of the general HIP parameter fields (i.e., the type, length, and padding
information) and the content-specific compression of the HIP negotiation parame-
ters. We now first discuss how Slimfit compresses the general HIP parameter fields
and then continue with the content-specific HIP negotiation parameter compression.

General Parameter Compression

As we discussed in Section 4.2.1.2, the type and length information of the HIP sig-
naling parameters can commonly be elided if the entire HIP message only consists
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Figure 4.30 Slimfit rearranges the mandatory (Mi) and the optional (Oj) parameters in a HIP
message to enable the elision of the type and length information of mandatory parameters.

of mandatory parameters. To also achieve this elision for messages that addition-
ally contain optional parameters, our Slimfit compression layer first reorders the
included HIP signaling parameters of an uncompressed HIP message. As depicted
in Figure 4.30, Slimfit thereby breaks the parameter-type-dependent order of the
standard HIP wire-format and moves the optional parameters behind the manda-
tory ones. Importantly, this reordering step must not change the relative position of
the mandatory parameters towards each other to allow a receiving end-point to un-
ambiguous identify these parameters for a specific protocol message10 based on the
order in their protocol specification, i.e., even when their parameter type is elided. In
contrast, the order of the trailing optional parameters is irrelevant for the following
compression steps as the type field of optional parameters remains present.

After the parameters have been rearranged successfully, the Slimfit layer continues
by stripping the padding information from all parameters of the rearranged HIP
message. Moreover, it elides the type field from all mandatory parameters and re-
moves the length information from the fixed-length mandatory parameters. We note
that this general parameter compression is unambiguously reversible by performing
the outlined steps in reverse order. Finally, there is no need for Slimfit to specifi-
cally signal this general parameter compression via the Controls field as this type of
parameter compression always is performed when compressing HIP messages.

Content-Specific Compression of the Negotiation Parameters

Concerning the content-specific HIP parameter compression, our Slimfit layer focuses
on the four mandatory DH GROUP LIST, HIP CIPHER, HIT SUITE LIST, and
TRANSPORT FORMAT LIST parameters of the connection establishment hand-
shake (see Figure 4.26). Specifically, Slimfit compresses these parameters if they
contain default information. Slimfit then represents the entire parameter as a single
bit in the Controls field of the HIP header (see the elided parameter M

1

in Fig-
ure 4.28 and the Controls bits marked with an asterisks in Figure 4.29). We now
briefly discuss our choice of the specific compressible negotiation parameter content
and refer to Section 4.2.2.4 for a description of how additional compression profiles
a↵ord compression evolvability with the goal to address deviating parameter content.

The DH GROUP LIST parameter contains a list of well-defined DH group IDs that
are supported by the message sender. In case of HIP DEX, we observe that these
DH groups are limited to elliptic curve cryptography. Moreover, the most probable
ECDH groups conveyed in this parameter can further be narrowed down by con-
sidering recent security recommendations [NIST12a]. Specifically, the elliptic curve
NIST P-256 is the elliptic curve with the smallest field size that is currently rec-
ommended for key management purposes and that also is supported by HIP DEX.
Moreover, this curve also is assumed to be secure for use until 2030 [NIST12a].

10We recollect that the uncompressed packet type is conveyed in the HIP header (see Figure 4.25).
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Hence, we expect constrained devices to predominantly employ this elliptic curve
during the HIP DEX handshake and compress the DH GROUP LIST parameter if
it indicates the corresponding DH group ID. For the remaining three protocol negoti-
ation parameters, the HIP DEX protocol specification currently only defines a single
valid suite ID. Thus, we declare these well-known suite IDs as the default parameter
content for our Slimfit layer and compress matching parameters accordingly.

4.2.2.4 Compression Evolvability

The Slimfit compression layer provides both general and content-specific HIP mes-
sage compression mechanisms. The general compression mechanisms always are
applicable for a HIP message unless future protocol iterations fundamentally change
the HIP message wire-format. The content-specific mechanisms, however, only apply
as long as the ORCHID generation algorithm identifier in the HIT pair and the con-
tent of the protocol negotiation parameters equal our selected defaults. Our choice of
these defaults, however, will not hold indefinitely and may also be scenario-specific.

To enable evolvability of our selected defaults, we extend the Slimfit compression
layer with the ability to specify compression profiles. Each profile defines a com-
pressible ORCHID generation algorithm identifier along with compressible negotia-
tion parameter content similar to our definitions above. As depicted in Figure 4.29,
Slimfit then indicates the employed compression profile ID in the Controls field.

We note that this signaling of a compression profile ID prevents the elision of the
second byte of the Controls field in the HIP header. As a result, the use of com-
pression profiles causes a slight increased in transmission overhead. This additional
transmission overhead, however, is compensated by the compressibility of protocol
information that otherwise could not be considered for compression purposes.

Importantly, compression profiles and their IDs do not need to be globally unique
when Slimfit is deployed on the intended per-network and not on an end-to-end ba-
sis. Each constrained node network then can define its own compression profile(s)
in order to achieve the optimal compression ratio based on the specific exchanged
protocol parameter negotiation information. The constrained devices and the in-
terconnecting gateways of each constrained node network, however, still must have
a common understanding of the employed compression profiles and their IDs. To
this end, we propose to disseminate Slimfit compression profiles via the adapted
IPv6 Neighbor Discovery mechanism for constrained devices similar to the Context
Option of the LOWPAN IPHC header compression mechanism (see Section 2.4.1).

4.2.2.5 Applicability of Slimfit for the HIPv2 Protocol

Besides addressing message conciseness for HIP DEX, Slimfit also allows to decrease
the transmission overhead of the HIPv2 protocol. This is especially beneficial in the
context of computationally unconstrained devices that employ constrained link layer
technologies and that employ HIPv2 for secure end-to-end communication.

Regarding the applicability of Slimfit for the HIPv2 protocol, we recollect that HIPv2
and HIP DEX share the same HIP message wire-format (see Section 4.2.1). More-
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over, both protocols define mandatory as well as optional parameters for their spec-
ified message exchanges. Thus, the presented general Slimfit compression mecha-
nisms for the HIP header and for the HIP signaling parameters also apply to HIPv2.
Both protocols, however, considerably di↵er with respect to their intended deploy-
ment scenarios. While HIP DEX focuses on constrained devices, HIPv2 was origi-
nally designed to secure communication between comparably powerful Internet hosts.
As a result, the cryptographic primitives employed in HIPv2, and thus the content of
the corresponding negotiation parameters, often may di↵er from our above defaults.

To achieve a similar compressibility of the HIP message wire-format in case of HIPv2
as for HIP DEX, we propose to leverage the previously introduced Slimfit compres-
sion profiles to adapt the content-specific compression mechanisms of our Slimfit
layer to HIPv2 requirements. These profiles then most notably must cover the po-
tential use of traditional public-key cryptography such as RSA as the main di↵erence
between HIPv2 and HIP DEX regarding the provided cryptographic primitives.

4.2.3 Evaluation

For our evaluation, we extended the embedded network stack of Contiki OS [DGV04]
with the required functionality for the presented Slimfit compression layer and lever-
aged our HIP DEX protocol implementation (see Section 4.1.6) for all protocol in-
teractions at the HIP DEX layer. As in the previous evaluation, Zolertia Z1 motes11

then served as the underlying hardware platform for constrained devices. Hence,
constrained devices in our evaluation setup were equipped with a 16MHz MSP430
MCU, 8 kB of RAM, 92 kB of ROM, and an IEEE 802.15.4 radio interface.

In addition to these implementations, we also realized a simple Python application
that compresses captured HIP DEX message traces with the generic LZ77 [ZL77],
LZSS [SS82], and LZMA [Pav13] compression algorithms as well as with the zlib
compression library [zlib], which implements the DEFLATE algorithm [Deu96]. This
Python application provides a baseline for our evaluation by allowing to compare
the achieved compression ratios of the protocol-specific Slimfit compression layer to
the compression ratios of alternative, protocol-independent compression algorithms.

Lastly, we considered the same security-related link layer overheads as described in
Section 4.1.6. Hence, the discussed 6LoWPAN fragmentation thresholds also apply
to our evaluation setup in this section. Despite these similarities, this evaluation
setup, however, di↵ers from our previous setup concerning the following two aspects.
First, Contiki OS was updated to version 2.6. Second, the public-key operations
followed recent security recommendations by employing elliptic curve NIST P-256.

4.2.3.1 Transmission Overhead

To quantify the transmission overhead of our Slimfit compression layer, we first mea-
sured the individual message sizes of a standard connection establishment handshake
and of a subsequent connection teardown exchange at the HIP DEX protocol layer
for two wirelessly connected Zolertia Z1 motes. A comparison with the corresponding

11We refer to Section 2.2.1 for a brief overview and a comparison of the di↵erent experimentation
platforms for constrained devices that we use throughout the course of this thesis.
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Figure 4.31 HIP message size for the HIP DEX connection establishment handshake and a
subsequent connection teardown exchange (marked with a gray background) for the standard
HIP DEX protocol, with DEFLATE compression, and with our Slimfit compression layer. The
continuous line indicates the 6LoWPAN fragmentation threshold in our evaluation setup. The
dashed lines then indicate the maximum payload size of the individual 6LoWPAN fragments.

Slimfit-compressed HIP messages then allowed us to determine the achieved compres-
sion ratio. Moreover, we compared these results to the compression ratio of generic
compression algorithms when applied to the same HIP message content. To this
end, we ran our Python application with the LZ77, LZSS, LZMA, and zlib compres-
sion mechanisms on a captured HIP message trace that consisted of 100 HIP DEX
connection establishment handshakes and connection teardown exchanges. Each
algorithm was set to the highest available compression level. Regarding the con-
sidered generic compression mechanisms, zlib achieved the best overall compression
ratio and, therefore, serves as the focus of the following comparison.

As shown in Figure 4.31, the Slimfit compression layer is able to notably reduce the
size of all HIP messages that are transmitted during the HIP DEX connection estab-
lishment handshake and the connection teardown exchange. Furthermore, Slimfit
consistently outperforms the zlib compression mechanism. More precisely, Slimfit
achieves a compression ratio that ranges from 1.36 for the I2 message as the worst
case to 1.55 for the I1 message as the best case. In contrast, zlib exhibits a consider-
ably lower compression ratio of 1.18 in its best case and even adds a small overhead
of up to 7 bytes to short HIP DEX handshake messages (see the I1 and R2 messages
as well as the connection teardown exchange in Figure 4.31). This is primarily due
to the constant 11 byte header overhead of the zlib compressed data format [DG96].

Moreover, the zlib approach showed a maximum standard deviation of 0.69 byte
when applied to the captured HIP message trace. This non-zero standard deviation
is evidence for the dependency of the underlying DEFLATE compression algorithm
on the actual HIP message content. The evaluation results for Slimfit, contrarily,
exhibited a standard deviation of zero. This circumstance demonstrates that our
Slimfit compression layer always achieves the above compression ratios as long as
the protocol negotiation parameters contain the previously specified defaults.

Concerning the e↵ective transmission overhead of the HIP DEX protocol, Slimfit
reduces the overall size of the connection establishment handshake from 536 byte to
372 byte. This is an overhead reduction by 30.60%. In contrast, the generic zlib
compression mechanism only achieves an overhead reduction to 497.74 byte (i.e., by
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7.14%) on average. In case of the connection teardown exchange, Slimfit similarly
decreases the transmission overhead from 160 byte to 114 bytes, i.e., an overhead
reduction by 28.75%. The zlib mechanism, instead, increases the transmission over-
head by about 6.9 byte (i.e., 4.31%). Hence, we conclude that our Slimfit compres-
sion layer substantially outperforms the considered generic compression algorithms.

6LoWPAN message fragmentation and impact on HIP DEX retransmissions

As the message fragmentation results in Figure 4.31 show, Slimfit-compressed HIP
messages lead to fewer packet transmissions at the lower layers in the network stack
compared to a standard HIP DEX connection establishment handshake. Specifically,
Slimfit decreases the 6LoWPAN message fragmentation by a total of 3 fragments
during the HIP DEX protocol handshake (see “I1”, “R1”, and “I2” packets in Fig-
ure 4.31). This constitutes a reduction by 25% with respect to the overall number of
transmitted link layer frames transmission. Consequently, our Slimfit compression
layer also considerably improves the frame-wise utilization of the wireless medium.

We observe that this reduction in message fragmentation at the 6LoWPAN layer
also has a positive impact on the transmission overhead that is caused by the
HIP DEX retransmission mechanism. This is because already the loss of a sin-
gle 6LoWPAN fragment results in the loss of an entire HIP DEX message due to the
best e↵ort 6LoWPAN fragment transmission semantics and the fate-sharing between
the 6LoWPAN fragments of a HIP DEX message. Thus, the loss probability at the
HIP DEX layer decreases with a reduced number of 6LoWPAN message fragments.

To further quantify this aspect, we measured the overall transmitted bytes until
the successful conclusion of a HIP DEX connection establishment handshake, i.e.,
including retransmitted handshake messages, between two directly connected nodes
in the Cooja network simulator [ODE+06]. We varied the end-to-end loss probability
from 0% to 80% on a per 6LoWPAN fragment basis and performed 5000 HIP DEX
protocol handshakes for each of these loss probability. Similar to our evaluation in
Section 4.1.6.3, we decided for simulation over a real testbed to analyze the impact

Figure 4.32 Transmission overhead of the standard HIP DEX and the Slimfit-compressed
connection establishment handshake for di↵erent loss probabilities. The error bars depict the
99% confidence intervals. Note the logarithmic scale of the y-axis. The Slimfit-compressed
handshake consistently has a lower transmission overhead than standard HIP DEX.
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of our Slimfit compression layer on the HIP DEX retransmission mechanism for
well-defined loss probabilities without side-e↵ects on the wireless medium.

As shown in Figure 4.32 (note the logarithmic scale), the decreased 6LoWPAN
message fragmentation with our Slimfit compression layer considerably reduces the
amount of HIP DEX retransmissions during the connection establishment hand-
shake. The average transmission overhead of a Slimfit-compressed handshake, e.g.,
constitutes about 63.5% of a standard HIP DEX handshake in case of a loss proba-
bility of 20%. Importantly, this percentage further improves for rising fragment loss
probabilities. Hence, our Slimfit compression layer not only substantially reduces
the size of the individual HIP DEX messages, but also considerably improves the
HIP DEX protocol performance in the context of lossy network environments.

4.2.3.2 Processing Overhead

To evaluate the computational overhead of the Slimfit message compression, we
analyzed the processing time of the HIP DEX connection establishment handshake
and of the connection teardown exchange with two wirelessly connected Zolertia
Z1 motes. In this, we specifically focused on the computation overhead (i) at the
HIP DEX protocol layer, (ii) at our Slimfit compression layer, (iii) and at the lower
layers in the Contiki OS network stack. For the lower layers of the network stack, we
restricted our evaluation to the processing time of outbound HIP DEX messages in
order to prevent overhead misattribution of inbound 6LoWPAN fragments that, e.g.,
belong to the RPL protocol. Inbound HIP DEX messages, thus, cause additional
computation overhead at the lower layers of the network stack that is not depicted in
Figure 4.33. The results presented below denote the average over 100 measurement
runs. The standard deviation of these runs was below 23.09ms (i.e., 1.25%) for the
public-key-based operations and below 0.09ms for all remaining operations.

Curiously, we found that our Slimfit layer does not result in a computation penalty.
Instead, Slimfit even leads to a modest performance gain that amounts to about
6.58ms for the connection establishment handshake and to about 0.83ms for the

Figure 4.33 Message processing time for the connection establishment and the connection
teardown (marked with a gray background) for the standard HIP DEX protocol (H) and with
our Slimfit compression layer (S) for the Initiator (I) and the Responder (R). The numbers in
brackets denote processing of the i-th and generation of the (i+1)-th handshake message.
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connection teardown exchange. As depicted in Figure 4.33 (see “Lower layers”), this
performance gain mainly stems from a reduced computation overhead at the lower
layers of the network stack for Slimfit-compressed HIP DEX messages.

During our detailed analysis of this phenomenon, we observed that the decreased
number of 6LoWPAN fragments for Slimfit-compressed HIP DEX messages caused
a reduced computation overhead at the 6LoWPAN adaptation layer. Similarly, the
link layer had to handle fewer IEEE 802.15.4 frames for tasks such as transmission
scheduling and carrier sensing. The corresponding performance gains amounted
to 8.61ms for the complete HIP DEX connection establishment handshake and to
1.67ms for the connection teardown exchange. We also observed these performance
gains when manually inspecting a small number of inbound HIP DEX messages.

The message compression and message decompression operations at the Slimfit layer,
in contrast, only incurred a small computation overhead. This overhead amounted
to a minimum of 0.12ms for the compression of an I1 message and a maximum
of 0.73ms for the decompression of an R1 message and the compression of the
subsequent I2 response (see “I (-,1)” and “I (2,3)” in Figure 4.33). The performance
gain at the lower layers of the network stack, thus, outweighed the low computation
overhead of our Slimfit layer and resulted in an overall performance gain.

To summarize, our Slimfit compression layer not only decreases the transmission
overhead and the 6LoWPAN fragmentation of HIP DEX messages, but also de-
creases the message processing time when considering the entire network stack.

4.2.3.3 RAM and ROM Overhead

To derive RAM and ROM estimates for our Slimfit compression layer in the context
of constrained devices, we analyzed the two Contiki OS binaries that we employed
during our evaluation with the msp430-size tool, which is part of the GCC toolchain
for the MSP430 MCU [mspgcc]. The first binary contained an unmodified Contiki
OS with our HIP DEX protocol implementation. The second binary additionally
included the implementation of our Slimfit compression layer. We note that the
presented evaluation results do not include support for compression profiles as we
focused our evaluation on handshakes with well-defined parameter defaults.

Most importantly, the unchanged (static) RAM requirements of our Slimfit compres-
sion layer shown in Table 4.3 indicate that our developed HIP message compression
mechanisms indeed are stateless. This claim is further substantiated by the fact that
our implementation of the Slimfit compression layer does not use dynamic memory
allocation, e.g., via malloc, in order to maintain persistent run-time compression

Functionality ROM (byte) RAM (byte)

Contiki OS incl. HIP DEX 58659 7624
+ Slimfit compression layer 61157 [+2498] 7624 [+0]

Table 4.3 RAM and ROM requirements for our presented Slimfit compression layer in byte.
Numbers in brackets denote added overhead compared to an unmodified Contiki OS with our
HIP DEX protocol implementation. Notably, our Slimfit compression layer can be realized with
about 2.5 kB of ROM and with no additional (static) RAM requirements.
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information. Still, it is worth noting that Slimfit requires additional RAM resources
when employing dynamically configured compression profiles. These RAM resources
then, however, denote a tradeo↵ for an improved HIP message compression ratio.

Moreover, our Slimfit compression layer causes a ROM overhead of about 2.5 kB
as shown in Table 4.3. This overhead most notably includes the presented Slimfit
compression mechanisms along with a static definition of the discussed defaults for
the HIP DEX negotiation parameters. In fact, this modest memory overhead is the
only tradeo↵ of the Slimfit compression layer that we could identify in our evaluation.

4.2.4 Security Considerations

We now briefly discuss potential attacks that an adversary can mount against the
Slimfit compression layer based on the Internet Threat Model (see Section 3.1.1).

DoS protection properties of HIP DEX with the Slimfit compression layer

The HIP DEX protocol design incorporates two complementary DoS protection
mechanisms to defend the Responder against attacks that target the computation
and the memory overhead of the protocol handshake (see also Section 4.1.3.1). First,
the Responder can delay the creation of session state until the I2 handshake mes-
sage has been verified successfully. As a result, the Responder only needs to store
session state for correctly authenticated Initiators. Second, HIP DEX employs a
puzzle-based DoS protection mechanism that enables the Responder to demand an
adjustable resource commitment from the Initiator. This allows the Responder to
only invest own resources for the processing of a received I2 message after the Ini-
tiator has committed to the handshake by solving a Responder-defined puzzle.

The presented Slimfit compression layer does not alter these DoS protection proper-
ties of the HIP DEX protocol as a Slimfit-enabled Responder can still remain state-
less until the Initiator has been authenticated successfully. This is because Slimfit
only applies compression mechanisms that do not require the Responder to main-
tain connection-specific compression state across HIP messages (see Section 4.2.3.3).
Moreover, Slimfit even modestly reduces the message processing overhead at the
lower layers in the network stack (see Section 4.2.3.2). Hence, Slimfit in fact further
improves the DoS protection properties of HIP DEX as the unprotected computa-
tions until the verification of the puzzle at the HIP DEX layer are further reduced.

Slimfit and attacks against on-path network entities

As discussed in Section 4.2.2.1, Slimfit does not cause additional message processing
overheads at packet forwarders inside a constrained node network. Hence, it does not
render these devices vulnerable to new attacks. Slimfit, however, requires gateways
that bridge a constrained node network with another network domain to apply the
presented compression and decompression mechanisms to traversing HIP messages.

An adversary could exploit this circumstance by flooding a gateway with standard
HIP DEX protocol messages that are destined for a device inside the constrained
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node network. The gateway then would perform the applicable Slimfit compression
operations on the traversing HIP messages. We observe that this flooding-based DoS
attack would only be able to target the processing resources at the gateway. This is
because Slimfit only performs stateless message compression operations. The com-
putation overhead of Slimfit, however, is modest as shown in Section 4.2.3.2. Hence,
the amplification e↵ects that the adversary could exploit would be marginal. As we
will show in Chapter 6, this stands in stark contrast to the achievable amplification
e↵ects in the context of the 6LoWPAN fragmentation mechanism, thus rendering
general 6LoWPAN message fragmentation a considerably more attractive target.

Furthermore, network elements such as firewalls may inspect traversing HIP DEX
protocol messages in order to provide additional on-path security services. However,
as Slimfit introduces a new compressed HIP message wire-format, network elements
that support the standard HIP message wire-format do not necessarily support its
Slimfit-compressed counterpart. In this context, it is important to note that Slimfit
is primarily intended for use inside a constrained node network and, thus, typically
does not impact network entities that are located outside these networks. Moreover,
network elements that are located inside or at the border of a constrained node
network still can identify the message type, the message length, and the source as well
as the destination of a Slimfit-compressed HIP DEX message. Hence, these network
entities can, e.g., drop exceedingly large HIP DEX protocol messages without the
need for decompression. If an on-path services still requires deeper inspection of the
message content, the HIP DEX protocol message must first be decompressed. The
overhead of this operation, however, is modest as shown in our evaluation.

Attacks against the Slimfit message compression operations

Data compression before encryption has been shown to leak information about the
uncompressed data by allowing an adversary to infer information about the amount
of redundancy in the uncompressed plaintext based on the achieved compression
rate [Kel02]. Importantly, our Slimfit compression layer is not vulnerable to such
side-channel attacks as it compresses the HIP message content after the crypto-
graphic operations have been applied at the HIP DEX protocol layer. Thus, Slimfit
does not reveal sensitive information about the uncompressed HIP message content.

Packet loss and out-of-order packets typically invalidate the compression context
of stateful compression mechanisms [DHJS00]. An on-path adversary could exploit
this circumstance by dropping compressed HIP DEX handshake messages and, thus,
prevent the performed handshake from completing successfully. Slimfit, however,
only employs stateless compression mechanisms. Consequently, Slimfit-compressed
HIP DEX protocol messages are resistant to such types of attacks.

4.2.5 Related Work

For our discussion of related work, we distinguish between the following two areas
of research: (i) protocol-specific compression mechanisms for the IP-based IoT and
(ii) generic, standardized protocol compression schemes.
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4.2.5.1 Protocol-Specific Compression Mechanisms for the IP-Based IoT

Among the first protocol standards for the IP-based IoT, the specification of the
6LoWPAN adaptation layer [MKHC07] defines stateless header compression mech-
anisms for the IPv6 and UDP protocols. These initial header compression tech-
niques later were replaced with the LOWPAN IPHC and LOWPAN NHC mecha-
nisms [HT11]. As a key di↵erentiator, the LOWPAN IPHC and LOWPAN NHC
mechanisms introduce configurable context information that also allows to compress
global IPv6 addresses (see Section 2.4.1 for further details). Our Slimfit compression
layer is inspired by these existing compression mechanisms with respect to the follow-
ing two aspects. First, like the 6LoWPAN adaptation layer, we bundle the presented
HIP DEX compression mechanisms in an intermediate layer of the network stack.
This allows to separate the implementation of HIP DEX from the implementation
of our Slimfit compression layer and to only include our compression functionality in
network scenarios that benefit from the performed compression operations. Second,
Slimfit optionally employs network-specific compression contexts similar to LOW-
PAN IPHC. In contrast to LOWPAN IPHC contexts, which only convey network-
or end-point-specific IPv6 address information, our introduced contexts, however,
define entire compression profiles that a↵ord evolvability and flexibility for Slimfit.

Concerning end-to-end IP security protocols for the IoT, Raza et al. recently pre-
sented Lithe, a header compression mechanism for DTLS [RTV12, RSH+13]. The
authors also proposed this mechanism for standardization at the IETF [RSD14].
Similarly, Raza et al. [RVJ12] published initial ideas on compressing the IKEv2 pro-
tocol handshake. However, while these compression approaches tie into the LOW-
PAN NHC mechanism in the same way as our Slimfit compression layer, their work
most importantly di↵ers from ours by not considering compression evolvability and
flexibility in their respective approach. As a result, the achieved compression e�-
ciency strongly depends, e.g., on the employed cryptographic primitives and, thus,
will degrade over time. To address this short-coming, we propose to integrate our
presented compression profiles with these existing DTLS and IKEv2 compression
mechanisms. Moreover, we propose to integrate the introduced general HIP param-
eter compression techniques with Raza et al.’s initial compression ideas for IKEv2.
This would allow to further improve the compression ratio for IKEv2 as the authors
so far do not consider the compression of the HIP-like IKEv2 parameter format.

Finally, there exists a rich body of research [GMSS10, RVR11, RDC+11] and ac-
tive standardization e↵orts [RDS14, MG14] that consider the compression of the
Authentication Header (AH) and the Encapsulating Security Payload (ESP) for
IPsec-protected payload channels. These approaches most notably improve the ap-
plicability of IPsec as the default payload protection mechanism for HIP DEX. In
contrast, our work focuses on the e�cient establishment of such IPsec-protected pay-
load channels and, thus, e↵ectively complements these related compression e↵orts.

4.2.5.2 Generic Protocol Compression Schemes

Several generic protocol compression schemes have been standardized for IPv4 and
IPv6 as well as for several upper layer protocols. As one of these compression
schemes, the IP Payload Compression Protocol (IPComp) [SMPT01] a↵ords the ap-
plication of generic compression algorithms such as DEFLATE to IPv4 and IPv6
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packets. However, as we showed in our evaluation, such generic compression algo-
rithms do not leverage domain knowledge about the message wire-format and, thus,
typically achieve a lower compression ratio than our Slimfit compression layer.

Furthermore, the RObust Header Compression (ROHC) [SPJ10] specification de-
fines a general and extendable framework for header compression. ROHC pro-
files [PS08] then specify protocol-specific compression mechanisms for protocols such
as IP, UDP, and ESP. In contrast to the compression mechanisms employed in our
Slimfit compression layer, ROHC profiles commonly employ stateful compression ap-
proaches with per-flow compression contexts. As a result, these approaches require
additional context repair mechanisms that further increase the transmission over-
head in lossy network environments. Lastly, the Generic Header Compression (GHC)
mechanism was recently standardized as an extension of the 6LoWPAN header com-
pression facilities [Bor14]. GHC enables the compression of generic protocol headers
and header-like payloads via an LZ77-based compression algorithm. However, while
specifically designed for the IP-based IoT, its generic nature prevents GHC, e.g., from
rearranging the HIP message wire-format in order to realize additional compression
potentials. As a result, GHC is prone to o↵er a significantly lower compression ratio
for HIP DEX protocol messages than the presented Slimfit compression layer.

Besides these protocol compression schemes, several protocol extensions aim at re-
ducing the transmission overhead of the protocol handshake. As discussed in Sec-
tion 4.1.7.2, these extensions most notably include caching of static handshake infor-
mation [SB01, SB02, SBR04, Lan10, ST15] and session resumption [SBR04, SZET08,
DR08, ST10, HWZ+13, HGS13]. Complementary to our work in this section, these
mechanisms require a complete initial handshake to establish the necessary state
information at the communication end-points. Moreover, delegation architectures
allow to o✏oad part of the protocol handshake to a more powerful network entity.
This also reduces the handshake-related transmission overhead inside a constrained
node network. For a detailed discussion of these delegation approaches, we refer to
the related work section of the handshake delegation architecture in Chapter 5.

4.2.6 Summary

In this section, we analyzed the HIP DEXmessage wire-format for dispensable proto-
col information that constitutes undesirable transmission overhead in the context of
constrained node networks. During our protocol analysis, we identified such dispens-
able information in both the fixed HIP DEX header as well as in the message-specific
HIP DEX signaling parameters. Notably, the identified dispensable information not
only needlessly wastes the limited resources of energy-constrained communication
end-points. Instead, it also increases the message fragmentation during the protocol
handshake and, thus, unnecessarily burdens the scarce transmission, processing, and
energy resources of constrained devices that are located on the forwarding path.

To adapt the HIP message wire-format to IoT requirements, we devised the Slimfit
compression layer that provides both general as well as content-specific HIP message
compression mechanisms. Slimfit reduces the transmission overhead of this wire-
format (i) by eliding message content that is statically defined in the HIP DEX
protocol specification, (ii) by rearranging the HIP signaling parameters to achieve a
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higher compression e�ciency, and (iii) by employing compression profiles to a↵ord
evolvability and flexibility of our presented compression mechanisms. Importantly,
due to this latter aspect, the design of our Slimfit compression layer is not limited to
the message compression of the status quo, but additionally facilitates the adaption
to future security recommendations as well as to the HIPv2 protocol.

As the evaluation results show, our Slimfit layer e↵ectively reduces the HIP DEX
transmission overhead. More precisely, it achieves compression ratios between 1.36
and 1.55 depending on the protocol message. This high compression e�ciency af-
fords Slimtfit to consistently outperform generic compression algorithms. Moreover,
Slimfit reduces the 6LoWPAN message fragmentation during the HIP DEX proto-
col handshake by 25%. As a result, Slimfit considerably decreases the HIP DEX
retransmission overhead. Interestingly, the achieved message size reduction with
Slimfit also leads to a 7.41ms computation overhead reduction when considering the
message processing time of the entire network stack. The 2.5 kB ROM overhead is
the only trade-o↵ we identified for the observed transmission and computation gains.

To summarize, Slimfit considerably reduces the run-time-related overheads of the
HIP DEX protocol and, thus, is highly beneficial for constrained devices.

4.3 Conclusion

In this chapter, we analyzed the run-time properties of the DTLS, HIP DEX, and
Minimal IKEv2 protocols for their adequacy in the IP-based IoT and identified sev-
eral design-level e�ciency and security issues that significantly hamper the appli-
cability of these protocols in the context of constrained devices. To tailor DTLS,
HIP DEX, and Minimal IKEv2 to IoT requirements, we presented four complemen-
tary protocol extensions. Combined, these extensions tailor the computation and
transmission properties of the HIP DEX protocol in particular and of end-to-end IP
security in general to the special device and network characteristics in the embedded
domain as well as to the high resource asymmetry in the IoT. Still, the evaluation
results also indicate non-negligible memory requirements when employing standard
end-to-end IP security in the embedded domain. In the following chapter, we will
show how to address this issue with respect to highly memory-constrained devices.
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Delegating the Protocol Handshake

In the previous chapter, we presented four protocol extensions that address the high
run-time overheads, i.e., the computation and transmission requirements, when em-
ploying DTLS, HIP DEX, or Minimal IKEv2 for secure end-to-end communication
in the IP-based IoT. Still, our evaluation of HIP DEX also revealed non-negligible
memory overheads in the context of constrained devices. These overheads amount
to about 7.7 kB of RAM and 58.7 kB of ROM for the underlying operating system
and a HIP DEX protocol implementation (see Sections 4.1.6.4 and 4.2.3.3). Such
high memory requirements render a complete protocol implementation infeasible for
a wide range of memory-constrained devices that, e.g., have similar memory limita-
tions as the TelosB platform [PSC05] with 10 kB of RAM and 48 kB of ROM.

Our contributions in this chapter are threefold. First, we present the results of
our detailed RAM and ROM analysis of a DTLS protocol implementation for con-
strained devices. We chose DTLS as the main protocol under investigation in this
chapter to either confirm or refute the previously observed, often prohibitive memory
requirements for a second end-to-end IP security protocol adaptation for the IoT.
Importantly, the results of this analysis confirm our previous observations and iden-
tify public-key cryptography as the main driver for the high memory requirements.

As a second contribution, we present the handshake delegation architecture that we
specifically designed for constrained devices with insu�cient memory resources for a
public-key-enabled protocol implementation. The key idea behind this architecture
is to separate the initial connection establishment from the subsequent protection of
application data and to delegate the initial connection establishment handshake to
an o↵-path, trusted delegation server. The unconstrained nature of the delegation
server then a↵ords the use of public-key cryptography for peer authentication and
key agreement purposes when performing the connection establishment on behalf
of a constrained device. Moreover, by subsequently handing over the established
connection context to the constrained device, this device no longer needs to imple-
ment expensive public-key cryptography for the connection establishment and can
leverage e�cient symmetric-key cryptography for the protection of application data.
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As a third and final contribution, we describe how our architecture also provides an
authorization framework for constrained node networks. This framework builds on
the central role of the delegation server during the initial connection establishment,
which allows to exercise control over new connections for local constrained devices.

The evaluation results show that, compared to a public-key-based DTLS protocol
implementation, the handshake delegation architecture reduces the memory over-
head by 64%, computations by 97%, and transmissions by 68%. As we show that
the core concepts of this architecture also apply to HIP DEX and Minimal IKEv2,
similar results can likewise be achieved in the context of these protocols. Overall,
handshake delegation, therefore, provides a comprehensive, yet compact solution for
authentication, authorization, and secure data transmission in the IP-based IoT.

The remainder of this chapter is structured as follows. In Section 5.1, we present
the results of our detailed memory analysis for DTLS. Section 5.2 then introduces
the design of the handshake delegation architecture as a lightweight key provi-
sioning mechanism for memory-constrained devices. Here, we also describe how
handshake delegation a↵ords to authorize new connections. Moreover, we show
how the core ideas of our presented architecture similarly apply to HIP DEX and
Minimal IKEv2. Next, we discuss the security considerations of the introduced ar-
chitecture in Section 5.3 and present the evaluation results in Section 5.4. Finally,
Section 5.5 discusses related work and Section 5.6 concludes this chapter with a
summary. We note that the contents of this chapter is based on our published work
in [HRW12, HZS+13, HSR+14] and our on-going standardization e↵orts in [HGS13].

5.1 Memory Analysis for DTLS

We now quantify and discuss the memory requirements of a DTLS protocol imple-
mentation for constrained devices. We thereby focus on inter-domain communication
scenarios as exemplified by the interconnection of constrained devices with Internet-
based services. Such communication scenarios typically involve the use of public-key
cryptography for peer authentication and key agreement purposes during the con-
nection establishment handshake. This is primarily for the following three reasons.
First, public-key cryptography provides high scalability as already a single pub-
lic/private key-pair su�ces to authenticate an end-point to multiple communication
partners. Second, the public key of a public/private key-pair does not denote secret
information and, thus, can be transferred via untrusted network infrastructure, e.g.,
the Internet, without the need for cryptographic protection. Third, the public key
can also be augmented with additional information such as a domain name via cer-
tificates in order to bind this key to a specific end-point or network domain [CSF+08].
Such a binding then even allows previously unassociated communication end-points
to authenticate each other and to establish secret keying material as long as these
end-points trust a common third party, i.e., a Certificate Authority (CA).

For our memory analysis, we estimated the memory requirements of a DTLS protocol
implementation with support for the certificate-based handshake via themsp430-size
and msp430-objdump tools1. In this, we used the open source tinyDTLS implemen-
tation for constrained devices [tinydtls] as a basis. We refer to Section 5.4 for detailed

1We note that these tools are part of the GCC toolchain for the MSP430 MCU [mspgcc].
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Figure 5.1 RAM requirements of a protocol implementation with support for the certificate-
based DTLS handshake. Constrained devices with similar memory limitations as the TelosB
platform (i.e., 10 kB of RAM as indicated by the bold vertical line) only have 2.56 kB of RAM
available for the underlying operating system and the actual application logic.

information about our evaluation methodology as well as our evaluation setup and
now continue with the discussion of the analysis results. To structure this discussion,
we di↵erentiate between (i) the RAM requirements, (ii) the ROM requirements, and
(iii) considerations regarding the combined memory impact on a constrained device.

5.1.1 RAM Requirements

As illustrated in Figure 5.1, our memory analysis of the certificate-based DTLS
protocol implementation reveals RAM requirements of about 7.44 kB (i.e., the sum
of all depicted overheads). These RAM requirements consist of statically allocated
RAM resources of about 5.63 kB and a maximum stack size of about 1.81 kB. To
put these numbers into perspective, the TelosB platform, e.g., is equipped with a
total of 10 kB of RAM. This only leaves about 2.56 kB of RAM for the underlying
operating system and the actual application logic. Contiki OS, as one possible
operating system for constrained devices, however, already requires about 4.02 kB of
RAM for a simple hello-world example application2 and the operating system itself.
Similar to the HIP DEX implementation in Chapter 4, the certificate-based DTLS
protocol implementation, therefore, also incurs prohibitively high RAM requirements
for constrained devices with similar memory limitations as the TelosB platform.

When further investigating the root cause of these high RAM requirements, we
observed that the certificate parsing functionality and public-key cryptography cause
about 24% (i.e., 1.34 kB) of the overall static RAM requirements. As depicted in
Figure 5.1, about 1.32 kB of these RAM requirements are directly attributable to the
relic toolkit [relic] as the underlying public-key library of the certificate-based DTLS
protocol implementation. Importantly, the choice of a di↵erent cryptographic library
would not have changed this observation significantly as similar RAM requirements
also were reported for other open-source cryptographic libraries [LN08, SAKR12].

In addition, we found that the RAM requirements caused by certificates and public-
key cryptography are not limited to the above cryptographic implementation com-
ponents. Instead, they also influence the RAM requirements of non-cryptographic
components such as the maintained message bu↵ers and the persistent protocol
state. These non-cryptographic implementation components require a total of about

2This observation refers to the hello-world example that is included in Contiki OS version 2.7.
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Figure 5.2 ROM requirements of a DTLS protocol implementation with support for the
certificate-based handshake. Only about 6.95 kB of ROM remain for the underlying operating
system and the actual application logic in case of a constrained device with similar memory
limitations as the TelosB platform (i.e., 48 kB of ROM as indicated by the bold vertical line).

3.21 kB of static RAM in case of the certificate-based DTLS handshake (see “Gen-
eral” in Figure 5.1). Regarding the message bu↵ers, we observe that the per-flight
retransmission semantics of the DTLS protocol require a message-sending commu-
nication end-point to bu↵er su�cient information for the recreation of an entire
message flight. Likewise, the handshake verification hash3 in the Finished message
requires a message-receiving communication end-point to bu↵er all out-of-order mes-
sages of a message flight to reconstruct the original sending order for an accurate
computation of the hash digest. The long message flights of the certificate-based
DTLS handshake (e.g., see flights 4 and 5 in Figure 5.15), however, call for capa-
cious message bu↵ers. Similarly, the protocol state of the certificate-based DTLS
implementation involves at least 0.40 kB of RAM for the identifying certificate(s)
and the private key of a constrained device. Based on these observations, we con-
clude that public-key cryptography and certificate-related functionality are prone to
cause high RAM requirements concerning the overall protocol design.

5.1.2 ROM Requirements

Similar to our observations regarding the RAM requirements, our memory analysis
of the certificate-based DTLS protocol implementation also reveals a substantial
implementation size. Specifically, we found that the overall ROM requirements
amount to as much as 41.05 kB (see all overheads in Figure 5.2 combined). Again
referring to the TelosB platform as an example for a memory-constrained device,
we note that this platform is equipped with 48 kB of ROM. Hence, for constrained
devices with similar memory limitations as this platform, about 6.95 kB of ROM
remain for the underlying operating system and the application logic. Contiki OS
and the previously considered example application, however, already require about
16.83 kB of ROM. The certificate-based DTLS implementation, thus, is prone to also
incur excessive ROM requirements in the context of memory-constrained devices.

Our detailed ROM analysis of the certificate-based protocol implementation shows
that over 50% of the above memory requirements (i.e., 21.43 kB) directly stem from
the relic toolkit. Notably, this high ROM overhead of the underlying cryptographic
library can be reduced by disabling the performance optimization techniques that

3We refer to Section 3.3.3 for further information about the handshake verification hash.
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are typically employed to speed up the computation time of the performed public-
key operations (see Section 4.1.7.1). The multiple precision integer and prime field
operations as well as the public-key primitives themselves then demand about 10 kB
of ROM [LN08] in the context of the certificate-based handshake. This, however,
still leaves little memory space for the implementation of the actual application logic.

Moreover, even when disregarding the above overheads of public-key cryptography,
our memory analysis of the certificate-based DTLS protocol implementation reveals
significant ROM requirements. More precisely, already the base functionality of the
certificate-based DTLS handshake, i.e., excluding all public-key primitives, causes
ROM overheads of about 18.17 kB. As illustrated in Figure 5.2, these overheads
include about 5.18 kB for the implementation of other cryptographic primitives, i.e.,
the AES-CCM mode of operation and the SHA-256 hash function. Furthermore, this
base functionality also includes the extensive message processing routines that are
required to handle the numerous handshake messages and the corresponding state
machine of the certificate-based DTLS handshake. As a result, these processing
routines denote a major contributor of the “General” ROM overhead in Figure 5.2.

Importantly, additional certificate-related functionality is likely to increase these
handshake-related implementation overheads even further. Specifically, certificate
verification requires loose but global time synchronization to validate the expiration
time of the exchanged certificates and certificate status verification to ensure that
these certificates neither have been revoked when the handshake takes place. In con-
trast, we note that the exclusion of public-key cryptography and certificate-related
functionality in the DTLS protocol implementation would allow to significantly re-
duce the identified ROM overheads, i.e., as similarly observed in our RAM analysis.

5.1.3 Remarks About the Combined RAM and ROM Impact

In the previous sections, we specifically focused on the individual RAM and ROM
requirements that are associated with the certificate-based DTLS handshake. The
accumulated memory requirements, however, often also play an important role for
constrained devices. All purely 16-bit-based MSP430 MCUs, e.g., can only address
a maximum of 64 kB of RAM and ROM combined. This is because the underlying
von-Neumann architecture maps program instructions and data into a single ad-
dress space [SGG08]. The inherent memory bounds of these MCUs then only leave
about 15.51 kB of RAM and ROM for the operating system and the application logic
when considering the above memory requirements of the certificate-based DTLS im-
plementation. Consequently, even when fully utilizing the addressing capabilities of
this hardware architecture, there still is not enough memory space for Contiki OS and
the previously considered example application due to a combined memory overhead
of about 20.85 kB. Thus, we conclude that, similar to the HIP DEX implementa-
tion with overall memory requirements of about 66.28 kB (see Section 4.2.3.3), the
certificate-based DTLS implementation often is infeasible for memory-constrained
devices that, e.g., employ a 16-bit-based von-Neumann hardware architecture.

5.1.4 The Need for Lightweight Key Provisioning

We observe that the support for a purely symmetric-key-based handshake [ET05]
in the DTLS protocol design already provides for a memory-e�cient alternative to
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Figure 5.3 The handshake delegation architecture consists of the following entities (marked in
dark gray): a network operator, a delegation server, constrained devices, and remote commu-
nication end-points. Continuous arrows highlight the di↵erent connections that are supported
by the presented architecture. Dashed arrows indicate responsibilities of the network operator.

public-key cryptography during the DTLS handshake. More precisely, by replac-
ing the public-key-based peer authentication and key agreement operations with
symmetric-key-based alternatives, these operations involve a near zero memory over-
head. This is because the employed cryptographic primitives then are also used for
other tasks in the protocol design, e.g., the derivation of the session keys and the pro-
tection of application data. The symmetric-key-based DTLS handshake, however,
requires end-point-specific cryptographic information to be pre-shared and readily
available at both communication end-points. In other words, it requires a key provi-
sioning mechanism that securely deploys secret keying material at both handshake
peers before these peers can establish a secure connection via the DTLS protocol.

5.2 The Handshake Delegation Architecture

To solve the above dilemma of the symmetric-key-based handshake, we now present
the design of our handshake delegation architecture as a lightweight key provisioning
mechanism for inter-domain communication scenarios. Moreover, we show how the
presented architecture also provides an authorization framework for inter- and intra-
domain communication scenarios. As a general overview, we now first introduce the
involved entities and our main assumptions. We then provide a detailed description
of the key provisioning and authorization functionalities of the devised architecture.

5.2.1 Entities and Assumptions

As illustrated in Figure 5.3, our handshake delegation architecture consists of the
following entities: (i) a network operator, (ii) a delegation server, (iii) constrained
devices, and (iv) remote communication end-points. Regarding the network operator,
we assume that this logical entity represents the owner of constrained devices and a
delegation server in a private network scenario or (a group of) professional network
administrators in an enterprise setting. In either case, we assume that the network
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operator is responsible for its constrained devices and for the decision, which other
communication end-points these devices should be allowed to interact with.

The delegation server is an unconstrained, trusted network entity in our architecture
that is located outside a constrained node network (see Figure 5.3). The main task
of this server is to establish new connections on behalf of the network operator’s
constrained devices. Constrained devices, in turn, exhibit similar memory limitations
as discussed in Section 5.1. These devices, however, should still be able to interact
securely with other communication end-points. Besides the secure transmission of
application data, this includes that constrained devices should be able to validate
if the network operator authorized4 the communication with a specific end-point.
Such validation then, e.g., allows to prevent unauthorized, malicious end-points from
accessing restricted information at a constrained device (see Section 3.1.4).

Concerning the remote communication end-points, we assume that these network
entities have su�cient resources for a comprehensive, public-key-enabled protocol
implementation as well as certificate validation functionality. Hence, the key pro-
visioning mechanism facilitated by our handshake delegation architecture primarily
focuses on less or unconstrained remote end-points such as conventional Internet-
based services. With the authorization framework provided by our architecture, we,
however, also target communication scenarios that only involve constrained devices.

5.2.2 Lightweight Key Provisioning

We now present how the handshake delegation architecture o↵ers a lightweight key
provisioning mechanism for memory-constrained devices. Our main goal thereby
is to address the following two opposing objectives. On the one hand, we intend
to facilitate current best practices for peer authentication and key agreement in
inter-domain communication scenarios. We, thus, aim at re-using existing security
protocols and public-key infrastructures as, e.g., employed for conventional Internet-
based communication. On the other hand, we strive to enable constrained devices
to securely interact with communication end-points from remote network domains.

The key idea behind the handshake delegation architecture is to delegate the initial
connection establishment handshake, which would otherwise be performed between a
constrained device and a remote communication end-point, to the delegation server.
This allows to employ certificates and public-key cryptography when performing the
peer authentication and key agreement operations at the delegation server on behalf
of a constrained device. Moreover, by subsequently handing over the established
connection context to the constrained device, the handshake delegation procedure
e↵ectively provides this device with the necessary keying material to communicate
securely with the remote end-point. As a result, the constrained device then only
needs to implement a partial protocol specification and e�cient symmetric-key cryp-
tography for the protection of application data. We now continue with a detailed
description of the handshake delegation procedure, which is illustrated in Figure 5.4.

4We refer to Section 3.3.1 for a brief discussion of the main di↵erences between authentication
and authorization.
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Figure 5.4 For the handshake delegation procedure, a newly added constrained device first has
to perform an initial bootstrapping operation with the delegation server (Step 0). Instructed
by the network operator, the delegation server then is able to perform a certificate-based
DTLS handshake on behalf of the constrained device (Step 1). By encrypting the established
connection context for the constrained device and by o✏oading it to the remote end-point in
a session ticket via our previously introduced session resumption extension for DTLS (Steps 1
and 2), the delegation server can securely hand over the established connection context to the
constrained device during a subsequent session resumption handshake (Step 3).

5.2.2.1 Initial Bootstrapping Phase

To establish new connections on behalf of a constrained device, the delegation server
has to know the specific protocol parameters, e.g., the cipher suites, that it should
negotiate for the constrained device during the connection establishment handshake.
Moreover, the constrained device and the delegation server must share a common
secret, i.e., the device-specific delegation key, to a↵ord a secure handover of the es-
tablished connection context. As shown in Step 0 of Figure 5.4, a constrained device
and the delegation server, therefore, need to perform an initial bootstrapping oper-
ation prior to the actual handshake delegation procedure. Such bootstrapping can,
e.g., be realized via physical contact [SA00] or physically secured wireless commu-
nication [KLNP07]. As part of this bootstrapping operation, the delegation server
imprints the device-specific delegation key on the constrained device. Furthermore,
the constrained device notifies the delegation server about its supported protocol
parameters. The constrained device and the delegation server then are in the pos-
session of all relevant information to perform the handshake delegation procedure.

5.2.2.2 Establishing a New Connection on Behalf of a Constrained Device

After the above bootstrapping phase, the network operator can trigger the establish-
ment of a new connection between the constrained device and a remote communica-
tion end-point at the delegation server. To this end, the network operator provides
the delegation server with the necessary addressing information of the intended com-
munication partners. This addressing information can, e.g., be the IP address of an
end-point or an identifier that resolves to the end-point’s IP address. The delegation
server then performs a certificate-based DTLS handshake with the requested remote
end-point on behalf of the constrained device (see Step 1 in Figure 5.4).
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During this handshake, the delegation server and the remote end-point most no-
tably authenticate each other. Specifically, the delegation server authenticates the
remote end-point via standard public-key certificates. The delegation server, there-
fore, maintains a pool of trusted root certificates similar to today’s web browsers and
operating systems. The remote end-point, in turn, either similarly authenticates the
delegation server based on public-key certificates during the DTLS handshake or
via an application-level password after the DTLS handshake has concluded. Im-
portantly, while not allowing to explicitly authenticate the constrained device, this
authentication operation still enables the remote end-point to verify the identity of
the delegation server or of the network operator as a representative of this device.

For delegation purposes, the delegation server and the remote end-point additionally
employ our previously introduced session resumption extension (see Section 4.1.2)
during the certificate-based DTLS handshake. As a brief summary of this extension,
we note that the basic idea behind session resumption is for the communication end-
points to only perform a complete protocol handshake once during an initial con-
nection establishment phase. The end-points then keep the established session state
even after the connection is torn down. This enables the end-points to e�ciently
re-establish the previous connection based on the stored session state. Moreover,
session resumption also allows one end-point to o✏oad its session state to the other
end-point in a protected session ticket for safe-keeping purposes. As a result, the of-
floading end-point then can remain stateless while the connection is inactive and can
re-claim its o✏oaded session state in a subsequent session resumption handshake.

ClientHello (+ ResumptionType)

HelloVerifyRequest

ClientHello (+ ResumptionType)

ServerHello (+ ResumptionType)

Certificate
ServerKeyExchange

CertificateRequest

ServerHelloDone

Certificate
ClientKeyExchange

CertificateVerify

NewSessionTicket
[ChangeCipherSpec]

Finished
[ChangeCipherSpec]

Finished

Delegation Server Remote End-Point

Figure 5.5 The delegation server and the remote communication end-point agree on session
resumption with client-side state-o✏oading in the Hello messages of the certificate-based DTLS
handshake. The delegation server then o✏oads its encrypted and integrity-protected session
context to the remote end-point in the NewSessionTicket message. We note that session
resumption-related information is marked bold. Brackets denote DTLS protocol extensions.
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In the context of the handshake delegation procedure, the delegation server uses the
latter session resumption type to transfer its established session context to the con-
strained device via the remote end-point. To this end, the delegation server indicates
session resumption with client-side state-o✏oading as the only session resumption
type in the ResumptionType parameter of the ClientHello messages. As depicted
Figures 5.4 and 5.5, the corresponding handshake then allows the delegation server
to push its session context to the remote end-point in a session ticket. The delegation
server thereby encrypts and protects the integrity of the contained session context
with the device-specific delegation key of the constrained device. This enables the
constrained device to later decrypt the session context and to re-establish the con-
nection with the remote end-point based on the session ticket from the delegation
server. Moreover, the session ticket also constitutes an implicit, cryptographically
verifiable notification for the constrained device stating that the remote end-point
was correctly authenticated during the certificate-based DTLS handshake.

In addition, the delegation server also attaches the addressing information of the
constrained device to the session ticket in an unencrypted form. The ticket then
contains all information that is required for the remaining steps of the handshake
delegation procedure. Finally, the delegation server closes the just established DTLS
connection with the remote communication end-point and purges all associated con-
nection state in order to limit the potential impact of a system compromise.

5.2.2.3 Leveraging the Session Context for the Protection of Application Data

At this point of the handshake delegation procedure, the remote communication end-
point can establish the new connection with the constrained device as illustrated in
Step 3 of Figure 5.4. To this end, the remote end-point initiates a session resumption
handshake and indicates session resumption with server-side state-o✏oading in the
ResumptionType parameter of the ClientHello message. Moreover, the remote end-
point transfers the delegation server’s session ticket to the constrained device (see
ClientHello message in Figure 5.6). Upon reception of this ticket, the constrained
device first decrypts the included session context and verifies its integrity via the
device-specific delegation key. The handshake peers then derive new session keys

ClientHello (+ ResumptionType, SessionTicket)

ServerHello (+ ResumptionType, empty SessionTicket)

NewSessionTicket
[ChangeCipherSpec]

Finished
[ChangeCipherSpec]

Finished
Protected payload transmission

Remote End-Point Constrained Device

Figure 5.6 Protocol handshake between the constrained device and the remote end-point in
case the remote end-points triggers the session resumption handshake during our delegation
procedure. Session resumption-related information is marked bold. Brackets denote protocol
extensions. The NewSessionTicket message allows for repeat session resumption handshakes.



5.2. The Handshake Delegation Architecture 117

ClientHello (+ ResumptionType)

ServerHello (+ ResumptionType, SessionTicket)
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Constrained device Remote end-point

Figure 5.7 Protocol handshake between the constrained device and the remote end-point in
case the constrained device triggers the session resumption handshake during our delegation
procedure. Session resumption-related information is marked bold. Brackets denote protocol
extensions. The NewSessionTicket message allows for repeat session resumption handshakes.

based on the previously established keying material in their session contexts [HGS13]
and use these newly generated keys to authenticate each other in the Finished mes-
sages of the session resumption handshake [DR08]. Moreover, the peers employ these
new session keys to protect their end-to-end transmission of application data.

The handshake delegation procedure additionally a↵ords the constrained device to
initiate the session resumption handshake. This is especially useful if, e.g., an on-
path firewall blocks in-bound connection establishments from remote communication
end-points. The device-initiated session resumption handshake, however, requires
additional communication with the delegation server. Specifically, the delegation
server has to send a connection initiation command with the addressing information
of the remote end-point to the constrained device. As a result, the constrained
device initiates the session resumption handshake with the indicated end-point and
signals session resumption with client-side state-o✏oading in the ResumptionType
parameter of the ClientHello message. As illustrated in Figure 5.7, the remote end-
point then transfers the session ticket from the delegation server to the constrained
device in the ServerHello message of the corresponding handshake. Upon reception
of this session ticket, the constrained device decrypts the contained session context
and uses this context to e�ciently re-establish the previous connection with the
remote end-point as before. Similarly, the handshake peers also employ the newly
generated session keys to protect their end-to-end transmission of application data.

5.2.2.4 Benefits of Using Session Resumption for Delegation Purposes

By leveraging the session resumption extension for delegation purposes, the hand-
shake delegation procedure exhibits a number of highly desirable properties in the
context of memory-constrained devices. First, session resumption neither requires
public-key cryptography nor certificate-related functionality at a constrained device.
Thus, constrained devices no longer need to implement the corresponding expensive
protocol components. Second, the session resumption handshake takes an abbrevi-
ated form compared to a certificate-based handshake. This allows us to unburden
constrained devices from all handshake complexities that result from long message
flights. Third, the session resumption handshake also enables the constrained device
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to o✏oad its own session context to the remote end-point for safe-keeping purposes
while a connection is inactive (i.e., see the NewSessionTicket messages in Figures 5.6
and 5.7). As a result, the handshake delegation procedure only requires constrained
devices to maintain a single device-specific delegation key as well as session state
for actively used connections. This allows our handshake delegation architecture to
provide similar scalability properties as a purely public-key-based approach.

5.2.3 Authorizing Inter- and Intra-Domain Communication

In the previous sections, we specifically focused our discussion on how the hand-
shake delegation architecture facilitates a lightweight key provisioning mechanism
for memory-constrained devices. The presented architecture, however, also provides
an authorization framework for these devices via the handshake delegation proce-
dure. More precisely, the network operator already implicitly informs its constrained
devices about their authorized remote end-points by only instructing the delegation
server to facilitate the connection establishment for a limited number of remote end-
points pertaining to a constrained device. Consequently, all other remote end-points
constitute unauthorized communication end-points for this devices. Hence, to pre-
vent such unauthorized end-points from communicating with a constrained device
in the first place, we introduce a single new policy for the handshake delegation pro-
cedure. Specifically, we require a constrained device to only accept new connections
that involve its device-specific delegation key during the performed DTLS protocol
handshake. The constrained devices then only interact with those remote end-points
that the network operator previously authorized via the delegation server.

We note that the handshake delegation architecture is not limited to such end-point-
specific authorizations. Instead, the use of session tickets for delegation purposes
also a↵ord the secure transfer of more fine-granular application-level authorization
information. Moreover, by leveraging the device-specific delegation key during the
initial connection establishment, the handshake delegation procedure additionally
enables the authorization of new connections in intra-domain scenarios that only
involve constrained devices. Finally, a minor modification to the device-specific del-
egation key allows to provide an e�cient revocation procedure for previously granted
authorizations. In the following sections, we discuss these conceivable authorization-
related extensions for the basic handshake delegation procedure in more detail.

5.2.3.1 Fine-Granular Application-Level Authorizations

The main purpose of application-level authorizations is to restrict access to sensitive
information that is provided by a constrained device. This, e.g., includes access to
configuration interfaces or to sources of private information. Exactly how an end-
point accesses such information depends on the employed application layer protocol.
For our discussion, we, therefore, focus on CoAP5 as an application layer protocol
that was specifically designed for IoT network scenarios. Still, we note that the
following solution can similarly be integrated with other application layer protocols.

5We refer to Section 2.3.2 for more information about the CoAP protocol and its role in the
adapted IP network stack for constrained devices.
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{

"URI":" path/to/restricted/resource",

"REQ ":[" POST","PUT"]

}

Figure 5.8 Example application-level authorization. When the delegation server includes this
authorization information in its session ticket, the remote end-point gains access to the indi-
cated resource at the constrained device via the CoAP request methods POST and PUT.

Concerning the CoAP protocol, we recollect that its protocol design is based on a
RESTful client/server architecture, similar to HTTP. As such, CoAP enables remote
end-points to address specific functionality provided by a constrained device via a
URI-based addressing scheme. Moreover, the CoAP protocol specification defines
a number of request methods that allow the remote end-points to operate on these
resources, i.e., GET, PUT, POST, and DELETE. The main goal of application-level
authorizations in the context of CoAP, therefore, is to limit access to sensitive URIs
and request methods to a select number of trusted communication end-points.

To facilitate such fine-granular application-level authorizations, we extend the ses-
sion ticket with explicit authorization information as depicted in Figure 5.8. Regard-
ing the URI, we note that this explicit authorization information may also contain
wildcard characters to allow grouping of authorized URIs with equal request meth-
ods. Such extended session tickets then enable a constrained device to determine if
a specific request method may be performed on a per-device and per-resource basis.

Fine-granular application-level authorizations, however, also exhibit an increased
ticket size and, thus, an elevated transmission overhead during the session resump-
tion handshake. Moreover, they cause increased run-time overheads at a constrained
device due to the need to store and process the included fine-granular authorization
information for incoming CoAP requests. We note that these overheads constitute
trade-o↵s for the achieved gain in granularity regarding the authorization decision.
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Figure 5.9 Leveraging our handshake delegation architecture for intra-domain authorizations.
Instructed by the network operator, the delegation server performs a symmetric-key-based
connection establishment handshake with a constrained device (A) on behalf of another con-
strained device (B). A and B subsequently perform a session resumption handshake. Notably,
A and B can verify that the newly established connection was indeed authorized by the network
operator as the handshakes involve the device-specific delegation key of A and B, respectively.
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ClientHello (+ ResumptionType)

HelloVerifyRequest†

ClientHello† (+ ResumptionType)

ServerHello (+ ResumptionType)

ServerKeyExchange?

ServerHelloDone
ClientKeyExchange

NewSessionTicket
[ChangeCipherSpec]

Finished
[ChangeCipherSpec]

Finished
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Figure 5.10 The delegation server and the constrained device agree on session resumption with
client-side state-o✏oading in the Hello messages of the symmetric-based DTLS handshake.
The delegation server then o✏oads its encrypted and integrity-protected session context to the
constrained device in the NewSessionTicket message. Messages with a dagger (†) implement
a return-routability test. Starred messages (?) are optional and situation-dependent. Session
resumption-related information is marked in bold. Brackets denote DTLS protocol extensions.

5.2.3.2 Extension to Intra-Domain Authorizations

Until now, our discussion of the handshake delegation architecture – and, thus, of its
authorization capabilities – focused on the interactions between constrained devices
and remote communication end-points. As shown in Figure 5.9, the device-specific
delegation keys, which the delegation server shares with its associated constrained
devices, however, also allow to employ an adapted form of the handshake delegation
procedure for intra-domain communication scenarios. Notably, this adapted hand-
shake delegation procedure requires the involved devices to be associated with the
same delegation server. For our following discussion, we additionally assume that
these devices have already been bootstrapped as described in Section 5.2.2.1.

Similar to the original handshake delegation procedure, its adapted form is trig-
gered by the network operator when authorizing a new connection between two
communication end-points, denoted Alice and Bob, at the delegation server. With
the adapted procedure, the delegation server then, however, performs a symmetric-
key-based DTLS handshake with Alice on behalf of Bob (see Figure 5.10). During
this handshake, Alice and the delegation server most notable employ Alice’s device-
specific delegation key to authenticate each other. The use of Alice’s device-specific
key assures her that the performed handshake involves the delegation server and,
due to the trusted nature of the delegation server, that the new connection also
was authorized by the network operator. As illustrated in Figure 5.10, Alice and
the delegation server additionally employ our session resumption extension during
the symmetric-key-based DTLS handshake to transfer the session ticket from the
delegation server to Alice. The delegation server thereby protects its session context
with Bob’s device-specific delegation key. This allows Bob to later verify that the
delegation server facilitated the connection establishment. Finally, Alice and Bob
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perform a session resumption handshake as discussed in Section 5.2.2.3 and employ
the newly generated session keys for their secure transmission of application data.

Reducing Alice’s Memory Burden

We note that the above procedure is prone to require a notable amount of Alice’s
limited RAM resources when authorizing her to communicate with several other
constrained devices. This is especially true when employing extended session tickets
for fine-granular application-level authorizations as described in the previous section.
To reduce Alice’s memory burden, we require the delegation server to only o✏oad a
reference to the actual session ticket during the symmetric-key-based handshake. To
this end, the delegation server creates a locally unique identifier for each authorized
connection and transfers this identifier as the sole information in the session ticket
during the symmetric-key-based DTLS handshake. In addition, the delegation server
associates this connection identifier with the original session ticket6 and stores this
information in a local database. As a result, o✏oaded session tickets in intra-domain
communication scenarios then have a reduced, fixed size. This allows to relieve Alice
from the memory burden of storing a multitude of full-size session tickets.

Due to the above modification, Alice, however, only transfers a session ticket with
referencing information to Bob during the subsequent session resumption handshake.
Hence, when receiving the session ticket from Alice during the session resumption
handshake, Bob leverages the included connection identifier to request the original
session ticket from the delegation server, e.g., via CoAP. Bob then uses the included
session context to conclude the session resumption handshake with Alice. Overall,
such ticket referencing o↵ers an appealing memory/transmission trade-o↵ for Alice.

5.2.3.3 Revocation of Inter- and Intra-Domain Authorizations

As discussed above, the handshake delegation procedure enables the network op-
erator to establish and authorize new connections for constrained devices. The
network operator, however, may eventually decide to revoke once granted autho-
rizations. This can, e.g., be the case when a remote service is no longer used or
when an authorized communication end-point has been compromised. To handle
such revocations in an e�cient manner, we require the delegation server to store
the previously discussed, locally unique connection identifier as a reference for all
authorized connections. Moreover, the delegation server includes this identifier in
all session tickets, i.e., also in the session tickets of the certificate-based DTLS hand-
shake. This enables the constrained device and the delegation server to leverage the
connection identifier for backlisting purposes. More precisely, the delegation server
then only needs to instruct the constrained device that is a↵ected by a revocation
decision to add the corresponding connection identifier to its connection backlist. As
a result, the constrained device closes the corresponding connection and no longer
accepts new protocol handshakes that involve the blacklisted connection identifier.

The size of this connection blacklist, however, increases linearly with each additional
revocation. Revocations, thus, may result in non-negligible RAM requirements at

6This ticket is still encrypted and integrity-protected with Bob’s device-specific delegation key.
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the constrained device if blacklisting information needs to be maintained for an
extensive period of time. Hence, to mitigate an unbounded growth of the blacklist,
we additionally enable the delegation server to instruct the constrained device to
change its device-specific delegation key. This invalidates all previously issued session
tickets for this specific device and enables the device to flush its connection blacklist.

With the current design of our handshake delegation architecture, changing the
device-specific delegation key implies the need for a new bootstrapping operation
between the delegation server and the a↵ected constrained device. Hence, to en-
able a constrained device to flush its connection blacklist without the need for re-
bootstrapping, we now adjust the derivation of the device-specific delegation key.

Specifically, the delegation server and the constrained no longer directly employ
the exchanged secret of the initial bootstrapping operation as the device-specific
delegation key during the handshake delegation procedure. Instead, they leverage
this secret for authentication and key agreement purposes during a symmetric-key-
based DTLS handshake that is performed subsequent to the initial bootstrapping
operation from Section 5.2.2.1. Both entities then use the derived session key of this
handshake, i.e., the symmetric key that would otherwise be used for the encryption of
application data, as the new device-specific delegation key. Resetting the connection
blacklist of a constrained device then means performing another symmetric-key-
based DTLS handshake between the constrained device and the delegation server.

Finally, the delegation server concludes the change of the device-specific delegation
key by re-establishing the session contexts with these end-points that the constrained
device is still authorized to interact with. Importantly, the overhead of this operation
is limited to the delegation server and the individual a↵ected end-points as the first
step of the handshake delegation procedure does not involve the constrained device.

5.2.4 Integration with HIP DEX and Minimal IKEv2

As discussed in Section 5.1.3, a HIP DEX protocol implementation is prone to ex-
hibit similarly prohibitive RAM and ROM requirements for a wide range of memory-
constrained devices as a certificate-based DTLS protocol implementation. We ex-
pect this observation to also hold for an implementation of the Minimal IKEv2
protocol. This is primarily for the following two reasons. First, the protocol design
of Minimal IKEv2 mandates the use of public-key cryptography during the proto-
col handshake. As a result, a Minimal IKEv2 implementation inevitably involves
similar memory requirements concerning the employed cryptographic primitives as
DTLS and HIP DEX. Second, the overall protocol layout of Minimal IKEv2 closely
resembles the structure of HIP DEX (see Section 3.3.6). As such, also the non-
cryptographic implementation components, e.g., the message parsing routines and
the retransmission mechanism, are likely to incur comparable memory requirements.
To still a↵ord a memory-e�cient operation of HIP DEX and Minimal IKEv2 in the
context of constrained devices, we now briefly discuss how the key concepts of the
presented handshake delegation architecture can also be applied to these protocols.

We observe that the bootstrapping phase of the handshake delegation procedure is
protocol independent (see Section 5.2.2.1). As such, the performed bootstrapping
operation equally allows to establish the device-specific delegation key for DTLS,



5.3. Security Considerations 123

HIP DEX, and Minimal IKEv2. Moreover, this operation also enables a constrained
device to notify the delegation server about its supported protocol parameters in
case of HIP DEX or Minimal IKEv2. Finally, session resumption can be employed
with DTLS, HIP DEX, or Minimal IKEv2 as previously shown in Section 4.1.2.
Overall, this allows to leverage the key provisioning and the inter-domain autho-
rization functionalities of the handshake delegation architecture (see Sections 5.2.2
and 5.2.3, respectively) in the context of HIP DEX or Minimal IKEv2 by merely
exchanging the underlying security protocol. This observation likewise applies to
the fine-granular application-level authorizations introduced in Section 5.2.3.1.

Intra-domain authorizations and the presented e�cient revocation procedure, how-
ever, cannot directly be translated to HIP DEX or Minimal IKEv2. This is because
these authorization-related extensions require a symmetric-key-based protocol hand-
shake. The protocol design of HIP DEX and Minimal IKEv2, however, only provides
for public-key-based handshakes. Hence, these capabilities of the handshake dele-
gation architecture constitute DTLS-specific functionality. Still, it is important to
note that the revocation of authorizations in case of HIP DEX or Minimal IKEv2
can still employ the blacklisting approach described in Section 5.2.3.3. To flush
the connection blacklist, the a↵ected constrained device then, however, needs to be
re-bootstrapped via the initial bootstrapping operation discussed in Section 5.2.2.1.

5.3 Security Considerations

The network interactions in the handshake delegation architecture are based on
standard DTLS, HIP DEX, and Minimal IKEv2 protocol functionality as well as
on our previously introduced session resumption extension. As such, the security
considerations in Section 4.1.5 also apply to our work in this chapter. In addition,
we now briefly discuss the impact of a potential system compromise concerning the
di↵erent entities in the handshake delegation architecture ordered by their severity.

5.3.1 Impact of a Compromised Remote End-Point

The handshake delegation architecture requires a remote communication end-point,
e.g., an Internet-based service, to store an o✏oaded as well as its own session con-
text for each authorized, but inactive connection with a constrained device. Con-
sequently, an adversary could aim at compromising a remote end-point in order to
gain access to a large number of stored session contexts. As a result, the adversary
would then be able to impersonate the remote end-point towards the a↵ected con-
strained devices and gain access to potentially sensitive information or configuration
interfaces. We note that the impact of this attack is comparable to the compromise
of the remote end-point’s private key in case of public-key cryptography.

Importantly, o✏oaded session contexts always are encrypted and integrity-protected
in a session ticket. Potentially retrieved session tickets, therefore, cannot be exploited
by the adversary. Still, the adversary could also try to gain access to the stored ses-
sion contexts of the compromised remote end-point. Following current best practices
for the protection of private keys in case of public-key cryptography, we, thus, require
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remote end-points to encrypt their session contexts for inactive connections7. Such
encryption then prevents the adversary from accessing the sensitive information in
potentially retrieved session contexts from the remote communication end-point.

5.3.2 Impact of a Compromised Delegation Server

An adversary may also aim at compromising a delegation server and at retrieving
the device-specific delegation keys. While the impact of this attack is limited to the
constrained devices that are associated with the delegation server, this attack would
enable the adversary to issue new or to revoke existing authorizations. Hence, we
require a delegation server to be hardened against a system compromise via firewalls
and access control security policies [selinux], i.e., similar to a Key Distribution Center
(KDC) of centralized authentication protocols such as Kerberos [NYHR05].

Notably, if an adversary still manages to compromise the delegation server, the
network operator has to revoke the certificate of this delegation server and issue a
new one after the server has been sanitized or replaced. Moreover, all constrained
devices that were associated with the compromised server must be re-bootstrapped
and provided with a new device-specific delegation key to prevent the adversary
from impersonating the delegation server towards these constrained devices. To
return to the state prior to the system compromise, the delegation server then has
to re-establish the authorized connections for all of its constrained devices.

5.3.3 Impact of a Compromised Constrained Device

Finally, an adversary could also aim at compromising a constrained device and try
to gain access to the device-specific delegation key. The adversary then would be
able to exploit her knowledge of this key in two ways. First, the adversary could
impersonate the delegation server towards the constrained device in order to issue
new or to revoke existing authorizations. Second, the adversary could impersonate
the constrained device towards its authorized communication end-points.

After the compromise of the constrained device has been detected, the constrained
device, thus, must be sanitized and re-bootstrapped in order to imprint a new device-
specific delegation key on this device. Moreover, the delegation server must revoke
all existing session tickets for the device by re-establishing its authorized connections.
We note that comparable procedures would also be required in case of public-key
cryptography to handle the compromise of the private key of a constrained device.

5.4 Evaluation

For the evaluation of the handshake delegation architecture, we analyzed the over-
heads of the presented lightweight key provisioning mechanism and the end-point-
specific authorization functionality in the context of constrained devices. To this

7This protection incurs a computation overhead that resembles the overhead of encrypting and
decrypting a session ticket. The evaluation results in Section 5.4.2.1 show that these operations
cause moderate computation overheads on constrained devices and, thus, are also feasible when
protecting the session context on a constrained device in case of intra-domain authorizations.
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end, our evaluation focussed on the final step of the handshake delegation proce-
dure, i.e., the session resumption handshake, as the main delegation phase involving
a constrained device. The symmetric-key-based and the certificate-based DTLS
handshakes served as comparison baselines. The former handshake type thereby
relied on the open source tinyDTLS implementation [tinydtls], whereas the latter
required us to extend this implementation with certificate-related protocol function-
ality. Moreover, we added support for the session resumption extension to this pro-
tocol implementation and provisioned the communication partner of a constrained
device with a pre-computed session ticket from the delegation server for handshake
delegation purposes. We then evaluated and compared the three di↵erent connection
establishment types on constrained devices with Contiki OS [DGV04] in version 2.7.

As the underlying hardware platform, the constrained devices in our evaluation setup
employed the WiSMote platform8 [wismote] with a 16MHz MSP430 MCU, 16 kB of
RAM, 128 kB of ROM, and an IEEE 802.15.4-2006 radio interface. This platform
provided the constrained devices with extended 20 bit addressing support. As a re-
sult, we were able to run and compare all three considered connection establishment
types based on the same underlying hardware platform. A purely 16 bit-based hard-
ware platform such as the TelosB would not have allowed us to do so as an insu�cient
amount of ROM prevented the execution of the certificate-based DTLS handshake
on these devices. Still, it is important to note that, while our evaluation focuses on
the WiSMote platform for comparison purposes, we also successfully verified that
the TelosB platform supports the evaluated handshake delegation procedure.

Our evaluation setup followed current security recommendations for constrained de-
vices9. Specifically, we used elliptic curve NIST P-256 for all public-key-related
operations, AES-128 for symmetric-key-based operations, and SHA256 for hashing
purposes. The public-key and hashing operations relied on the relic toolkit [relic]. To
evaluate the certificate-based DTLS handshake, we created a self-signed certificate
for our own root Certificate Authority (CA) and pre-provisioned this certificate on
all constrained devices in our evaluation setup. We also issued per-device certificates
that were signed by our root CA. With this setup, the certificate-based DTLS hand-
shake required the transmission of one certificate per communication end-point and
one signature verification for the validation of the corresponding certificate chain.
Notably, the observed overheads of the certificate-based DTLS handshake constitute
a lower bound as the per-device certificates in our evaluation setup had a small size
(i.e., 0.37 kB) and did not involve intermediate certificates in the certificate chain.

Similar to the evaluation setups in Chapter 4, our evaluation did not specifically
consider the computation overhead of link layer security, but took the transmission
overhead that stems from the maximum length of the link layer security header
into account. This header overhead amounts to 30 byte for IEEE 802.15.4-2006.
Hence, we reduced the available 6LoWPAN payload size accordingly. Furthermore,
the IPv6 and UDP headers were compressed at the 6LoWPAN layer to the extend
discussed in Section 2.4.1 via the LOWPAN IPHC and LOWPAN NHC compression

8We refer to Section 2.2.1 for a brief overview and a comparison of the di↵erent experimentation
platforms for constrained devices that we use throughout the course of this thesis.

9The CoAP protocol specification defines cipher suite TLS PSK WITH AES 128 CCM 8 [MB12]
as mandatory-to-implement in the context of the symmetric-key-based DTLS handshake and
TLS ECDHE ECDSA WITH AES 128 CCM 8 [MBCD14] with elliptic curve NIST P-256 as
mandatory-to-implement for the certificate-based DTLS handshake [SHB14].
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Figure 5.11 RAM requirements of the DTLS implementation variants supporting the
certificate-based handshake, the symmetric-key-based handshake, and the handshake dele-
gation procedure. Handshake delegation requires slightly more RAM resources than the
symmetric-key-based handshake, but considerably less than the certificate-based handshake.

mechanisms. As a result, DTLS handshake messages with a size above 33 byte, i.e.,
excluding all lower layer headers, were fragmented by the 6LoWPAN layer prior
to their transmission and reassembled at the fragment recipient (see Section 2.4.2
for more information about the 6LoWPAN fragmentation mechanism). Moreover,
FRAG1s contained 24 byte of DTLS protocol information, whereas FRAGNs carried
between 1 and 64 byte of DTLS message content. We note that, by accounting
for the maximum size of the link layer security header and by only considering
modest header compression ratios, the following evaluation results exhibit a worst-
case message fragmentation with respect to the above evaluation setup.

5.4.1 Reduced RAM and ROM Requirements

To evaluate the memory overhead of the handshake delegation architecture in the
context of constrained devices, we analyzed and compared the RAM and ROM re-
quirements of Contiki OS binaries with support for (i) the symmetric-key-based
handshake, (ii) the certificate-based handshake, and (iii) our handshake delegation
procedure via the msp430-size and msp430-objdump tools. Moreover, we measured
the maximum stack size of these DTLS implementation variants. To this end, the
employed constrained device initialized its RAM resources with a well-defined pat-
tern as the first task of its boot-up procedure and then executed a series of connection
establishments, during which it acted as a server. After each connection establish-
ment, we dumped the RAM content of this device in order to determine the memory
region that still contained the well-defined memory pattern. The subtraction of the
determined amount of unallocated RAM and the previously identified statically allo-
cated RAM from the overall RAM resources of the WiSMote platform then yielded
an estimation of the maximum stack size. The presented stack size results constitute
the maximum over 10 measurement runs with a standard deviation of zero.

Based on this memory analysis, we found that the certificate-based DTLS proto-
col implementation exhibits an almost threefold RAM and ROM increase compared
to the symmetric-key-based DTLS implementation (see overall overheads in Fig-
ures 5.11 and 5.12). The key di↵erentiators are the underlying public-key library
and the certificate parsing functionality with a combined overhead of 1.34 kB of
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Figure 5.12 ROM requirements of the DTLS implementation variants supporting the
certificate-based handshake, the symmetric-key-based handshake, and the handshake delega-
tion architecture. The public-key-related protocol functionality constitutes the major contribu-
tor to the ROM requirements of the certificate-based DTLS handshake. Handshake delegation
and the symmetric-key-based handshake exhibit similar ROM requirements.

statically allocated RAM and 22.88 kB of ROM. Still, also the DTLS base func-
tionality exhibits a higher memory overhead in case of the certificate-based DTLS
implementation (see“General” in Figures 5.11 and 5.12). This overhead increase pre-
dominantly stems from the additional and more complex DTLS message processing
routines as well as from the larger message bu↵er for the longer message flights of the
certificate-based DTLS handshake (compare the unstarred messages in Figure 3.6
with the complete DTLS protocol handshake). Notably, the message bu↵er-related
RAM requirements of the certificate-based DTLS implementation are prone to be
even higher in many real-world deployment scenarios. This is because larger certifi-
cates and longer certificate chains than the ones employed in our evaluation setup
further increase the size of the exchanged Certificate messages and, thus, add to the
overall length of message flights 4 and 5 of the certificate-based DTLS handshake.

In addition to these static memory requirements, we also observed that the maximum
stack size of the certificate-based DTLS implementation variant is almost twice as
high as the maximum stack size of the symmetric-key-based implementation variant
(i.e., 1.81 kB and 0.94 kB, respectively). Also here, the most significant overhead
driver is the public-key library that dynamically allocates RAM resources during its
initialization procedure as well as during the performed cryptographic operations.

Concerning the handshake delegation procedure, we identified significantly reduced
memory requirements compared to the certificate-based DTLS implementation (see
Figures 5.11 and 5.12). Specifically, handshake delegation achieves an overhead re-
duction that amounts to 4.02 kB (i.e., 54.03%) of RAM and 26.88 kB (i.e., 65.48%) of
ROM. Moreover, the handshake delegation procedure only shows a modest increase
in memory requirements compared to the symmetric-key-based DTLS protocol im-
plementation, i.e., 0.49 kB of RAM and 0.64 kB of ROM. This increase in memory
overhead primarily originates from the additional protocol logic that is required for
the session resumption extension and the storage capacity for one session ticket that
the constrained devices in our evaluation setup were configured to store for intra-
domain authorization purposes. We note that each additional session ticket that a
constrained device can store further increases this RAM overhead by about 0.11 kB.

Based on the overall memory reductions of 30.90 kB (i.e., 63.72%) compared to
the certificate-based DTLS implementation, we conclude that our handshake del-
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Figure 5.13 Client-side computation overhead of the certificate-based DTLS handshake (C),
the symmetric-key-based DTLS handshake (S) and the presented handshake delegation proce-
dure (D) aggregated on a per-flight basis. The handshake delegation procedure causes a low
computation overhead that is comparable to a symmetric-key-based DTLS handshake.

egation procedure significantly improves the feasibility of the DTLS protocol for
memory-constrained devices. Notably, these memory reductions also include the
necessary protocol functionality for end-point-specific authorizations. Fine-granular
application-level authorizations, however, would require additional memory resources
as we did not consider the corresponding protocol functionality in the analyzed bi-
naries. The increased memory requirements for such application-level authorizations
then denote a trade-o↵ for the optional gain in authorization granularity.

5.4.2 Additional Run-time Improvements

In addition to the above memory evaluation, we also analyzed the run-time perfor-
mance of our handshake delegation procedure in the context of constrained devices
based on the above Contiki OS binaries. We thereby first measured the compu-
tation and transmission overheads of the certificate-based and the symmetric-key-
based DTLS handshake between two wirelessly connected constrained devices. We
then compared these baselines against the evaluation results of the handshake del-
egation procedure. The discussed evaluation results represent the average over 100
measurement runs. The standard deviation was below 13.9ms (i.e., 0.73%) for the
public-key-based operations and below 1.55ms for all remaining protocol operations.

5.4.2.1 Computation Overhead

As shown in Figures 5.13 and 5.14, the certificate-based DTLS handshake causes an
overall computation overhead of about 6 s per communication end-point independent
from the role during the protocol handshake. This significant overhead primarily
stems from the ECDSA-based peer authentication process with about 4.32 s and the
ECDH-based key agreement procedure with about 1.32 s. To put these numbers
into perspective, the above public-key operations combined cause about 95% of
the per-end-point computation overhead. Hence, the public-key operations of the
certificate-based DTLS handshake dwarf the remaining computation overheads of
0.25 s for the general packet processing and of 0.05 s for the symmetric-key and hash
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Figure 5.14 Server-side computation overhead of the certificate-based DTLS handshake (C),
the symmetric-key-based DTLS handshake (S) and the handshake delegation procedure (D)
aggregated on a per-flight basis. The overheads at the server are similar to those at the client.

operations (e.g., see flights 4 and 5 in Figure 5.13). Importantly, the validation of a
certificate chain only requires a single ECDSA signature verification of about 1.90 s
in our evaluation setup. We note that this overhead of the certificate-based DTLS
handshake increases linearly with each additional certificate in the certificate chain.

Regarding the symmetric-key-based DTLS handshake, we observed considerably re-
duced computation overheads compared to the certificate-based handshake. Specif-
ically, the symmetric-key-based DTLS handshake causes an overall computation
overhead of about 0.18 s per communication end-point. This observation likewise
holds in the context of the handshake delegation procedure with a similarly low com-
putation overhead of about 0.19 s. The slightly increased overhead of the handshake
delegation procedure thereby is primarily caused by the verification and the decryp-
tion of a session ticket with about 8.59ms as well as by the generation of a new
session ticket for subsequent handshakes with about 11.08ms (e.g., see flight 2 in
Figure 5.13). A part of these additional overheads, however, is compensated by the
fewer DTLS messages of the session resumption handshake and, thus, the decreased
packet processing costs compared to the symmetric-key-based DTLS handshake.

To summarize, our handshake delegation procedure reduces the overall computation
overhead compared to a certificate-based DTLS handshake by 96.80% and achieves a
computation e�ciency that resembles the standard symmetric-key-based handshake.

5.4.2.2 Transmission Overhead

As illustrated in Figure 5.15, our general observations regarding the computation
overhead of the three di↵erent connection establishment types similarly apply to
the measured transmission overheads. More precisely, we found that the certificate-
based DTLS handshake causes an overall transmission overhead of 1609 bytes at
the DTLS protocol layer for all handshake messages combined. In contrast, the
symmetric-key-based DTLS handshake and the handshake delegation procedure only
incur transmission overheads of 458 bytes and 515 bytes, respectively.

Concerning the certificate-based DTLS handshake, all 15 messages of the protocol
handshake are required when performing the connection establishment (see all mes-
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Figure 5.15 Transmission overhead of the certificate-based DTLS handshake (C), the
symmetric-key-based DTLS handshake (S) and the presented handshake delegation procedure
(D) aggregated on a per-flight basis. The handshake delegation procedure causes a reduced
transmission overhead compared to the certificate-based DTLS handshake and a similar trans-
mission overhead as the symmetric-key-based DTLS handshake.

sages in Figure 3.6). In addition, the extensive size of these messages causes the
certificate-based handshake to be split into a total of 41 6LoWPAN fragments. This
high level of fragmentation is especially critical when considering the flight-based
retransmission semantics of the DTLS protocol that cause an entire message flight
to be retransmitted in case a single 6LoWPAN fragment is lost. As each additional
6LoWPAN fragment per message flight further adds to the overall probability of frag-
ment loss, DTLS message flights should preferably consist of only few 6LoWPAN
fragments. The evaluation results, however, show that the longest message flights of
the certificate-based DTLS handshake, i.e., flights 4 and 5, are split into a total of 16
6LoWPAN fragments each. As these message flights also contain certificate-related
information, larger certificates or longer certificate chains than the ones employed in
our evaluation setup add to the size of these message flights and, thus, even further
increase the probability of retransmissions in case of lossy radio links.

In contrast, the symmetric-key-based DTLS handshake allows to reduce the number
of handshake messages to a total of 10 (see unstarred messages in Figure 3.6). As
the individual message sizes additionally are considerably smaller than those of the
certificate-based DTLS handshake, only 17 6LoWPAN fragments need to be trans-
mitted for the entire symmetric-key-based handshake. Interestingly, the handshake
delegation procedure even further reduces the required message fragmentation to
15 6LoWPAN fragments. This is mainly because the employed session resumption
handshake only consists of a total of 7 handshake messages. The largest message,
i.e., the ServerHello conveying the session ticket of 109 byte, thereby consists of 4
6LoWPAN fragments. Hence, while exhibiting a slightly increased absolute trans-
mission overhead, our handshake delegation procedure achieves a lower overall packet
forwarding overhead than the symmetric-key-based DTLS handshake.

To conclude, the presented handshake delegation procedure significantly outperforms
the certificate-based DTLS handshake with respect to the observed computation,
memory, and transmission overheads. At the same time, handshake delegation of-
fers a lightweight key provision mechanism for secure inter-domain communication
scenarios and provides an authorization framework for constrained node networks.
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While providing these additional capabilities, our handshake delegation architecture
only incurs a modest memory overhead compared to a purely symmetric-key-based
DTLS implementation and achieves similarly low computation and transmission
overheads as the symmetric-key-based handshake. Hence, our presented architec-
ture considerably improves the feasibility of the DTLS protocol in particular and of
end-to-end IP security in general with respect to many memory-constrained devices.

5.5 Related Work

For our discussion of related work, we distinguish between the following two research
directions: (i) delegation-based approaches for standard end-to-end IP security pro-
tocols and (ii) authorization frameworks for the IP-based IoT. Moreover, we refer
to our discussion of related work in Section 4.1.7.1. Here, we additionally note
that, while ECC hardware support allows to decrease the computation and memory
requirements that are directly attributable to the corresponding public-key primi-
tives, such hardware support does not reduce the additional memory overheads of
the certificate-based DTLS handshake, e.g., the large message bu↵ers and the func-
tionality for global time synchronization as well as for certificate status verification.
In contrast, by purely relying on symmetric-key-based primitives in the context of
constrained devices, our handshake delegation procedure does not cause these ad-
ditional overheads in the first place. Consequently, our architecture also caters to
highly memory-constrained devices that are equipped with ECC hardware support.

5.5.1 Delegation-based Approaches for End-to-End IP Security

Several delegation-based approaches for standard end-to-end IP security have re-
cently been proposed that aim at o✏oading expensive protocol operations from a
constrained device to less constrained network entities (see Table 5.1 for a compari-
son overview). In [SO12a, SO12b, SO12c], Saied et al. present three delegation-based
approaches to o✏oad the public-key-based handshake operations of the HIP protocol
from a constrained device to a group of less constrained neighboring devices, called
proxies. Common to all three approaches is the idea to split the secret key of the
constrained device into multiple blocks and to distribute the individual key shares
to a number of proxies as part of the performed protocol handshake. The proxies
then perform the peer authentication and the key agreement operations on behalf
of the constrained device. For key agreement purposes, the proxies thereby employ
the received key shares from the constrained device. In a last step, the constrained
device securely reconstructs the end-to-end keying material based on the received
handshake messages from the involved proxies. By employing multiple proxies in
the HIP protocol handshake, the proposed approaches, however, add a considerable
number of handshake messages to the connection establishment inside a constrained
node network. In contrast, our handshake delegation architecture achieves a reduc-
tion of the computation, the memory, and the transmission overheads.

Similarly, Sahraoui et al. [SB14] recently proposed CD-HIP, an approach to delegate
the public-key signature verification and the DH key agreement of the HIP protocol
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Approaches Security Computation Memory Transmission Trusted entity

Said et al. + � ⇡ � Constr. proxies
CD-HIP � � � ⇡ Constr. device
Tiny 3-TLS � �/ ⇡ �/ ⇡ ⇡ /+ On-path GW
Bonetto et al. � + ⇡ + On-path GW
Granjal et al. � ⇡ ⇡ ⇡ On-path GW
Park et al. � + + � On-path server
SCVP ⇡ � � � O↵-path server
Kerberos ⇡ ⇡ � ⇡ O↵-path KDC

Table 5.1 High-level comparison of the discussed related delegation-based approaches. These
approaches exhibit inferior (�), similar (⇡), or improved (+) properties when compared to
our handshake delegation architecture. In case the authors did not quantify overheads, the
presented comparison results denote estimates based on the provided architectural descriptions.

to a single less constrained neighboring device. In contrast to our work, this delega-
tion approach, however, still requires constrained devices to implement public-key
cryptography in order to sign their handshake messages. Moreover, the authors
require a subset of the devices inside a constrained node network to be trusted.

With Tiny 3-TLS [FMMA06], Fouladgar et al. propose to delegate the public-key-
based operations of the certificate-based TLS handshake to an on-path gateway. Tiny
3-TLS thereby distinguishes between two trust models, i.e., a partially and a fully
trusted on-path gateway. In case of partial trust, Tiny 3-TLS o✏oads the certificate-
based peer authentication from the constrained device to the on-path gateway. Sub-
sequently, the constrained device and the remote end-point perform an ECDH key
agreement in order to establish the end-to-end keying material. Thus, contrary to
our handshake delegation procedure, Tiny 3-TLS still requires constrained devices to
implement expensive public-key cryptography in case of a partially trusted gateway.

With a fully trusted gateway, Tiny 3-TLS delegates the entire handshake to the
on-path gateway. The gateway then securely transmits the established end-to-end
keying material to the constrained device. Similar to this second delegation variant,
Bonetto et al. [BBL+12] propose to o✏oad the IKEv2 handshake to an on-path gate-
way. Moreover, Granjal et al. [GMSS13] propose to integrate the certificate-based
DTLS handshake between a remote end-point and the gateway with a symmetric-
key-based DTLS handshake between the gateway and a constrained device. Im-
portantly, these approaches entail the exposure of the established end-to-end keying
material to the on-path gateway. This enables the gateway to eavesdrop on protected
end-to-end communication between the end-points. Our handshake delegation pro-
cedure, contrarily, o✏oads the initial connection establishment to a dedicated, o↵-
path network entity, i.e., the delegation server. Hence, the delegation server would
first need to subvert the routing topology of a given network in order to mount this
type of attack. Moreover, in contrast to these approaches, our handshake delegation
architecture does not require on-path gateways to perform (expensive) security-
related tasks and, thus, supports the deployment of commodity IP-level gateways.

Subsequent to our work in this chapter, Park et al. [PK14] proposed to delegate the
DTLS connection establishment handshake to a dedicated network entity, called the
DTLS delegator. After the connection establishment handshake, the DTLS dele-
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gator securely transmits the established session context to the constrained device.
In contrast to our handshake delegation procedure, this approach, however, incurs
additional transmission overheads for the subsequent protection of application data.
Moreover, the authors require the DTLS delegator to be located on the communi-
cation path between a constrained device and a remote communication end-point,
i.e., even after the session context has been handed over successfully. As mentioned
above, this potentially enables the DTLS delegator to eavesdrop on protected end-to-
end communication between the legitimate communication end-points. Conversely,
our delegation server is located o↵-path, thus hampering this type of attack.

Regarding standardized delegation-based approaches, the Server-based Certificate
Validation Protocol (SCVP) [FHM+07] enables a constrained device to delegate its
certificate verification procedure to a trusted validation server. The constrained
device then no longer needs to implement the time synchronization and certificate
status verification functionalities that otherwise would be required for a certificate-
enabled protocol implementation. SCVP, however, does not a↵ord to o✏oad the
remaining public-key operations of the certificate-based handshake. Contrary to
our handshake delegation architecture, SCVP, therefore, still requires constrained
devices to implement public-key cryptography. Moreover, by exchanging certificate
information with the validation server on a per handshake basis, SCVP further
increases the overall transmission overhead of the certificate-based handshake.

Finally, we note that the design of our handshake delegation architecture is inspired
by the architectural model of the Kerberos protocol [NYHR05]: Comparable to a
Kerberos KDC, we employ a central entity, i.e., the delegation server, to facilitate au-
thentication of the intended communication end-points. In addition, our handshake
delegation procedure similarly relies on the exchange of protected session tickets. In
contrast to Kerberos, we, however, specifically design our architecture with memory-
constrained devices and inter-domain communication scenarios in mind. Our hand-
shake delegation procedure, e.g., does not rely on timestamps in the session tickets
and forgoes the need for global time synchronization. As a result, our architecture
can achieve lower ROM overheads than Kerberos in the context of constrained de-
vices [Miy10]. This is especially true when considering the need to employ additional
end-to-end security mechanisms for the secure transmission of application data in
case of Kerberos. Moreover, it is important to note that, contrary to Kerberos, our
handshake delegation architecture does not require constrained devices and remote
communication end-points to belong to the same (federated) trust domain.

5.5.2 Authorization Frameworks for the IP-based IoT

Concerning the authorization of network interactions in the IP-based IoT, the CoAP
protocol specification [SHB14] proposes the use of local Access Control Lists (ACLs)
on a constrained device as a simple mechanism to restrict access on a per-end-point
and a per-resource basis. With an increasing number of authorized end-point and
resource combinations, such local ACLs, however, quickly cause extensive memory
and management overheads [RP12]. Role-based (e.g., [GMW10]) or attribute-based
(e.g., [OASIS13]) authorization frameworks a↵ord to reduce these overheads by intro-
ducing intermediate levels in the authorization hierarchy. This enables an assignment
of access rights to a set of abstract roles or attributes instead of directly assigning
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Approach Token verification Transm. overhead Revocation Time sync.

CapBAC � (PK crypto) � (per request) ⇡ required
DCapBAC � (PK crypto) � (per request) � required
Seitz et al. ⇡ (Sym. crypto) � (per request) � required
IoT-OAS � (Netw. interact.) � (per request) + not needed
DCAF ⇡ (Sym. crypto) � (per session) ⇡ optional

Table 5.2 High-level comparison of the discussed capability-based authorization frameworks.
These frameworks exhibit inferior (�), similar (⇡), or improved (+) properties when compared
to our handshake delegation architecture. In case the authors did not quantify a property, the
presented result denotes an estimation based on the provided architectural descriptions.

them to the communication end-points. The end-points, in turn, are assigned roles
or attributes according to their intended access rights. Based on these roles or at-
tributes, the constrained device then has to determine if an end-point is allowed
to access the requested resource. The corresponding policy evaluation procedure,
however, often incurs extensive computation and memory overheads [SSG13].

By delegating the derivation of the authorization decision to a trusted network en-
tity, capability-based security [RP12] – as employed in our handshake delegation
architecture – allows to largely prevent the above authorization-related overheads at
a constrained device. To this end, capability-based security binds the authorization
decision to a cryptographically verifiable authorization token that typically contains
a reference to the authorized communication end-point, the authorized resources,
and the granted access rights. Consequently, when receiving such an authorization
token, the constrained device only needs to verify the authenticity and the freshness
of the received token as well as to match the contained authorization information to
the requesting end-point and the requested resource for policy enforcement purposes.

Several authorization frameworks that are based on capability-based security have
recently been presented in the context of constrained devices (see Table 5.2 for a
comparison overview). With CapBAC [RP12] and DCapBAC [HRPJ+15], the au-
thors propose to use public-key signatures and certificates in order to identify the
involved network entities in the authorization tokens. In contrast, our handshake
delegation architecture solely relies on symmetric-key cryptography. Thus, Cap-
BAC and DCapBAC are prone to cause significantly higher transmission and token
verification overheads at a constrained device than our presented architecture.

Similarly, Seitz et al. [SSG13] presented an authorization framework that trans-
fers authorization information on a per-request basis. In contrast to CapBAC and
DCapBAC, this approach employs e�cient symmetric-key cryptography for token
protection purposes. By transferring authorization tokens on a per-request instead
of a per-session basis, their approach, however, still causes increased transmission
overheads compared to our handshake delegation architecture. Furthermore, while
our architecture allows for e�cient, explicit authorization revocation, Seitz et al. rely
on timestamps and short-lived authorization tokens for revocation purposes. Con-
sequently, their approach requires constrained devices to have synchronized clocks.

Cirani et al. [CPG+15] recently proposed IoT-OAS, an adapted OAuth authorization
architecture for the IoT that delegates the granting and the verification of OAuth
access tokens [Har12] from a constrained device to a dedicated, trusted OAuth ser-
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vice. In contrast to our handshake delegation architecture, IoT-OAS, however, incurs
significant transmission overheads in the context of constrained devices. This is pri-
marily because IoT-OAS requires a constrained device to contact the OAuth service
on a per-request basis for token verification purposes. Conversely, our handshake del-
egation procedure conveys all authorization-related information in the session ticket
when (re-)establishing a secure connection. This enables the constrained device to
perform policy enforcement without the need for further network interactions.

Finally, Gerdes et al. [GBB14, GBB15] recently presented DCAF, a capability-based
framework that integrates the transfer of an authorization token with the symmetric-
key-based DTLS handshake. Similar to our presented architecture, DCAF thereby
binds the exchanged authorization information to the established session context.
Their approach di↵ers from ours by requiring a constrained device to request an
authorization token prior to the connection establishment and to transfer the corre-
sponding authorization information to the communication partner during a symmetric-
key-based handshake. In contrast, with our handshake delegation procedure, a con-
strained device only has to perform an abbreviated session resumption handshake.
DCAF, therefore, is likely to cause a higher transmission overhead.

5.6 Conclusion

In this chapter, we analyzed the impact of public-key cryptography on the RAM
and ROM requirements of a certificate-based DTLS implementation for constrained
devices. As similarly indicated by the evaluation results for HIP DEX, our analy-
sis revealed extensive memory overheads that render a comprehensive, public-key-
enabled protocol implementation infeasible for a wide range of memory-constrained
devices. To still enable these devices to communicate securely via standard end-to-
end IP security protocols, we introduced the handshake delegation architecture that
allows to delegate the initial public-key-based connection establishment handshake
to an unconstrained delegation server. As a result, constrained devices can rely on
an abbreviated session resumption handshake and e�cient symmetric-key cryptog-
raphy for the protection of application data. Moreover, by leveraging the central
role of the delegation server during the initial connection establishment, handshake
delegation also allows to authorize new and revoke existing connections. Finally,
our architecture is not limited to DTLS, but also a↵ords a memory-e�cient mode of
operation and limited authorization capabilities for HIP DEX and Minimal IKEv2.

As the evaluation results show, our handshake delegation architecture achieves an
overall RAM and ROM reduction of about 31 kB (i.e., 64%) compared to a certificate-
based DTLS implementation. Likewise, the handshake delegation procedure reduces
the computation overhead by 97% and the transmission overhead by 68% in the con-
text of constrained devices. With these results, the presented architecture achieves
similarly low computation and transmission overheads as a purely symmetric-key-
based DTLS handshake while providing additional authorization capabilities.

Overall, we conclude that the handshake delegation architecture provides a com-
prehensive, yet compact solution for authentication, authorization, and secure data
transmission for the IoT. Still, the evaluation results also indicate non-negligible
packet fragmentation at the 6LoWPAN layer when performing the handshake of
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standard end-to-end IP security protocols inside a constrained node network. In the
following chapter, we will show that such packet fragmentation is vulnerable to po-
tential DoS attacks. Moreover, we will present lightweight defense mechanisms that
protect constrained devices against the identified fragmentation-based DoS attacks.



6
Secure 6LoWPAN Fragmentation

The evaluation results in Chapters 4 and 5 show that the IoT security protocol
adaptations DTLS and HIP DEX commonly involve handshake messages that exceed
the maximum frame size of constrained link layer technologies such as IEEE 802.15.4.
To still a↵ord the transmission of these messages inside a constrained node network,
the 6LoWPAN adaptation layer provides a fragmentation mechanism for exceedingly
large IPv6 packets (see Section 2.4). As we identify in this chapter, this mechanism,
however, is vulnerable to potential DoS attacks. This enables an adversary to block
the establishment of secure end-to-end connections despite our previous e↵orts.

Our contributions in this chapter are twofold. First, we present two design-level DoS
attacks that we identified during our security analysis of the 6LoWPAN fragmen-
tation mechanism in the context of constrained devices. The fragment duplication
attack enables an eavesdropping adversary to reactively block the reassembly of an
overheard fragmented IPv6 packet by sending a single forged 6LoWPAN fragment
to a target device. Similarly, the bu↵er reservation attack enables an adversary
without overhearing capabilities to proactively block the packet reassembly at a re-
assembling node by maliciously reserving the reassembly bu↵er via a single protocol-
compliant 6LoWPAN fragment. As a second contribution, we then introduce two
complementary, lightweight defense mechanisms that mitigate the identified frag-
mentation attacks at the 6LoWPAN layer. The content-chaining scheme protects
against the fragment duplication attack by o↵ering e�cient per-fragment data ori-
gin authentication. In addition, the split bu↵er approach fosters competition for the
scarce bu↵er resources at a reassembling node between an adversary and legitimate
fragment senders. In combination with a dedicated packet discard strategy that
penalizes suspicious sending behavior, this allows to e↵ectively mitigate the bu↵er
reservation attack. The evaluation results confirm the practicability of the identified
6LoWPAN fragmentation attacks and show the e↵ectiveness of the presented defense
mechanisms at moderate computation, energy, memory, and transmission trade-o↵s.

The remainder of this chapter is structured as follows. In Section 6.1, we provide
an overview of previously identified fragmentation attacks as a basis for our work
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in this chapter. Next, Section 6.2 describes the underlying attacker model of our
security analysis and Section 6.3 presents the detailed analysis results. We then
introduce the design of our two defense mechanisms. Section 6.4 thereby focuses on
the content-chaining scheme, whereas Section 6.5 describes the split bu↵er approach.
In Section 6.6, we discuss the security considerations of the presented defense mech-
anisms. We then present the evaluation results in Section 6.7. Finally, Section 6.8
discusses related work and Section 6.9 concludes this chapter with a summary. We
note that the contents of this chapter is based on our published work in [HHW+13].

6.1 Overview of Existing Fragmentation Attacks

Fragmentation has been shown to be harmful in a variety of network scenarios. Bit-
tau et al. [BHL06], e.g., exploit fragmentation at the IEEE 802.11 MAC layer to
considerably increase the e�ciency of breaking the encryption of WEP-protected
wireless channels. Similarly, Albrecht et al. [APW09] exploit ciphertext fragmenta-
tion in order to recover plaintext information from SSH-protected tunnels. Moreover,
fragmentation-based vulnerabilities have extensively been investigated in the context
of the IPv4 and IPv6 protocols. We note that our following discussion focuses on
these IP-level fragmentation attacks as these are strongly related to the attacks that
we identify with respect to the 6LoWPAN fragmentation mechanism. For our dis-
cussion, we classify these existing IP-level fragmentation attacks according to their
root cause, i.e., implementation deficiencies and design-level vulnerabilities.

6.1.1 Attacks Based on Implementation Deficiencies

One of the most well-known fragmentation attacks exploiting implementation de-
ficiencies of the IPv4 fragmentation mechanism is the “Ping of Death” [CERT96].
It is based on sending IPv4 fragments to a victim host, which, when reassembled,
exceed the maximum IPv4 packet size of 65535 byte. This attack caused vulnerable
systems to crash on packet reassembly. Similarly, the “Teardrop” attack [CERT97]
exploits the fact that several operating systems handled overlapping IPv4 fragments
incorrectly, causing high computational load or crashes of the victim host. Notably,
such implementation-specific attacks can commonly be prevented by patching the
vulnerable reassembly routines. We, therefore, do not specifically consider these
types of attacks in this chapter and instead focus on design-level vulnerabilities.

6.1.2 Attacks Based on Design-Level Vulnerabilities

In contrast to the above implementation-related attacks, design-level IP fragmenta-
tion attacks exploit inherent vulnerabilities in the IPv4 or IPv6 protocol specifica-
tion. Correspondingly, most design-level IP fragmentation attacks resulted in revised
protocol specifications. These specification updates aim at mitigating or prevent-
ing the identified fragmentation attacks via enhanced fragmentation and reassembly
policies. We highlight these improvements in our following discussion as the design
of the 6LoWPAN fragmentation mechanism employs the most recent policies for the
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Figure 6.1 Packet filter evasion based on overlapping fragments. The on-path packet filter
inspects the first fragment that appears to be legitimate and applies the same filter decision to
the second packet fragment. The second fragment, however, overwrites, e.g., the TCP flags
in the header of the transport layer during packet reassembly at the victim host (marked in
gray). This e↵ectively conceals the actual TCP flag combination from the packet filter.

IPv6 protocol. To structure our discussion of design-level IP fragmentation attacks,
we further di↵erentiate these attacks based on the exploited packet property, i.e.,
overlapping fragment content and fragmented packets with missing packet fragments.

6.1.2.1 Attacks Exploiting Overlapping Fragment Content

In 1995, Ziemba et al. [ZRT95] showed that overlapping IPv4 fragment content can
be exploited by an adversary to evade on-path packet filters such as firewalls. Ptacek
et al. [PN98] subsequently presented similar attacks targeting Intrusion Detection
Systems (IDSs). The basic idea behind these fragmentation attacks is that non-
reassembling network elements typically apply their filter rules based on the header
information contained in the first IPv4 fragment and perform the resulting action
on all remaining packet fragments. The reassembly algorithm outlined in the IPv4
protocol specification [Pos81], however, prefers the most recent fragment content over
previously received content in case of overlapping fragments as depicted in Figure 6.1.
This enables an adversary to circumvent filter rules at a network element that, e.g.,
block inbound TCP handshakes based on the SYN flag in the TCP header.

To mount this type of fragmentation attack, the adversary generates an initial IPv4
fragment that contains legitimate header information such as the ACK flag in the
TCP header. A subsequent fragment, however, indicates a fragment o↵set that
causes the corresponding fragment content to overlap with the initial IPv4 fragment
(see Figure 6.1). This overlapping content then contains the header information that
the adversary intends to be processed at the victim host, e.g., the TCP SYN flag.

With the goal to prevent the above attack, the packet filter and reassembly policies
of the IPv4 protocol were updated to discard packet fragments that overlap at the
transport layer. These updated policies utilize the fact that the payload of the first
IPv4 fragment always starts with the transport protocol header [Pos81]. Thus, static
policy rules based on the fragment o↵set su�ce to prevent overlapping fragments
from overwriting transport header information [ZRT95, Mil01]. One of these static
rules, e.g., drops IPv4 fragments with a fragment o↵set of 1 in case of TCP as this
o↵set would overwrite the second byte of the TCP header (see Figure 6.1).
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Figure 6.2 Blocking packet reassembly with overlapping fragments. The adversary maliciously
occupies parts of the packet identification value space at a victim host that will be used in the
near future to identify associated fragments of legitimate packets during packet reassembly.

The original IPv6 specification [DH98] did not prevent overlapping fragment con-
tent either, i.e., like the IPv4 standard. As a result, Davies et al. [DKS07] also
identified overlapping fragment content to cause overwriting vulnerabilities in the
context of IPv6 packet fragmentation. IPv6 packets, however, may carry optional
IPv6 extension headers in their fragmentable part. Thus, reassembly policies based
on static fragment o↵sets would not su�ce to prevent overwriting of the transport
protocol header. To still protect IPv6-enabled hosts and network elements against
overlapping fragment content, the IPv6 reassembly policy was updated to discard
the entire IPv6 packet in case of overlapping fragment content [Kri09]. Importantly,
this revised policy also was adopted by the 6LoWPAN standard [MKHC07].

Despite the above modifications to the IPv4 and IPv6 protocol specifications, the
authors of [Gon11, GH11, GH13] recently discovered that overlapping fragments can
still be exploited by an adversary in order to mount a DoS attack against a victim
host. To this end, the adversary must first guess the current packet identification
value of a legitimately fragmented IP packet, i.e., the IP header information al-
lowing a reassembling host to correlate fragments that belong to the same overall
IP packet. The adversary then sends multiple spoofed IP fragments to the victim
host containing packet identification values that will soon be used by the legitimate
communication partners (see dark gray area in Figure 6.2). These malicious IP frag-
ments cause overlapping fragment content at the victim host once the legitimate IP
fragments with matching packet identification values arrive. As a result, the victim
host potentially reassembles the fragmented IP packet incorrectly (IPv4) or disposes
of the entire legitimate IP packet (IPv6). This enables the adversary to block the
correct reassembly of legitimate fragmented IP packets at the victim host.

6.1.2.2 Attacks Exploiting Fragmented Packets with Missing Fragments

In addition to overlapping fragment content, fragmented IP packets with missing
packet fragments have also been shown to be a viable attack vector against IP-
enabled hosts. Specifically, IP fragmentation requires a reassembling host to allocate
part of its memory resources for packet reassembly purposes, i.e., until the fully
reassembled IP packet can be passed up the network stack for further processing.
These memory resources are either limited by the size of a dedicated memory pool
or by the overall memory resources that are available at the reassembling host. As
the authors of [KPS03, DKS07, HMC07, Gon11] identify, an adversary can exploit
this circumstance to mount a fragmentation-based DoS attack against a victim host
by maliciously occupying all of the available reassembly bu↵er resources.
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Figure 6.3 The attacker model for our security analysis of the 6LoWPAN fragmentation
mechanism. The adversaries Eve (E) and Mallory (M) are co-located with constrained devices
(D) inside a constrained node network. Malice is situated outside the target network. Arrows
indicate specific packet forwarding paths. The dashed line represents overhearing.

To mount this type of attack, the adversary floods a victim host with multiple
incomplete fragmented IP packets that never reassemble to a complete IP packet.
Once its reassembly bu↵er resources are exhausted, the victim host then no longer
can reassemble newly arriving packets until the reassembly procedure disposes of the
partially received packets. Hence, missing packet fragments also enable an adversary
to block the reassembly of legitimate fragmented IP packets at a victim host.

Based on this understanding of existing IP-level fragmentation attacks, we now
present the design-level DoS attacks that we identified during our security analysis
of the 6LoWPAN fragmentation mechanism in the context of constrained devices.
We begin this discussion with an introduction of the assumed attacker model.

6.2 The Assumed Attacker Model

For our security analysis of the 6LoWPAN fragmentation mechanism, we used the
Internet Threat Model (see Section 3.1.1) as a basis. This threat model, however,
describes a worst case attack scenario by assuming that the adversary has full control
over the network infrastructure employed by the victim host. To allow for a more
fine-granular analysis of the attack capabilities required to mount a fragmentation
attack at the 6LoWPAN layer, we, therefore, further distinguish between three types
of adversaries within the Internet Threat Model, i.e., Eve, Mallory, and Malice.

As depicted in Figure 6.3, we assume Malice to be a network-external adversary.
Eve and Mallory, contrarily, are situated inside the target network. Moreover, we
assume Eve and Mallory to actively participate in the routing topology. To achieve
such participation, Eve or Mallory may simply be placed within radio range of a
legitimate node and join the routing topology if the target network does not restrict
network admission. Contrarily, a protected target network that, e.g., employs link
layer security, first requires the adversary to gain access to the corresponding security
keys to achieve network admission for Eve or Mallory. To this end, the adversary
may, e.g., try to extract the security keys from a legitimate constrained device of the
target network [HBH+05, BBD06]. Alternatively, the adversary may also attempt
to remotely take control over a legitimate constrained device and enforce adversarial
behavior. Such remote exploitation has recently been shown to also be viable in
the context of constrained devices. Specifically, smart fridges and televisions were
reported to have been utilized maliciously in recent SPAM attacks [Pro14a, Pro14b].
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With respect to the attack capabilities of Eve and Mallory, we note that these
network-internal adversaries can send network packets to any constrained device
inside the target network. As illustrated in Figure 6.3, their attack capabilities,
however, di↵er due to their relative position to the forwarding path of 6LoWPAN-
fragmented packets. Specifically, we assume Eve to be located besides the fragment
forwarding path. As a result, she can overhear legitimate packets and send packets in
reaction to overheard information. In contrast, we assume Mallory to be located on
the fragment forwarding path. Thus, in addition to Eve’s capabilities, Mallory can
also alter, delay, reorder, or simply drop legitimate packets. Mallory’s capabilities,
therefore, allow her to mount at least the attacks that are viable for Eve. For this
reason, we do not mention Mallory explicitly when discussing Eve.

Regarding the network-external adversary Malice, we assume this adversary to be
equipped with significantly more resources than a constrained device and to be
interconnected via a high-bandwidth network connection. This resource advantage
enables Malice to flood constrained devices with numerous IPv6 packets. Moreover,
Malice may send large IPv6 packets that exceed the frame size of the constrained
link layer technology employed by the target network. Such exceedingly large IPv6
packets then must be fragmented at the 6LoWPAN layer of the interconnecting
gateway before transmission inside the constrained node network (see Figure 6.3).

6.2.1 Remarks About the Network-External Attacks

The network-external adversary Malice is restricted to IP-based communication
via the gateway and cannot directly employ 6LoWPAN fragments in her attacks.
This prevents Malice from exploiting potential design-level vulnerabilities in the
6LoWPAN fragmentation mechanism. As a result, Malice has to resort to flooding-
based attacks. She, however, can further amplify these attacks by sending large IPv6
packets that require 6LoWPAN fragmentation at the interconnecting gateway.

Notably, such flooding-based attacks can typically be detected and protected against
via standard security mechanisms at the gateway such as authenticated tunnels or
rate limitation approaches. Authenticated tunnels allow to frustrate the above flood-
ing attack by enabling the gateway to exclude network-external hosts from commu-
nication once it detects an excessive amount of large IPv6 packets. Similarly, rate
limitation of large inbound IPv6 packets at the gateway prevents constrained devices
from being overloaded by vast amounts of 6LoWPAN fragments. This allows to mit-
igate the adverse e↵ects of Malice’s resource advantage over constrained devices.

The above defense mechanisms, however, still leave the constrained node network
unprotected against network-internal adversaries who do not resolve to flooding-
based attacks and that appear to be benign network participants. We, thus, focus
our security analysis on the challenging case of the standard-compliant adversaries
Eve and Mallory that exploit vulnerabilities in the 6LoWPAN protocol design and
the resource constraints in the target networks. Moreover, we make no assumptions
about the hardware resources of Eve or Mallory. Hence, even resource-constrained
adversaries can mount the 6LoWPAN fragmentation attacks described below.
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Figure 6.4 The fragment duplication attack. Eve (E) overhears 6LoWPAN fragments from
the legitimate sender (S) and injects a spoofed fragment with altered fragment content. Due
to overlapping fragment content, the recipient (R) drops the entire IPv6 packet.

6.3 The 6LoWPAN Fragmentation Attacks

In this section, we present the two design-level DoS attacks that we identified during
our security analysis of the 6LoWPAN fragmentation mechanism, i.e., the fragment
duplication attack and the bu↵er reservation attack. Moreover, we discuss their
relation to the previously described IP-level fragmentation attacks in Section 6.1.2.
We note that, for the remainder of this chapter, the term “fragmentation” refers to
the IPv6 packet fragmentation at the 6LoWPAN layer if not mentioned otherwise.

6.3.1 The Fragment Duplication Attack

The fragment duplication attack leverages the circumstance that the recipient of a
6LoWPAN fragment cannot unambiguously identify at the 6LoWPAN layer if this
fragment belongs to the indicated fragmented IPv6 packet or if it was maliciously
crafted by an adversary. Moreover, the attack exploits the fact that the 6LoWPAN
standard recommends IPv6 packets with overlapping 6LoWPAN fragment content to
be discarded. Combined, these factors enable Eve to selectively block the reassembly
of a fragmented IPv6 packet by sending a single duplicate 6LoWPAN fragment.

To show how such a selective attack would proceed, we assume that Eve aims
at preventing DTLS-protected end-to-end communication between two legitimate
end-points. For this, Eve inspects the wireless medium for 6LoWPAN-fragmented
DTLS handshake messages, e.g., by checking the overheard FRAG1 fragments for
DTLS header information. Once, Eve discovers a 6LoWPAN fragment with DTLS-
related packet content, she injects a spoofed FRAGN fragment (see Figure 6.4). This
FRAGN contains arbitrary fragment payload and a 6LoWPAN fragmentation header
that links her FRAGN to the fragmented DTLS message via a spoofed datagram
tag (see Section 2.4.2 for detailed information about the 6LoWPAN fragmentation
header). As the fragment recipient cannot distinguish such spoofed FRAGNs from
legitimate ones, it cannot decide which fragments to use during its packet reassembly
at the 6LoWPAN layer. Moreover, due to the fragment overlap of the spoofed and
the legitimate FRAGNs, a standard-compliant recipient has to discard the entire
IPv6 packet, thus a↵ording Eve to block the overheard DTLS handshake message.
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6.3.1.1 General Interference via the Fragment Duplication Attack

Besides such selective blocking of the correct 6LoWPAN packet reassembly, Eve can
also unconditionally block the delivery of any fragmented IPv6 packet in her vicinity.
To this end, she merely needs to inject duplicate FRAGNs for each overheard frag-
mented packet. Eve then achieves general interference with the 6LoWPAN packet
reassembly of all fragmented packets within her wireless radio range. Moreover, Eve
may exploit such general interference in an energy exhaustion attack. Specifically,
we observe that upper layer protocols typically employ retransmissions to recover
lost application data. This, e.g., is the case for confirmable messages of the CoAP
protocol [SHB14]. By also blocking the correct reassembly of these retransmissions,
Eve then can further deplete the potentially scarce energy resources of the legitimate
fragment sender as well as of the forwarding nodes on the communication path.

With respect to the previously discussed IP-level fragmentation attacks, we note
that the fragment duplication attack is similar to the IP-level fragmentation attacks
based on overlapping fragment content presented in Section 6.1.2.1. However, in
contrast to these attacks, Eve does not require guessing of the 6LoWPAN datagram
tag due to the broadcast nature of the wireless medium and the multi-hop topology
of constrained node networks. Instead, she can overhear the wireless medium and
react to overheard packets. This enables Eve to mount a notably cheap attack that
only requires her to send a single duplicate 6LoWPAN fragment per overheard IPv6
packet in order to prevent the correct packet reassembly at the victim node. This
stands in stark contrast to the fragmentation attack discussed in Section 6.1.2.1 that
requires guessing of the current IP packet identification value as well as the transfer
of multiple packet fragments to increase the probability of a correct guess.

6.3.2 The Bu↵er Reservation Attack

In contrast to the fragment duplication attack, the bu↵er reservation attack exploits
the scarce memory resources of constrained devices and leverages the fact that a
fragment recipient cannot determine a-priori if all 6LoWPAN fragments of a frag-
mented IPv6 packet will eventually arrive. As a result, the recipient of a 6LoWPAN
fragment must optimistically store the 6LoWPAN fragments of an IPv6 packet until
this packet has been received completely. For in-place packet reassembly, this re-
quires the recipient to reserve bu↵er resources that su�ce for the entire expected
IPv6 packet content. We note that the corresponding size information is indicated
in the 6LoWPAN header of each received fragment as described in Section 2.4.2.

Importantly, the fragment recipient has to discard the received 6LoWPAN fragments
from other fragmented IPv6 packets once its available reassembly bu↵er resources
are exhausted. Eve can exploit this fact to block the reassembly of fragmented IPv6
packets at a target device by reserving all available reassembly resources with ma-
liciously crafted 6LoWPAN fragments. For our discussion of the bu↵er reservation
attack, we assume that the devices inside the constrained node network only have
a single 6LoWPAN bu↵er for reassembly purposes. This, e.g., is the case when em-
ploying the Contiki OS [DGV04] as the underlying operating system for constrained
devices. Moreover, we note that, if a constrained device has su�cient memory re-
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Figure 6.5 The bu↵er reservation attack. Eve (E) sends a single 6LoWPAN fragment to the
resource-constrained recipient (R). Eve, however, does not complete the partial IPv6 packet
with the remaining 6LoWPAN fragments. As a result, the reassembly bu↵er at the recipient
is maliciously occupied until the reassembly timeout expires. During this time, the recipient
cannot process other fragmented packets that originate from a legitimate sender (S).

sources to maintain multiple 6LoWPAN reassembly bu↵ers, this linearly increases
the e↵ort that an adversary has to put into mounting the bu↵er reservation attack.

6.3.2.1 The Basic Bu↵er Reservation Attack

When mounting the bu↵er reservation attack, Eve generates a fragmented IPv6
packet with arbitrary payload as illustrated in Figure 6.5. She then, however, only
sends the first 6LoWPAN fragment, i.e., the FRAG1, to the target device. If the
reassembly bu↵er of the target device is not yet occupied by another fragmented
IPv6 packet, the received FRAG1 reserves the target’s reassembly bu↵er for Eve’s
fragmented IPv6 packet. Eve now refrains from sending the remaining FRAGN
fragments to ensure that her fragmented IPv6 packet never reassembles at the target
device. As a result, Eve’s attack FRAG1 blocks the reassembly bu↵er at the target
device until the 6LoWPAN reassembly timeout expires. We note that this reassembly
timeout can last up to 60 seconds according to the 6LoWPAN standard [MKHC07].

The above attack only persists for the duration of a single 6LoWPAN reassembly
timeout. To continuously block the packet reassembly at the target device, Eve
either needs to constantly flood the target device with FRAG1s or she has to time
her attack fragments according to the reassembly timeout. Flooding the target
device with FRAG1s denotes a crude form of attack that may easily be detected by
monitoring the wireless medium. The timing-based attack, contrarily, is more lenient
on Eve’s resources and is significantly more di�cult to detect when the monitoring
wireless transmissions inside a constrained node network. For this reason, we now
describe how Eve can perform the timing-based bu↵er reservation attack.

6.3.2.2 The Timing-Based Bu↵er Reservation Attack

To mount the continuous timing-based bu↵er reservation attack, Eve must ensure
that the target device receives her FRAG1 of a subsequent bu↵er reservation attack
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Figure 6.6 Probing procedure for the continuous timing-based bu↵er reservation attack. Eve
first sends an attack FRAG1 to reserve the reassembly bu↵er at the target device. She then
sends a sequence of fragmented ICMP echo requests that trigger a response from the target
device. By measuring the time between sending the FRAG1 and receiving the first ICMP echo
response, Eve can estimate the time interval required for the bu↵er reservation attack.

immediately after the reassembly timeout of the current attack has expired. Eve,
thus, has to probe the target device in preparation of her attack in order to learn the
employed reassembly timeout and to approximate the fragment transmission time
to this device as shown in Figure 6.6. To this end, Eve first sends an attack FRAG1
that reserves the reassembly bu↵er at the target device. She then sends a sequence
of complete fragmented IPv6 packets that trigger a response from the target device,
e.g., ICMP echo requests with a large data field. These messages represent control
packets for Eve that allow her to verify if the bu↵er reservation attack succeeded
and how long it persists. In case of a successful attack, Eve only receives a reply
from the target device for ICMP messages that arrived after the reassembly timeout
expired. This enables Eve to estimate the reassembly timeout of the target node and
the packet propagation time by measuring the duration between the FRAG1 and
the first ICMP reply reduced by half the reported RTT. Based on this information,
Eve then is able to continuously reserve the reassembly bu↵er at the target device
by iteratively mounting the bu↵er reservation attack as described above.

Regarding the previously discussed IP-level fragmentation attacks, we note that
the bu↵er reservation attack exploits the same properties of the packet reassembly
mechanism as the IP-level fragmentation attack based on missing packet fragments
presented in Section 6.1.2.2. The impact of the 6LoWPAN-based attack, however, is
significantly aggravated by the circumstance that constrained devices commonly are
equipped with very limited RAM resources. This enables Eve to maliciously reserve
the entire reassembly bu↵er of a target device for the duration of the reassembly
timeout by sending merely a single protocol-compliant 6LoWPAN fragment.

6.3.3 Susceptibility to the 6LoWPAN Fragmentation Attacks

As described in the previous sections, the fragment duplication attack and the bu↵er
reservation attack allow Eve to exploit the 6LoWPAN fragmentation facilities to
mount two design-level DoS attacks against devices that are located inside the same
constrained node network as Eve. Notably, the susceptibility to these attacks is lim-
ited to constrained devices that try to reassemble Eve’s malicious 6LoWPAN frag-
ments. While this property would restrict the identified attacks to the IPv6 packet
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Figure 6.7 The packet processing path inside a constrained node network that employs mesh-
under routing or (enhanced) route-over routing. While forwarding nodes can remain oblivious
to the 6LoWPAN packet fragmentation in case of mesh-under routing, these node are required
to act on 6LoWPAN-fragmented IPv6 packets in case of (enhanced) route-over routing.

destination for regular IP-level fragmentation1, the 6LoWPAN standard requires
constrained devices on the forwarding path to reassemble traversing fragmented pack-
ets depending on the employed 6LoWPAN fragment forwarding mechanism. Hence,
these devices are also susceptible to the identified 6LoWPAN fragmentation attacks.

We now briefly introduce the di↵erent fragment forwarding mechanisms that are sup-
ported by the 6LoWPAN protocol specification and then analyze the susceptibility
of constrained devices based on the key properties of these approaches.

6.3.3.1 A Brief Introduction to 6LoWPAN Fragment Forwarding

Opposed to IPv6 fragments, 6LoWPAN-fragmented IPv6 packets only contain IPv6
header information in the FRAG1 fragment (see Figure 2.8). FRAGNs, in contrast,
do not contain routable IP-level information. This omission of the IPv6 header infor-
mation in the FRAGNs stems from the goal to keep the overhead of fragmented IPv6
packets low. As a result, only the fragment content of the FRAG1 can be routed
immediately to the IPv6 packet destination. FRAGNs first need to be associated
to the corresponding FRAG1 for fragment forwarding purposes. This particular
design trait has implications on the 6LoWPAN fragment forwarding inside a con-
strained node network. The following three fragment forwarding mechanisms are
commonly distinguished in the context of 6LoWPAN: (i) mesh-under, (ii) route-
over, and (iii) enhanced route-over routing [MKHC07, SB10]. We now outline these
forwarding mechanisms and then discuss their susceptibility in the following sections.

With mesh-under routing, the fragment forwarding nodes derive the forwarding
decision at the link layer and do not consult the IPv6 layer for routing purposes
(see Figure 6.7a). As a result, only the final destination inside the constrained node

1With IPv6, packet fragmentation and packet reassembly must only be performed by the com-
munication end-points according to the IPv6 protocol specification [DH98].
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network has to reassemble a fragmented IPv6 packet, whereas the forwarding nodes
can remain oblivious to the packet fragmentation at the 6LoWPAN layer. Moreover,
as the forwarding nodes are able to derive the forwarding decision on a per-fragment
basis, the forwarding path may di↵er across the individual 6LoWPAN fragments.

Contrary to mesh-under routing, route-over routing derives the forwarding deci-
sion at the network layer. To this end, each receiving node must first reassemble the
entire IPv6 packet at the 6LoWPAN layer. The node then passes the reassembled
packet to the IPv6 layer for further processing (see Figure 6.7b). The IPv6 layer, in
turn, checks if the packet is destined for the local device or for another communica-
tion end-point. In the latter case, the IPv6 layer looks up the next hop and passes the
packet down to the 6LoWPAN layer again. Here, the IPv6 packet is re-compressed
and re-fragmented. Importantly, this packet processing procedure implies that all
6LoWPAN fragments of an IPv6 packet are transferred along the same forwarding
path as the intermediate hops apply the routing decision on a per-packet basis.

To a↵ord a similar forwarding e�ciency as the mesh-under approach, enhanced
route-over routing forgoes the packet reassembly at the forwarding nodes as an
improvement to route-over routing. More precisely, the fragment recipient derives
the forwarding decision immediately after a FRAG1 has been received, i.e., with-
out prior reassembly of the entire IPv6 packet. To this end, the 6LoWPAN layer
reconstructs the IPv6 header from the FRAG1 and derives the forwarding decision
at the IPv6 layer via cross-layer interactions. The 6LoWPAN layer then stores this
forwarding decision for the transmission of the associated FRAGNs and forwards the
FRAG1 to the next hop on the forwarding path. Thus, FRAGNs can be forwarded
individually along a virtual circuit that is laid out by the FRAG1 without the need
for intermediate packet reassembly. In other words, all 6LoWPAN fragments of a
fragmented IPv6 packet are transmitted along the same forwarding path.

6.3.3.2 Susceptibility in Case of Mesh-under Routing

With mesh-under routing, fragment forwarding nodes inside the constrained node
network do not reassemble Eve’s maliciously crafted 6LoWPAN fragments. Instead,
they forward Eve’s attack fragments without realizing that she is actually mounting
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Figure 6.8 Susceptibility of constrained devices (D) against the identified 6LoWPAN frag-
mentation attacks depending on the employed fragment forwarding mechanism. Mesh-under
and enhanced route-over routing allow Eve (E) to target constrained devices (T) beyond her
one-hop neighborhood. With route-over routing, she is limited to her one-hop neighborhood.
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an attack. As shown in Figure 6.8a, this enables Eve to target the final fragment
destination inside the constrained node network with the identified 6LoWPAN frag-
mentation attacks. More precisely, Eve is bound to the specific destination of the
overheard 6LoWPAN fragments when mounting the fragment duplication attack.
She, however, does not have such restrictions in case of the bu↵er reservation at-
tack. In fact, Eve then only needs to know the IPv6 address of the target device.

6.3.3.3 Susceptibility in Case of Route-over Routing

In case of route-over routing, Eve can interfere with the 6LoWPAN packet reassem-
bly of the constrained devices that are located in her one-hop neighborhood. This is
due to the fact that each node on the forwarding path reassembles Eves maliciously
crafted 6LoWPAN fragments. As a result, both identified 6LoWPAN fragmentation
attacks immediately a↵ect the first hop on the forwarding path towards the final
destination of Eve’s attack fragments (see Figure 6.8b). Conversely, Eve cannot tar-
get the packet reassembly of nodes that are located topologically farther away than
her one-hop neighborhood as these nodes would never receive her attack fragments.

6.3.3.4 Susceptibility in Case of Enhanced Route-over Routing

Enhanced route-over-based forwarding nodes do not reassemble Eve’s maliciously
crafted 6LoWPAN fragments, but directly forward her attack fragments towards the
final destination inside the constrained node network. This enables Eve to mount the
identified attacks against the same constrained devices as for mesh-under routing.
Hence, the reach of her attack extends beyond constrained devices in her one-hop
neighborhood, i.e., the vulnerable devices of the basic route-over routing approach.

6.4 The Content-Chaining Scheme

To protect constrained devices against the 6LoWPAN fragmentation attacks that we
identified above, we now present the design of our two complementary, lightweight
defense mechanisms, i.e., the content-chaining scheme and the split bu↵er approach.
In this section, we focus our discussion on the content-chaining scheme and refer to
Section 6.5 for the split bu↵er approach. We start our introduction of the content-
chaining scheme with a brief review of why existing security mechanisms often do
not su�ce to protect constrained devices against the fragment duplication attack.

6.4.1 Partial and Non-Solutions

The fragment duplication attack enables Eve to block the successful reassembly of
overheard fragmented IPv6 packets by sending a single duplicate 6LoWPAN frag-
ment. Constrained devices could defend against this attack if they were able to iden-
tify the 6LoWPAN fragment combination that represents the original IPv6 packet.
To this end, a reassembling node could, e.g., verify upper layer protocol information
such as a message integrity checksum for each reassembled fragment combination.
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This simple approach, however, exhibits multiple shortcomings. First, it requires all
upper layer protocols to employ integrity protection mechanisms that can withstand
an existential forgery attack. The goal of this attack would be for Eve to craft over-
lapping 6LoWPAN fragment content that validates against a given integrity check-
sum but di↵ers from the original fragment content. Checksums such as the one’s
complement sum of TCP or UDP, yet, commonly do not provide su�cient crypto-
graphic strength to withstand such a forgery attack [HS13]. Instead, cryptographic
integrity protection mechanisms would be required for all upper layer protocols.
Such cryptographic mechanisms, however, typically are only used in network security
protocols and are not generally available. Second and most importantly, verifying
upper layer protocol information requires the recipient of a fragmented IPv6 packet
to optimistically store all received 6LoWPAN fragments, including those fragments
that were sent by Eve. Hence, by sending multiple duplicate fragments, Eve could
overload the reassembly bu↵er at the fragment recipient. The recipient then could
no longer process subsequently arriving 6LoWPAN fragments, thus preventing the
reassembly of legitimate 6LoWPAN-fragmented IPv6 packets in the first place.

From the above discussion, we derive that constrained devices must be able to dif-
ferentiate between legitimate and spoofed 6LoWPAN fragments on a per-fragment
basis, i.e., below the network layer. Link layer security mechanisms partially realize
this requirement as they provide confidentiality protection and data origin authenti-
cation for individual link layer frames. With network-wide keys as, e.g., employed in
the context of ZigBee IP [ZBIP13], these mechanisms, however, only a↵ord to pre-
vent a network-external adversary, who is in the radio range of the target network,
from injecting packets and from overhearing legitimate communication. Moreover,
these mechanisms do not enable the fragment recipient to distinguish between dif-
ferent network participants as all devices in the constrained node network share the
same link layer protection key. Thus, link layer security based on network-wide keys
commonly does not su�ce to prevent Eve from mounting the fragment duplication
attack as she also is in the possession of the network-wide key (see Section 6.2).

Complementary to such security mechanisms at the data link layer, we, there-
fore, now introduce the content-chaining scheme as a lightweight defense mechanism
against the fragment duplication attack at the 6LoWPAN layer.

6.4.2 High-level Overview of the Content-Chaining Scheme

The content-chaining scheme protects constrained devices against the fragment du-
plication attack by enabling reassembling nodes and fragment forwarders to cryp-
tographically verify that a received 6LoWPAN fragment indeed belongs to the in-
dicated fragmented IPv6 packet. To achieve this protection in an e�cient manner,
the design of the content-chaining scheme is based on the following two observa-
tions. First, while the 6LoWPAN standard does not define a specific sending order
for the 6LoWPAN fragments of a fragmented IPv6 packet, in-order transmission
starting from the FRAG1 has recently been recognized as highly advisable, espe-
cially in constrained node networks that employ route-over-based fragment forward-
ing [Bor13, ZBIP13]. Second, a fragment recipient does not need to be able to
authenticate the data origin across multiple fragmented IPv6 packets. Instead, it
su�ces if the recipient can unambiguously identify associated 6LoWPAN fragments
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Figure 6.9 In a basic approach, a hash chain element is added to each 6LoWPAN fragment
during the 6LoWPAN fragmentation procedure. The hash chain elements, however, are not
cryptographically bound to the 6LoWPAN fragment content. In case of out-of-order fragments,
Eve can exploit this fact to forge 6LoWPAN fragments that correctly validate at a verifier.

for each fragmented IPv6 packet. Even with this weaker security property, Eve can
no longer attribute her attack fragments to an overheard fragmented IPv6 packet.

Based on these observations, the basic idea behind the content-chaining scheme is to
cryptographically bind the FRAGNs of a 6LoWPAN-fragmented IPv6 packet to the
corresponding FRAG1. After reception of the FRAG1, the fragment recipient then
is able to unambiguously verify if a received FRAGN belongs to the same overall
IPv6 packet as indicated in its 6LoWPAN fragmentation header. This allows the
recipient to immediately discard Eve’s attack fragments after reception.

To achieve an e�cient cryptographic binding between 6LoWPAN fragments with-
out relying on device-specific keys2, we leverage the concept of hash chains (see
Section 3.2.4.1) in our content-chaining scheme. To recollect, the key idea behind a
hash chain is for the sender to generate a chain of interlinked one-time authentication
tokens that a verifier can validate based on the knowledge of a single element.

We now first discuss why the mere inclusion of a hash chain element in each 6LoWPAN
fragment does not su�ce to protect against the fragment duplication attack and then
describe how the content-chaining scheme averts the shortcomings of this approach.

6.4.3 A Basic Fragment-Chaining Approach

In a basic fragment-chaining approach, the sender of a fragmented IPv6 packet gener-
ates a hash chain as described in Section 3.2.4.1 during the 6LoWPAN fragmentation
procedure. This hash chain has the same number of elements as the fragmented IPv6
packet has 6LoWPAN fragments. As illustrated in Figure 6.9, the sender then adds
these hash chain elements to the 6LoWPAN fragments in reverse order, i.e., from
the anchor element in the FRAG1 to the seed value in the last 6LoWPAN fragment.
A fragment recipient, in turn, stores the anchor element included in the FRAG1 and
subsequently verifies the received FRAGNs by validating the included hash token.

Merely including hash chain elements in the 6LoWPAN fragments, however, does not
su�ce to protect constrained devices against the fragment duplication attack. This
is because FRAGNs may also be received out-of-order on the forwarding path or at
the final 6LoWPAN fragment destination. Eve could take advantage of this fact by
generating forged FRAGNs that cannot be distinguished from legitimate fragments.
To do so, she could replay an overheard hash chain element h

i

in a maliciously

2Device-specific keys would require centralized online coordination [BN07], public-key infrastruc-
tures (e.g., based on certificates), or pre-deployment keying material (e.g., based on probabilistic
key pre-distribution [EG02, CY07]) for all possible peers inside the constrained node network.
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Figure 6.10 A content chain for an IPv6 packet that is fragmented into three 6LoWPAN
fragments. The content token in the FRAG1 commits to the overall IPv6 packet content as
the iterative construction of the content chain involves the actual fragment content.

crafted FRAGN. In addition, she could also compute a previously unseen hash chain
element h

j+k

(k > 0) based on an overheard element h
j

of an out-of-order fragment.
To this end, Eve would only need to apply the hash function H(·) to h

j

for k times:
h
j+k

= Hk(h
j

). She could then add the element h
j+k

to a forged FRAGN.

Due to these abilities of Eve, a fragment recipient still cannot distinguish between
legitimate and attack fragments when receiving overlapping FRAGNs. This is be-
cause an overlapping FRAGN could either be a legitimate out-of-order fragment, for
which Eve previously sent a forged fragment with a computed element h

j+k

, or it
could be Eve’s attack fragment that contains a replayed element h

i

. As a result of
this ambiguity, Eve would still be able to mount the fragment duplication attack.

6.4.4 Construction of a Content Chain

To a↵ord secure fragment verification despite out-of-order FRAGNs, our content-
chaining scheme additionally considers the actual fragment content in the construc-
tion of a content chain as shown in Figure 6.10. More precisely, the sender uses a
random value in combination with the fragment content of the last FRAGN as the
seed value when starting the construction of a content chain during the 6LoWPAN
fragmentation procedure. The sender then adds the resulting content token to the
previous FRAGN and computes the hash digest over the fragment content as de-
picted in Figure 6.10. After iteratively applying this procedure to the entire IPv6
packet, the FRAG1 contains a content token that transitively commits to the over-
all IPv6 packet content. This allows a fragment recipient to verify that subsequent
FRAGNs belong to the same IPv6 packet after receiving the associated FRAG1.

Importantly, the construction of a content chain prevents Eve from either creating
forged FRAGNs with replayed token information or from computing valid content
tokens for overheard out-of-order fragments. This is because content tokens crypto-
graphically commit to a specific chain of 6LoWPAN fragment contents. As a result,
content tokens require Eve to send attack fragments with content that matches the
original fragment content. This, however, does not lead to an attack as equal content
does not require the recipient to decide for one of the overlapping fragments.

6.4.5 Verifying the Tokens of a Content Chain

A device that receives all 6LoWPAN fragments of a protected fragmented IPv6
packet also possesses the necessary information to verify the content tokens that are
contained in the received 6LoWPAN fragments. This is because content chains are
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self-contained on a per-packet basis. Specifically, a fragment-verifying node neither
requires knowledge about previous fragmented IPv6 packets to validate the content
tokens of a recent fragmented IPv6 packet nor does it need out-of-band information
about device-specific keys for verification purposes. This enables the final 6LoWPAN
fragment destination as well as the fragment forwarders in case of (enhanced) route-
over routing (see Section 6.3.3) to verify received 6LoWPAN fragments.

To validate the content tokens of protected 6LoWPAN fragments, a fragment re-
cipient processes a received FRAG1 normally and stores the included content token
for verification purposes. When subsequently receiving a FRAGN that appears to
belong to the same overall IPv6 packet, the recipient computes the hash over the
received fragment content, i.e., including the contained content token, and matches
the resulting hash digest to its stored token. If both values match, the recipient ac-
cepts the 6LoWPAN fragment and processes its fragment content at the 6LoWPAN
layer. Moreover, the recipient replaces the stored content token with the verified
token. This final step a↵ords a verification of the next FRAGN with only a single
hash operation. Contrary, if the computed hash digest di↵ers from the stored token,
the recipient considers the received FRAGN spoofed and drops it immediately.

6.4.5.1 Verification of Out-of-Order Fragments and Fragment Loss

When receiving an out-of-order FRAGN, a fragment-verifying node may not be able
to directly verify the 6LoWPAN fragment as the preceding fragment and, therefore,
the commitment to the content of the just received FRAGN might still be missing.
To minimize non-malicious reception of such out-of-order FRAGNs, we require frag-
ment forwarders in case of (enhanced) route-over routing to only forward 6LoWPAN
fragments that have been verified successfully. Moreover, forwarding nodes as well
as the final 6LoWPAN fragment destination store out-of-order FRAGNs without
prior verification until all previous FRAGNs have been verified successfully.

We note that, while these policies a↵ord verification of out-of-order fragments, they
also enable Eve to overload the reassembly bu↵er of a fragment-verifying node with
FRAGNs that appear to be out-of-order fragments of a legitimate IPv6 packet.
This attack is limited to Eve’s one-hop neighborhood in case of (enhanced) route-
over routing and targets the final 6LoWPAN fragment destination for mesh-under
routing. To frustrate Eve’s attack, fragment-verifying nodes discard the fragment
with the highest datagram o↵set when reaching a bu↵er overload situation for a
fragmented IPv6 packet. This fragment least likely is the result of non-malicious
fragment reordering in case of (enhanced) route-over routing as forwarding devices
only relay verified 6LoWPAN fragments. However, for mesh-under-based networks,
there is a chance that the discarded out-of-order fragment actually was legitimate as
individual fragments may be routed along di↵erent forwarding paths with varying
propagation delays. Hence, in these networks, the 6LoWPAN reassembly bu↵er size
at a reassembling node should allow to account for a limited number of Eve’s attack
fragments before the corresponding legitimate 6LoWPAN fragment arrives.

Besides out-of-order FRAGNs, 6LoWPAN fragments may also be lost on the for-
warding path. According to the 6LoWPAN standard [MKHC07], such fragment loss
causes the entire fragmented IPv6 packet to be discarded after the reassembly time-
out expired. Consequently, the content-chaining scheme is not required to be robust
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against token loss. Instead, if reliable communication is provided by an upper layer
protocol, the loss of a 6LoWPAN fragment triggers a retransmission at this protocol
layer. This retransmission then is fragmented at the 6LoWPAN layer similar to the
original IPv6 packet and, thus, also is protected with the content-chaining scheme.

6.4.6 Overhead Reduction Techniques

The content-chaining scheme trades increased computation, memory, and transmis-
sion overheads for a gain in protection against the fragment duplication attack. This
trade-o↵ also persists when no attacks are imminent. To remedy this circumstance,
we introduce an attack notification extension in Section 6.4.6.1 that a↵ords a default-
o↵ policy for the content-chaining scheme. Moreover, we show how truncated content
tokens (Section 6.4.6.2) and AES hardware support (Section 6.4.6.3) allow to reduce
the computation, memory, and transmission overheads in case the attack notifica-
tion extension triggers the activation of the content-chaining scheme. For a detailed
security discussion of these overhead reduction techniques, we refer to Section 6.6.2.

6.4.6.1 Attack Notification Extension

The attack notification extension supplements the content-chaining scheme with a
simple attack detection mechanism for the fragment duplication attack. Moreover,
it enables the recipient of overlapping 6LoWPAN fragments to request the legiti-
mate fragment sender to activate the content-chaining scheme. Due to this reactive
approach, the content-chaining scheme then incurs zero run-time overheads during
normal operation and e↵ectively protects constrained devices in case of an attack.

The attack notification extension relies on constrained devices that also reassemble
fragmented IPv6 packets without the content-chaining scheme in order to detect the
fragment duplication attack. These devices compare the content in their reassembly
bu↵er to the received 6LoWPAN fragment3. In case of overlapping but matching
fragment content, the reassembling device drops the newly received 6LoWPAN frag-
ment and proceeds without further actions. However, if the overlapping content
di↵ers, this device sends an ICMP notification message to the original fragment
sender in order to alert about the impending attack. This ICMP message should
employ a yet unused ICMP type number, e.g., 42, that specifically indicates the
reception of overlapping fragment content. In addition to sending this ICMP notifi-
cation message, the reassembling device also discards the corresponding IPv6 packet
from its reassembly bu↵er as it cannot determine the legitimate fragment combina-
tion. As soon as the sender of the fragmented IPv6 packet receives such an ICMP
notification message, it activates the content-chaining scheme for the transmission
of subsequently fragmented IPv6 packets. As a result, the adversary is unable to
mount the fragment duplication attack against future fragment transmissions.

To prevent the content-chaining scheme from remaining active indefinitely due to a
single fragment duplication attack, we allow the sender to deactivate this defense

3This operation is based on a memory comparison and, thus, only incurs a marginal overhead.
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Figure 6.11 6LoWPAN fragmentation headers with and without our content-chaining scheme.
The 6LoWPAN header type is indicated by the header fields marked in gray. The di↵erence of
the new header types for the protected 6LoWPAN fragments is highlighted in dark gray.

mechanism after a pre-configured timeout of, e.g., 15minutes4. Notably, this deac-
tivation allows the adversary to continue the fragment duplication attack as soon as
the deactivation timeout has expired. Such attack continuation by the adversary,
however, would cause the reassembling device to trigger another ICMP notification
message and the content-chaining scheme would be re-activated. As a result, the
adversary again would be unable to mount the fragment duplication attack.

Importantly, the final 6LoWPAN fragment destination and fragment forwarding
nodes have to be able to distinguish protected from unprotected 6LoWPAN frag-
ments for interoperability purposes. Protected 6LoWPAN fragments, therefore, use
dedicated 6LoWPAN fragmentation headers that are based on the existing FRAG1
and FRAGN headers. As illustrated in Figure 6.11, the only di↵erence of these new
fragmentation headers are the header type values and the inclusion of a header field
for the content token information. Fragment-verifying nodes then only verify content
tokens for those 6LoWPAN fragments with a fragment header type that indicates
the use of the content-chaining scheme and otherwise process the fragment normally.

6.4.6.2 Truncated Content Tokens

When the content-chaining scheme protects 6LoWPAN fragments in its active state,
it causes an increased transmission overhead compared to the standard 6LoWPAN
fragmentation mechanism. This overhead stems from the content token information
that is included in each protected 6LoWPAN fragment. To decrease the transmission
overhead in its active state, we allow the size of the content tokens to be configurable

4The length of the deactivation timeout is a trade-o↵ between a timespan with overhead resulting
from an active content-chaining scheme but no adversary present and packet loss due to a continuing
attack with a deactivated content-chaining scheme.
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to a smaller size than the native output length of the underlying cryptographic prim-
itive, which, e.g., amounts to 20 byte in case of SHA-1 [NIST12b]. Specifically, the
content-chaining scheme can truncate the hash digest as an alternative to adopting
it in its unmodified form in order to allow for smaller tokens of either 8 or 16 byte.

To a↵ord the verification of variable-size content tokens, a fragment-verifying node
must be able to determine the length of the token information that is included in a
received 6LoWPAN fragment. To this end, the content-chaining scheme could, e.g.,
add a new token size indication field to 6LoWPAN fragmentation header. We, how-
ever, refrain from such explicit size indication in order to forgo the corresponding
per-fragment transmission overhead. Instead, we require the content token size to be
configured consistently on a network-wide basis depending on the security require-
ments of the specific constrained node network. Such network-wide configuration
can, e.g., be realized during the bootstrapping phase of a constrained device (see
Section 3.3.2) or at run-time via the extended context distribution facilities of the
IPv6 Neighbor Discovery mechanism for constrained devices (see Section 2.3.2).

6.4.6.3 Leveraging AES Hardware Support

Besides the transmission overheads stemming from the content tokens, the content-
chaining scheme also incurs computation, RAM, and ROM overheads. These over-
heads strongly depend on the underlying cryptographic primitive. Hence, if the cryp-
tographic primitive was supported in hardware, this would allow to considerably re-
duce the computation overhead for the general-purpose MCU as well as the memory
requirements for the implementation of the employed primitive. With these consid-
erations in mind, we observe that most constrained devices with IEEE 802.15.4 radio
modules are equipped with hardware support for the AES block cipher. Moreover,
we note that this hardware support often is exposed to the operating system via well-
defined hardware-level Application Programming Interfaces (APIs) [cc2420, cc2520].

To leverage this AES hardware support in the design of the content-chaining scheme,
we allow content tokens to be computed via an AES-based hash function instead
of a standard hash function such as SHA-1. To this end, we employ a length-
padded Merkle-Damg̊ard construction [Mer90, Dam90] as presented in Section 3.2.4.
The central cryptographic component of this construction is the iterated applica-
tion of a block-cipher-based one-way compression function. However, as the AES
encryption and decryption functions are bijective, these functions do not natively
provide the necessary one-way compression property. Still, by employing feedback-
based modes of operation such as Davies-Meyer (DM) [BÖS11] or Matyas-Meyer-
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Figure 6.12 One-way compression functions. The DM and MMO modes of operation a↵ord
the use of the AES block cipher to build a hash function via the Merkle-Damg̊ard construction.
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Oseas (MMO) [CZ12] (see Figure 6.12), the required one-way compression function
can e↵ectively be built from the AES block cipher. Hence, we leverage these modes of
operation for the AES-based hash functions in the content-chaining scheme. More-
over, we allow for the network-wide configuration of the cryptographic primitive
based on the same configuration mechanisms discussed in the previous section.

6.5 The Split Bu↵er Approach

In the previous sections, we focused our discussion on the content-chaining scheme.
Complementary to this defense mechanism against the fragment duplication attack,
we now present the split bu↵er approach that a↵ords protection against the bu↵er
reservation attack. As before, we start our discussion with a brief review of why
existing security mechanisms commonly do not su�ce to prevent this type of attack.

6.5.1 Partial and Non-Solutions

The bu↵er reservation attack enables an adversary to proactively reserve the scarce
reassembly bu↵er resources at a target device by sending well-timed 6LoWPAN frag-
ments that never reassemble to a complete IPv6 packet. As a result, existing security
mechanisms that are located above the 6LoWPAN layer never get to inspect these
attack fragments and, thus, do not allow to mitigate the bu↵er reservation attack.
Moreover, link layer security mechanisms as, e.g., employed in ZigBee IP [ZBIP13],
do not enable the fragment recipient to distinguish between the di↵erent network
participants inside a constrained node network. This enables Eve to spoof her at-
tack fragments in order to prevent detection by the target device when mounting the
bu↵er reservation attack. To protect constrained devices against the bu↵er reserva-
tion attack, we now introduce our split bu↵er approach at the 6LoWPAN layer.

6.5.2 High-level Overview of the Split Bu↵er Approach

The basic idea behind the split bu↵er approach is to frustrate the bu↵er reservation
attack by significantly increasing the e↵ort that an adversary has to put into mount-
ing the attack. More precisely, we aim at forcing the adversary into sending complete
6LoWPAN-fragmented IPv6 packets in short fragment bursts in order to reserve a
large amount of reassembly bu↵er resources. As a result of such sending behavior,
the adversary then is no longer able to exploit the amplification e↵ects of a malicious
bu↵er reservation, thus rendering the bu↵er reservation attack unattractive.

To increase the e↵ort that the adversary has to put into mounting the bu↵er reser-
vation attack, the split bu↵er approach consists of the following two mechanisms.
First, the split bu↵er approach partitions the reassembly bu↵er into fragment-sized
bu↵er slots. By assigning these bu↵er slots on a per-fragment instead of a per-packet
basis, the split bu↵er approach prevents an adversary from reserving the entire re-
assembly bu↵er with a single 6LoWPAN fragment. An adversary, however, may
still occupy all bu↵er slots with a multitude of maliciously crafted 6LoWPAN frag-
ments. To mitigate such malicious bu↵er occupation, we extend the split bu↵er



158 6. Secure 6LoWPAN Fragmentation

Reassembly buffer 
(3) Defragment 

F2 F1 F2 F3 F1 F4 

(1) Assign (2) Move 

F4 F3 

Received 
FRAGN 

Figure 6.13 The split bu↵er of a reassembling node. When receiving a new 6LoWPAN frag-
ment, the reassembling node assigns this fragment to one of its unoccupied bu↵er slots (1).
Once all 6LoWPAN fragments for a fragmented IPv6 packet have been received, the reassem-
bling node rearranges the corresponding fragments according to their indicated fragment o↵sets
(2 and 3). As the 6LoWPAN header is removed during this defragmentation procedure, the
defragmented part of the reassembly bu↵er finally contains the reassembled IPv6 packet.

approach with a packet discard strategy that severely penalizes suspicious sending
behavior. We now proceed with a detailed description of the fragment-size bu↵er
slots in Section 6.5.3 and then present the packet discard strategy in Section 6.5.4.

6.5.3 Fragment-sized Bu↵er Slots

For the design of the split bu↵er approach, we observe that a single reassembly
bu↵er forces a reassembling node to make a decision whether to replace a partially
received IPv6 packet with a newly received packet as soon as the first 6LoWPAN
fragment arrives. This prevents the reassembling node from optimistically storing
6LoWPAN fragments that originate from multiple senders and to defer the decision
which fragmented IPv6 packet to discard to a point when the concurrently received
IPv6 packets actually cause a bu↵er overload situation. As a result, the adversary
can mount the bu↵er reservation attack by merely pretending to send a complete
fragmented IPv6 packet. Moreover, even multiple reassembly bu↵ers would not
mitigate the bu↵er reservation attack as the adversary could still reserve all available
bu↵er resources by sending multiple incomplete IPv6 packets that each indicates a
large overall size in the 6LoWPAN fragmentation header (see Section 2.4.2).

If a reassembling node instead was to store individual 6LoWPAN fragments of mul-
tiple IPv6 packets in its reassembly bu↵er, Eve’s attack fragments would compete
with legitimate fragments for the available bu↵er resources on a per-fragment basis.
Such per-fragment competition would be based on the bu↵er space that the received
6LoWPAN fragments actually occupy. Hence, an adversary would have to follow up
on her pretense to maliciously occupy the bu↵er resources at the reassembling node.

To enable such per-fragment competition, the split bu↵er approach partitions the
available memory resources for the reassembly bu↵er into fragment-sized bu↵er slots
as illustrated in Figure 6.13. These bu↵er slots have the maximum size of a 6LoWPAN
fragment for a given constrained node network. A reassembling node then no longer
has to reserve the entire reassembly bu↵er when receiving a 6LoWPAN fragment that
belongs to a new fragmented IPv6 packet. Instead, the node can assign the received
6LoWPAN fragment to one of its unoccupied bu↵er slots (see step 1 in Figure 6.13).
Once all 6LoWPAN fragments of a fragmented packet have been received, the re-
assembling node rearranges the associated fragments according to their indicated
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Figure 6.14 Legitimate and malicious sending behaviors for 6LoWPAN-fragmented IPv6 pack-
ets. While legitimate senders transmits 6LoWPAN fragments in short succession, an adversary
may exclusively send FRAG1s (F1), transmit fragment bursts excluding the last FRAGN (N-1),
or spread fragment transmission across the reassembly timeout at the target device (FS).

fragment o↵sets (see steps 2 and 3 in Figure 6.13). During this defragmentation pro-
cedure, the reassembling node also removes all 6LoWPAN header information from
the defragmented fragments. Thus, upon completion, the defragmented part of the
reassembly bu↵er contains the reassembled IPv6 packet. The node then passes this
reassembled packet up to the IPv6 layer, where it is processed normally.

By storing 6LoWPAN fragments from multiple IPv6 packets in an interleaved fash-
ion, the split bu↵er approach may potentially run into an overload situation. This
overload situation is reached, when the last available bu↵er slot is assigned to a newly
received 6LoWPAN fragment, but no IPv6 packet in the split bu↵er is completed as
a result. In this case, the reassembling node has to decide which partially received
IPv6 packet it wants to discard in order to free the corresponding bu↵er slots for
the reassembly of the remaining partially received IPv6 packets in the split bu↵er.

To derive this decision in an informed manner, the packet discard strategy of the
split bu↵er approach additionally considers the observed sending behavior of the
already received 6LoWPAN fragments in the decision making process. This allows
to prioritize the subsequent collection of those partial IPv6 packets with unsuspicious
sending behavior. We now continue with a description of how the packet discard
strategy leverages the observed sending behavior in order to dispose of a packet.

6.5.4 Packet Discard Strategy

For our packet discard strategy, we observe that legitimate fragment senders com-
monly send the 6LoWPAN fragments of a fragmented IPv6 packet in short succes-
sion as illustrated in Figure 6.14. This is because extended bu↵ering of 6LoWPAN
fragments would unnecessarily block the scarce sending bu↵er resources of a legit-
imate fragment sender concerning subsequent transmissions of upper layer payload
data. As shown in Figure 6.14, an adversary, contrarily, may employ one of the
following three fundamentally di↵erent attack behaviors when mounting the bu↵er
reservation attack5: i) exclusive transmission of FRAG1s (F1) as initially discussed
in Section 6.3.2, ii) transmission of all but the last 6LoWPAN fragments in short
succession (N-1), and iii) fragment spreading across the reassembly timeout (FS).

5Further attack behaviors then denote variations or combinations of these sending behaviors.
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With respect to these attack behaviors, we note that the exclusive transmission of
FRAG1s (F1) requires the smallest resource commitment from the adversary. The
long transmission gap following the FRAG1, however, indicates a potential attack or
the loss of the remaining 6LoWPAN fragments in case of benign sending behavior.
Thus, a reassembling node should preferably retain the other partially received IPv6
packets in its split bu↵er when a bu↵er overload situation occurs. In contrast,
fragment bursts (N-1) are less suspicious than only sending a single FRAG1 as this
sending behavior closely resembles benign behavior. However, the long gap after
the first 6LoWPAN fragment burst still indicates an impending attack or the loss
of the last remaining FRAGN in case of a legitimate fragment sender. Thus, a
reassembling node again should prioritize the reassembly of other fragmented IPv6
packets in case of a bu↵er overload situation. Fragment spreading, in turn, appears
most legitimate compared to the other two attack behaviors as the intermediate delay
between the individual 6LoWPAN fragments may also stem, e.g., from extensive
duty cycle periods at the previous hop on the forwarding path. By spreading the
fragment transmission across the reassembly timeout, the adversary, however, is only
able to fill the bu↵er reassembly resources of the target node at a slow pace.

The packet discard strategy leverages the above observations by computing per-
packet scores that capture the percentage of completion as well as the continuity in
the sending behavior for each partial IPv6 packets in the split bu↵er. In case of
a bu↵er overload situation, the packet discard strategy then disposes of the partial
IPv6 packet with the lowest packet score. We now proceed with a detailed discussion
of how the packet discard strategy computes these per-packet scores. We thereby
first focus on the percentage of completion in Section 6.5.4.1 and then describe how
the packet discard strategy accounts for the sending behavior in Section 6.5.4.2.

6.5.4.1 Considering the Percentage of Completion

To prioritize the partial IPv6 packets that are most likely to complete promptly after
a bu↵er overload situation has been resolved, the packet discard strategy scores each
IPv6 packet in the split bu↵er based on its percentage of completion. To this end, it
updates the packet score of a partially received IPv6 packet based on the running sum
computation depicted in Algorithm 1 when receiving the ith 6LoWPAN fragment.

procedure ComputePacketScore(fragment)

packet = packet indicated by fragment

if packet not in split bu↵er then

score
packet

=
fragment size

packet size
else

score
packet

= score
packet

+
fragment size

packet size
end if

end procedure

Algorithm 1 Computation of the packet score upon 6LoWPAN fragment arrival
at a reassembling node based on the percentage of completion.
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Figure 6.15 Packet score at a reassembling node based on the percentage of completion.
Fragmented packets, which are sent in short bursts, quickly gain a high packet score. In
contrast, fragmented packets, which are transmitted at a low sending rate and reserve the
reassembly resources for extended periods of time, only slowly increase the packet score.

As illustrated in Figure 6.15, Algorithm 1 leads to a quick increase of the packet
score for fragmented IPv6 packets that are transmitted in short 6LoWPAN fragment
bursts independent from the overall packet size. As discussed in Section 6.5.4, these
packets also are most probably the result of benign sending behavior. In contrast,
fragmented IPv6 packets that are transmitted at a low sending rate only increase
the score at a slow pace. Hence, in bu↵er overload situations, IPv6 packets that
are sent in short bursts are likely to have a higher score than slowly arriving attack
packets. This circumstance renders low sending rates unattractive for the adversary.

6.5.4.2 Considering the Sending Behavior

An adversary may also change the fragment sending behavior after achieving a high
packet score for the occupied bu↵er slots at the target device, e.g., by first sending
a fragment burst and then spreading the remaining fragments across the reassembly
timeout. To penalize such change in behavior, we additionally incorporate the time
domain in the packet discard strategy. The basic idea of this extension is to decrease
the packet score according to the intensity of the change in sending behavior. Hence,
minor fluctuations that may be attributable to common network e↵ects are penalized
less than harmful or malicious sending behavior. To capture the change in fragment
sending behavior, we additionally consider the average time elapsed between two
consecutive 6LoWPAN fragments (a) of a fragmented IPv6 packet and the time
elapsed since the reception of the last 6LoWPAN fragment (l) of this packet. More
precisely, if the currently elapsed time l di↵ers significantly from the expected time

time 

l 

( ) 
a-w a+w 

Figure 6.16 The packet discard strategy of the split bu↵er approach penalizes fragmented
packets with a significant change in sending behavior. To this end, the discard strategy checks
if the time that elapsed since the reception of the last 6LoWPAN fragment (l) exceeds the
average time between the preceding 6LoWPAN fragments (a) by more than a grace period w.
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procedure ComputePacketScore(fragment, w)

packet = packet indicated by fragment

if packet not in split bu↵er then

score
packet

=
fragment size

packet size
else

a = average time between received fragments of packet
l = time since last fragment reception of packet
if a� w < l < a+ w then

score
packet

= score
packet

+
fragment size

packet size
else

score
packet

=
score

packet

2max{1;bl/ac}
end if

end if
return score

packet

end procedure

Algorithm 2 Adapted computation of the packet score upon fragment arrival at a
reassembling node with penalty of significant changes in the sending behavior.

of fragment reception a, the packet discard strategy considerably reduces the score
of the corresponding partially received IPv6 packet in the split bu↵er.

To only penalize significant changes in the sending behavior and, thus, to allow
for small variations regarding the fragment reception times, we introduce a time
window w in the packet discard strategy as shown in Figure 6.16. This time window
allows to calibrate the maximum tolerable change in sending behavior to the specific
network characteristics. Hence, as long as the sending behavior does not change
considerably (a � w < l < a + w), the score is calculated based on the percentage
of completion. However, if the reassembling node receives a 6LoWPAN fragment
earlier than expected (l  a� w), it decreases the packet score by half. Likewise, if
the 6LoWPAN fragment arrives later than expected (l � a+w), the score is halved
for each presumably intermittent 6LoWPAN fragment (bl/ac). To incorporate these
penalties in the packet score, we adapt its computation as illustrated in Algorithm 2.
We now describe how the split bu↵er approach incorporates these computed packet
scores of the packet discard strategy in case of a bu↵er overload situation.

6.5.4.3 Integration with the Split Bu↵er Approach

The packet discard strategy only triggers the calculation of the packet score for
the IPv6 packet in the split bu↵er that corresponds to a just received 6LoWPAN
fragment. This is to achieve a low per-fragment computation overhead. Hence, when
a discard decision should be derived, the packet scores of the remaining packets in
the split bu↵er must be updated to reflect the score at the time when the decision
takes place. The comparison, thus, is either based on the previously computed or the
reduced packet score depending on the elapsed time since the reception of the last
fragment for each partially received IPv6 packet in the split bu↵er (see Algorithm 3).



6.6. Security Considerations 163

procedure ComputeComparisonScore(packet, w)

a = average time between received fragments of packet
l = time since last fragment reception of packet

if a� w < l < a+ w then

score
comparison

= score
packet

else
score

comparison

=
score

packet

2max{1;bl/ac}
end if
return score

comparison

end procedure

Algorithm 3 Computation of the comparison score for each partially received IPv6
packet in the split bu↵er. The packet with the lowest score will be discarded.

After computing the score for each partial IPv6 packet in the split bu↵er according
to Algorithm 3, the packet discard strategy disposes of all 6LoWPAN fragments
that belong to the IPv6 packet with the lowest packet score. If multiple packets
have the same low score, the packet discard strategy randomly flushes one of these
packets. This is to ensure that an adversary cannot exploit specific design traits of
the packet discard strategy to craft incomplete packets with a low score that are
always preferred over others. Finally, the freed bu↵er slots enable the reassembling
node to continue with the reassembly of the remaining packets in the split bu↵er.

To summarize, the split bu↵er approach prioritizes competing fragmented IPv6 pack-
ets that are transmitted in short fragment bursts. Moreover, its packet discard
strategy severely penalizes significant changes in the fragment sending behavior.
Combined, these properties considerably limit the practicability of the bu↵er reser-
vation attack and e↵ectively force an adversary into flooding the target device with
short bursts of fragmented IPv6 packets. Hence, the split bu↵er approach success-
fully prevents the adversary from exploiting the amplification e↵ects that stem from
the reservation of the 6LoWPAN reassembly bu↵er and requires the adversary to
have su�cient resources to mount a brute-force flooding attack in order to incapac-
itate the target device. At the same time, the split bu↵er approach also allows for
a more e�cient use of the reassembly bu↵er resources for legitimate communication
compared to a single or multiple reassembly bu↵ers of the same size. This is because
the reassembly bu↵er resources are assigned on a per-fragment basis. As a result, a
reassembling node can even process interleaved IPv6 packets that, combined, would
exceed the reassembly bu↵er resources. We note that such interleaved processing is
highly desirable as congestion of the reassembly bu↵er has been identified as a reoc-
curring problem in the context of constrained devices [LCC11, PS13, WRTTG13].

6.6 Security Considerations

We now discuss potential attacks that the adversaries Eve or Mallory (see Sec-
tion 6.2) can mount against the presented defense mechanisms. To structure this
discussion, we di↵erentiate between attacks against (i) the basic content-chaining
scheme, (ii) its overhead reduction techniques, and (iii) the split bu↵er approach.
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To recollect, Mallory can at least mount the attacks that are viable for Eve. Hence,
we do not mention her explicitly when discussing Eve in the following discussion.

6.6.1 Attacks Against the Basic Content-Chaining Scheme

The content-chaining scheme cryptographically binds the overall content of a frag-
mented IPv6 packet to the corresponding FRAG1 at the 6LoWPAN layer. In this
section, we outline attacks that can be mounted despite such cryptographic binding.

6.6.1.1 Spoofed FRAG1 Fragments

Eve may overhear a legitimate FRAG1 with a valid content token and send spoofed
FRAG1s that include the overheard token. Despite employing our content-chaining
scheme, a fragment recipient could not distinguish between the legitimate and Eve’s
FRAG1s as content tokens only assure the legitimacy of the subsequent FRAGNs.
As a result, the fragment recipient would need to drop the entire IPv6 packet due to
indistinguishable overlapping FRAG1 fragments. We note that this property denotes
a trade-o↵ of the content-chaining scheme that stems from our design decision to
forgo the considerable overhead of cryptographically binding the anchor element of a
content chain to an on-path verifiable device identity, e.g., via public-key signatures.

To still enforce a decision for a single FRAG1 in case of duplicate FRAG1 frag-
ments, a fragment recipient only considers the first received FRAG1 to be valid.
Subsequently received FRAG1s with matching packet attribution but diverging frag-
ment content are dropped by the recipient immediately. This policy prevents Eve
from attacking a fragment recipient with spoofed FRAG1s in all network scenarios,
where the direct transmission of a FRAG1 between legitimate nodes is faster than
the transmission via the o↵-path adversary Eve. In networks that employ mesh-
under routing, Eve may, therefore, still be able to attack the final destination in
the constrained node network if she knows a faster forwarding path towards this
target device. In contrast, for (enhanced) route-over-based networks, Eve must be
in direct communication range of a next hop on the forwarding path and transmit
her FRAG1s prior to the legitimate fragment forwarder. Especially for enhanced
route-over routing, this significantly limits Eve’s capability to mount the fragment
duplication attack as forwarding nodes immediately relay FRAG1s after reception.

6.6.1.2 Spoofed Out-Of-Order Fragments

Eve may also try to take advantage of the fact that out-of-order fragments cannot
be validated immediately at a fragment recipient. To this end, Eve would send
spoofed 6LoWPAN fragments with a large fragment o↵set for an overheard legiti-
mate 6LoWPAN fragment. Such attack fragments would occupy the scarce bu↵er
resources at the fragment recipient until all previous fragments have been received
and verified successfully. Only then could the fragment recipient discard Eve’s at-
tack fragments as the content tokens included in her spoofed fragments would be
identified as invalid. Still, it is important to note that the fragment discard policy
of the content-chaining scheme (see Section 6.4.5.1) causes the fragments with the
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highest o↵set to be dropped in case of a bu↵er overload situation. This frustrates
Eve’s attack as her attack fragments would be disposed of first. Alternatively, Eve
may also send 6LoWPAN fragments with a fragment o↵set that is close to the cur-
rent o↵set of the targeted IPv6 packet. Such attack fragments, however, are quickly
discarded upon reception of the corresponding legitimate 6LoWPAN fragments.

6.6.1.3 On-Path Packet Modification

An on-path adversary Mallory may intercept all 6LoWPAN fragments of a traversing
IPv6 packet. This would allow her to modify the original packet content and to
compute a valid content chain before forwarding the altered IPv6 packet towards its
final destination inside the constrained node network. Notably, the content token in
the FRAG1 would still only commit to a single 6LoWPAN fragment combination.
Hence, Mallory’s attack would not result in indistinguishable overlapping 6LoWPAN
fragments at the target device. Instead, her attack resembles dropping of the original
and creating a new IPv6 packet. These, however, are inherent capabilities of an on-
path adversary. Moreover, we note that we consider the integrity protection and the
detection of modified IPv6 packet content to be the task of upper layer protocols.

6.6.2 Attacks Targeting the Overhead Reduction Techniques

The attack notification extension allows to activate the content-chaining scheme by
sending feedback to the fragment sender. Moreover, truncation and the use of an
AES-based hash function a↵ord further overhead reductions for content tokens. We
now discuss potential attacks against these overhead reduction techniques.

6.6.2.1 Malicious Attack Notification Messages

The ICMP messages used to notify the sender of a fragmented IPv6 packet about
an impending fragment duplication attack are not authenticated. Thus, Eve could
force the devices inside a constrained node network to activate the content-chaining
scheme by maliciously sending attack notification messages. The resulting compu-
tation and transmission overheads inside the constrained node network, however,
would be equal to the overheads of the content-chaining scheme without the attack
notification extension. Hence, this extension does not expose a new vector of attack
compared to the content-chaining scheme without this overhead reduction technique.

6.6.2.2 Dropping of Attack Notification Messages

An on-path adversary Mallory may aim at preventing the content-chaining scheme
from being activated in order to successfully mount the fragment duplication attack.
To this end, Mallory would merely need to drop traversing attack notification mes-
sages. However, if Mallory’s goal was to block a fragmented IPv6 packet, she could
achieve the same results more easily by simply dropping the traversing 6LoWPAN
fragments in the first place. Consequently, the attack notification extension also
does not open a new vector of attack with respect to an on-path adversary.
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6.6.2.3 Cryptographic Strength of AES-Based, Truncated Content Tokens

The truncation of the tokens in the content-chaining scheme allows to reduce the
token size to 8 or 16 byte. Such truncation, however, also reduces the cryptographic
strength of the employed content tokens. Still, it is important to note that even
truncated content tokens achieve a comparable level of security to, e.g., the cryp-
tographic message integrity codes specified for IEEE 802.15.4 as these codes have
a configurable length of 4, 8, or 16 byte [IEEE11b]. Moreover, also when consider-
ing current advances concerning the computation of a second pre-image [KS05], i.e.,
valid fragment content for a token commitment, the level of security only diminishes
modestly from 264 to about 263 for content tokens of 8 byte. This relatively low loss
in cryptographic strength primarily stems from the small input space of the content
tokens, i.e., fragment content of up to 72 byte and the previous token in the content
chain. Importantly, the remaining cryptographic strength currently still prevents an
adversary from computing a valid content token on-the-fly as the maximum timespan
for forging tokens is limited to the length of the 6LoWPAN reassembly timeout.

Similarly, the pre-computation of a look-up table for the short-lived content tokens
is hard to achieve for an adversary, even in case of a token length of 8 byte. This
is because our content chain construction depends on the previous content token
and the actual fragment content. As a result, the look-up structure would need
to account for a significant amount of information. Moreover, even if a sender
periodically transmitted fragmented IPv6 packets with equal packet payload, an
adversary would not gain an advantage from overhearing valid content tokens. This
is because the seed value of a content chain is chosen randomly by the sender for
each fragmented IPv6 packet. Content tokens, therefore, di↵er across fragmented
IPv6 packets with equal packet payload and cannot be exploited by an adversary.

Finally, Bradford et al. [BG06] recently showed that hash chains with small domains,
i.e., a small input space, are prone to contain cycles. Such cycles would enable an
adversary to shorten or extend the fragmented packet with the fragment content of a
cycle. The overall length of an IPv6 packet, however, is indicated in each 6LoWPAN
fragment and, thus, is fixed after reception of the first fragment at a verifying node.

6.6.3 Attacks Against the Split-Bu↵er Approach

The split bu↵er approach segments the 6LoWPAN reassembly bu↵er into fragment-
sized bu↵er slots to foster competition for the scarce bu↵er resources between an
adversary and legitimate fragment senders. Moreover, the packet discard strategy
of the split bu↵er approach employs heuristics to detect malicious sending behavior.
In this section, we outline attacks that could be mounted against these mechanisms.

6.6.3.1 Unfair competition for the scarce reassembly bu↵er resources

Eve may try to establish an advantage in her competition with legitimate fragment
senders for the available bu↵er slots of the split bu↵er approach by maintaining
an initial non-zero packet score at the target device. To this end, she may send
6LoWPAN fragments that belong to a large IPv6 packet at a low transmission rate.
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As soon as Eve detects that another device sends a fragmented IPv6 packet, she could
change her sending behavior to a high transmission rate for the remaining fragments
in order to block the competing fragmented IPv6 packet from being reassembled
at the target device. Our packet discard strategy accounts for such behavior by
penalizing senders that suddenly change their transmission rate. As the packet score
is halved for each fragment that is received early, Eve’s score would quickly decrease
by a significant amount. This enables newly received fragmented IPv6 packets to
compete with Eve’s attack fragments despite the lack of an initial score.

6.6.3.2 Imposing a low packet score

An on-path adversary Mallory may forward legitimate fragmented IPv6 packets with
varying artificial delays between the associated 6LoWPAN fragments in order to im-
pose a low packet score at a reassembling node. As a result, Mallory’s forwarded
packets would likely be dropped by the reassembling node in case of a bu↵er overload
situation. Mallory, however, could achieve the same result more e↵ectively by imme-
diately dropping received 6LoWPAN fragments instead of forwarding them towards
the final destination. Consequently, adding artificial delays on the communication
path does not constitute a new vector of attack with respect to an on-path adversary.

6.7 Evaluation

For our evaluation, we extended the 6LoWPAN layer of the Contiki OS [DGV04]
in version 2.5 with the required functionality for the content-chaining scheme and
for the split bu↵er approach. We then evaluated the presented defense mechanisms
on Tmote Sky motes6 as the underlying hardware platform for constrained devices.
Hence, constrained devices in our evaluation setup were equipped with an 8MHz
MSP430 MCU, 10 kB of RAM, 48 kB of ROM, and an IEEE 802.15.4 radio inter-
face. With respect to Contiki OS, we used the standard configuration for the Tmote
Sky platform where possible and only decreased the size of the RPL neighborhood
table from 20 to 6 entries in order to free additional memory resources that were re-
quired to increase the size of the 6LoWPAN reassembly bu↵er from 240 to 1280 byte.
This change allowed us to evaluate the behavior and the overhead of our presented
defense mechanisms for di↵erent IPv6 packet sizes that cause 6LoWPAN packet
fragmentation but do not yet require fragmentation at the IPv6 layer7. Due to this
modification, the maximum node connectivity in our evaluation setup, however, was
limited to 6 neighbors per constrained device. As di↵erent deployment scenarios will
require their own adapted configurations of the network stack, we primarily focus our
discussion on the worst-case overheads observed for a packet size of 1280 byte and
highlight the results for the bu↵er size of 240 byte in case of significant deviations.

Concerning the cryptographic primitives, the SHA-18 provided the baseline for the
hash operations in the content-chaining scheme. Our implementation of a DM-based
and an MMO-based hash function then allowed us to quantify the computation and
memory impacts of AES hardware support9 in the context of this defense mechanism.

6In Section 2.2.1, we give a brief overview and a comparison of the platforms used in this thesis.
7IPv6 packets below 1280 byte must not be fragmented according to the IPv6 standard [DH98].
8The implementation of the SHA-1 hash function was based on the relic toolkit [relic].
9AES hardware support was provided by the CC2420 radio interface of the TMote Sky platform.
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In our evaluation, we did not consider the computation overhead caused by active
link layer security, but included the transmission overhead resulting from the max-
imum length of the security header at the link layer. To this end, we reduced the
available 6LoWPAN payload size by 21 byte. Moreover, the IPv6 and UDP headers
were compressed to the extend discussed in Section 2.4.1 via the LOWPAN IPHC
and LOWPAN NHC compression mechanisms. In this, we also assumed that the
prefix of the IPv6 source address was compressible due to the availability of the cor-
responding 6LoWPAN compression context inside the constrained node network. As
a result, IPv6 packets with a size above 98 byte, i.e., excluding lower layer headers,
were fragmented by the 6LoWPAN layer prior to their transmission and reassembled
at the fragment recipient as described in Section 2.4.2. FRAG1s then contained up
to 88 byte of IPv6 header information and IPv6 packet payload, whereas FRAGNs
carried between 1 and 72 byte of IPv6 packet payload. Notably, by accounting for
the additional link layer header overhead and by only considering modest header
compression ratios, the evaluation results indicate worst-case overheads regarding
the number of 6LoWPAN fragment transmissions pertaining to an IPv6 packet.

6.7.1 E↵ective Defense Against the Identified Attacks

We now analyze the practicability of the fragment duplication and the bu↵er reser-
vation attack. Moreover, we show that the content-chaining scheme and the split
bu↵er approach e↵ectively protect against these 6LoWPAN fragmentation attacks.

6.7.1.1 Evaluating the Fragment Duplication Attack

To substantiate the practicability of the fragment duplication attack, we employed a
network setup consisting of two wirelessly interconnected constrained devices, i.e., a
sender and a receiver. The sender ran a simple Contiki application that transmitted
a constant stream of fragmented UDP packets with a pre-defined packet content.
Moreover, the sender’s 6LoWPAN layer was modified to duplicate and to re-transmit
one of the legitimate 6LoWPAN fragments with an altered fragment payload for each
transmitted UDP packet. This additional fragment simulated the spoofed attack
fragment from an eavesdropping adversary Eve. The receiver, in turn, counted the
successfully reassembled UDP packets containing the expected UDP packet content.

With this evaluation setup, we then compared the following two scenarios. In the first
scenario, the sender and the receiver ran an otherwise unmodified 6LoWPAN layer.
This scenario allowed us to evaluate the practicability of the fragment duplication
attack. In the second scenario, we additionally activated the content-chaining scheme
in order to show its e↵ectiveness against the identified attack. In both scenarios, the
sender transmitted 100 UDP packets of 240 and 1280 byte at the 6LoWPAN layer,
respectively. We note that we observed equal results for both packet sizes.

The results for the first evaluation scenario showed that the unmodified 6LoWPAN
fragmentation mechanism of the Contiki OS reassembled the fragmented UDP pack-
ets despite overlapping fragment content. More precisely, the attack fragment over-
wrote the legitimate fragment content. As the UDP checksum was disabled due to
our 6LoWPAN header compression setup, this modification of the packet content
went unnoticed by the operating system. Still, our UDP application at the receiver
correctly reported a Packet Delivery Ratio (PDR) of 0% as the reassembled packet
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Figure 6.17 Successful reception of legitimate UDP packets (1280 byte) at the application
layer of the target device during the bu↵er reservation attack. The split bu↵er approach
consistently outperforms the unmodified 6LoWPAN fragmentation mechanism of the Contiki
OS independent from the adversary’s sending behavior and the sender’s transmission o↵set.

content di↵ered from the expected packet content. Notably, we observed the same
low PDR at the application layer when enabling the UDP checksum or when discard-
ing packets with overlapping fragments as mandated by the 6LoWPAN standard.

Contrary to the unprotected 6LoWPAN fragment transmissions, the content-chaining
scheme achieved a PDR of 100%. Each received 6LoWPAN fragment was verified
correctly by the receiver. Based on these results, we conclude that the fragment
duplication attack indeed is practical to mount for an in-network adversary Eve.
Moreover, the content-chaining scheme e↵ectively mitigates the identified attack.

6.7.1.2 Evaluating the Bu↵er Reservation Attack

For the evaluation of the bu↵er reservation attack, we employed a network setup
consisting of three constrained devices: a sender, an adversary, and a target device.
The sender legitimately transmitted a constant stream of fragmented UDP packets
to the target device, whereas the target device counted the successfully reassembled
UDP packets at the application layer. The adversary, in turn, sent its attack frag-
ments in parallel to the transmissions between the sender and the target device. As
depicted in Figure 6.17, we thereby distinguished between three relative reception
times of attack and legitimate fragments at the target device to account for the vari-
ous reassembly bu↵er states. In particular, the sender transmitted its packets 500ms
before, simultaneous to (i.e., 0ms), and 500ms after the first attack fragment from
the adversary. While the -500ms o↵set allowed for legitimate transmissions without
malicious interference, the 500ms o↵set represents a situation where the adversary
successfully occupied the reassembly bu↵er at the target device. In contrast, the
fragment order was not pre-determined in case of simultaneous transmissions.

Based on this evaluation setup, we then compared the following two scenarios. In the
first scenario, we equipped the target device with an unmodified 6LoWPAN layer of
the Contiki OS. This allowed us to confirm the practicability of the bu↵er reserva-
tion attack. In the second setup, we additionally activated the split bu↵er approach
on the target device to demonstrate its e↵ectiveness against the bu↵er reservation
attack. We thereby set the window value w to 250ms in order to account for po-
tentially high jitter with respect to the reception of legitimate fragmented packets.
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To also evaluate the adequacy of the packet discard strategy, we additionally di↵er-
entiated between the following three malicious sending behaviors of the adversary
(see Figure 6.17): i) exclusive transmission of FRAG1s (F1), ii) fragment bursts
excluding the last FRAGN (N-1), and iii) fragment spreading across the reassembly
timeout (FS). For each combination of the above configurations, we then measured
the PDR at the application layer of the target device for 10 runs with 25 legitimate
packets and packet sizes of 240 and 1280 byte, respectively. We note that the packet
size only showed a negligible impact on the evaluation results in case of no protec-
tion and further improved the performance of the split bu↵er approach for packets
of 240 byte. We, thus, focus our discussion on the results for packets of 1280 byte.

As illustrated in Figure 6.17, the split bu↵er approach consistently outperformed
the unmodified 6LoWPAN reassembly mechanism of the Contiki OS. In fact, even
when attack fragments should not have interfered with the reception of legitimate
fragments (see “-500ms” in Figure 6.17), the PDR was slightly higher for the split
bu↵er approach than for the unmodified 6LoWPAN layer. As the main reason
for this performance gain, we identified that periodic control messages of the RPL
protocol also required fragmentation in our evaluation setup due to the consideration
of the additional link layer security overhead and the modest header compression
ratios. The single 6LoWPAN reassembly bu↵er, however, did not allow for two
packets to be reassembled at the same time. As a result, the interleaved reception of
the fragmented RPL control messages interfered with the correct reassembly of our
fragmented UDP packets at the target device despite the relatively small size of the
RPL messages, i.e., 2 6LoWPAN fragments. In contrast, the split bu↵er approach
a↵orded an interleaved fragment reception as it assigns bu↵er resources on a per-
fragment instead of a per-packet basis. This circumstance e↵ectively demonstrates
the e�cient utilization of the available bu↵er resources with the split bu↵er approach.

As shown with the “500ms” case in Figure 6.17, the bu↵er reservation attack suc-
ceeded for all attack behaviors in case of an unmodified 6LoWPAN reassembly mech-
anism, i.e., when the legitimate fragment was received after the first attack fragment.
In these situations, the PDR dropped to as low as 0%. Contrarily, the PDR remained
at up to 98% with the split bu↵er approach depending on the specific attack be-
havior. Notably, the adversary had to transmit packets consisting of a large number
of fragments in short bursts in order to decrease the PDR with the split bu↵er ap-
proach (see “N-1” in Figure 6.17). In this case, the packet discard strategy, however,
quickly decreased the score of the overall attack packet once the delay of the last
missing attack fragment was detected as a significant deviation from the previous
sending behavior. In fact, we observed that all attack fragments were purged from
the split bu↵er when a new fragmented packet was received by the target device
about 350ms after the reception of the N-1th attack fragment. Importantly, such
quick discarding considerably decreases the amplification e↵ects of a malicious bu↵er
reservation compared to the otherwise achievable reservation time of up 60 s.

For simultaneous fragment transmissions, the split bu↵er approach showed similar
results as observed above (compare“0ms” to“500ms” in Figure 6.17). Also here, our
approach persistently outperformed the unmodified 6LoWPAN reassembly mecha-
nism. However, it is worth noting that the results for the unmodified 6LoWPAN
reassembly mechanism di↵ered noticeably from the expected PDR of about 50% re-
garding the direct competition for the single reassembly bu↵er at the target device.
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When further investigating this observation, we found that the lower layers in the
network stack of the adversary and the legitimate sender bu↵ered up to 6 fragments
before transmission over the wireless link. In case of fragment spreading (FS), this
led to situations where the transmission of the attack fragments were delayed such
that legitimate fragments were received first by the target device. The legitimate
fragments then claimed the reassembly bu↵er at the target device, thus leading to
a PDR that exceeded the expected value with 63% for the unmodified 6LoWPAN
reassembly mechanism (see “FS” for “0ms” in Figure 6.17). Similarly, we observed
that the adversary sent at least one attack fragments prior to the legitimate sender
in the majority of the measurement runs for exclusive FRAG1 transmissions (F1)
and fragment bursts (N-1). Correspondingly, the PDR of the legitimate fragment
transmissions dropped below the expected value with 27% and 6%, respectively.

The above transmission behaviors similarly applied to our measurement runs for the
split bu↵er approach. In case of fragment bursts, the adversary, however, was able
to send its attack fragments prior to the legitimate fragments in fewer cases than
for the unmodified 6LoWPAN reassembly mechanism. As a result, the split bu↵er
approach achieved an increased PDR of 30%. With equally distributed competition
between the adversary and the legitimate sender, we would expect this value to be
around 50% for both the unmodified 6LoWPAN reassembly mechanism and our
split bu↵er approach. In contrast, the observed advantage of the adversary did not
have an impact on the PDR of 89% for exclusive FRAG1 transmissions. This is
because the split bu↵er approach allowed for an interleaved reception of a limited
number of 6LoWPAN fragments. Moreover, the packet discard strategy disposed
of the single attack fragment in the split bu↵er when a bu↵er overload situation
occurred. Consequently, also for simultaneous fragment transmissions, the split
bu↵er approach requires the adversary to send a large number of fragments in short
bursts in order to perceivably decrease the PDR of legitimately fragmented packets
(see “N-1” in Figure 6.17). The long delay after the N-1th attack fragment then,
however, causes the packet discard strategy to quickly decrease the packet score of
the received attack fragments as similarly discussed for the “500ms” case above.

Overall, we conclude that unprotected 6LoWPAN fragmentation transmissions are
vulnerable to the bu↵er reservation attack. In contrast, the split bu↵er approach
mitigates this attack by forcing the adversary into sending short successions of a large
number of fragments. Combined with the packet discard strategy, this prevents the
adversary from exploiting the amplification e↵ects that stem from the reservation of
the 6LoWPAN reassembly bu↵er. In addition, the split bu↵er approach also a↵ords
an interleaved reception of fragmented IPv6 packets. Hence, our presented approach
additionally improves fragment processing under normal network conditions.

6.7.2 Transmission Overhead

Besides the practicability of the identified 6LoWPAN fragmentation attacks and the
e↵ectivity of the presented defense mechanisms, we also analyzed the computation,
energy, memory, and transmission overheads of our solutions to evaluate the trade-
o↵s for the gained protection. We now discuss the observed transmission overheads
and examine the remaining evaluation results in the subsequent sections.

To evaluate the transmission overhead of the presented defense mechanisms, we an-
alyzed the wireless transmission of 6LoWPAN-fragmented packets between two con-
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Figure 6.18 Transmission overhead of the content-chaining scheme for di↵erent token and
packet sizes (with all headers) compared to the standard 6LoWPAN fragmentation mechanism.
The content token size in byte is shown in brackets. Truncated content tokens achieve a
significant reduction of the transmission overhead, especially for large fragmented packets.

strained devices with the wireshark tool. In doing so, we focused on the maximum
length of FRAG1s and FRAGNs with (i) the standard 6LoWPAN fragmentation
mechanism, (ii) the content-chaining scheme, and (iii) the split bu↵er approach. We
then extrapolated the observed results for larger IPv6 packet sizes. The split bu↵er
approach is a local defense mechanism and, thus, incurs the same transmission over-
heads as the standard 6LoWPAN fragmentation mechanism. The content-chaining
scheme, contrarily, requires the transmission of additional token information. Hence,
the following discussion focuses on the results for the content-chaining scheme.

Importantly, unfragmented IPv6 packets do not contain token information. Hence,
packets with IPv6 header information and IPv6 packet payload of up to 98 byte did
not cause an additional transmission overhead with the content-chaining scheme.
Fragmented IPv6 packets, however, resulted in a minimum token overhead of 8 byte
per transmitted 6LoWPAN fragment. Correspondingly, we observed an additional
overhead of 262 byte for the protection of a fragmented IPv6 packet of 1280 byte (see
the di↵erence between the blue and the green lines in Figure 6.18). 160 byte thereby
stemmed from the 8 byte content tokens. Moreover, the token-induced decrease of
the available fragment payload space caused the transmission of two extra 6LoWPAN
fragments with additional link layer and 6LoWPAN header information of 102 byte.
This reduction in payload space is illustrated by the shorter step length for the
content-chaining results in Figure 6.18. To put these numbers into perspective,
the content-chaining scheme increased the overall transmission overhead by about
12.02% compared to standard 6LoWPAN fragmentation. This is because an IPv6
packet of 1280 bytes already caused transmissions of 2180 byte due to link layer and
6LoWPAN header overheads, i.e., even without the content-chaining scheme.

To further quantify the benefit of truncated content tokens, we also compared the
transmission overheads of the content-chaining scheme for token sizes of 8, 16, and
20 byte. Focusing on IPv6 packets of 1280 byte, the evaluation results show that to-
kens of 16 byte required the transmission of 23 fragments instead of 18 for the stan-
dard 6LoWPAN fragmentation mechanism and, therefore, increased overall trans-
missions from 2180 byte to 2803 byte. Likewise, content tokens of 20 byte increased
the transmission overhead to a total of 25 fragments and 3037 byte. Hence, by trun-
cating content tokens to 8 byte, we can reduce the additional transmission overhead
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of the content-chaining scheme by about 57.9% compared to 16 byte content tokens
and by about 69.4% compared to 20 byte content tokens (see Figure 6.18).

To summarize, the split bu↵er approach does not cause any additional transmission
overheads compared to the standard 6LoWPAN fragmentation mechanism. More-
over, the content-chaining scheme incurs moderate transmission overheads with con-
tent tokens of 8 byte. Importantly, by employing the attack notification extension
of the content-chaining scheme (see Section 6.4.6.1), these transmission overheads
only occur while actively protecting against the fragment duplication attack. Dur-
ing normal network operation, this extension a↵ords the content-chaining scheme to
remain inactive, thus reducing the additional transmission overhead to zero.

6.7.3 Computation Overhead

For the evaluation of the computation overhead, we first analyzed the per-fragment
performance impact of the underlying hash function on the token generation and
verification of the content-chaining scheme. We then evaluated the per-packet com-
putation overhead of the content-chaining scheme and the split bu↵er approach.

6.7.3.1 Per-Fragment Overhead of the Content-Chaining Scheme

To evaluate the performance impact of the underlying hash function on the content-
chaining scheme, we measured the per-fragment computation overhead of SHA-1 on
a single constrained device to establish a baseline for comparison purposes. We then
repeated our experiments for the DM-based and the MMO-based hash functions (see
Section 6.4.6.3). We thereby increased the payload size from 8 to 72 byte in 8 byte
steps and ran 100 measurements for each hash function and input size combination.

As depicted in Figure 6.19, both AES-based hash functions consistently outper-
formed SHA-1 independent from the fragment payload size. By employing the DM-
based hash function instead of SHA-1, the per-fragment computation overhead for
the content-chaining scheme decreased by as much as 82.59% (see input length of
8 byte in Figure 6.19). In contrast, the DM-based and MMO-based hash functions

Figure 6.19 Computation overhead for the generation or the verification of a single content
token. The bars represent the average over 100 measurement runs for each input size. The
error bars illustrate the observed the standard deviation. Both AES-based hash functions
consistently outperform SHA-1. Moreover, the DM-based and MMO-based hash functions
only exhibit a modest performance di↵erence.
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only exhibited a modest performance di↵erence. While the average computation time
for the generation or verification of a single content token increased from 0.90ms
to 4.72ms for growing payload sizes for the DM-based hash function, this overhead
increased from 0.97ms to 5.15ms for the MMO-based hash function. Hence, the
DM-based hash function showed a small performance advantage when employing a
AES-based hash function with hardware support in the content-chaining scheme.

Interestingly, the computation overhead of the cryptographic primitives did not in-
crease with each 8 byte step regarding the input length. This is especially visible for
the SHA-1 hash function (compare input lengths from 8 to 48 byte in Figure 6.19)
but also applies to the AES-based hash functions (e.g., compare input lengths of 16
and 24 byte in Figure 6.19). The reason for these relatively stable results despite an
increasing input length is the internal block size and the iterative construction with
which the cryptographic primitives operate. Moreover, we note that the observed
computation overhead increased from an input length of 8 to 16 byte for the AES-
based hash functions and from 48 to 56 byte in case of SHA-1 despite their internal
block size of 16 byte and of 64 byte, respectively. This is because the hash function
input has to be extended by an additional block if the length padding information
does not fit into the last input block, thus causing another hash function iteration.

To summarize, by leveraging the AES hardware support with a DM-based or an
MMO-based hash function, the computation overhead of the content-chaining scheme
can be reduced significantly compared to the use of a standard hash function such as
SHA-1 without hardware support. Moreover, the DM-based hash function marginally
outperformed the MMO-based hash function. We note that, for this reason, we em-
ployed the DM-based hash function in the subsequent performance measurements.

6.7.3.2 Overall Per-Packet Computation Overhead

For the evaluation of the overall per-packet computation overhead, we measured
the processing time at the 6LoWPAN layer of two wirelessly connected constrained
devices for (i) the standard 6LoWPAN fragmentation mechanism, (ii) the content-
chaining scheme, and (iii) the split bu↵er approach. One device thereby acted as the
sender, whereas the other device represented the recipient. Moreover, we increased
the packet size from 5610 to 1280 byte in 8 byte steps and performed 10 measurement
runs for each fragmentation mode and packet size combination. We recollect that
only packets exceeding 98 byte required fragmentation at the 6LoWPAN layer.

As illustrated by the largely overlapping evaluation results for the split bu↵er ap-
proach and for the standard 6LoWPAN fragmentation mechanism in Figure 6.20a,
the split bu↵er approach only incurs a marginal computation overhead at the sender
compared to an unmodified implementation of the 6LoWPAN fragmentation mech-
anism. However, the split bu↵er approach adds a processing overhead of up to
13.19ms for fragmented packets of 1280 byte at the fragment recipient compared
to an unmodified reassembly mechanism (see Figure 6.20b). This overhead pri-
marily stems from the defragmentation procedure during packet reassembly (see
Section 6.5.3) and the additional bu↵er management of the split bu↵er approach.

10We chose 56 byte as the smallest packet size as it represents a minimal IPv6 packet with an
IPv6 header of 40 byte, a UDP header of 8 byte, and up to one full octet of IPv6 packet payload.
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(a) Sender side (b) Receiver side

Figure 6.20 Processing time at the 6LoWPAN layer for the standard 6LoWPAN fragmentation
mechanism, the content-chaining scheme, and the split bu↵er approach. The error bars denote
the standard deviation. The split bu↵er approach only causes a modest overhead, whereas the
content-chaining scheme incurs a noticeable overhead at the sender and at the receiver.

The content-chaining scheme incurs a noticeable computation overhead at the sender
and at the receiver. These overheads mainly originate from the construction of the
content chain at the sender and the token verification at the recipient. As a re-
sult, the content-chaining scheme adds a maximum of 64.22ms at the sender side
and of 95.23ms at the receiver side for the processing of fragmented packets with
a size of 1280 byte. Moreover, while the sender and the receiver both perform the
same cryptographic operations per fragment, a comparison of Figure 6.20a and Fig-
ure 6.20b shows an observable increase in computation overhead on the receiver side.
This additional computation overhead stems from the fact that the content-chaining
scheme also facilitates the bu↵er management functionality of the split bu↵er ap-
proach to handle out-of-order fragments. Consequently, the computation overhead of
the content-chaining scheme also includes the majority of the overhead for the split
bu↵er approach. Furthermore, the fragment recipient has to search the reassembly
bu↵er slots for unverified out-of-order fragments in case of fragment reordering. This
also increases the overhead on the receiver side compared to the sender side. Lastly,
we note that the sporadically high standard deviation is the result of outlier hash
operations with run-times above 30ms during which the hardware reported as busy.

During our evaluation, we did not explicitly measure the computation overheads of
our defense mechanisms at a fragment forwarder. Still, the above evaluation results
allow to analytically derive overhead approximations for these on-path devices. The
computation overhead at a fragment forwarder thereby strongly depends on the frag-
ment forwarding mechanism employed in the constrained node network. More pre-
cisely, in case of mesh-under routing, a fragment forwarder is oblivious to the packet
fragmentation at the 6LoWPAN layer. Consequently, neither the content-chaining
scheme nor the split bu↵er approach cause additional overheads for this fragment for-
warding mechanism. In contrast, the computation overhead of the content-chaining
scheme is similar to the overhead at the receiver for enhanced route-over routing
and largely resembles the sum of the sender and the receiver overheads in case of
route-over routing. This is because forwarders with enhanced route-over verify the
content tokens and immediate forward the individual 6LoWPAN fragments, whereas
route-over-based fragment forwarders reassemble and fragment each traversing frag-
mented packet. For the same reason, the split bu↵er approach results in the same
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Figure 6.21 Energy estimation for the computations (MCU) and transmissions (TX) resulting
from our presented defense mechanisms on a sending node. The estimated power consumption
of the standard 6LoWPAN fragmentation mechanism is given as a baseline. The content-
chaining scheme causes non-negligible energy overheads, whereas the split bu↵er approach
exhibits comparable results to the standard 6LoWPAN fragmentation mechanism.

computation overhead at a fragment forwarder as at the receiver in case of route-over
routing and does not incur any additional overhead for enhanced route-over.

Overall, the split bu↵er approach exhibits modest computation overheads that are
limited to the communication end-points inside a constrained node network for all
fragment forwarding mechanisms except for route-over routing. Importantly, these
overheads not only denote a trade-o↵ for a gain in robustness against the bu↵er
reservation attack, but also facilitate an improved processing of interleaved pack-
ets as discussed in Section 6.7.1.2. The content-chaining scheme, however, incurs
noticeable computation overheads at the sender and the fragment verifying nodes.
This overhead is a trade-o↵ for a gain in protection against the fragment duplication
attack. Still, the attack notification mechanism (see Section 6.4.6.1) allows to limit
these computation overheads to situations when constrained devices actually profit
from spending their processing resources for the content-chaining scheme.

6.7.4 Energy Evaluation

Especially the content-chaining scheme causes both, increased computation and
transmission overheads, compared to the standard 6LoWPAN fragmentation mech-
anism. To evaluate the combined impact of these overheads, we additionally esti-
mated the energy resources required by the MCU for the packet processing at the
6LoWPAN layer as well as by the radio module for the transmission of the corre-
sponding 6LoWPAN fragments. To this end, we employed the same network setup
as described in Section 6.7.3.2 and leveraged the energy estimation facilities pro-
vided by the Contiki OS [DEFT11]. We assumed an idealized energy consumption
of 1.8mA for the MCU and of 19.5mA for the radio module at a supply voltage of
3V as indicated in the Tmote Sky datasheet [tmote]. Moreover, we restricted our
energy evaluation to the fragment sender in order to prevent overhead misattribution
for inbound 6LoWPAN fragments that, e.g., belong to the RPL protocol.

As illustrated in Figure 6.21, the split bu↵er approach exhibits highly similar re-
sults to the standard 6LoWPAN fragmentation mechanism regarding the energy
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Functionality ROM (byte) RAM (byte)

Contiki OS 37788 8478
+ Split bu↵er 40052 [+2264] 9014 [+ 536]
+ Content chaining 41108 [+3320] 9402 [+ 924]
+ Both mechanisms 41750 [+3962] 9502 [+1024]

Table 6.1 ROM and RAM requirements of the split bu↵er approach and the content chaining
scheme in byte. Numbers in brackets denote the added overhead by our presented defense
mechanisms when compared to the Contiki OS base overhead. Combined, these mechanisms
require about 1 kB of RAM and just below 4 kB of ROM.

expenditure for both computations and transmissions. In fact, our energy estima-
tion indicates a combined additional energy overhead for the split bu↵er approach
that is as low as 0.72% for fragmented IPv6 packets of 1280 byte. In contrast, the
content-chaining scheme shows an overall energy overhead increase of about 25.30%
compared to the standard 6LoWPAN fragmentation mechanism for fragmented IPv6
packets of 1280 byte. This increased energy overhead stems in equal parts from the
additional computation (i.e., 0.42mJ) and transmission overheads (i.e., 0.42mJ).

Based on these results, we conclude that the split bu↵er approach has a marginal
impact on the lifetime of energy-constrained devices, thus a↵ording it to remain ac-
tive continuously. In contrast, the content-chaining scheme causes comparably high
energy overheads. This energy expenditure would reduce the overall lifetime of an
energy-constrained device by up to 25% assuming that this device transmitted a
constant stream of 6LoWPAN-fragmented IPv6 packets. However, we do not expect
constrained devices to continuously be involved in the transmission of upper layer
application data that requires packet fragmentation at the 6LoWPAN layer. As a
result, the energy expenditure of the content-chaining scheme in real-world deploy-
ment scenarios would significantly be reduced. Moreover, it is important to note that
the attack notification extension of the content-chaining scheme additionally allows
to decrease its energy expenditure to near zero during network normal operation.

6.7.5 RAM and ROM Overhead

Constrained devices often are equipped with only very limited memory resources.
The Tmote Sky platform, e.g., provides constrained devices with 10 kB of RAM and
48 kB of ROM. Hence, to estimate the RAM and ROM impact of our presented de-
fense mechanisms, we analyzed the Contiki OS binaries that we employed during the
evaluation with the msp430-size tool11. The first binary then contained an unmod-
ified 6LoWPAN layer, whereas the remaining three binaries additionally included
the required functionality for (i) the content-chaining scheme, (ii) the split bu↵er
approach, and (iii) a combination of both presented defense mechanisms.

As shown in Table 6.1, the split bu↵er approach increases the ROM overhead by
2264 byte compared to the Contiki OS base overhead. Similarly, the content-chaining
scheme adds about 3320 byte to the overall ROM requirements of the Contiki OS.
In the latter case, about 878 byte result from the implementation of the DM-based
hash function for the content-chaining scheme. This overhead would further grow

11The msp430-size tool is part of the GCC toolchain for the MSP430 MCU [mspgcc].
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to 922 byte for the MMO-based hash function and to 3232 byte in case of SHA-1.
Interestingly, a major part of the ROM overhead that is caused by the split bu↵er
approach and the content-chaining scheme stems from the bu↵er management func-
tionality that is shared between both mechanisms. This fact is reflected by the low
additional ROM overhead of 1698 byte and 642 byte for the combined defense mech-
anisms when compared to the individual overheads for the split bu↵er approach and
the content chaining scheme, respectively. Consequently, when one of our defense
mechanisms is already deployed on a constrained device, the other defense mecha-
nism only adds a marginal ROM overhead. Notably, while not optimized for minimal
ROM overhead, such a combined deployment requires just below 4 kB of ROM.

With respect to the RAM requirements, the split bu↵er approach and the content-
chaining scheme require about 536 byte and 924 byte additional memory when com-
pared to the Contiki base overhead, respectively. For the split bu↵er approach, this
overhead stems from the need to over-provision each bu↵er slot such that it can hold
a 6LoWPAN fragment of maximum length including 6LoWPAN header information,
i.e., a total of 81 byte. As a result, the memory overhead for a reassembly bu↵er that
supports IPv6 packets of 1280 byte increases by 18.13%. The remaining overhead
results from additional per-packet management information that is required for the
packet discard strategy and for the maintenance of the individual bu↵er slots. This
additional overhead, however, is not only a trade-o↵ for a gain of security, but also
enables a constrained device to process interleaved fragmented IPv6 packets during
normal operation. The content-chaining scheme, in turn, primarily adds an overhead
of 8 byte for the last verified token to this per-packet management information.

To conclude, the content-chaining scheme successfully protects constrained devices
against the fragment duplication attack. In doing so, it incurs noticeable compu-
tation, energy, and transmission overheads. Importantly, the attack notification
extension allows to reduce these overheads to zero unless a constrained device ac-
tually profits from spending the required resources for the content-chaining scheme
due to the presence of an in-network adversary. The split bu↵er approach, likewise,
mitigates the bu↵er reservation attack. In contrast to the content-chaining scheme,
it, however, only incurs marginal computation and energy overheads and does not
impact the transmission overhead of fragmented packets. This a↵ords the split bu↵er
approach to be activated continuously. Moreover, both the content-chaining scheme
and the split bu↵er approach only require modest memory resources, especially when
a constrained device already employs one of the introduced mechanisms. Overall,
the presented defense mechanisms, therefore, provide resource-conscious protection
against the identified fragment duplication and the bu↵er reservation attacks.

6.8 Related Work

For our discussion of related work, we distinguish between the following three re-
search directions: (i) fragmentation attacks and defense mechanisms at the 6LoWPAN
and the IP layer, (ii) e�cient authentication schemes for packet streams, and (iii) re-
lated non-cryptographic approaches. Moreover, we refer to Section 6.1 for a detailed
discussion of previously identified IP-level fragmentation attacks.
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6.8.1 Fragmentation Attacks and Defense Mechanisms

Both, research and standardization, previously investigated potential fragmentation
attacks at the 6LoWPAN and the IP layer as well as proposed corresponding defense
mechanisms. Regarding the 6LoWPAN layer, Kim [Kim08] lists several well-known
IP-level fragmentation attacks and speculates that these attacks may also be appli-
cable in the context of the 6LoWPAN fragmentation mechanism. Moreover, Kim
suspects that replaying of fragmented IPv6 packets might be harmful. Triggered by
this work, we conducted a thorough security analysis of the 6LoWPAN fragmenta-
tion mechanism and identified two design-level fragmentation attacks. During our
analysis, we, however, could not confirm that replaying unaltered, fragmented IPv6
packets indeed is harmful. Instead, the identified fragment duplication attack re-
quires the adversary to send at least one spoofed fragment with modified fragment
content. Moreover, the defense mechanisms proposed by Kim, i.e., timestamps and
nonces, do not su�ce to protect against the identified fragmentation attacks as an
eavesdropping adversary can simply spoof such non-cryptographic fragment content.

To prevent an adversary from exploiting overlapping IP fragments via correct guess-
ing of the packet identification value (i.e., the datagram tag in case of 6LoWPAN),
Gilad et al. [GH13] propose to generate these values with a pseudo-random function
instead of employing a simple counter-based approach. While mitigating the consid-
ered IP-level attack by reducing the e�ciency of guessing, this mechanism does not
protect constrained devices against the fragment duplication attack as Eve can over-
hear legitimate fragmented packets and, thus, is not required to guess. Moreover,
the authors propose to avoid fragmentation at and below the IP layer by employing
path MTU discovery mechanisms. The avoidance of such fragmentation, however,
may often not be possible in constrained node networks due to the exceedingly low
frame size and the lack of fragmentation support at many upper layer protocols.

Concerning attacks based on missing packet fragments, Kaufman et al. [KPS03]
present defense mechanisms that are specifically designed for the IKEv2 protocol.
More precisely, the authors propose to re-design the initial IKEv2 handshake mes-
sages such that their message size does not cause packet fragmentation. Moreover,
Kaufman et al. propose to include a cookie-based DoS protection mechanism in these
initial handshake messages. After a successful cookie verification, the IKEv2 layer
then clears the communication partner for IP-level fragmentation of the subsequent
IKEv2 handshake messages. Importantly, while these protocol mechanisms allow to
restrict IP-level fragmentation to weakly verified end-points, they are highly depen-
dent on the employed upper layer protocol and require bidirectional data flows for
the cookie exchange. In contrast, our presented defense mechanisms are protocol-
independent and also support exclusively uni-directional data flows. Moreover, it
is important to note that the severe frame-size limitations in constrained node net-
works may require even small handshake messages to be fragmented, thus rendering
the proposed defense mechanisms by Kaufman et al. ine↵ective for such networks.

Gont [Gon11] proposes to decrease the reassembly timeout and to use multiple inde-
pendent bu↵er pools to handle fragmented packets with missing packet fragments.
Specifically, the author suggests to maintain one bu↵er pool for IPsec and another
one for all remaining protocols. To handle overload situations for the IPsec bu↵er
pool, Gont introduces flushing policies that prefer partial IPsec packets for which a
number of validity checks can be performed to those that fail these checks or that do
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not yet provide su�cient packet content for validation purposes. The provisioning
of multiple independent bu↵er pools, however, is less memory e�cient than our split
bu↵er approach as memory is still allocated on a per-packet instead of a per-fragment
basis. Moreover, while the flushing policies proposed by Gont are tailored to IPsec,
our packet discard strategy can be applied to a variety of upper layer protocols.

6.8.2 E�cient Authentication Schemes for Packet Streams

Several authentication schemes have been proposed that aim at providing e�cient
data origin authentication for packet streams. Similar to our work in this chapter,
Gennaro et al. [GR97] propose to employ hash chains to authenticate digital streams
of finite length. Our content-chaining scheme di↵ers from their approach by forgoing
the use of public-key cryptography to bind the anchor element of the generated hash
chain to a cryptographic sender identity. Instead, a fragment recipient considers
the anchor element in the first received FRAG1 as legitimate and discards subse-
quently arriving FRAG1s that indicate the same IPv6 packet. Moreover, Wong et
al. [WL98] propose the use hash trees for authentication purposes in order to a↵ord
the immediate verification of out-of-order packets. We consciously decided against
such a tree-based construction for our content-chaining scheme as it significantly
increases the per-fragment computation and transmission overheads in constrained
node networks. Instead, we introduce fragment forwarding and fragment discard
policies that allow to e�ciently handle out-of-order 6LoWPAN fragments.

A rich body of research investigates e�cient stream authentication mechanisms that
are resilient to packet loss. These mechanisms most notably include hash chain
schemes with delayed token disclosure [PTSC00, PST+02], with redundant traversal
paths [GM01], and with erasure coding [PCS02, PM03] as well as one-time signature
schemes [Per01]. While all of these schemes can be employed to verify the data origin
of 6LoWPAN-fragmented IPv6 packets, they incur significant verification delays or
considerably increase the computation and transmission overheads compared to our
content-chaining scheme. Moreover, we note that the protection of the 6LoWPAN
fragmentation mechanism does not need to be robust against fragment loss. This
is because the loss of a single 6LoWPAN fragment invalidates the entire associated
IPv6 packet according to the 6LoWPAN standard. Hence, the increased overhead
of these loss-resilient schemes would be spent without achieving an additional gain.

6.8.3 Related Non-Cryptographic Approaches

Related non-cryptographic approaches do not specifically focus on the protection of
constrained devices against the identified 6LoWPAN fragmentation attacks. Instead,
they aim at improving the forwarding and reassembly properties for packets that
are fragmented at the 6LoWPAN layer. We now discuss to which extend these
approaches also provide protection against our identified fragmentation attacks.

Thubert et al. [TH14] recently proposed recoverable 6LoWPAN fragments that re-
quire a reassembling node to explicitly confirm fragment reception via an additional
6LoWPAN acknowledgement packet. Negatively acknowledged fragments then are
retransmitted by the original fragment sender. Without protection by our content-
chaining scheme, such fragment recovery, however, still is susceptible to the fragment
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duplication attack. This is because an adversary can also attack fragment retrans-
missions. Still, a reassembling node may leverage the fragment recovery mechanism
to probe for malicious sending behavior in case of the bu↵er reservation attack by
requesting missing packet content via an acknowledgement packet. Such probing,
however, would be triggered after the detection of suspicious sending behavior and
would involve at least one RTT to determine if the potentially malicious sender actu-
ally (re-)transmitted the requested 6LoWPAN fragments. At this point, the packet
discard strategy of our split bu↵er approach already penalized malicious sending be-
havior. Thus, the additional transmission overhead caused by the fragment recovery
mechanism does not result in significantly improved security properties compared
to our split bu↵er approach. Moreover, we note that 6LoWPAN fragment recov-
ery often is considered inadvisable as it breaks the best-e↵ort semantics of IP packet
delivery and interferes with retransmissions at the upper layers in the network stack.

With the goal to increase throughput and energy e�ciency for bulk data transfers,
pipelining and burst forwarding were proposed as enhancements at the data link
layer. Regarding 6LoWPAN fragmentation, pipelining [RCBG10, DC14] allows all
fragments that belong to a specific IPv6 packet to be forwarded to the final destina-
tion inside the constrained node network in a single fragment stream. Thus, while
Eve would be able to overhear legitimate 6LoWPAN fragments, she could not inject
spoofed attack fragments before the fragmented IPv6 packet is reassembled. This
prevents her from mounting the fragment duplication attack. Currently proposed
pipelining approaches, however, only consider the sequential download of bulk data
from one constrained device at a time and monopolize the network resources on
the forwarding path for a specific bulk transfer. Hence, pipelining typically is not
applicable in the context of uncoordinated end-to-end transmissions. This stands
in stark contrast to our content-chaining scheme that does not require coordination
and is independent from the specific capabilities of the underlying link layer.

Burst forwarding as proposed by Dunquennoy et al. [DOD11] relaxes the concept of
pipelining and allows 6LoWPAN fragments of a specific IPv6 packet to span across
multiple bursts as well as a burst to contain 6LoWPAN fragments from multiple IPv6
packets. This, however, enables Eve to overhear legitimate 6LoWPAN fragments
and to inject spoofed attack fragments between two bursts. In contrast to our
content-chaining scheme, burst forwarding, therefore, still allows Eve to mount the
fragment duplication attack. Moreover, contrary to our split bu↵er approach, neither
of the above approaches a↵ords protection against the bu↵er reservation attack as
an adversary remains able to maliciously occupy the reassembly bu↵er at a target
device. Still, we note that flash interleaving as proposed by Dunquennoy et al. in
the context of burst forwarding would allow to increase the size of the reassembly
bu↵er and, thus, the e↵ort that an adversary has to put into mounting the bu↵er
reservation attack. Flash interleaving, therefore, e↵ectively complements our split
bu↵er approach in case the reassembling node also is equipped with flash memory.

Subsequent to our work, Teo et al. [TASS13] proposed to maintain multiple dynam-
ically created reassembly bu↵ers in order to allow for an interleaved reception of
6LoWPAN-fragmented IPv6 packets. However, as discussed in Section 6.3.2, this
approach only marginally increases the e↵ort that Eve has to put into mounting
the bu↵er reservation attack as she can still reserve all available reassembly bu↵er
resources with only few 6LoWPAN fragments that each indicate a high overall IPv6
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packet size. Moreover, maintaining multiple independent reassembly bu↵ers is less
memory e�cient than our split bu↵er approach as reassembly resources are assigned
on a per-packet instead of a per-fragment basis. Hence, our split bu↵er approach
also exhibits advantageous properties during normal network operation.

Finally, we note that our work in this chapter is inspired by early bu↵er alloca-
tion and packet discarding schemes for packet-based IP communication over ATM
networks. Specifically, we adopt the idea of sharing a single reassembly bu↵er for
interleaved fragmented packets from CSVP as proposed by Wu et al. [WM95]. More-
over, our packet discard strategy follows the notion of penalizing misbehaving users
as presented by Chan et al. [CWK97] for their fair packet discarding strategy.

6.9 Conclusion

Packet fragmentation at the 6LoWPAN layer is a common condition when perform-
ing the handshake of standard end-to-end IP security protocols such as DTLS with a
device that is located inside a constrained node network. In this chapter, we analyzed
if an adversary can exploit such packet fragmentation to block the establishment of
secure end-to-end connections. Our analysis revealed two 6LoWPAN fragmentation
attacks that are notably cheap to mount, thus allowing an adversary to even employ
tightly resource-constrained devices in her attack: Both the fragment duplication
attack and the bu↵er reservation attack only require the transmission of a single
6LoWPAN fragment to block the successful packet reassembly at a target device.

To protect constrained devices against the identified 6LoWPAN fragmentation at-
tacks, we introduced two complementary, lightweight defense mechanisms. The
content-chaining scheme enables a constrained device to cryptographically verify
that a received 6LoWPAN fragment belongs to the indicated IPv6 packet on a per-
fragment basis. As a result, the adversary is no longer able to mount the fragment
duplication attack. The split bu↵er approach fosters per-fragment competition for
the scarce bu↵er resources at a reassembling node between an adversary and legit-
imate fragment senders. In addition, the packet discard strategy of the split bu↵er
approach severely penalizes suspicious changes in the fragment sending behavior. In
combination, this prevents an adversary from exploiting the amplification e↵ects that
stem from the reservation of the 6LoWPAN reassembly bu↵er and, thus, frustrates
the bu↵er reservation attack. Finally, the evaluation results confirm the practi-
cability of the identified 6LoWPAN fragmentation attacks. Moreover, the results
also show that the presented defense mechanisms e↵ectively mitigate the identified
attacks at moderate computation, energy, memory, and transmission trade-o↵s.

Importantly, the impact of the identified 6LoWPAN fragmentation attacks also ex-
tends beyond the connection establishment handshake of end-to-end IP security
protocols such as DTLS, HIP DEX, and Minimal IKEv2. In fact, all types of IPv6
packet transmissions inside a constrained node network that exceed the frame size of
the employed link layer are vulnerable to the identified fragmentation attacks. Such
large IPv6 packet transmissions can occur for a wide range of application data, e.g.,
in case of incompressible sampling data or firmware updates [TH14]. Consequently,
our presented defense mechanisms also facilitate the protection of other types of
network tra�c that we did not specifically consider within the scope of this thesis.
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Discussion and Conclusion

IP technology for networked embedded devices enables the seamless interconnection
of objects from the physical world in the Internet of Things (IoT). The achieved
connectivity, however, also exposes this new class of network entities to similar
network attacks as conventional IP-enabled hosts or services. The severity of these
attacks is considerably aggravated in the IoT as attacks in the virtual world suddenly
can have detrimental physical impact. Thus, e↵ective network security is a vital
aspect for the secure interconnection of embedded devices, hosts, and services in the
IoT. The device and network constraints in the embedded domain and the resource
asymmetry in the IoT, however, challenge the design of existing security solutions.

Our main goal with this thesis is to address the emerging protocol design challenges
in the context of end-to-end security for the IP-based IoT and to contribute to the
on-going e↵orts of adapting IP technology to IoT requirements. In our protocol
analyses, we, therefore, specifically considered the IoT security protocol adaptations
DTLS, HIP DEX, and Minimal IKEv2 that are currently proposed for standardiza-
tion at the IETF. In addition, we analyzed the security properties of the 6LoWPAN
adaptation layer as the main underlying transport mechanism of these protocols in
the embedded domain. The key findings of our protocol analyses are:

i) The use of public-key cryptography in the handshake of the DTLS, HIP DEX,
and Minimal IKEv2 protocols causes a significant computation overhead on
networked embedded devices. This overhead renders the deployment of these
protocols in their current state ine�cient and even insecure. Specifically, we ob-
serve that the long processing times of public-key operations significantly ham-
per the availability and response time of networked embedded devices. Hence,
such computationally expensive handshake operations should only rarely be
employed and must be accounted for in the overall protocol design.

ii) A chief design goal of the DTLS, HIP DEX, and Minimal IKEv2 protocol
adaptions is to preserve the protocol semantics of TLS, HIPv2, and IKEv2,
respectively. TLS, HIPv2, and IKEv2, however, were developed with extensi-
bility and flexibility in mind. Thus, the handshake messages of these protocols
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commonly contain dispensable protocol information. This information, how-
ever, constitutes undesirable transmission overhead in the embedded domain.

iii) DTLS, HIP DEX, and Minimal IKEv2 protocol implementations are prone to
exhibit significant RAM and ROM requirements when employing public-key
primitives in the performed protocol handshakes. We find that these memory
requirements render a comprehensive, public-key-enabled protocol implemen-
tation infeasible for a wide range of memory-constrained embedded devices.

iv) The large message size in the DTLS, HIP DEX, and Minimal IKEv2 hand-
shakes commonly causes packet fragmentation at the 6LoWPAN layer. We
identify two design-level DoS attacks against the employed fragmentation mech-
anism. An adversary can exploit these attacks to block the correct reassembly
of fragmented handshake messages at the 6LoWPAN layer and, thus, prevent
the DTLS, HIP DEX, and Minimal IKEv2 handshakes from completing.

As part of our four core contributions, we introduced resource-conscious protocol
mechanisms and a security architecture that resolve the identified protocol e�ciency
and security issues. Section 7.1 briefly summarizes these solutions. We then highlight
the impact of our contributions in Section 7.2. Finally, we close this thesis with ideas
for future research in Section 7.3 and concluding remarks in Section 7.4.

7.1 Contributions and Achievements

In this section, we provide a high-level overview of our presented solutions, outline
the achieved results, and highlight their contribution to the main goal of this thesis.
To recollect, the main goal of this thesis comprises of the two key aspects security
protocol e�ciency and protocol security as previously discussed in Section 1.1.

7.1.1 Tailored Protocol Handshake Mechanisms

With our first contribution, we address the identified protocol e�ciency and security
issues that stem from the high processing overhead of public-key cryptography. To
this end, we developed three complementary protocol extensions for HIP DEX and
showed how these extensions can similarly be applied to DTLS and Minimal IKEv2.

The flexible session resumption mechanism reduces the need for public-key cryp-
tography throughout the lifetime of a networked embedded device. The main idea
behind session resumption is for two communication end-points to only perform a
public-key-based handshake during the initial connection establishment. The end-
points then store the established session state across connections and leverage this
state to e�ciently re-establish the initial session context via subsequent session re-
sumption handshakes, i.e., without the need for public-key cryptography. In addi-
tion, our session resumption mechanism also allows one handshake peer to securely
o✏oad its session state to its communication partner. This allows to relieve the
o✏oading peer from the memory burden of storing session state across connections.

The long processing time of public-key operations on networked embedded devices
enables even a single adversary to target these computationally expensive handshake
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operations in a DoS attack. To protect constrained devices against such attacks, we
introduced a collaborative puzzle-based DoS protection mechanism. The main goal
of this mechanism is to adapt the cryptographic puzzle approach of HIP DEX to the
device constraints in the embedded domain and the resource asymmetry in the IoT.
To this end, we developed an attack detection mechanism that allows the target
device to only request a puzzle-based resource commitment from its handshake peer
in case of a potential DoS attack. As a result, a legitimate handshake peer only
has to invest its possibly scarce resources during an on-going attack. Moreover, we
devised a collaborative di�culty selection strategy that enables the target device
to adjust its requested resource commitment based on additional information from
an on-path gateway. This allows the device to account for the resource asymmetry
between networked embedded devices and conventional hosts or services in the IoT.

The high computation overhead of public-key cryptography in the context of net-
worked embedded devices causes the processing time of the di↵erent handshake
messages to vary significantly. To prevent premature retransmissions stemming from
such variation in processing time, we introduced an adaptive retransmission mecha-
nism that refrains from the use of fixed-length retransmission timeouts. Instead, our
devised mechanism employs multiple dynamically adjustable worst-case estimates for
message retransmission purposes. More precisely, messages that only trigger inex-
pensive handshake operations at the handshake peer are retransmitted based on a
simple network delay-based timeout. Retransmissions of expensive handshake mes-
sages, in contrast, incorporate feedback from the handshake peer for an additionally
processing-based timeout. This allows to largely prevent premature retransmissions
that would otherwise be prevalent in the context of networked embedded devices.

The evaluation results show that our flexible session resumption mechanism reduces
the computation overhead by up to 91.5% and transmissions by up to 43.0% com-
pared to a standard protocol handshake. Moreover, our collaborative puzzle-based
DoS protection mechanism accounts for the resource asymmetry in the IoT and suc-
cessfully defends networked embedded devices against more powerful adversaries.
Lastly, our adaptive retransmission mechanism handles packet loss at a moderate
transmission overhead and a↵ords a timely handshake conclusion. With these re-
sults, we conclude that our presented solutions successfully improve both aspects of
our main goal in this thesis, i.e., security protocol e�ciency and protocol security.

7.1.2 Message Wire-Format Compression

In our second contribution, we specifically focussed on the identified message con-
ciseness issues of the HIP DEX protocol. For this purpose, we introduced a novel
compression layer called Slimfit that adapts the HIP message wire-format for trans-
mission inside the embedded domain. As its main building blocks, Slimfit (i) elides
the message content that is statically defined in the HIP DEX protocol specifica-
tion, (ii) rearranges the HIP message wire-format via general parameter compression
mechanisms to achieve a higher compression ratio, and (iii) introduces compression
profiles that allow to adapt the parameter-content-specific compression mechanisms
to future signaling information. Notably, by designing Slimfit as a separate layer in
the network stack, it can transparently be combined with an existing HIP DEX im-
plementation. In addition, our Slimfit layer can also be deployed without HIP DEX



186 7. Discussion and Conclusion

at an interconnecting gateway. The gateway then acts a compressor and decom-
pressor for traversing HIP DEX messages. As a result, communication end-points
and on-path network elements that are located outside the embedded domain can
remain oblivious to our compressed HIP message wire-format. This design trait
a↵ords incremental deployment of our Slimfit layer on a per-network basis.

The evaluation results show that our Slimfit layer achieves compression ratios be-
tween 1.36 and 1.55 depending on the handshake message and reduces the overall
message fragmentation of the HIP DEX handshake by about 25%. Moreover, Slimfit
also decreases the number of retransmissions and even marginally reduces the hand-
shake processing overhead. Notably, we identify a modest ROM overhead as the
only tradeo↵ for the above overhead reductions. Based on these results, we conclude
that Slimfit e↵ectively contributes to the sub-goal security protocol e�ciency.

7.1.3 Handshake Delegation Architecture

Our third contribution concerns the extensive RAM and ROM requirements that
render a comprehensive, public-key-enabled end-to-end security protocol implemen-
tation infeasible for a wide range of memory-constrained embedded devices. To still
enable such memory-constrained devices to communicate securely via standard end-
to-end IP security protocols, we introduced the handshake delegation architecture for
the DTLS protocol. Moreover, we showed that handshake delegation also a↵ords a
memory-e�cient mode of operation in the context of HIP DEX and Minimal IKEv2.

The key idea behind the handshake delegation architecture is to o✏oad the initial
public-key-based connection establishment handshake to an o↵-path, trusted del-
egation server. The unconstrained nature of the delegation server then allows to
use public-key cryptography for peer authentication and key agreement purposes
when performing the connection establishment on behalf of a constrained device.
Moreover, by subsequently handing over the established connection context to the
constrained device via session resumption functionality, this device no longer has
to implement expensive public-key cryptography. Instead, it can rely on an abbre-
viated session resumption handshake and e�cient symmetric-key cryptography for
the protection of application data. In addition to such lightweight key provisioning,
handshake delegation also provides for an authorization framework in the context
of embedded devices. To this end, a human operator leverages the central role of
the delegation server during the initial protocol handshake to control which other
communication end-points a networked embedded device is allowed to interact with.

The evaluation results show that our handshake delegation architecture achieves an
overall RAM and ROM reduction of about 64% compared to a certificate-based
DTLS protocol implementation. Likewise, the handshake delegation procedure re-
duces the computation overhead by 97% and the transmission overhead by 68%
in the context of constrained devices. With these result, our presented architec-
ture achieves similarly low computation and transmission overheads as a purely
symmetric-key-based DTLS handshake while providing additional authorization ca-
pabilities. Overall, we, therefore, conclude that handshake delegation provides a
comprehensive, yet compact solution for authentication, authorization, and secure
data transmission for the IP-based IoT. Hence, handshake delegation successfully
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addresses to the sub-goal security protocol e�ciency and, regarding the provided
authorization capabilities, also contributes to the sub-goal protocol security.

7.1.4 Secure 6LoWPAN Fragmentation

With our fourth and final contribution, we address the identified DoS attacks against
the 6LoWPAN fragmentation mechanism, i.e., the fragment duplication and the
bu↵er reservation attack. The fragment duplication attack enables an eavesdrop-
ping adversary to reactively block the reassembly of an overheard fragmented IPv6
packet by sending a single forged 6LoWPAN fragment to the target device. Similarly,
the bu↵er reservation attack enables an adversary without overhearing capabilities
to pro-actively block packet reassembly by maliciously reserving the 6LoWPAN re-
assembly bu↵er with a single 6LoWPAN fragment. To defend against these attacks,
we introduced two complementary security mechanisms at the 6LoWPAN layer.

The content-chaining scheme protects networked embedded devices against the frag-
ment duplication attack. To this end, content chaining a↵ords per-fragment authen-
tication by cryptographically binding the content of a fragmented IPv6 packet to its
first 6LoWPAN fragment via an e�cient hash-chain construction. This prevents the
adversary from maliciously attributing spoofed 6LoWPAN fragments to a legitimate
fragmented IPv6 packet. We complement this hash-chain construction with three
overhead reduction techniques that allow to deactivate the content-chaining scheme
during normal network operation and that reduce its computation and transmission
overheads when protecting against an on-going attack in its active state.

The split bu↵er approach allows to mitigate the bu↵er reservation attack at a target
device. As the name suggests, the split bu↵er approach segments the 6LoWPAN
reassembly bu↵er into fragment-sized bu↵er slots. This segmentation then fosters
per-fragment instead of per-packet competition for the scarce bu↵er resources at a
target device between the adversary and legitimate fragment senders. In addition,
the packet discard strategy for the split bu↵er approach severely penalizes suspi-
cious sending behavior. In combination, this prevents an adversary from maliciously
reserving the scarce reassembly resources at the 6LoWPAN layer of a target device.

The evaluation results confirm the practicability of the identified 6LoWPAN frag-
mentation attacks and show the e↵ectiveness of our proposed defense mechanisms
at moderate computation, energy, memory, and transmission trade-o↵s. Hence, we
conclude that the above defense mechanisms e↵ectively address the sub-goal protocol
security with respect to the fragmentation facilities provided at 6LoWPAN adapta-
tion layer. As such, our fourth contribution builds the foundation for our previous
three contributions by securing the 6LoWPAN layer as the key underlying transport
mechanism for DTLS, HIP DEX, and Minimal IKEv2 in the embedded domain.

7.2 Impact at the Time of Writing

We now provide a brief overview of the impact of our work at the time of writing. For
the sake of clarity, we distinguish between academia, industry, and standardization.
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Regarding the academic impact, we published all our core contributions at interna-
tional scientific conferences [HHW+13, HWZ+13, HSR+14] and workshops [HHW11,
HRW12, HZS+13, HHHW13]. As an indicator of the corresponding impact, we note
that each of our publications has already been cited by several other researchers.

In addition, we presented parts of our work in the context of project presentations
and invited talks from industry. For example, we recently held a keynote at a
workshop of the CPS.HUB/NRW, a federal initiative to increase the competitive
strength of the state of North Rhine-Westphalia in the field of cyber-physical sys-
tems [cpshub]. Here, we introduced the key technical enablers for IP technology in
the IoT and discussed network security concerns related to our work in this thesis.

Moreover, we proposed selected solutions of our four core contributions for standard-
ization at the IETF. These solutions include the flexible session resumption mech-
anism [HGS13], an early version of the collaborative puzzle-based DoS protection
mechanism [HHH13], and the adaptive retransmission mechanism [MH14]. To fur-
ther raise awareness of our work, we presented the flexible session resumption mech-
anism at the IETF 88 meeting of the DTLS In Constrained Environments (DICE)
WG [DICE13]. Notably, the adaptive retransmission mechanism recently replaced
the original aggressive retransmission strategy in the HIP DEX protocol specification
due to its improved retransmission properties [MH14]. In this context, our Slimfit
compression layer likewise was considered for adoption in the HIP DEX specifica-
tion. Slimfit, however, was considered independent protocol functionality and we
were encouraged to submit a separate document that specifies the devised compres-
sion scheme. We note that the write-up of this document is on-going work.

Besides the above standardization documents, we also contributed to current stan-
dardization e↵orts at the IETF in the context of the IoT via active participation in
the corresponding working groups. For example, we presented an early version of
the handshake delegation architecture at a pre-meeting of the Authentication and
Authorization for Constrained Environments (ACE) WG [ACE14] with the goal to
contribute to the considered problem space and to demonstrate a potential solution.
Finally, our feedback regarding the DTLS profile for the IoT helped to improve the
corresponding standardization document [TF15] in the context of DICE WG.

7.3 Future Research

Based on our contributions in this thesis and our gained understanding of end-to-end
security in the IP-based IoT, we identified a number of future research challenges.
We now briefly outline these challenges and sketch possible solutions.

7.3.1 Cross-Domain Device-to-Device Authorizations

With the handshake delegation architecture, we introduced a framework for intra-
and inter-domain authorization in the IP-based IoT. As illustrated in Figure 7.1,
we thereby considered the following two types of network interactions:

i) A networked embedded device exchanges information with another networked
embedded device from the same administrative domain.
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Figure 7.1 The presented handshake delegation architecture provides a framework for intra-
domain authorizations between networked embedded devices (1) and inter-domain authoriza-
tions with conventional communication end-points (2). Authorizations involving memory-
constrained embedded devices from remote administrative domains (3) are future work.

ii) A networked embedded device interacts with an unconstrained communication
end-point such as a local workstation or a Cloud-based service.

These network interactions cover the majority of use cases that are currently con-
sidered within the context of the ACE WG at the IETF [SGS+15]. Several of these
use cases, however, also imply direct device-to-device communication across admin-
istrative domains. In one of the considered building automation scenarios, e.g., a
smoke sensor from one building occupant is described to trigger the fire alarms of
all other occupants. Our presented architecture currently only provides limited sup-
port for this type of interactions as handshake delegation either requires the remote
end-point to support public-key cryptography or necessitates the delegation server
to be in possession of the device-specific delegation keys of both embedded devices.

To address this limitation, we envision the following extension of our handshake
delegation architecture. When authorizing a new connection between two networked
embedded devices A and B from distinct administrative domains (see case 3 in
Figure 7.1), the delegation server of domain A first establishes a connection with the
delegation server from domain B. During this handshake, both delegation servers
authenticate each other. In case of su�cient access rights, the delegation server
of domain B then encrypts a session ticket for device B and transfers this session
ticket to A’s delegation server. This delegation server, in turn, forwards the received
session ticket to device A along with its own session context. Devices A and B now
can re-establish the connection based on the delegated session context as described
in Chapter 5. We note that we consider the detailed design and a thorough security
analysis of this extended handshake delegation architecture to be future work.

7.3.2 Selective End-to-End Payload Security for the IoT

Our contributions in this thesis primarily focus on protocol e�ciency and secu-
rity issues during the connection establishment phase of the DTLS, HIP DEX, and
Minimal IKEv2 protocols in the context of the IoT. During our research, we also
identified design-level issues with respect to the protection of application data that
go beyond recent e↵orts to reduce the header overhead of payload security in the
context of DTLS [RSH+13, RSD14] and the IPsec protocol suite [GMSS10, RDC+11,
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Figure 7.2 The network-layer and transport-layer protection of standard end-to-end IP security
(marked in light gray for 1 and 2, respectively) prevent cross-protocol conversion middleboxes
or caching proxies from operating on traversing network packets. In contrast, selective end-to-
end payload security (3) only encrypts confidential and integrity-protects immutable application
data (marked in dark gray) and, thus, a↵ords provisioning of these on-path middlebox functions.

RVJ12, MG14]. Specifically, we observe that middleboxes often constitute impor-
tant on-path auxiliaries in the IoT. Cross-protocol conversion between CoAP and
HTTP at an intermediary proxy, e.g., is presumed to foster adoption of CoAP by
a↵ording incremental deployment of this new application layer protocol for existing
HTTP-enabled hosts or services [CLR+15]. Likewise, caching proxies enable ac-
cess to information from sleeping devices and allow to reduce transmissions inside
the embedded domain [SHB14]. Such additional on-path services commonly require
access to traversing packets at the application layer. As illustrated in Figure 7.2,
this requirement stands in direct conflict with the network-layer or transport-layer
protection that is commonly provided by existing end-to-end IP security solutions.

With the goal to support cross-protocol conversion and caching proxies, we con-
ducted initial research based on the idea of selective end-to-end payload security.
More precisely, we investigated the integration of an object-based security mech-
anism such as JOSE [Bar14] with the HIP DEX protocol as a replacement of the
original IPsec-protected payload channel. We note that we performed this initial re-
search in collaboration with a student in the context of his Bachelor’s thesis [Bog13].

The key idea behind the proposed approach is to extend the existing protocol design
with two additional capabilities. First, a new negotiation mechanism enables the
handshake peers to agree on the use of object-based payload security. Second, a
novel API allows an application to leverage the established session context to se-
lectively protect its data before transmission. More precisely, an application uses
this new API to encrypt confidential information and to protect the integrity of im-
mutable information. As shown in Figure 7.2, public mutable information remains
unprotected. As a result of such selective payload protection, intermediary proxies
can perform (restricted) cross-protocol conversions and are able to cache information
from sleeping devices. In addition, we also envision caching support for groups of
recipients. Here, the main challenge, however, is that all group members must be in
possession of the same payload protection keys to be able to decrypt and verify the
integrity of application data from a caching proxy. We identify the design of this
group key mechanism and the integration of the proposed approach with DTLS and
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Minimal IKEv2 as important future research. Still, we note that our initial results
already strongly indicate the general feasibility of the proposed approach.

7.3.3 End-Point-Assisted In-Network Security

Our four core contributions in this thesis specifically concern network security mecha-
nisms that are provided by the communication end-points themselves. In existing IP
networks, this type of network security is commonly supplemented with in-network
security solutions such as firewalls and intrusion detection systems. We expect mid-
dleboxes that provide such in-network security to similarly complement our consid-
ered end-to-end security solutions in the context of the IoT. Notably, one would
expect such middleboxes to operate on detailed and precise information due to their
critical role in the network. The IP network architecture and its supporting proto-
cols, however, provide middleboxes with little more than IP addresses, port numbers,
and protocol IDs as easily accessible information. Moreover, deep packet inspection
typically only a↵ords a probabilistic classification of data flows and commonly fails
in case of encrypted application data. In-network security, therefore, regularly has
to rely on ambiguous and forgeable information in order to identify communication
end-points and applications as the origin of a data flow and to decide which flows to
permit and which ones to block. This circumstance, however, impairs the e↵ectivity
of in-network security for the IoT in particular and for IP networks in general.

To tackle this issue of inadequate context information on the communication path,
we previously proposed a novel end-to-middle signaling extension for the HIP pro-
tocol handshake, called SEAMS [HZH+12]. This extension enables on-path middle-
boxes to actively participate in the handshake by requesting context information
such as the device type or the employed application from the handshake peers. The
handshake peers then look up the requested end-point contexts and signal this infor-
mation within the handshake. As the signaled contexts are cryptographically bound
to the handshake peers, middleboxes can verify and use the requested information to
provide more secure and richer middlebox functions. Our SEAMS extension, how-
ever, heavily relies on the use of public-key cryptography and, thus, would cause
excessive overheads in the context of networked embedded devices. We consider the
development of a similar approach to SEAMS for the IoT interesting future work.

7.4 Concluding Remarks

The recent exposure of several high-profile cyber-attacks including pervasive mon-
itoring, corporate data theft, and industrial sabotage emphasizes the fundamental
need for comprehensive network security in an increasingly interconnected world.
We expect this requirement to become even more pronounced in the IoT, where
cyber-attacks are prone to have large-scale physical impact and to involve highly
sensitive private information. At the same time, the device and network constraints
in the embedded domain as well as the resource asymmetry in the IoT render the
design of e�cient and secure network security solutions especially challenging.

In this thesis, we showed that many of these emerging protocol design challenges
can e↵ectively be resolved via resource-conscious protocol extensions and additional
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architectural considerations. Moreover, we highlighted the fact that also seemingly
unobtrusive IoT protocol adaptations, e.g., as provided by the 6LoWPAN layer, can
have detrimental impact on the overall security properties of an otherwise secure
networking solution. Hence, we re-iterate the need to consider network security as a
primary goal in the design of new as well as in the adaptation of existing networking
solutions. To conclude, it is our hope and strong belief that the protocol analyses
and the security solutions presented in this thesis make a valuable contribution to
the successful deployment of standard end-to-end IP security in the IoT. Finally,
we hope that our work inspires future research in the field of IoT network security.
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