
On the Interference As Noise Approximation in
OFDMA/LTE Networks

Donald Parruca∗ and James Gross†
∗UMIC Research Centre, RWTH Aachen University, Germany

†School of Electrical Engineering, KTH Royal Institute of Technology, Sweden
parruca@umic.rwth-aachen.de

Abstract—In this paper we generalize analytical performance
models for proportional fair scheduling in OFDMA/LTE net-
works. We address the issue of modelling multiple fading interfer-
ers present in practical deployments. Specifically, we elaborate on
the stochastic modelling of SINR-distribution for which we derive
the rate expectation of instantaneously scheduled resources. The
resulting analytical performance model is validated by means
of simulations considering realistic network deployments. Com-
pared with related work, our model demonstrates a significantly
higher accuracy for long-term rate estimation. We illustrate the
utility of such high-precision models by studying the impact on
terminal assignment in fractional frequency reuse. Simply by
using a suitable estimation model, cell-edge throughput can be
improved up to 50%.1

I. INTRODUCTION

Cellular network operators are constantly facing an increas-
ing demand for higher mobile data rates. To cope with it,
several approaches are proposed for upcoming evolution of
mobile networks. Among others, advanced antenna techniques,
frequency reuse of one and cell densification in regions with
high capacity requirement are important system features to be
exploited. In the last approach the system capacity is increased
by deploying base stations (cells) closely to each other (a few
tens to a couple of hundred meters). However, such approaches
should be handled with care as co-channel interference caused
from full frequency reuse of the radio spectrum severely
impacts communication capacity. Careful planning as well
as dynamic inter-cell interference coordination techniques are
needed for an efficient network operation.

This efficient operation of the network requires essentially
dynamic long-term system decisions at run-time with respect
to the performance of the system. Long-term refers here to
timespans in the range of seconds and applies mainly to
admission control, load balancing, cell association as well as
intercell interference coordination. This is contrasted by the
short duration of the transmit slots of LTE systems in the range
of milliseconds and the fast scheduling occurring once per slot.
Any such long-term decision requires a precise modelling of
link capacity over this time span. However, this modelling
is involved for LTE systems due to several aspects. On the
one hand, link capacity over longer time spans depends on
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random variables such as the channel gain of the signal-of-
interest as well as the interfering signals. As LTE is designed to
cope with a frequency reuse of one, many potential interfering
sources can interact with the signal of interest. Furthermore,
instantaneous link qualities translate into data rates depending
on the link adaptation technique in LTE. Most importantly,
uniform modulation and coding over several resource blocks
makes the translation of a statistical link quality model into a
corresponding link rate model difficult. Thirdly, LTE features
dynamic (fast) resource allocation per slot (i.e. on a millisec-
ond base) which provides a performance boost but leads also to
an impact on the statistical link model. Summarizing, precise
link quality models are hard to determine for LTE networks.

In related work, this has lead to the usage of several
simplifications to steer long-term dynamic operations of the
network. For instance, in [1] and [2], this has lead to the
simplification of the instantaneous signal-to-interference-and-
noise ratio (SINR) as exponentially distributed to steer long-
term dynamic operations of the network. This model is also
referred to as interference-as-noise model, because the impact
due to interference is averaged and modelled as an additional
constant noise component in the SINR expression. Mean-
while, in [3] the SINR distribution is assumed as Gaussian
distributed. Simulations and analytical evaluations from [4]
showed that both these simplifications are very similar in
rate prediction performance. On the other side, the SINR
distribution is not exponential and a precise modelling of the
SINR together with the consideration of the dynamic resource
allocation has a significant divergence from the approximate
model [4]. Nevertheless, the work presented there did not
consider multiple interfering sources which are in general
present in practical LTE network deployments.

In this paper we generalize our previous work in [4] and
address the issue of multiple interferers and uniform modula-
tion and coding. Precisely, for an exact stochastic model of the
SINR-distribution for many interferers, we model analytically
the impact due to dynamic (fast) resource scheduling (i.e.
proportional fair scheduling) and uniform modulation and
coding in the down-link of LTE systems. This model is eval-
uated based on simulations by considering realistic channel
and deployment data. We show that with respect to related
work, we provide the most accurate model for long-term rate
estimates in LTE systems under the mentioned conditions.
While the performance difference is large at the cell edge,



it becomes smaller at the cell centre. A further aspect in the
model precision is the number of interfering sources. Finally,
for standard fractional frequency reuse (FFR) we demonstrate
the impact from the high-precision rate model, which gives
significant performance improvements in FFR systems simply
from a more accurate rate estimation. This strengthens our
claim that exact performance models are required for efficient
operation of upcoming LTE networks.

II. SYSTEM MODEL

We consider the downlink communication of an
OFDMA/LTE multi-cellular network deployment. The
frequency spectrum is split into N chunks of subsequent
NS sub-carriers also known as resource blocks (RB), used
for the transmission of NC OFDM symbols. Time is slotted
into so called transmission time intervals (TTI) of duration
TTTI. Every time slot the base station, being the central
coordination point of transmissions, dynamically allocates
resources to mobile terminals. Among the vast choice of
resource allocation algorithms, proportional fair scheduling
(PFS) has found a very wide acceptance, due to its ability to
take advantage of multi-user diversity and provide fairness in
resource allocation [4],[5]. We assume in this paper that the
base station is performing resource allocation according to
PFS.

Assuming I interfering base stations are causing co-channel
interference instantaneously transmitting in the same fre-
quency band, the total instantaneous random interference
power is given by as Y (t) =

∑I
i=1 Yi(t). Considering constant

noise power level of N0 the signal-to-interference-noise ratio
(SINR) realization at terminal j on RB n is thus represented
by:

(1) γj,n(t) =
Xj,n(t)∑I

i=1 Y
i
j,n(t) +N0

.

Mobile terminals periodically send channel quality infor-
mation feedback to the serving base station. It is a measure
directly depending on the SINR γj,n(t) telling the highest
modulation and coding scheme (MCS) that the reporting
mobile terminal can decode so that a target bit error rate is
maintained. The spectral efficiency of the MCS used is given
by C(γj,n(t)). We consider the mapping used in [6]. At the
base station (BS) side two metrics can be used for scheduling,
it can be either the potential instantaneous rate that RBs can
transport: NSNC

TTTI
C(γj,n(t)) or the RB’s SINR value obtained

from the inverse spectral efficiency function C−1(γj,n(t)). In
this paper we work with with an SINR-based proportional fair
scheduling scheduler. For each MS and RB, the proportional
fair scheduling algorithm based on the previous feedbacks
builds the average SINR γ̄j,n during the last W TTIs:

(2) γ̄j,n (t) =
1

W

t−1∑
i=t−W

γj,n (i) .

Then, the scaled SINR γ̂j,n =
γj,n
γ̄j,n

is used as a priority metric
in allocating the resources. The scheduling decision Mj,n = 1

on assigning resource block n to MS j is taken if this terminal
has the highest scaled SINR on the RB under consideration:

(3) ∀n : j∗n (t) = arg max
j∈J

γ̂j,n(t) .

In case at time instant t a non-empty subset of RBs
Aj ⊆ {1, . . . , N} have been scheduled to mobile station j,
then a common modulation and coding scheme mj is used
for transport block transmission. There are several ways how a
MCS might be chosen, in this work we assume the application
of a conservative approach, i.e. for a robust transmission the
common MCS is set according to the lowest reported CQI of
the scheduled subset:

(4) mj = min
n∈Aj

mn
j .

III. THROUGHPUT EXPECTATION IN OFDMA NETWORKS

For the throughput expectation under proportional fair
scheduling, the basic probability density and cumulative distri-
bution functions without the impact of the scheduler need first
to be computed. In interference limited scenarios Y (t)� N0

the signal-to-interference (SIR) ratio distribution function is
sufficient. However, for comparable power levels of interfer-
ence and noise, corresponding functions of SINR are more
preferable. The probability density function (PDF) and cu-
mulative distribution functions (CDF) were already addressed
in [7]. The SIR CDF is built according to an infinite sum
of elements of a series. Additionally, the SIR distribution
functions are defined for only two extreme cases: interferers
have the same mean interference power or mutually different.
Scenarios where groups of interferers have same mean but
mutually different between groups is not defined. For the sake
of completeness we derive in the following the SINR PDF and
CDF for any possible configuration of interfering sources. The
corresponding SINR CDF is built based on a limited number
of series elements which allows numerical evaluation through
software.

1) Basic SINR PDF: We consider here a Rayleigh-Rayleigh
fading model. Both the power distribution of signal-of-interest
fX(x) and of single interfering sources fYi(y) are exponen-
tially distributed like:

fX(x) = λ0 exp(−λ0x), x ≥ 0,(5)
fYi(x) = λi exp(−λiy), x ≥ 0.(6)

where X and Y are respectively the powers of the fading
signal-of-interest and interference. Meanwhile, λ = 1

P ·h̄ is the
parameter of the exponential distribution, equal to the inverse
of the average received power. For a constant transmit power
P and path-loss h̄, the parameter is given by λ = 1

P ·h̄ . In the
following we will denote by λ0 the parameter of the signal-of-
interest and by λ1, . . . , λI the corresponding parameters of the
individual interfering sources. Given the above definitions we
are interested in the cumulative distribution function (CDF)
FZ(z) and probability density function (PDF) fZ(z) of the
SINR.

The interfering sources can be arranged according to their
parameter λi in tuples (rt, λt), where rt denotes the number of



interfering sources having the same parameter λt. Denote the
amount of tuples by p, then the total number of interferers
can be expressed as I =

∑p
t=1 rt. The sum of rt i.i.d.

exponential random variables each with parameter λt (from
the tuple (rt, λt)) is well known to be gamma distributed:

(7) fYt(y) =
λte
−λty(λty)rt−1

(rt − 1)!
y > 0.

Then, the total interference power fY (y) can be considered
as the sum of p gamma distributed random variables with
corresponding parameters (rt, λt). In order to analytically
deal with Y =

∑p
t=1 Yt we utilize the generalized integer

gamma distribution law, which was introduced by Coelho [8],
describing the distribution of the sum of gamma distributed
random variables with integer shape parameter rt and unique
rate parameters λj . It is constructed as a sum of finite elements
and is quite easy to evaluate numerically by software. From
Coelho’s work [8] we have:

(8) fY (y) = K

p∑
t=1

Pt(y)e−λty, (y > 0)

and

(9) FY (y) = 1−K
p∑
t=1

P ∗t (y)e−λty, (y > 0),

where

(10) K =

p∏
t=1

λrtt , Pt(y) =

rt∑
k=1

ct,ky
k−1,

and

(11) P ∗t (y) =

rt∑
k=1

ct,k(k − 1)!

k−1∑
s=0

ys

s!λk−st

,

with

(12) ct,rt =
1

(rt − 1)!

p∏
s6=t
s=1

(λs − λt)−rs , t = 1, . . . , p,

and

ct,rt−k =
1

k

k∑
s=1

(rt − k + s− 1)!

(rt − k − 1)!
R(s, t, p)ct,rt−(k−s),(13)

(t = 1, . . . , p; k = 1, . . . , rt − 1)

where
(14)

R(s, t, p) =

p∑
k 6=t
k=1

rk(λt − λk)−s, (s = 1, . . . , rt − 1).

Considering noise power to be constant, the PDF of the
disturbing component (interference + noise) can be computed
as a shift operation fY+N0

(y) = fY (y − N0). Following

standard rules of PDF transformation (found in [9]) we can
obtain the cumulative distribution function of the SINR:

(15) FZ(z) = 1−K
p∑
t=1

P ∗∗t (z)e−λ0N0z,

where

(16) P ∗∗t (z) =

rt∑
k=1

ct,k(k − 1)!
1

(λt + λ0z)k
.

Deriving FZ(z) with respect to variable z the corresponding
density function can be obtained:

(17) fZ(z) = K

p∑
t=1

P ∗∗∗t (z)e−N0λ0z

where

(18) P ∗∗∗t (z) =

rt∑
k=1

ct,k(k − 1)!
λ0(k +N0(λt + λ0z))

(λt + λ0z)k+1
.

2) Scheduled SINR PDF transformation: It is well known
that proportional fair scheduling beneficially transforms the
probability density functions of the scheduled resource blocks.
Nevertheless, the transformation is tightly coupled with the
basic SINR PDF and CDF functions developed in the previous
section. From [4] the scheduled SINR PDF transformation is
given as:

(19) fZj,n|Mj,n=1(z) =∏
∀i 6=j∈J FZi,n

(
E[Zi,n]
E[Zj,n] · z

)
· fZj,n

(z)

P(Mj,n = 1)
,

where E[Zj,n] is the expectation of the SINR modelling γ̄j,n
for a sufficiently large window size W . The corresponding
CDF can then be computed from the following integral:

FZj,n|Mj,n=1(z) =

z∫
0

fZj,n|Mj,n=1(s) ds.(20)

3) Throughput expectation: In LTE it is required that in-
stantaneously scheduled resource blocks should be transmitted
with a common modulation and coding scheme (MCS). This
feature has implications on rate modelling as the MCS decision
is based on the joint SINR realisations of the assigned RBs. A
rate model for such a system is introduced in [4] expressing the
total rate per MS as the sum over all possible RB assignments
A:

Rj =
∑

∀A⊆{1,...,N}

Rj,A,(21)

whereA is the non-empty subset of RBs:A ⊆ {1, . . . , N}. We
work here with a conservative MCS selection approach based
on the worst SINR realisation of simultaneously assigned RBs,
hence the rate expectation for the subset A is based on the



minimum order statistic fZmin
j,A |Mj,A=1(z) of the scheduled

SINR PDF as follows:

(22) Rj,A = Pj,A|A|
R · S
TTTI

∞∫
0

fZmin
j,A |Mj,A=1(z) · C(z) dz,

where Pj,A is the probability scheduling subset A to terminal
j expressed as:

(23) Pj,A =
∏
n∈A

P(Mj,n = 1)
∏
n/∈A

[1− P(Mj,n = 1)],

which is composed from the scheduling probability of a single
RB computed as follows:

P(Mj,n = 1) =

∞∫
0

fẐj,n
(z) ·

∏
∀i6=j∈J

FZi,n
(E[Zi,n] · z) dz.

(24)

The minimum order statistic of the scheduled SINR is repre-
sented as follows:

(25) fZmin
j,A |Mj,A=1(z) =

∑
n∈A

[
fZj,n|Mj,n=1(z)

·
∏

∀m 6=n∈A

(
1− FZj,m|Mj,m=1(z)

) ]
.

Although a high degree of detail was included in the rate
estimation model, still some deviation is to be expected due
to lack of modelling of correlation in time and frequency, and
different distributions in fading (i.e. no Rayleigh distribution).

IV. NUMERICAL ANALYSIS

In this section, we evaluate our model in two sets. Initially,
we validate both the basic and scheduled SINR distributions.
In a second step, we then compare the rate estimates of our
model with the interference as noise estimate and benchmark it
with values from an LTE simulator. We choose the urban area
of the city of Munich as a simulation playground. In order to
employ accurate path loss values h̄ a ray prediction algorithm
introduced in [10] is used. A 3D model of the city together
with the position of a base station and antenna pattern serve as
input in predicting the radio signal strength in the surrounding
area of the base stations. Knowing the position of MSs in the
map, we can easily relate to the predicted path loss values
from the propagation map. They are further used into our LTE
system level simulator.

We consider in our evaluation an LTE-like network de-
ployment operating with a bandwidth of 5 MHz, equal to
25 transport resource blocks used for the transmission of 14
symbols and always aggregating 12 subcarriers to one resource
block. The center frequency is equal to 1.8 GHz and 20
W transmission power per sector is assumed. Transmission
is time-slotted with duration of TTTI = 1ms. Fast fading
was generated according to the Jake’s model with a Doppler
shift of 70 Hz and delay spread of 991 ns being parameters
according to the Extended Typical Urban Model [11]. The
simulated links are SISO communication channels using 120o

sectorized antennas with 15 dBi maximal gain for the eNB
and omnidirectional antenna for MS. From the overall network
deployment we select an arbitrary cell and simulate the down-
link communication for different drops of mobile stations. The
communication is limited by co-channel interference generated
from the surrounding cells, all operating in the same frequency
band. A view of the the cell footprint, which is also the region
with the strongest long-term SINR is represented in Figure 1.

MS: A

MS: B

Fig. 1: Cell footprint and pathloss from Site 1.

A. SINR Model Validation

For the SINR model validation we simulate the downlink
communication of a random drop of 20 terminals under the
effect of three interfering sources (Site 3, 4 and 7). The
cumulative distribution function of SINR developed in the
previous section is validated here for two extreme locations
that might arise in a cell: cell core (MS A in Fig. 1) and cell
edge (MS B in Fig. 1). The SINR of a fixed resource block
assuming flat fading for the corresponding subcarriers was
simulated. The instantaneous SINR realizations at the probe
locations were periodically sampled every 1 millisecond for
a total simulation time of six seconds. We will refer to the
statistics of this measurement as the simulated basic SINR.
Additionally, we sampled also the scheduled SINR realization
to one of the shown terminals. Based on these data, we do the
validation of the theoretical models of SINR distributions. We
compare the theoretical models of basic and scheduled SINR
distributions (respectively Formulas (15) and (20)) with the
simulated CDF curves. The results are plotted in Figure 2.

We can observe that the CDF curves of the basic SINR
observations and the theoretical model are in general match-
ing which indicates the validity of our analytical model. A
good match can be also observed for the scheduled SINR
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Fig. 2: Model validation of the basic FZ(z) and scheduled
FZ|Mj,n=1 SINR distributions at MS locations A and B.

distribution, especially for the low SINR regime. For high-
SINR regimes the theoretical model overestimates scheduled
SINR. This basically has two different reasons. Firstly, the
approximation of the window size W which in our simulations
was limited (1000 TTIs) long, is not time-limited in the
theoretical model, as we take the expectation over the random
variable. Secondly, the correlation in time and frequency are
also not modelled in the theoretical model. Nevertheless, as
shown in the next section this bias has only a weak impact
on the precision of the rate estimation for the corresponding
terminals.

B. Rate Model Validation in Practical Deployments
For the rate model validation the prediction accuracy for

each drop of mobile stations was measured. We simulated
30 scenarios (mobile terminal drops) of 20 mobile terminals
uniformly distributed throughout the cell under investigation.
Each drop was further simulated 10 times for different seeds
of random number generators, their mean will be referred
as observed rates R̂j . For each UE drop, we compute the
corresponding theoretical rate from Formula (26). From these
data we compute the relative error εj of rate predictions like
εj = |R̂j −Rj | · 100/R̂j .

The accuracy analysis was further performed also for an
alternative, simplified model widely used in the literature [1],
[2]. Firstly, the impact of common modulation and coding
schemes is ignored. This relaxes the dependency due to
common MCS between different resource blocks in the rate
model, leading to the following expression R̃j =

∑N
n=1Rj,n,

where Rj,n is the rate expectation per RB computed like
following:

Rj,n =
NS ·NC
TTTI

∞∫
0

C(z)
∏
∀i 6=j

FZ̃i,n

(
E[Z̃i,n]

E[Z̃j,n]
· z

)
·fZ̃j,n

(z) dz.(26)

Secondly, instead of accounting for the interference term
in the SINR formula according to its precise distribution, the

average of the interference power is summed up and added to
the noise as constant parameter. Therefore, the SINR becomes
exponentially distributed. Hence, interference power is consid-
ered not being as a sum of exponentially distributed random
variables, but as noise with constant power: P ij,n =

∑I
i p

i
j,nh̄

i
j .

Such a model is widely used in [12], [13], [14] and [15]. We
will name this rate model as “Interference as Noise” (IaN)
whose instantaneous SINR distribution is assumed as:

FZ̃j,n
(z) = 1− exp

(
−
P ij,n + η

P sj,n
· z

)
.(27)

Still the effect of multi-user diversity gain is modelled by
plugging the “Interference as Noise” PDF and CDF functions
in Formula (26).

The error CDF curves for both models are shown in Figure
3a. There we show the influence that increasing number of
interferers have on the prediction accuracy. As it can be
noticed the exact model remains relatively unaffected by the
increasing number of interferers. The worst prediction error
(approx. 50%) appears for the case of a single interfering
source and diminishes as the number of interferers increases.
The increasing number of interferers reduces the deviation
of the total received interfering power. This causes the total
interference power to become more similar to an additive
component to noise. The error distribution among the cell is
represented in Figures 3b, 3c and 3d where we notice that also
for typical practical scenarios of 3 interfering base stations
per sector the rate prediction accuracy of IaN model remains
still low for cell-edge terminals. Rate estimations for mobile
stations being nearer to the interfering source have the highest
discrepancy.

We believe that such differences of accuracy for different
models have an important impact on long-term system de-
cisions such as inter-cell interference coordination, handover
decisions, admission control or load-balancing. Therefore, we
study in the next section the impact that highly detailed models
have on one of these approaches, namely inter-cell interference
coordination.

V. ACCURACY IMPACT ON FRACTIONAL FREQUENCY
REUSE SCHEMES

Fractional frequency reuse approaches [1],[16],[17] assign
the available frequency spectrum in each cell exclusively to
two main groups of users, namely cell center and cell-edge
located users. An orthogonal spectrum for cell-edge terminals
is allocated to the neighbouring cells, avoiding interference
from first-tier base stations. On the other hand, centrally
located terminals are less susceptible to inter-cell interference,
than cell-edge ones. Hence the destined spectrum for such
users is fully reused in all cells.

Many FFR schemes base their decision purely on the mobile
terminal distance to the base station. For example in [16]
threshold values for the categorisation of cell-edge and cell
center are used. Such kind of categorisation is sub-optimal,
because the communication link is subject not only to path-
loss (proportional with the distance to the serving base station)
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Fig. 3: Error of IaN for different number of interfering sources

but also to shadow fading (resulting from obstructing objects in
the communication path). Therefore in [17] optimal threshold
values of long term SINR for an optimum allocation are
searched. Nevertheless, threshold based approaches are not
conscious of the impact their decisions have on the resulting
performance of mobile terminals.

Instead, in the following we elaborate on the user classifi-
cation scheme of the strict-FFR approach used in [16] shown
to perform better than soft frequency reuse ICIC schemes.
In strict-FFR the cell-edge frequency spectrum is exclusively
assigned to exterior users. On the other side, interior mobile
stations do not share any spectrum with cell-edge ones. The
cell-edge spectrum is reused with a factor of two in case of
one interfering source and with a factor of three when more
interfering cells are available. The classification algorithm used
here is a max-min optimization problem. Initially all terminals
are assumed to be centrally located and their potential rate is
computed according to one of the rate models (Formula (21) or
(IV-B)) introduced in this paper. Initially the terminal having
the worst predicted rate is considered for reallocation into the
cell-edge pool. If the predicted minimal rate of the cell is
increased (based on the throughput expectation model used)
the reallocation algorithm proceeds with the next worst rate
predicted terminal from the cell center pool. The reallocation
of cell center to cell edge users proceeds as long as the minimal
rate of the system is increased. When a degradation of the
minimum rate is noticed, the categorisation process terminates.
As it can be noticed it is a simple but efficient categorisation
algorithm where the rate prediction model plays a crucial role.

For the case of a single interferer, 3 RBs per cell were
assigned for the cell edge users. Meanwhile, for a higher
number of interferers 5 RBs were allocated to terminals
belonging to the edge pool. We evaluated the quality of system
allocations based on system level simulations and measured
the throughput for each terminal. Based on these data we built
the corresponding rate empirical CDF curves and show the
results in Figure 4. We are applying a max-min optimization
algorithm, which sacrifices the rate of terminals being in good
channel conditions to improve the rate of bad ones. Therefore,
the focus relies on the cell-edge located users and we will
concentrate on the lower 50% percentile of the rate ECDF
curves.

Figure 4 represents the rate empirical CDF curves for the
system operating under the influence of 1-3 and 6 interference
sources. Compared with frequency reuse of one, allocations
based on the detailed rate model have always a positive impact
on the cell-edge located terminals (see 5% percentile). The
contrary is true for the interference as noise model when a
single interfering source is present. Although the performance
of cell-edge terminals based on the “IaN” allocation improves
with the increasing number of interferers it still remains to
some point inferior to allocations based the detailed rate
model. For example, for a typical scenario of a sector sur-
rounded from three other interfering ones a 30% performance
improvement (from 300 kbps to 400 kbps) is obtained solely
working on a more precise model. As the number of interferers



increases (scenarios of 6 interferers) the performance of both
models is comparable.

VI. CONCLUSIONS

In this paper we introduced a highly detailed rate-prediction
model of OFDMA/LTE systems operating with proportional
fair scheduling at the base station. It precisely models system
aspects like the effect of multiple fading interfers and mod-
ulation and coding scheme constraints, showing to have an
important aspect on the rate prediction accuracy. Based on the
the observed significant system improvements through inter-
cell interference coordination we conclude that an increased
level of detail in rate prediction models has a positive influence
on long-term system decisions.
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Fig. 4: FFR performance for IaN and exact models


