
Pervasive Content-centric Wireless Networking

Hanno Wirtz, Matteo Ceriotti, Benjamin Grap, Klaus Wehrle
Chair of Communication and Distributed Systems, RWTH Aachen

{wirtz, ceriotti, grap, wehrle}@comsys.rwth-aachen.de

Abstract—Current communication approaches assume net-
work associations as a prerequisite to both content discovery
and access. This network-centric paradigm incurs substantial
communication and time overhead, as devices build knowledge
of content availability only after blindly associating to a net-
work. In pervasive mobile networking, this prerequisite and
associated overhead prevents devices to efficiently identify desired
communication partners, i.e., devices running an application or
providing content of interest, within the broad mass of devices
in communication range as found in everyday scenarios.

SO-Fi, instead, realizes content-centric wireless networking
by enabling pervasive content discovery before establishing a
network infrastructure. SO-Fi builds on the IEEE 802.11 wireless
broadcast medium to instantly achieve a discovery scope covering
all devices in communication range. Realizing content discovery
outside of secure network associations, SO-Fi supports use-
case-specific communication security, i.e., confidentiality, WPA2
network security, DoS robustness, and user authentication. We
show SO-Fi’s feasibility and performance through real-world
experimentation. Indeed, SO-Fi makes instant, content-centric
wireless networking readily accessible to application designers.

I. INTRODUCTION

Offloading Internet application traffic and data to mobile
wireless networks has been recognized as a viable solution
to mitigate overloaded carrier networks. In this, opportunistic
device-to-device networking [1]–[3], leveraging the proliferation
of mobile devices, provides a networking structure to support
offloaded application communication. Supporting this notion of
utilizing device-to-device communication, recent results show
the existence of a critical mass of contacts between devices in
which communication may occur [4]. The gainful and timely
utilization of contacts then determines [5] the success of the
respective (offloaded) applications [6]–[8]. In such scenarios,
given the number and diversity of devices and applications, the
key challenge is to search for and connect to the right devices
at the right time. In essence, this requires immediate and direct
discovery of devices in communication range that participate
in the same application, i.e., by providing or requesting content
of interest.

As Fig. 1 illustrates, the network-centric design of 802.11
requires instantiation of and association to a single network
prior to communication and subsequently restricts the discovery
scope to the network, negating the, in principle, pervasive
wireless discovery scope. This forces discovery to occur through
either i) iterative association to observed networks and subse-
quent discovery, entailing enormous time and communication
overhead, or ii) global provision of a designated ad-hoc network,
which appears to be impractical. Outside of an existing network,
device [9] and network discovery, e.g., via 802.11 scans,
can not indicate content availability or application interests;
conversely, content discovery mechanisms require a shared

!"#$%#$&'()*"+%,-&.*"/%& !"#$%#$&0,"+()("#&.*"/%&

1%$2",34*%#$,(*&

50& !!

! !

! !!

0%,+6)(+%&

50& !!

! !

! !!

!"#$%#$4*%#$,(*&

50& !!

! !

! !!

Fig. 1. Network-centric communication, as in 802.11, restricts content discov-
ery and provision to the boundaries of disjunct networks, In contrast, pervasive
communication envisions complete coverage of all reachable devices but would
require maintaining a single permanent (ad-hoc) network infrastructure. SO-Fi
enables content-centric communication, realizing a pervasive discovery scope
and efficient, immediate provision of content between the requesting and
providing device.

network. To overcome this deficit of semantics in wireless
discovery, previous approaches [10]–[13] overload Bluetooth
or 802.11 protocols to continuously push selected application
information or rely on coordination by global higher-layer
entities [14], [15].

In this paper, we propose the opposite, i.e., a pull mechanism
that broadcasts content requests in standard 802.11 frames,
exploiting the full pervasive scope of wireless communication
for discovery. As shown in Fig. 1, discovery thus triggers
instantiation of corresponding content-centric 802.11 networks
only at devices that provide the requested application or content.
Applications can thus “demand” a specific 802.11 network
for purposeful communication from the surrounding devices.
SO-Fi (Secure On-demand Wi-Fi) thereby i) does not require
an existing network, ii) enables instant discovery and full
coverage of the wireless environment, iii) avoids the overhead
of continuous information pushing, iv) mitigates the constraints
of wireless protocols in pushing relevant information, and
v) accounts for the simultaneous execution and the sheer
number of mobile applications that require discovery. Similar
to content centric networking in existing wired [16] and
wireless [17] networks, SO-Fi enables users and applications to
build communication on content rather than physical locations
that hold data. However, these approaches assume connectivity
to a transport substrate, i.e., a wireless network or the Internet,
to be available. In contrast, device-to-device networking in
pervasive mobile scenarios needs to, in the first place, establish
a communication substrate between devices, e.g., an 802.11
network. Addressing this issue and solving the intuitive problem
of how to identify and connect to the desired devices in mobile
scenarios, SO-Fi then makes two contributions:

Content-centric wireless networking: SO-Fi broadcasts
content discovery queries in the SSID of 802.11 Probe Request
frames of the 802.11 association process. We modify the 802.11

access point (AP) functionality to opportunistically originate
802.11 networks as a results at devices that provide content
matching the request. Corresponding provider responses in
Probe Response frames then trigger the association of the
requesting client to this network, providing a communication
infrastructure. In this, hash function-based content addressing
adheres to the space constraints of 802.11 frames.

Security in content discovery and provision: SO-Fi
incorporates use-case-specific security credentials to provide
discovery confidentiality in the observable wireless medium.
We support authentication for access control and derive WPA2
keys per-request to secure network access and encrypt traffic. To
protect providers from Denial-of-Service (DoS) attacks, SO-Fi
employs cryptographic client puzzles.

As an illustrating example, imagine the two motivating
scenarios in InSight [18], namely visually identifying i) persons
with similar interests, e.g., that want to share a cab at the airport,
by way of an annotated message and ii) personal friends against
a group of people by way of visual fingerprints. Traditionally,
in the absence of a global coordination entity as in [14], [15],
each person would need to establish an 802.11 network or
associate to an existing one in order to transmit fingerprints.
The lack of coordination and lack of content semantics in
network establishment and associations results in a random
number of 802.11 networks, confining users to each network
and inducing overhead when iterating through all networks. In
contrast, the InSight application would, using SO-Fi, encode
a query for InSight users. The resulting on-demand 802.11
network then covers only the relevant devices and facilitates
the exchange of visual fingerprints and messages between
application instances. Conversely, when seeking and identifying
personal friends, along with sharing and displaying sensible
information, InSight would encrypt the SO-Fi query with a
shared secret. This authenticates the request towards the friend,
triggering fingerprint and information transmission in a secure
802.11 network between requester and provider.

We detail content-centric wireless networking in Section II
and the incorporation of security mechanisms in Section III.
Section IV evaluates SO-Fi in terms of feasibility, overhead,
and real-world applicability. Section V discusses related work.
We conclude in Section VI.

II. CONTENT-CENTRIC WIRELESS NETWORKING

In current approaches, interactions among devices are
constrained by the network infrastructure boundaries, as clients
become aware of the accessible content only after associating to
a specific network. Instead, we strive to enable a communication
paradigm where network associations are a consequence of the
content provided by individual devices. In SO-Fi, we thus
focus on enabling pervasive and instant content discovery,
where clients can query all devices in communication range,
independent of already established network infrastructures.
Upon a positive response to a query, the same discovery
procedure triggers the 802.11 association process to establish
an on-demand communication channel between requester and
provider. To uniformly address content in the discovery and
provision process, SO-Fi requires a consistent addressing
scheme. Content-centric networking then provides several
benefits over the network-centric paradigm in 802.11.

!"#$"%&"'()'*+,-"'(

!"#$%&''()*%+,-.%

/01234567584%9%/::86;7584%

);<361%)717%=<74:>3<%
!"#$%&'()#*+'*+(

,-(.()#*+/%*0(12(
30+/45%06(*'+7#"8(91:(

3*)#&'("';<'0+(2(
3=)#*+'*+>%&'*?@'"A(B(1(

!"'C)#DE<+'()#*+'*+(+/45'(.((
F#(E'"D/*'*+(GHIJKK(*'+7#"8(

!"#'%&''()*%+,-.%

);:7::86;7584%

?.% @.%

A.%

B.%

C.%

D.%

E.%

F.%

Fig. 2. Content-centric on-demand wireless discovery and provision. Requests
are encoded in SSID fields of Probe Request frames using an encoding function
E(). Providers offline pre-compute an index table H of the content they
provide, compare observed requests against this table, and establish a network
dedicatedly for this request.

A. Content-centric On-demand 802.11 Wi-Fi

SO-Fi targets instant and full coverage of the pervasive
discovery scope, while avoiding the overhead of iteratively
associating to the possible multitude of accessible networks. At
the same time, SO-Fi aims at efficiently establishing a network
infrastructure and subsequent association as soon as a provider
for the requested content is identified. To this end, we embed
content discovery queries and replies in the request-response
sequence of the ubiquitously supported 802.11 association
process, ensuring real-world applicability.

The original 802.11 association process requires clients to
query for available networks by sending Probe Request frames
(PREQ) with either a specific network identifier (SSID) or
an empty (wildcard) one. Devices (APs) already providing a
network with a matching SSID respond with a Probe Response
frame (PRES), carrying the necessary information for the client
to authenticate and associate to the network.

SO-Fi moves away from predefined network roles for
devices as either clients or APs, enabling devices to dynamically
establish network infrastructures around content discovery.
Specifically, discovery is performed by encoding content
requests into the SSID field of PREQs; after matching the
indicated SSID against the locally available content, content
providers announce and make accessible a dedicated 802.11
network. We embed this process into the original 802.11
mechanism, cf. Figure 2 (italic font), along three phases: content
request, network establishment, and content provision.

To this end, a user-space application encodes the content
request into the SSID field, e.g., E(ubicomp2012) = X
(Figure 2, step 1). We detail the design of the encoding function
E() in the next section. The application then starts the native
802.11 association process, i.e., triggers a PREQ for a network
with the encoded SSID "X" (step 2). Using the same encoding
function E() as in step 1, devices (offline or continuously)
pre-compute a content table H that maps (multiple) encoded
keys to the locally provided content items (step 0), i.e., data,
users, or applications. Upon reception of a query, this enables
providers to efficiently look up the encoded request X in H .

To respond to a request, SO-Fi extends 802.11 AP func-
tionality with the ability to establish a network with a specific
SSID, e.g., "X", on-demand upon reception of a PREQ and

a positive check for X in H (step 3). Resuming the standard
802.11 association process, establishing a network "X" entails
transmission of a PRES with SSID "X" (step 4). Reception
of this PRES then triggers the 802.11 authentication and
association process at the client (step 5)1.

In this network, actual content transmission (step 6) occurs
as traditionally done with regard to the content type, e.g.,
a direct item download [7] or exchanging social network
profiles [6]. As both the provider and requester are aware of
the content type, the requesting device can proactively boot the
proper application, e.g., a browser, while the provider prepares
the demanded service.

B. Content Encoding

The query-response mechanism in SO-Fi depends on a
mechanism to address content consistently across distinct de-
vices, analogous to using unique resource identifiers (URIs) [19]
or feed and content IDs [20]. However, these approaches
build on an existing network infrastructure and higher layer
solution, e.g., HTTP and DTN Bundle protocols, that allows
complex container structures, e.g., XML or ASF, to identify
content. Instead, SO-Fi embeds content requests in the SSID
field of Probe Request frames, entailing as a consequence a
space constraint of 32 bytes and printable characters in Ascii85
encoding.

While content identifiers may take the form of very diverse
and complex formats, SO-Fi currently uses file and service
names as well as layer 2 addresses and public keys to identify
devices and users, respectively. To meet the aforementioned lim-
itations, SO-Fi uses these identifiers as input for a cryptographic
hash function, e.g., SHA-1, to derive unique content identifiers
of limited length. The application subsequently transforms the
hash value via an Ascii85 encoder.

To perform the actual encoding, hash functions lend
themselves to the needs of SO-Fi as they naturally adhere
to space constraints with a typical output length of 20 bytes
for arbitrary input values. We use the remaining space in the
SSID field to transport additional flags, e.g., a unique request
ID and security combinations, in requests and responses.

C. Applicability and Benefits

SO-Fi enables users and applications to “demand” the
creation of an 802.11 network at devices in transmission range
without incurring time or communication overhead, i.e., in
a one-step network and content request. Requests can be
executed when triggered by the user or periodically in the
background to autonomously interact with fellow application
instances. Comprehensively covering the pervasive wireless
discovery scope, content-centric networking then naturally and
immediately pairs devices, i.e., users and their application
instances, in a conventional 802.11 network.

SO-Fi networks then support communication and exchange
of arbitrary content as envisioned by the application. For
example, networks resulting from plain file lookups, such as
documents or multimedia, may provide a transport substrate

1In case of responses by multiple providers, 802.11 implementations choose
the response with the highest signal strength. Custom implementations allow
further information, e.g., device load, inside Information Elements in PRESs.

TABLE I. SECURITY FEATURES IN SO-FI DERIVED FROM
SUCCESSIVELY HASHING THE CONTENT IDENTIFIER IN COMBINATION WITH

GROUP OR USER KEY k.

Hashing step Use Security Feature

E1 =
E(content_identifier) ⊕ k

WPA2 PSK Network access control,
traffic encryption

E2 = E(E1) ⊕ k
Cryptographic
client puzzle

Provider-side
DoS protection

E3 = E(E2) ⊕ k
Content request
in SSID field

Obfuscation/Encryption
of initial request

on layers 2 and 3, while the actual content transfer occurs
over HTTP. We demonstrated this variant in a preliminary
design at MobiCom’12 [21]. Alternatively, applications may
plug in their own communication mechanisms on top of
802.11, e.g., link-layer content discovery and TCP-based
publish/subscribe content exchange [20] or event-driven content
synchronization [6] once devices are in a common network.

III. SECURITY IN CONTENT DISCOVERY AND PROVISION

SO-Fi widens the scope of pervasive content discovery to
all devices in transmission range. Therefore, it already provides
a self-contained mechanism for comprehensive discovery and
provision of public content. Applications can build on SO-Fi
to, e.g., offer tourism information at public places or navigation
and information services at airports, malls, etc.

However, this basic mechanism does not yet meet the
requirements of discovering and providing sensitive content that
is restricted to specific users or groups within an application,
e.g., in mobile social networking [6] and peer-to-peer [20] or
localized content sharing [7]. While the participating parties are
able to achieve unlinkability [22] by randomizing their Layer
2 addresses for each new request and response, respectively,
we identify four security aspects of SO-Fi, that need to be
addressed. Namely, secure content discovery and provision
requires i) authentication, to allow for differentiated treatment
of sensitive content, ii) confidentiality of requests and responses,
iii) 802.11 network security to control network access and
secure content transmission, and iv) DoS robustness, to protect
providers from replayed requests that exhaust their resources.

A. Credentials and Authentication

Sensitive content in the form of confidential data or
restricted applications requires differentiated treatment in
discovery and provision. SO-Fi thus supports inclusion of user
and group keys, that are pre-established offline, in the request
and provision mechanism, as unavoidable in secure password,
public key, and certificate-based communication [22]–[24]. We
discuss the absence of secure keys, i.e., in a fully spontaneous
scenario as in [12], [13] in Section III-D.

Secure keys can be application-specific keys, passwords,
or iterative one-time authentication tokens, e.g., cryptographic
hash-chain elements. SO-Fi thereby leverages the semantic
relation between users of sensitive content to bind keys to
specific content, as manifested in, e.g., the installation of a
common mobile application or prior trust relations in social
networks. Orthogonal to our current design, recent advances
in wireless key establishment [25] might allow extending our
solution to fully spontaneous communication.

!"#$"%&"'()'*+,-"'(

!"#$%&''()*%#+%!%,-%

!"#$%&'()#*+,-./0#1023,+4#5&'#!#46#
7010+820#9*:;#40<#"+,=#&>#!#4#

&1?,/0#+0@A0B2#)#
&%&%&%?,12012C./01DE0+(((#

*+0F01?,/0#?,12012F28GH0#$##
I&>J#&;J#&'K#",+#8HH#0H0=012B##

./0123456473%8%.9975:6473%

!"#'%&''()*%#+%!%,-%

;-% <-%

=-%

+-%
>-%

?/@41691%&A!.B%"2C/290-%

D-%

Fig. 3. Secure network provision and content confidentiality in SO-Fi. E1 is
not computable from overhearing E3 ⊕ k due to the pre-image resistance of
the applied cryptographic hash function.

Providers thus associate (multiple) (mac_address, key)
tuples2 with content. Authentication then seamlessly integrates
with the previously described mechanism. A requester can XOR
the content request X in PREQs with the shared key (Figure 2,
step 2) to authenticate the request. The provider matches the
Layer 2 address in the PREQ to a stored tuple and, if positive,
reconstructs X as (SSID ⊕ key). If the tuple (mac_address,
key, X) then matches a stored tuple, the provider responds to
the request and otherwise ignores it.

In the following, we support inclusion of given user or group
keys in requests and exploit the pre-image resistance of the hash
function E() used in content encoding to enable confidentiality,
802.11 network security, and DoS robustness. Providers and
requesters can generate keying material for these functionalities
by hashing content identifiers to generate the sequence E1 =
E(content_identifier), E2, and E3 in combination with a
key k. Encrypting each hash value with the key k thereby
allows transmitting requests and responses in the open wireless
medium; attackers are then unable to derive previous hash
values and associated content identifiers. We use distinct hash
values E1, E2, and E3 to hide k, to separate the respective
functionality in a clear design, and allow devices to differentiate
the requested functionality.

Table I shows the specific features enabled by single steps
in the hashing sequence. In Figures 3 and 4, blue text highlights
the respective security functionality, while use of the key k is
marked in red. Please note that all functionalities are combinable
to accommodate the requirements of requesters, providers, and
applications. Providers can signal the specific combination
inside PRES frames.

B. Content Confidentiality and 802.11 Network Security

Even after securing requests using user keys, content provi-
sion in on-demand 802.11 networks entails two distinct security
risks. First, an eavesdropping attacker observing requests and
corresponding 802.11 networks can replay successful requests,
i.e., the PREQ and used MAC address, to obtain the requested
content, breaching content confidentiality. Second, an actively
scanning attacker can discover on-demand created 802.11
networks. SO-Fi thus demands 802.11 network security to
secure network access and encrypt actual content transmissions.

To fulfill both security requirements, devices in SO-Fi use
the hash value E1 ⊕ k to generate a custom WPA2 PSK and

2Pre-defined, random, or cryptographic Layer 2 address, using the respective
credentials of requester and provider [22] on a per-application basis.

!"#$"%&"'()'*+,-"'(

!"#$%&''()*%#+%!%,-%

'%.%''()%!%#/%!%,%
!"#$#%&''(%)*#+'(,)(#-().&'/#

0-%&1(#'(23(4)#*#
050505%&-)(-)671(-89(':::#

;'(<(-%&1(#%&-)(-)<),=>(#?##
@0AB#0CB#0DE#"&'#,>>#(>(F(-)4##

012345678695%:%0;;97<8695%

=-% >-%

/-%

+-%
?-%

)9'%!1@@A4%

B-%

!"#?50D:*#+'(,)(#%>7(-)#G3HH>(#;#
!"#'%&''()*%#/%!%!%!%,-%

!%.%#/%!%''()%!%,%
+&FG3)(#G3HH>(#4&>38&-#$#

!"#$%&''()*%#/%!%'%!%,-%

!"#'%&''()*%#/%!%'%!%,-%

C-%

D-%

E-%

Fig. 4. Provider-side DoS protection using cryptographic client puzzles.

achieve state-of-the-art 802.11 network security. To generate a
WPA2 key, E1 ⊕ k serves as the input to the 802.11 PBKDF2
function, instead of a given network passphrase and the network
SSID as in unmodified 802.11. In addition, E3⊕k encrypts the
transmitted content identifier. Figure 3 shows the embedding
of both into the query-response sequence of SO-Fi.

The pre-image resistance of the hash function, in combina-
tion with the used key, prevents devices from computing the
original content identifier, and thereby the requested content,
from the overheard transmissions. Similarly, it is not possible to
derive the 802.11 WPA2 network key generated using E1 ⊕ k
from E3 ⊕ k.

Content requests and provision are thus confidential because
content identifiers cannot be derived. Furthermore, an attacker
using E3⊕k as the content request in a replay attack lacks the
802.11 network key generated from E1⊕k. SO-Fi thus supports
state-of-the-art 802.11 network security through per-demand
WPA2 network keys and the subsequent traffic encryption using
client-specific session keys.

C. Provider-side DoS Protection

In SO-Fi, each successful request causes providers to expend
resources by creating a network in expectance of a benign client.
Even without actually accessing the network, malicious devices
can thus mount a Denial-of-Service (DoS) attack by replaying
successful requests to deplete the resources of providers.

To enable DoS protection for providers, SO-Fi incorporates
the proven method of cryptographic client puzzles [26]. In this
approach, a providing device, e.g., a web server, requires the
requesting device to prove the benign character of its request
by expending resources itself, prior to requesting resources
from the provider. Analogous, a provider in SO-Fi can require
a requester to solve a cryptographic puzzle P of adjustable
difficulty. E.g., puzzle difficulty can be adjusted to the frequency
of a specific request. The puzzle solution S then is required as
input to the request for which the provider actually establishes
a network. We refer to the original paper [26] for details on
creating and solving client puzzles as well as the security
properties of this approach.

Figure 4 shows the embedding of client puzzles in SO-Fi.
Instead of establishing a network immediately when receiving
E3 ⊕ k, the provider generates a cryptographic puzzle P (step

3) according to [26] and sends a PRES with SSID (E2 ⊕ P ⊕
k), the communication ID of the PREQ and a flag indicating
the puzzle difficulty (step 4). The ID allows the requester to
identify this response, extract P as (E2 ⊕ SSID ⊕ k), and
compute its solution S (step 5). A PREQ with SSID (E2 ⊕ S
⊕ k) (step 6) proves the correct solution to the provider and
triggers the actual creation of a network for content provision
(step 7, 8).

Devices overhearing clear-text puzzles could compute the
solution faster than the original requester and thereby highjack
the association process in a Man-in-the-Middle attack. To
prevent this, we encrypt the puzzle P and the solution S using
E2 and k in steps 4, 6, and 8. For this, we treat the random
values P and S as one-time pads in combination with E2. We
use the XOR function to allow for simple retrieval of input
values and faster computation in comparison to encryption
functions. SO-Fi never transmits P, S, E2, or k in clear text,
preventing attacks by uninvolved devices.

Cryptographic client puzzles alleviate repeated malicious
content requests and overloading of provider devices in SO-
Fi. However, a PRES injected in step 4 with an overheard
communication ID may prompt the requester to solve a random
puzzle contained in the SSID. To prevent such DoS attacks
on requesters, 2 bytes of each transmitted puzzle carry a pre-
defined checksum covering the rest of the puzzle. As E2 is
not known to uninvolved devices, pre-computing or guessing
puzzles that produce a correct checksum after (E2 ⊕ SSID ⊕
k) is infeasible, protecting requesters from DoS attacks.

D. Security Considerations

We argue that, under the assumption that the occurrence
of content identifiers in searches is distributed equally over
the content name space, the proposed mechanisms establish
confidential and secure content discovery, provision and access,
even without pre-established keys. This is because the pre-
image resistance of the hash function prevents overhearing
devices from computing E1 or E2 from E3. Exclusively pre-
computing all possible (content_identifier, (E1, E2, E3)) tuples
would enable overhearing devices to match an observed request
E3 to the original content identifier. Specifically, it is not
possible to derive from E3 the 802.11 WPA2 key generated
using E1 or the cryptographic puzzle P encrypted with E2.
We thus regard the inclusion of k as optional with regard to
the application requirements.

In practice, however, it is possible to precompute offline the
tuples (E1, E2, E3) for popular search terms, e.g., "Internet
Access" or "Tourism Information". Malicious devices would
thereby be able to identify requests and subsequently eavesdrop
on the network traffic. Applications without pre-established
keys thus need to employ higher-layer encryption, e.g., via TLS,
to secure data transmissions in the absence of network security.
Specifically, applications may be discoverable via unsecured SO-
Fi interactions but employ strong encryption and authentication
of messages to protect message and application confidentiality.
SO-Fi thereby supports secure pervasive content discovery and
provision that is adjustable to application and provider demands
and combinable with higher-layer approaches.

IV. EVALUATION

In this section, we evaluate the content discovery feasibility,
performance, and applicability of SO-Fi, as well as the overhead
induced by the proposed security mechanisms. To this end, we
show that content discovery using on-demand 802.11 network
associations causes negligible time overhead, while removing
the need for network selection and subsequent discovery
protocols. We quantify the overhead of creating content tables
H of different size and show that establishing key and puzzle
material via subsequent hash operations only adds minimal
overhead. We evaluate the performance of current mobile
devices in computing the required 802.11 WPA2 PSK and show
the scalability and performance of the proposed cryptographic
client puzzle mechanism. Last, we show the adjustable time
complexity of the proposed security mechanisms in SO-Fi.

We implemented the request functionality of SO-Fi on
Linux- and Android-based mobile devices. We realized the on-
demand provider functionality in the popular hostapd software
package, thereby enabling deployments on Linux-based mobile
devices and Wi-Fi APs as well as Android devices. As Linux
devices, we use Lenovo S10-3 Ideapads with dual-core 1.5 GHz
CPUs and Atheros AR9285 802.11n wireless cards, representing
commodity mobile netbook devices. In our evaluation, the
netbooks serve as SO-Fi providers. As Android devices, we
use both the Samsung Nexus S and Samsung Galaxy Nexus
devices to show the impact of both CPU processing power in
newer devices and different wireless chipsets. While the Nexus
S builds on a 1 GHz CPU and Broadcom BCM4329 802.11n
wireless chipset, the newer Galaxy Nexus includes a dual-
core 1.2 GHz CPU and BCM4330 802.11n wireless chipset. In
computation-based evaluations, we also provide results for a
2.93 GHz quad-core Intel i7 Linux PC for comparison.

A. Content Discovery Performance

Embedding content discovery and on-demand network provi-
sion into the 802.11 association process extends the 802.11 AP
functionality of the provider. Namely, instead of immediately
responding to relevant Probe Requests with a Probe Response,
providers in SO-Fi first perform a lookup in the content
table for the given request and subsequently instantiate the
corresponding 802.11 network. We thus evaluate the feasibility
of complete content discovery within the message and time
constraints of the 802.11 association process by evaluating the
time requirements of on-demand 802.11 network associations.
In SO-Fi, this represents the entire time requirement of content
discovery, network provision, and association to a common
network, whereas approaches using traditional 802.11 require
this association time and subsequent discovery time overhead
for each potential network.

We evaluate the association time of both traditional, i.e.,
permanent, and on-demand 802.11 networks in SO-Fi. On
average, SO-Fi devices respond to a request, i.e., establish an
802.11 network and send a PRES, within 67 ms. Figure 5 shows
the average time and standard deviation of 100 associations
for different client (requester) and AP (provider) devices.
Regarding the evaluated AP devices for each client device, we
deduce the feasibility of our design as SO-Fi only introduces
a marginal overhead of up to 0.2 s, if any at all. The results
further highlight the impact of different Wi-Fi chipset-driver

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

Nexus S Galaxy Nexus Ideapad

A
ss

o
ci

a
ti

o
n
 t

im
e
 [

s]

OpenWRT AP
Linux Netbook AP

Android AP
SO-Fi AP

Fig. 5. Average association time to unmodified 802.11 networks and SO-Fi
networks using different client and AP devices. In comparable time, SO-Fi
provides content discovery, content lookup, and on-demand network provision
and avoids network selection and subsequent content discovery overhead.

combinations on devices that run the same operating system,
e.g., Nexus S and Galaxy Nexus, but use a Wi-Fi driver and
medium access functionality built mainly in chipset-specific
firmware and Linux-generic software, respectively. Please note
that the success rate of associations in SO-Fi, 100 % in our
experiments, is equally affected, e.g., by mobility and obstacles,
as traditional 802.11. Also, content discovery in SO-Fi appears
as a standard-compliant network association process to legacy
802.11 networks and hence does not induce any conflicts or
performance degradation.

As the main result of these measurements, SO-Fi enables
discovery3 of arbitrary content, i.e., data, applications, and
persons, within the communication and time overhead of a
single 802.11 association. With regard to Pitkänen [5], SO-Fi
combines service and device discovery in one step as providers
answer both the request for content and for a providing
device in the PRES. SO-Fi thereby avoids the overhead of
network associations that fail to yield the requested content,
as well as dedicated service discovery protocols subsequent
to the association. This minimal time and communication
complexity especially benefits users in mobile scenarios with
time-constrained device encounters. SO-Fi thereby enables
ubiquitous user-triggered or background querying of all devices
in transmission range at any point in time, independent of
network infrastructures or multi-hop communication (immediate
or time-decoupled).

B. Content Encoding and Lookup

In SO-Fi, requesters compute the hash sequence (E1, E2,
E3) to perform a request and providers need to establish the
content table H. Furthermore, providers have to perform a
lookup in the content table to find out whether it serves an
observed request. In this section, we evaluate our design of
using consecutive hash operations to generate requests and the
content table and show the practicality and scalability of the
proposed provider functionality.

To illustrate the computation time at requester and provider,
Figure 6 shows the average time for 1000 calculations of 1, 2,
and 3 hash values for increasing numbers of content items on
Android devices, a Linux netbook, and an Intel i7 computer

3Note that the measurements only represent content discovery. Content
access and transmission depend on factors on top of SO-Fi, such as the
transport protocol and actual application. Especially, the results do not include
DHCP durations.

10 0
10 1
10 2
10 3
10 4
10 5

Nexus S

10-3

10-2

10-1

100

101

102

103

C
o
m

p
u
ta

ti
o
n
 t

im
e
 [

s]

10 0
10 1
10 2
10 3
10 4
10 5

Galaxy Nexus

10 0
10 1
10 2
10 3
10 4
10 5

Ideapad

10 0
10 1
10 2
10 3
10 4
10 5

intel i7

1st hash

2nd hash

3rd hash

Fig. 6. Average computation time of multiple hash operations in content
tables of increasing size. Hash values serve as input for WPA2 network keys,
client puzzles and content identifiers. Please note the logarithmic scale.

 0.01

 0.1

 1

Nexus S Galaxy Nexus Ideapad Intel i7
 L

o
o
ku

p
 t

im
e
 p

e
r

it
e
m

 [
m

s] 100 items
101 items
102 items
103 items
104 items
105 items

Fig. 7. Average lookup time for one content item on different devices with
regard to the number of stored items. Lookup times are below 1 ms and are
constant per devices, supporting the feasibility of per-request lookups. Please
note the logarithmic scale.

for comparison. Please note, the time difference between the
first, second and third iteration is indiscernible for the 100 and
101 data points. The results support our design in four aspects.

First, computing a single hash sequence of 3 hash values
(Figure 6, 100 data points), as required to generate all values
for a request, induces negligible time overhead on all devices.
Generation of a request is thus possible instantaneously and
with low computational overhead.

Second, Figure 6 shows the feasibility of our design from
a provider perspective. While the time required to encode the
content table H rises with the number of items, regardless of
the provider device, this computation can be performed in the
background. Already computed entries can then be provided
while further computation is performed. Building the content
table in SO-Fi thus keeps the device available for other tasks
and allows for a seamless integration of additional content
items. Furthermore, for realistic numbers of content items (e.g.,
≤ 104) computing the content table takes less than 10 s on all
devices, underlining the feasibility on real-world devices.

Third, we evaluate the overhead of additional hash oper-
ations to establish E1, E2, and E3 for security functionality.
As Figure 6 shows, computing additional hash values for
any number of content items induces marginal overhead in
comparison with the initial hashing and I/O overhead that
is required to create the original content table entry. The
generation of keying material for security functionality thus
seamlessly integrates into the computation of both single
requests and content tables at negligible cost.

 0.001

 0.01

 0.1

 1

 10

Nexus S Galaxy Nexus Ideapad Intel i7

 C
o
m

p
u
ta

ti
o
n
 t

im
e
 [

s]

4096 rounds
256 rounds

Fig. 8. Computation time for WPA2 PSK (802.11 PBKDF2). The high entropy
of passphrase E1 and SSID E2 or E3 allows devices to reduce the number
of iterations from 4096 to 256. Please note the logarithmic scale.

Last, Figure 7 quantifies the time it takes to look up a
single item, as necessary when observing a request, in content
tables of increasing size on different devices. As expected,
standard implementations of, e.g., hash tables, require constant
lookup times on all devices, regardless of the number of stored
items. Using available content table implementations, providing
devices can thus respond to requests within the time constraints
of the 802.11 association process.

C. WPA2 PSK Computation

In contrast to permanent pre-configured wireless networks,
devices in SO-Fi compute the WPA2 PSK for a network
on-demand. Securing SO-Fi networks thus induces a time
overhead in the discovery and association process and influences
the applicability of SO-Fi with regard to time-constrained
communication opportunities and user-perceived usability.

The 802.11 standard [27] mandates the use of the PBKDF2
procedure to derive pairwise shared keys from a given network
passphrase and the network SSID. To balance the relatively
low entropy of typical, human-readable passphrases and SSIDs,
802.11 AP implementations compute keys over 4096 PBKDF2
iterations. In order to quantify the overhead of this computation,
we implemented this procedure in a stand-alone Python script
and performed 1000 distinct calculations. As shown in Figure 8,
computing 4096 iterations requires around 1 s on typical mobile
devices, i.e., almost the time required for the actual SO-Fi
association.

The number of PBKDF2 iterations thereby induces a
tradeoff between the key security and the computation time. In
SO-Fi, the hash-based, high-entropy identifiers E1 and E2 or
E3 serve as hidden, random input to PBKDF2, increasing input
entropy compared to human-readable passphrases. Given the
short lifespan of networks in SO-Fi, devices can thus choose
to trade shorter computation time for a derived key that is less
secure. Figure 8 quantifies the gain in computation time when
reducing the number of iterations to 256. Requiring 0.1 s or
less on current devices, this configuration significantly reduces
the impact on the discovery time. Devices in SO-Fi thus can
indicate the required number of iterations in content request
and response flags to choose the appropriate degree of security.

D. Scalable DoS Protection

To protect providing devices from DoS attacks, we propose
the use of cryptographic client puzzles. By adjusting the puzzle
difficulty, i.e., the required bit length of the solution, providers

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16

C
o
m

p
u
ta

ti
o
n
 t

im
e
 [

s]

Puzzle difficulty [bits]

Nexus S
Galaxy Nexus

Ideapad
Intel i7

Fig. 9. Exponential time complexity of cryptographic client puzzles with
regard to the puzzle difficulty. Scaling the puzzle difficulty allows adjusting
the required client resources. Please note the logarithmic scale.

can adjust the required computational effort to their current
state and the requested content. A provider that is under attack
or observes high request frequencies for a specific content item
can pose high difficulty puzzles, while low to medium puzzle
difficulties are otherwise sufficient.

We thus evaluate the complexity of solving cryptographic
puzzles with increasing difficulty on typical current mobile
devices to give an indication of appropriate puzzle difficulties.
To allow a comparison with the previously evaluated content
discovery and network association times in SO-Fi, Figure 9
shows the average time overhead of solving 1000 puzzles of
each difficulty. The results indicate that, for current mobile
devices, a puzzle difficulty of 10 bits with an average compu-
tation time of 1 s can serve as a lower bound. On the other
hand, difficulties higher than 14 bits induce significant, probably
unacceptable delays in the discovery.

The increasing computational power of mobile devices,
hinted at by the Intel i7 CPU results, may require increasing
puzzle difficulties in the future. SO-Fi currently supports a
maximum puzzle difficulty of 32 bits. The exponential growth
of computation time thereby affords adjusting puzzle difficulties
to increasing CPU capabilities of mobile devices.

E. Secure Content Discovery Performance

To secure content discovery in SO-Fi against replay attacks,
eavesdropping and denial-of-service attacks, we proposed
generating WPA2 PSK key material and cryptographic client
puzzles from content requests and user keys. As shown, the
overhead of generating the key material itself during request or
content table encoding is negligible. However, calculating the
actual WPA2 PSK and the solution to a client puzzle requires
additional computation during the discovery process. Similar,
the challenge-response mechanism of client puzzles requires an
additional protocol step to exchange the puzzle and the solution,
respectively. In this section, we thus evaluate the detailed
timings of secure content discovery in SO-Fi. Please note that
we do not dedicatedly evaluate user authentication because the
protocol steps are identical to the evaluated mechanisms and
the computational overhead of the XOR function is negligible.

Figure 10 shows the cumulative average timing of 100
SO-Fi associations for different requesting devices with regard
to the activated security mechanisms. For a better illustration
of the overhead, we measure the duration of the respective
protocol steps, as observed at the requesting device. From our
cryptographic puzzle evaluation, we set the difficulty to 10 bits

 0

 1

 2

 3

 4

 5

 6

 7

 8

NS GN IP NS GN IP NS GN IP NS GN IP NS GN IP

D
is

co
v
e
ry

 t
im

e
 [

s]

Discovery
Puzzle

WPA Key
Connect

Puzzle (10bit)
+WPA (4096)

Puzzle (10bit)
+WPA (256)

WPA
(4096)

WPA
 (256)

SO-Fi
Plain

Fig. 10. Client-side cumulative timings for secure content discovery in SO-Fi
with regard to the active security mechanisms for Nexus S (NS), Galaxy Nexus
(GN) and Lenovo Ideapad (IP) Android and Linux devices, respectively.

and evaluate the calculation of WPA2 PSKs over both 256
and 4096 PBKDF2 iterations. Please note that the evaluated
time overhead for cryptographic puzzles on Android devices
varies from the previously presented stand-alone results. This
is due to performance differences in the stand-alone Python
implementation and the Java-based Android implementation
used in our real-life prototype.

The time for protocol steps that depend on device-specific
Wi-Fi performance and scanning behavior, i.e., the initial
"Discovery" step (Figure 4, steps 2-4) and the "Connect" step4

(Figure 2-4, authentication and association), slightly varies
between the requesting devices. In our implementation, we
adhere to the standard Android and Linux API interfaces and
tools, especially wpa_supplicant, to provide an indication of
the practical performance of SO-Fi. This performance can
be improved, especially by optimizing the wireless scanning
behavior of the respective OS and driver.

With regard to the computational capabilities of the eval-
uated requesting devices, Figure 10 shows that the proposed
security mechanisms allow adjusting the security overhead
depending on the requested content and the state of the
providing device. Although we only provide measurement
results for 10 bit puzzle difficulty as well as 256 and 4096
PBKDF2, SO-Fi supports all intermediate settings. However,
4096 PBKDF2 iterations, i.e., the number of iterations proposed
in the 802.11 standard, only require 1 s on current devices. As
upcoming devices will decrease this computation time, the
difficulty of cryptographic puzzles lends itself to be the main
scaling parameter in SO-Fi.

Figure 10 furthermore shows the discovery time for different
provider-side settings and applications. In attack-free situations
without the need for DoS protection and with 256 PBKDF2
iterations, secure content discovery takes less than 2.5 s.
Increasing the number of PBKDF2 iterations, as mandated
in the 802.11 standard, results in timings of less than 4.5 s.
An application for these settings is public, resource-friendly
or insensitive content, e.g., in touristic settings, that is freely
available. Last, content discovery only requires up to 8 s in case
of providing devices under attack or sensitive requested content.
By scaling the puzzle difficulty, this time requirement can be
adjusted to the situation and the requested content. Examples
for such protected content discovery and provision are resource-
heavy content and content provision by resource-constrained

4Includes the time for provider-side WPA2 PSK calculation.

devices. Last, augmenting discovery by authentication allows
further restricting content access to trusted devices and users.

As the main result, the measured times support practical con-
tent discovery of SO-Fi within encounter durations in realistic
mobile scenarios as evaluated, for example, by Pitkänen [5]. To
model a challenged network scenario, we regard a radio range
of (only) 30 m and a discovery time of 8 s in SO-Fi, including
4096 PBKDF2 iterations and a 10 bit puzzle difficulty. Given
these parameters, the vast majority of contacts in both the trace-
driven KAIST and the synthetic HCS evaluation allows for
content discovery and subsequent content access, regardless of
the scan interval. When assuming a discovery process without
DoS protection and with only 256 PBKDF2 iterations, i.e.,
a discovery time of less than 2.5 s, virtually all contacts are
usable. SO-Fi thus realizes content discovery with viable time
and computation requirements in urban scenarios.

V. RELATED WORK

SO-Fi relates to approaches in content-centric networking,
wireless protocol overloading, and mobile content discovery.

A. Content-centric Networking

Content-centric Networking (CCN) [16] approaches propose
a clean-slate Internet approach that builds addressing, lookup,
and routing around content instead of hosts. Similar, wireless
content-centric approaches [17] do not target the establishment
of network structures based on content but assume existing
network structures in which user traffic centers on retriev-
ing content. In mobile scenarios, however, the first step to
communication in the network-centric design of 802.11 is the
discovery of and association to an existing network. SO-Fi thus
differs from the above mentioned approaches in catering to
and building this first step around the availability of content of
interest, instead of resolving and routing traffic.

B. Wireless Protocol Overloading

Beacon stuffing [10] overloads 802.11 Beacon frames
to support network selection and wireless advertisements.
Similarly, APs in the 802.11u standard [28] broadcast additional
network information to support network selection. Davies et al.
[11], E-Shadow [12] and E-Smalltalker [13] overload Bluetooth
device names, the Bluetooth Discovery Protocol, and 802.11
Beacon frames, respectively, to push application information,
semantically enriched device names, and interests.

In contrast to SO-Fi, the presented approaches are push-
based, i.e., they proactively and continuously signal information.
The limited space in wireless frames thereby prevents pushing
all available content. Conversely, SO-Fi realizes request-driven,
space-efficient content discovery and access in a dedicated
network. The only request-driven approach that we are aware of
is the Access Network Query Protocol (ANQP) in 802.11u [28].
However, clients in ANQP can only query for characteristics
of pre-defined available networks.

C. Pervasive Mobile Content Discovery

Haggle [29] provides peer-to-peer exchanges based on inter-
ests, similar to publish-subscribe designs [20]. Both require an
existing network for requester and provider, as do network-wide

content discovery [30] and push-based service notifications [31].
In contrast, SO-Fi is the first approach to enable content dis-
covery outside the narrowness of established networks. In this,
SO-Fi greatly reduces communication overhead and adheres to
viable discovery times while simultaneously widening coverage
to all nearby devices. Existing secure approaches [23], [24] also
require pre-established trusted network infrastructures as well
as a trusted (global) directory. SO-Fi supports use-case-driven
confidentiality and security without any trusted infrastructure.

DataSpotting [15] and ICON [14] discover and pair devices
by way of Internet-scale match-making between requests and
provided content. In contrast, SO-Fi requires neither an Internet
uplink nor a global database but emphasizes direct device-to-
device communication.

VI. CONCLUSION

We proposed SO-Fi, ubiquitous content-centric wireless
networking with use-case-specific security that provides in-
tuitive discovery and connection establishment in mobile
networks. Removing the constraints of pre-established network
infrastructures enables a comprehensive discovery scope for
mobile applications. In addition, network infrastructures are
established to provide content only on-demand, making content-
centric networking efficient. Completing our preliminary de-
sign [21], the approach seamlessly integrates adjustable security
mechanisms to achieve practical 802.11 network security,
content and traffic confidentiality, and DoS robustness. Our
evaluation of SO-Fi shows its feasibility and limited overhead.
We make the source code accessible [32] for developers.

As a result, SO-Fi provides a novel building block for
mobile applications and offloading approaches. Applications
thereby can exploit SO-Fi to specify user- or event-triggered
or continuous background discovery. Building on locally
comprehensive discovery scopes, visualization techniques may
incorporate content availability with user contexts, e.g., the
current position. The integration of similarity preserving
hashes [33] as encoding functions promises fine-tuned requests
based on domain knowledge. Attribute-based encryption [34]
provides a fine-tuned access control mechanism based on a
priori established (group) attribute. We aim to investigate the
integration of these mechanisms in future work.

ACKNOWLEDGEMENTS

This work was funded by the Deutsche Forschungsgemein-
schaft (DFG) and the DFG Cluster of Excellence on Ultra
High-Speed Mobile Information and Communication (UMIC).

REFERENCES

[1] A. Petz, A. Lindgren, P. Hui, and C. Julien, “Madserver: a server
architecture for mobile advanced delivery,” in CHANTS, 2012.

[2] B. Han, P. Hui, V. A. Kumar, M. V. Marathe, G. Pei, and A. Srinivasan,
“Cellular traffic offloading through opportunistic communications: a case
study,” in CHANTS, 2010.

[3] Y. Li, G. Su, P. Hui, D. Jin, L. Su, and L. Zeng, “Multiple mobile data
offloading through delay tolerant networks,” in CHANTS, 2011.

[4] S. Liu and A. D. Striegel, “Exploring the potential in practice for
opportunistic networks amongst smart mobile devices,” in MobiCom,
2013.

[5] M. Pitkanen, T. Karkkainen, and J. Ott, “Mobility and service discovery
in opportunistic networks,” in PerCom Workshops, 2012.

[6] A.-K. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and C. Diot,
“Mobiclique: middleware for mobile social networking,” in WOSN, 2009.

[7] J. Ott, E. Hyytia, P. Lassila, T. Vaegs, and J. Kangasharju, “Floating
content: Information sharing in urban areas,” in PerCom, 2011.

[8] K. Thilakarathna, A. C. Viana, A. Seneviratne, and H. Petander,
“Mobile social networking through friend-to-friend opportunistic content
dissemination,” in MobiHoc, 2013.

[9] M. Bakht, M. Trower, and R. H. Kravets, “Searchlight: won’t you be
my neighbor?,” in MobiCom, 2012.

[10] R. Chandra, J. Padhye, L. Ravindranath, and A. Wolman, “Beacon-
stuffing: Wi-fi without associations,” in HotMobile, 2007.

[11] N. Davies, A. Friday, P. Newman, S. Rutlidge, and O. Storz, “Using
bluetooth device names to support interaction in smart environments,”
in MobiSys, 2009.

[12] J. Teng, B. Zhang, X. Li, X. Bai, and D. Xuan, “E-shadow: Lubricating
social interaction using mobile phones,” in ICDCS, 2011.

[13] Z. Yang, B. Zhang, J. Dai, A. Champion, D. Xuan, and D. Li, “E-
smalltalker: A distributed mobile system for social networking in physical
proximity,” in ICDCS, 2010.

[14] H. Wirtz, J. Rüth, T. Zimmermann, and K. Wehrle, “Interest-based
cloud-facilitated opportunistic networking,” in CHANTS, 2013.

[15] X. Bao, Y. Lin, U. Lee, I. Rimac, and R. Choudhury, “Dataspotting:
Exploiting naturally clustered mobile devices to offload cellular traffic,”
in INFOCOM, 2013.

[16] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in CoNEXT, 2009.

[17] G. Alfano, M. Garetto, and E. Leonardi, “Content-centric wireless
networks with limited buffers: When mobility hurts,” in INFOCOM,
2013.

[18] H. Wang, X. Bao, R. R. Choudhury, and S. Nelakuditi, “Insight:
recognizing humans without face recognition,” in HotMobile, 2013.

[19] J. Ott and M. J. Pitkanen, “Dtn-based content storage and retrieval,” in
WoWMoM, 2007.

[20] O. R. Helgason, E. A. Yavuz, S. T. Kouyoumdjieva, L. Pajevic, and
G. Karlsson, “A mobile peer-to-peer system for opportunistic content-
centric networking,” in MobiHeld, 2010.

[21] H. Wirtz, D. Martin, B. Grap, and K. Wehrle, “Demo: On-demand
content-centric wireless networking,” in MobiCom, 2012.

[22] B. Greenstein, D. McCoy, J. Pang, T. Kohno, S. Seshan, and D. Wetherall,
“Improving wireless privacy with an identifier-free link layer protocol,”
in MobiSys, 2008.

[23] F. Zhu, M. Mutka, and L. Ni, “Splendor: A secure, private, and location-
aware service discovery protocol supporting mobile services,” in PerCom,
2003.

[24] F. Zhu, M. Mutka, and L. Ni, “Prudentexposure: a private and user-
centric service discovery protocol,” in PerCom, 2004.

[25] I. Safaka, C. Fragouli, K. Argyraki, and S. Diggavi, “Creating shared
secrets out of thin air,” in HotNets, 2012.

[26] A. Juels and J. G. Brainard, “Client puzzles: A cryptographic counter-
measure against connection depletion attacks.,” in NDSS, 1999.

[27] IEEE, “802.11 standard.” http://standards.ieee.org/findstds/standard/802.
11-2012.html.

[28] IEEE, “802.11u standard.” http://standards.ieee.org/findstds/standard/802.
11u-2011.html.

[29] J. Su, J. Scott, P. Hui, J. Crowcroft, E. De Lara, C. Diot, A. Goel,
M. H. Lim, and E. Upton, “Haggle: seamless networking for mobile
applications,” in Ubicomp, 2007.

[30] M. Pitkanen, T. Karkkainen, J. Greifenberg, and J. Ott, “Searching for
content in mobile DTNs,” in PerCom, 2009.

[31] R. Hermann, D. Husemann, M. Moser, M. Nidd, C. Rohner, and
A. Schade, “Deapspace: transient ad hoc networking of pervasive devices,”
Computer Networks, vol. 35, Mar. 2001.

[32] “SO-Fi source code.” https://github.com/blightzero/SO-Fi.
[33] P. Indyk, R. Motwani, P. Raghavan, and S. Vempala, “Locality-preserving

hashing in multidimensional spaces,” in STOC, 1997.
[34] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-

based encryption,” in Security and Privacy, 2007.

