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ABSTRACT
Computer Vision (CV) approaches, e.g., as the basis for mo-
bile Augmented Reality (AR), depend on continuous Internet
access for image uploads and large-scale Internet databases
to perform image recognition against comparison images.
This dependency impedes the ubiquity of applying CV in
spontaneous, real-world mobile scenarios as users may not
have continuous Internet access. Furthermore, the under-
lying databases are inherently volatile and may only afford
sporadic coverage.
We hence propose DMCV (Direct Mobile Computer Vi-

sion), leveraging the proliferation of wireless communication
capabilities in mobile and stationary devices to remove this
dependency and to transmit CV image descriptors directly
between mobile devices and recognizable objects. Building
on 802.11 and Bluetooth, we explore the design space of
local wireless CV information discovery and provision and
evaluate to which degree each technology affords ubiquitous
mobile CV. We show the feasibility and performance of our
approach on commodity phones and evaluate the benefits
provided by ubiquitous direct CV.

1. INTRODUCTION
Mobile Computer Vision (CV) is an integral part of pro-

posed mobile Augmented Reality (AR) approaches [12], loca-
tion-based services [14,17], and ubiquitous computing [13,21].
As illustrated in Figure 1 (left), current approaches [2, 9, 12,
14, 17] realize mobile CV via intermediate and centralized
Internet-based image recognition services that build on vast
image databases for comparison. As recognized in [4], these
requirements of Internet connectivity for image uploads and
the existence of comparison images of the object to be recog-
nized in the respective database negate an unrestricted and
spontaneous, i.e., ubiquitous, use of CV.
In this paper, we mitigate these requirements in order to

facilitate ubiquitous mobile CV and propose DMCV (Direct
Mobile Computer Vision), local and immediate discovery
and provision of CV-recognizable objects and their infor-
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Figure 1: Currently, a mobile user (U) needs to
upload an image of the object (O) to an Internet-
based CV service (CVS) for a database (DB) search
and comparison (left). In DMCV (right), objects di-
rectly provide their CV data locally and wirelessly.

mation. Specifically, DMCV targets the readily available
mass of smartphones as ideal consumer devices for mobile
CV and leverages the comprehensive availability of 802.11
and 802.15.1 (Bluetooth) wireless communication capabili-
ties available at objects via smartphones, embedded devices1,
802.11 APs, laptops, etc. Objects then may be persons,
buildings, monuments, or stores and hold the CV informa-
tion required to detect them in a given CV technique. At its
core, our design enables the spontaneous, local, and direct
transmission of the CV data required for recognition from
the respective object to smartphones in range. Smartphone
users are then able to recognize and annotate objects in the
camera view (cf. Figure 1, right).

In contrast to Internet-based, centralized CV approaches,
DMCV then provides the following benefits in realizing mo-
bile ubiquitous CV and AR. i) Building on 802.11 and
802.15.1 wireless communication enables Internet-indepen-
dent discovery and transmission of CV information as well as
AR annotation data, e.g., underground, abroad, or in rural
areas. ii) Local wireless communication inherently incorpo-
rates the context and locality of the mobile user whereas
Internet-based services abstract from this context. iii) CV
information only provides the data required for object recog-
nition, improving on the time and computation overhead of
uploading and comparing an image at an Internet service.
iv) Object owners maintain the CV and annotation informa-
tion they make public, affording flexibility and control.

We motivate DMCV with previously obtained results [22]
that show high object recognition rates already with low
amounts of CV information, allowing for transmission of CV
information within the dynamics of mobile scenarios. Fig-

1E.g., Arduino Yún, Raspberry Pi.
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(a) Building recognition.
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(b) Face recognition.

Figure 2: True positive and true negative recogni-
tion rate [22] over number of ORB [19] descriptors.

ures 2(a) and 2(b) quantify this success rate in recognizing
a building and a human face in two popular image datasets
from the CV community [10, 18] over the number of 32Byte
ORB descriptors. Transmitting only the 80 most distinctive
descriptors, i.e., 2560Bytes or two 802.11 frames, allows pos-
itive recognition rates of about 80% (true positive). Equally
important, the low number of ORB descriptors still compre-
hensively avoids false recognition of the respective object
when regarding other objects (true negative). Building on
these results, this paper proposes a comprehensive approach
to ubiquitous and local CV on smartphones with negligible
time and communication overhead.
We implement DMCV for both Android and iOS smart-

phones using the publicly available OpenCV library [6] and
enable objects to transmit a set of ORB [19], FREAK [1], or
SURF [5] descriptors that is subsequently recognized in the
smartphone’s camera view. Our evaluation of the CV perfor-
mance on Nexus 5 and iPhone 4 and 5S phones then shows
both the feasibility of immediate CV data provision and the
impact of the phones’ computation capabilities. Smartphones
further transmit their current location to allow objects to de-
liver the CV information that correctly represents the pose of
the user towards the object. We show the comparably small
overhead of comprehensively maintaining CV data for the
possible user poses. Furthermore, we realize DMCV within
both 802.11 and 802.15.1 (Bluetooth), as the prevalent wire-
less communication mechanisms supported by smartphones.
We evaluate both with regard to our goal of facilitating ubiq-
uitous mobile CV, i.e., unhindered by the communication
and time overhead imposed by the communication aspect of
DMCV. Trading time overhead and communication scope
for reliability, DMCV further supports CV data transmission
via Beacon Stuffing [7], i.e., 802.11 communication without
the overhead of a network association.

In short, DMCV provides the following contributions:

Figure 3: Usage variants in DMCV: A user (U) con-
tinuously senses object (O) CV information in the
background, via triggered discovery and selection,
and in directed detection of a specific object.

i) A mechanism for CV information exchange that allows
devices to ubiquitously discover all recognizable objects
in wireless communication range,

ii) an integration of location context to account for changing
user perspectives in real-life mobility, and

iii) a feasible mechanism for user-driven content creation
and updates by enabling object owners to control the
provided information.

We illustrate the envisioned usage variants and require-
ments of mobile CV in Section 2 and address these in our
design of DMCV in Section 3. Section 4 describes our pro-
totype implementation for the popular iOS and Android
platforms and evaluates the feasibility and performance with
regard to the communication and object recognition aspects
of DMCV. Section 5 compares our design with existing
approaches and Section 6 concludes the paper.

2. BACKGROUND
In this section, we first illustrate the envisioned usage

variants and applications of DMCV. We then briefly re-
visit the requirements for ubiquitous mobile CV and our
argumentation for direct provision of CV data by objects.

2.1 Usage Variants
We envision DMCV to support the application of mobile

CV in the heterogeneity of scenarios that mobile users en-
counter. For this reason, we differentiate between three
distinct variants of using mobile CV that, in our opinion,
comprehensively cover all possible application scenarios. Fig-
ure 3 illustrates these variants, in the following we briefly
explain each variant along example application scenarios.

Background: The mobile device autonomously and contin-
uously discovers and collects CV data from objects in the
vicinity, following the mobility of the user. At any point
in time, the user may then scan her surroundings with the
phone camera, recognizing objects using the collected CV
data and displaying the associated information. Additionally,
the user may configure object information received in the
background to trigger an alert, e.g., a vibration alert when
encountering a specific object. Example scenarios for back-
ground application of DMCV are i) user mobility within a
city scenario, where monuments, stores, buildings, and other
mobile users provide their CV information proactively, and
ii) an exhibition, where the user roams about and collects
CV and annotation information to display once she scans the
surrounding vendor spaces for demonstrations or products
to decide where to go next.

200



Selective: Within a given location or context, a user pur-
posefully scans for the objects available in her vicinity, e.g.,
via an 802.11 or Bluetooth scan or by sending a customized
wireless frame. Objects respond with a semantic identifier,
allowing users to select an object and request its CV data,
e.g., when searching for and trying to identify a specific ob-
ject and display its application content. By scanning the
surroundings in the camera view, the CV application can
detect the specific object, highlight it, and annotate it with
the provided information. Application scenarios for selective
mobile CV are i) exhibition visitors that strive to detect and
query for a specific vendor or for a semantic identifier of
interest, e.g., “mobile 3D gaming”, and ii) city tours in which
visitors want to localize a specific monument or building and
gather information about it.

Directed: In contrast to the selective variant, where a user
selects an object by its semantics, the current user pose
and perspective determines the object to be queried and
recognized. This is the traditional CV and AR application
scenario [12], i.e., looking at an object through the phone
camera, a user wants to gather information about this specific
object. Example application scenarios for directed CV are
i) mobile users that want to derive the semantics of an object
in the first place, and ii) a user that immediately queries the
exhibition space or product he is looking at for application
information.
We further highlight the application of and differences

between the respective variants in Section 3.1.1. To this end,
we embed each variant into our overall design.

2.2 Requirements for Ubiquitous CV
Ubiquitous support of CV in mobile scenarios and appli-

cations by direct provision of CV data requires adjusting
both the CV and communication components of current ap-
proaches. In these approaches, comprehensive provision of
CV data suffers from the aforementioned challenges of fluc-
tuating or non-existing Internet access as well as the need
for centralized databases [4].
We thus argue that mobile CV benefits from an imme-

diate, distributed, and lightweight approach that provides
only the essential CV data exactly in the context in which
this data is consumed. Specifically, enabling object owners
(or proprietors) to simultaneously function as content cre-
ators, maintainers, and providers would remove the need for
all-encompassing, inherently volatile central databases and
content management within them.
A suitable communication component then needs to sup-

port a direct, localized exchange between mobile or stationary
objects and mobile devices. We argue that this exchange
can not occur over the Internet, as objects typically do not
have an Internet address and even with Internet addresses
available, publishing and looking up object addresses again
requires a global database. A suitable communication mech-
anism should thus be ubiquitously available in the respective
location context, incur minimal coordination, time, and com-
munication overhead and, with regard to background usage,
work without user interaction.

3. Direct Mobile Computer Vision
DMCV accounts for the aforementioned requirements in

adapting CV approaches to ubiquitous mobile scenarios and
implementing a suitable communication mechanism, respec-
tively. To mitigate the dependency on Internet access and

Figure 4: Objects (O) in DMCV know their loca-
tion and heading. Given the position and heading
of mobile users (Ui), they deliver CV data sets (Si)
matching each user’s perspective and distance.

large databases, DMCV enables objects to provide their rel-
evant CV data to mobile devices in wireless transmission
range, inherently leveraging their locality and current mobil-
ity context. We first describe our design of object-centered
and -provided CV data and then outline its embedding in a
suitable communication component.

3.1 Computer Vision Component
Objects in DMCV hold the CV data that enables their

detection in a given technique, e.g., via descriptor matching
using ORB [19]. However, an important feature of database-
driven image recognition is the ability to match images that
show objects from different perspectives to derive the pose
of the mobile user, i.e., her location and orientation towards
the object. Especially, this enables recognition of objects
even if the provided perspective has no exact match in the
database. Removing database comparisons in favor of direct
CV provision then requires explicit matching of user perspec-
tives to appropriate CV data that enables recognition of the
object from the current perspective.

DMCV thus makes use of the location context of both the
mobile user and the object as illustrated in Figure 4. Each
object thus knows its location and heading and holds sets
of CV data (Si), e.g., ORB [19], SURF [5], or FREAK [1]
descriptors in our prototype, that cumulatively cover all
perspectives a user can have towards the object. One set Si

thereby represents one or more perspective(s). The location
of an object or a mobile device is thereby given by its GPS
position when outdoors or by relative indoor positioning
techniques, e.g., WiFiSLAM [11] or SpinLoc [20]. DMCV
is thus able to account for the specific characteristics of CV
approaches, such as the lack of scale invariance in ORB [19],
and represent the user distance towards the object (e.g., S32

vs. S14). Objects initially assign a heading to CV data sets to
facilitate comparison with user locations. Stationary objects
thereby assign the true global heading, while mobile objects,
e.g., persons in mobile social networking, assign a “local”
heading to CV sets, e.g., straight north is assigned to the set
representing the front of the body, and adjust this heading
when their global heading changes, i.e., when they rotate.
An object that receives a CV data request that carries the
user’s location is then able to deliver the appropriate set by
matching the location against the stored sets. In the example
illustrated in Figure 4, user U1 requires CV data set S49 to
detect the object O from her position, while the perspective
of user U2 is represented in set S40. We now illustrate how
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this design realizes the aforementioned usage scenarios and
discuss content creation in DMCV.

3.1.1 Computer Vision Usage Scenarios in DMCV
In order to enable background collection of CV data, a

mobile user periodically broadcasts her location. Using this
location information, objects in transmission range determine
whether the user is able to view them and, if so, transmit
their appropriate CV data set. Objects “follow” the user’s
mobility by responding with appropriate sets to updated
location information, replacing the previous CV data for this
object, if present. CV data sets may also feature border
location indicators, outside of which the object is no longer
visible, to enable timely deletion of obsolete CV data. Once
the user scans the surroundings with the phone camera,
DMCV detects objects using the available CV data sets.
For selective detection, the user actively broadcasts a

designated request message that again contains her location.
Objects, that overhear the request, respond with their lo-
cation, a human-readable description, and an identifier for
subsequent requests. The user may then select an object and
directly request its CV data (plus its location and heading
information). For example, searching for a specific vendor
space when roaming the exhibition, the user may select this
object, if available, and scan her surroundings to highlight
it once it appears in the camera view. While a background
search might also accomplish this, selective detection saves
communication, computation, and energy resources by only
detecting a single object based on semantics.
Last, a directed detection, i.e., recognizing an unknown

object in front of the user, requires the user to provide her
heading in addition to her location. Thusly informed of the
user’s perspective, objects that are out of this scope do not
respond, saving the communication overhead of selective and
background detection.

3.1.2 Content Creation in DMCV
To equip objects with CV data sets, object owners need to

extract this CV data for a sufficient number of perspectives,
i.e., possible views of the object. We argue that this task
i) boils down to taking photos of the object, as extracting
CV data from images can be encapsulated in an applica-
tion that builds on the OpenCV library [6], and ii) directly
incorporates changes in the appearance of the object, e.g.,
seasonal decorations, in contrast to obsolete comparison con-
tent in global databases. However, a 360◦ coverage of an
object at a user position granularity of 1◦, would require 360
distinct data sets per distance to cover every perspective.
We exemplarily evaluate the required number of sets, i.e.,
the overhead of content creation, in Section 4.2, finding that
the actual number is significantly lower.

3.2 Communication Component
Transmitting CV data between objects and mobile users

over the Internet suffers from the difficulties of represent-
ing objects in the Internet and does not mitigate network
dependency. We hence implement local wireless transmis-
sion of CV information between object and mobile device
using Bluetooth, 802.11, and Beacon Stuffing [7]. In this, we
strive to comprehensively explore the design space of local
wireless communication available to current mobile devices,
in order to contribute a notion of ubiquity afforded by each
mechanism. Specifically, operating an 802.11 network at

each object and transmitting CV data in this network incurs
the time and management overhead of associating to the
respective networks prior to obtaining CV data. Similar,
Bluetooth devices need to discover other devices in range
and connect to them. While both mechanisms present a
feasible approach that is supported by mobile devices, this
overhead might impede both spontaneous, ubiquitous CV
data exchange, especially under client mobility, as well as
the desired real-time character of mobile CV. In contrast,
network-less, interactive Beacon Stuffing [7] enables objects
to overload 802.11 management frames with payload to trans-
port information without the requirement of a prior network
association. However, current devices do not support the
extraction of payload information transported in thusly mod-
ified 802.11 frames, reducing the compatibility and real-world
applicability of DMCV.

In all mechanisms, mobile devices in DMCV transport lo-
cation and heading information in wireless frames leveraging
the inherently limited interaction scope of wireless communi-
cation to naturally control the number of approached objects.
In Beacon Stuffing, Probe Request (PREQ) frames contain
requests for CV data and are addressed to a pre-defined
SSID, e.g., base64(sha1(DMCV)) Objects then encapsulate
their responses in 802.11 Probe Response (PRES)2 frames
carrying CV data or, in selective detection, the object de-
scription and an object-specific SSID for further requests.
To receive responses, mobile devices perform 802.11 scans.

DMCV hence implements mobile and direct transmis-
sion of CV information in the envisioned usage scenarios
in self-contained, low-overhead communication approach in
the background, upon a selective trigger, or directed at
an object. In comparison to Internet-based approaches, we
leverage the near-instant nature of wireless communication to
cater to the time-critical aspects of mobile CV. Furthermore,
the natural restriction of CV data exchange to the local
context, i.e., the communication range of wireless communi-
cation, directly pairs providers and consumers. In Beacon
Stuffing, eliminating the need for network associations al-
lows mobile devices to simultaneously collect the CV data of
multiple objects in the background.

4. EVALUATION
We implemented the mobile device functionality of DMCV

on a rooted Apple iPhone 4 (to realize Beacon Stuffing)
and commodity iPhone 5S, running iOS 7.0.3, as well as
Nexus 5 Android phones. The CV component of DMCV
is realized by adapting the OpenCV library [6] (version
2.4.7), while we make use of ioctl to communicate with
the 802.11 subsystem in order to enable Beacon Stuffing.
An Asus Eee PC 1000HE running Ubuntu Desktop 12.04
implements object functionality for (multiple) objects in
our evaluation. In Beacon Stuffing, the device listens to
PREQs that transport location information and subsequently
transmits the according CV data in PRES frames using a
custom Python implementation that approximates 802.11
AP functionality in Beacon Stuffing [7]. In traditional 802.11
and Bluetooth communication, we discover and transmit CV
data directly between the mobile devices. Figure 5 shows an
example view of the mobile application in selective detection

2We refrain from using Beacon frames as each Beacon is
interpreted as an 802.11 network, cluttering the observed
802.11 network landscape [7].
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(a) Scan in selective detection (iPhone).

(b) Feature point detection, best seen in color
(Android).

(c) Object detection and annotation (iPhone).

Figure 5: Selective detection menu and feature point
detection as well as object detection and annotation
in the camera view.

based on object description (5(a)). Furthermore, the figure
shows screen shots of feature point detection at objects (5(b))
and actual object recognition (5(c)).

We implement DMCV for ORB descriptors [19], because of
their small size per descriptor and computationally-efficient
key point and descriptor calculation on a single image, as well
as FREAK [1], and SURF [5] for comparison. The actual CV
technique is exchangeable according to the respective imple-
mentation and usage scenario. The choice of CV techniques
thereby induces a tradeoff between features, e.g., rotation
or scale invariance, or the technique, the space requirements
of descriptors, and the preparation of CV data at the ob-
ject. For example, our choice of ORB descriptors requires
a distance-wise partitioning of CV data sets (cf. Figure 1)
because ORB is not scale invariant.
In this section, we first evaluate the performance of both

the communication and CV component of DMCV. In this,
we measure the time overhead and, in the case of Beacon
Stuffing, the success rate of communicating CV data sets.
To assess the real-world performance of the resulting system,
we then measure the frame rate of DMCV when detecting
multiple objects in the camera view. Then, we evaluate the
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(a) Isolated scenario.
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(b) Populated 802.11 scenario.

Figure 6: CDF of CV data transmission time and
success rate (SR) in Beacon Stuffing over the 802.11
scan time in isolated and populated 802.11 scenarios.

number of angles an object is required to hold and offer for
a comprehensive detection by the user. We thereby quantify
the effort of creating the CV data for an object as well as
the precision needed to derive the correct CV data set for
user locations.

4.1 Performance
In this section, we first evaluate the performance of trans-

mitting CV data in our extended Beacon Stuffing [7] mecha-
nism as well as in 802.11 and Bluetooth. Then, we measure
the usability of mobile devices in detecting (multiple) objects
in the camera view using the received CV data sets.

4.1.1 Communication Performance
In the communication component, we emphasize ubiqui-

tous and timely exchange of CV data between objects and
mobile devices. To realize this, we adapt and extend Beacon
Stuffing [7] to a bidirectional exchange of data within 802.11
PREQ and PRES frames. In detail, mobile devices query
for CV data via PREQ frames and objects respond with
their CV data in corresponding PRES frames. Owing to the
intricacies and closed source of the iOS 802.11 subsystem,
mobile devices fail to scan the designated 802.11 channel
continuously until they receive the full CV data set. There-
fore, mobile devices receive the CV data set by repeatedly
scanning the 802.11 channel for a given time. Note that the
mobile device starts scanning as soon as the request is sent,
as it has no means of calculating the objects time require-
ment for CV data preparation and delivery. Furthermore,
we do not assume synchronized clocks to model a real-world
setting between foreign devices. As such, scan times and
sending cycles are not synchronized, inducing the risk of
missed frames.
We thus evaluate the overall time overhead and success

rate (SR) of transmitting 117 ORB descriptors, i.e., 3 802.11
PRES frames, 100 times each for increasing scan durations.
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The number of descriptors is thereby motivated by our pre-
vious results, as shown in Figure 2. Figure 6 show the
measurement results for an isolated 802.11 scenario in a cel-
lar room (6(a)) and an office scenario with substantial 802.11
background activity (6(b)). Specifically, the CDF distribu-
tions show the time overhead of successful transmissions out
of all 100 attempts; the fraction of successful transmissions
is indicated by the respective success rate (SR). We treat the
isolated scenario results as a baseline, as we expect few side
effects to influence our measurement, and view the populated
scenario results as approximating real-world performance.
Please note that we only had a single iPhone 4 available
and will evaluate simultaneous requests and CV provision to
multiple devices in future work.

Both scenarios allow similar success rates, supporting our
design of transmitting CV data in robust 802.11 management
frames. Perhaps surprisingly, success rates in the populated
office scenario constantly are above the success rates in the
isolated scenario, although the difference is 5% at the most.
The results further indicate that low scan times, e.g., 30ms
and 50ms, hurt the success rate as responses may not arrive
in this short time frame. In contrast, higher scan times,
e.g., 130ms or 190ms, allow high success rates at the cost
of marginally higher overall timings (2 s). The high overall
time, relative to single scan times, is due to the integration
of our Beacon Stuffing implementation in the iOS 802.11
functionality, inducing wait times and OS overhead.
The implementation of Beacon Stuffing in PREQ and

PRES frames is a momentary design decision, as sending
Beacon frames would “spam” the wireless medium with ad-
vertisements for non-existing wireless networks. A solution
to this would be a modification of the 802.11 subsystem to
not interpret Beacon frames that start with a designated
prefix as network advertisements. This way, bidirectional
communication in Beacon frames would not interfere with
802.11 networks and could be received by passive scanning,
significantly reducing the time overhead of DMCV by avoid-
ing unsynchronized scan and send intervals. However, we are
currently unaware of such a method and thus implemented
DMCV in an “802.11-friendly” manner. The general design
of DMCV using Beacon Stuffing is agnostic to the 802.11
frames being used and may be adapted.
Overall, the majority of CV data transmission takes less

than 2 s, still allowing for timely delivery in mobile scenarios.
Furthermore, populated 802.11 scenarios do not harm the
transmission, motivating real-world applicability of DMCV.
Note that, while the results only describe the reception of
one set of CV data for clarity, reception of multiple responses
in scan time slots is possible, reducing the cumulative time.
To put these results in perspective and evaluate DMCV

within more real-world applicable communication mecha-
nisms, we evaluate the time overhead of obtaining CV data
within 802.11 and Bluetooth networks. To this end, mobile
devices discover and associate to a well-known network in
the respective mechanism. The higher afforded data rates,
in comparison to Beacon Stuffing, thereby allow the trans-
mission of larger CV data sets, such as 5120Byte when
transmitting 80 descriptors in FREAK [1] and 20480Byte for
80 SURF [5] descriptors. Figure 7 shows the associated time
overhead as measured on a Nexus 5 device. Note that the
time does not include association times, which in Bluetooth
amount to 0.76 s on average and to about 1 s in 802.11.
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Figure 7: Transmission time overhead for ORB [19],
FREAK [1], and SURF [5] CV data and their respec-
tive size (in Byte) in 802.11 and Bluetooth commu-
nication. Note the logarithmic scale.

802.11 and Bluetooth thereby amortize the increased as-
sociation overhead and effort of selecting a network by ac-
knowledged transmissions and higher data rates, requiring
significantly less time to transmit CV data sets than in Bea-
con Stuffing, even for larger descriptor sizes. In contrast,
communication within 802.11 and Bluetooth networks is lim-
ited to the devices associated to this network, in contrast
to the unrestricted communication scope of Beacon Stuffing.
Beacon Stuffing thereby allows to receive CV data from all
surrounding devices, increasing the ubiquity of discovery and
DMCV at the cost of unreliable transmissions.

4.1.2 CV Performance
In the mobile CV component of DMCV, we emphasize

the ability to detect multiple objects in the camera view,
based on the sets of CV data previously received in the
background. Namely, the background mode represents the
computationally most expensive usage scenario because the
detection process can not be restricted to a single object.

As an evaluation metric for the computational complexity
of recognizing objects in DMCV, we measure the number
of CV-processed and annotated frames per second (FPS),
that can be displayed by the mobile device, over the number
of detected objects. In detail, the number of FPS captured
by the phone camera is constant, measuring the number of
frames displayed after passing the CV pipeline then gives a
measure of both the computational effort, the usability of
the system, and the eventual computational limitations.

Figures 5(b) and 5(c) shows our measurement setup with
three distinct objects, with 80 descriptors of CV data for all
three objects. To derive a meaningful number of displayable
FPS, we measured the frame rate over a duration of 60 sec.

Figure 8 shows the average and standard deviation of our
measurement results for both the iPhone 4 and Nexus 5.
We first follow our basic design of detecting objects using
only 80ORB [19] descriptors per object in a 640x480 pixel
camera frame. Notably, the measurements on the iPhone
4 development device hinted at an excessive computational
complexity for this device as already the detection of a sin-
gle object allowed only 0.25FPS. Detection of two objects
did not allow meaningful measurement values. Given the
relatively high age of the iPhone 4, we then measured the de-
tection performance using an iPhone 5S to gain an estimate
for current and future devices. For this device, continuously
detecting one, two, and three objects in the camera view
afforded frame rates of about 13FPS, 10FPS, and 7FPS,
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Figure 8: Maximum frame rates with CV detection
on iPhones 4 and 5S as well as Nexus 5 Android
device over the number of detected objects using
ORB [19], FREAK [1], and SURF [5] descriptors.

respectively, providing an interruption-free usability. We con-
sciously trade computation speed and thus displayed frame
rates for a camera frame resolution of 640x480. This is be-
cause lower resolutions of displayed frames would speed up
the processing time but would harm the detection quality
and user experience. From these results, we deduce the feasi-
bility or our approach within the communication overhead of
transmitting the respective CV data set, as actually detect-
ing objects does not induce further time overhead. Current
smartphone devices appear well-equipped to compute the
detection of even multiple objects simultaneously, affording
discovery of CV data in the background and subsequent
comprehensive detection.

To assess the dependency of these results on the given CV
technique, namely ORB descriptors in our case, we addition-
ally evaluated the CV detection performance in the same
scenario when using FREAK descriptors [1]. FREAK is a
slightly more recent binary descriptor that was especially
designed with object recognition on mobile devices with lower
computational and memory capabilities. In comparison to
32Byte ORB descriptors, FREAK descriptors require 64Byte
per descriptor, i.e., using FREAK induces an increased com-
munication overhead. In turn, the authors’ comparison of the
computational complexity [1] promises a decreased detection
time overhead, offering a tradeoff between communication
and computation times when choosing between ORB and
FREAK. However, in our evaluation, detection of one, two,
and three objects resulted in frame rates of about 8FPS,
7FPS, and 6FPS, respectively. While this is a significant
performance decrease in comparison to our ORB evaluation,
using FREAK descriptors still affords a usable system per-
formance. Furthermore, the performance difference may be

due to implementation specifics in the open-source OpenCV
library. In general, the results highlight the flexibility of
DMCV with regard to the used CV technique, supporting
the incorporation of future advances in CV techniques.

In comparison to the iPhone devices, the Nexus 5 Android
shows lower FPS results, even for well-supported SURF
descriptors. Again, ORB allows a higher FPS by virtue of
its low computational complexity while SURF enjoys higher
frame rates than FREAK.

4.2 Content Creation Overhead
In current mobile CV approaches that rely on central

databases, content creation is a challenge for multiple rea-
sons [4]. For example, appropriate, i.e., user-friendly, mecha-
nisms for users to specify, annotate, and register their content
at a service are missing. Furthermore, GPS information may
be inaccurate since it is measured at the location of the user,
instead of the object to be recognized. In DMCV, we strive
to alleviate these shortcomings by enabling users to locally
and flexibly create the CV information they want to provide.
In our current prototype implementation, our design only
requires the user to take a number of photos of the object,
specify the location and perspective of these photos as well
as the location of the object, and provide the annotation
data.
Per our design, DMCV enables objects to hold their re-

spective CV and annotation information and to provide it
directly to mobile users. In this, the key requirement is to
create and provide appropriate CV data sets for the possible
user positions towards the object, i.e., the information that
enables the respective CV approach to detect the object in
the camera view (cf. Figure 4). The effort of content creation
and provision thereby depends on the angular granularity
of the CV data sets that is required to provide continuous
object recognition from all possible user positions towards
the object. Namely, 360◦ detection coverage of an object
would, for a granularity of 1◦, require 360 distinct CV data
sets, inducing excessive effort of creating this information.
Furthermore, matching data sets to user positions with 1◦

granularity might exceed the localization accuracy of smart-
phone GPS sensors and indoor localization techniques, which
typically show an error margin of ±5-10m.
In this section, we thus evaluate the required number of

distinct CV data sets that enable continuous recognition.
We perform this evaluation for ORB descriptors to model
a worst case scenario, as ORB descriptors constitute the
least capable, i.e., expressive, descriptor in our prototype
implementation. Also, to model the most challenging case
with regard to the diversity of object features that need to
be represented in CV information, we attach two large LED
monitor cases to each other in a 90◦ angle, as at the corner
of a building. The print on each case is non-repetitive and
distinct from the other case (apart from the manufacturer
logo), modeling an object with distinctly different faces. We
argue that this setup represents the most challenging case
because CV information can not be reused within and across
faces and because the 90◦ angle induces the sharpest possible
break between faces. Also, we only use two faces, allowing
a 180◦ view, since the remaining two faces, i.e., 180◦, only
repeat the settings encountered in two faces, i.e., the corner
and plain faces.
For the actual measurement, we fixate the object and

extract 80 ORB [19] descriptors of CV information when
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Figure 9: Detection success of CV data sets Si, i ∈ {0, . . . , 17} with 10◦ granularity at all 10◦-separated mea-
surement points in an 180◦ view of the object. Detection (filled box) requires the object to be recognized in
95% of processed frames. The set {S6, S9, S17} allows detection of the object from all measurement points.

looking straight at the object in 10◦ steps, i.e., 18 distinct
CV data sets. We then evaluate the recognition rate over a
duration of 20 sec for all 18 sets at all 18 positions by mea-
suring the number of frames in which the object is detected
over the number of total frames. To gather a large number of
result frames, we again use the iPhone 5S with a frame rate
of 13FPS. We treat a detection at a position as successful
when object detection occurs in 95% of the reported frames.

Figure 9 sketches the measurement setup, with the object
in the upper center, and shows the detection success (filled
box) of each CV data set Si, {0 ≤ i ≤ 17}, at each measure-
ment point, i.e., user position. Please note that the plot sorts
sets in a specific color for each set and in increasing distance
from the center for visibility; we performed all measurements
from the same distance towards the object. The figure shows
a clear separation of the two faces, i.e., between [0◦, 90◦)
and (90◦, 180◦], by the CV data sets that allow object recog-
nition from the respective measurement points. Outliers,
such as S17 providing successful detection at measurement
point 0◦, are due to the aforementioned manufacturer logo
being present in both faces. In each face, however, multiple
sets allow detection at a high number of or all measurement
points, e.g., S6 and S12, due to the rotation robustness of the
ORB descriptor. From this, we deduce the need for a rather
low number of sets to cover all user positions around the
object, e.g., the set {S6, S9, S17} would suffice for this 180◦

example. Furthermore, a low number of sets reduces the
precision required from the position information as reported
by mobile phones.
In real-world scenarios, objects such as buildings show

highly repetitive features, such as the design of windows or
facades. This motivates the assumption that, depending on
the object, a rather low number of user positions need to
be represented in CV data sets. A CV technique that lacks
scale invariance, such as ORB, requires this number for each
provided distance (cf. Figure 4). Similar, face recognition,

e.g., to enable mobile social networking between smartphone
users, will only require three CV data sets, one for each side
of the face plus one for the front. Given that the creation
of CV data basically requires the user to take a photo of
the object from the respective view point, we thus argue
that DMCV facilitates content creation and provision with
reasonable autonomous overhead.

5. RELATED WORK
Numerous commercial and academic approaches [9, 12,14,

17] enable mobile CV by processing user inputs, e.g., motion
estimates or recorded images, within a dedicated server ap-
pliance that holds a representation of the respective scene
or object. Within varying degrees, the costly comparison
and detection steps are thereby performed on the server
to accelerate the process and save resources of the mobile
phone. As outlined in [4], this approach to mobile CV entails
multiple shortcomings, such as the dependency on network
connectivity and pre-established databases. In DMCV, we
specifically depart from this design in favor of a distributed
and lightweight approach.

Similar to our incorporation of location and heading infor-
mation, Arth et al. [2, 3] propose leveraging the position of
the user for in-scene localization, with emphasis on accuracy
and speed. While targeting vision-based localization, in con-
trast to CV in DMCV, the proposed approaches still rely on
feature databases holding a (3D point) reconstruction of a
given area, a dependency we eliminate in DMCV.
Lim et al. [16] strive for real-time localization on mobile

devices by removing client-server interaction. Instead, mobile
devices hold an 3D reconstruction of the scene that was
computed offline and match the 2D feature from the camera
feed to 3D points in the model. To compute the model, they
propose to use a micro-arial vehicle, highlighting the required
effort, a characteristic that we aim to alleviate in DMCV to
facilitate content creation.
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Recently, Wang et al. proposed InSight [21], a method to
recognize persons while removing the need for face recog-
nition. Visual fingerprints, constructed from the current
clothing and motion pattern of a user, allow mobile devices
to recognize a person and display associated application
data. InSight thereby presents an addition to CV data rep-
resentations that could be transmitted in DMCV. Indeed,
DMCV provides a communication system that enables the
local distribution of visual fingerprints as envisioned (but
not discussed) in InSight.

6. CONCLUSION
CV on mobile devices promises a ubiquitous enrichment

of everyday scenarios by object information and annotations
as well as applications that build on CV approaches, such
as AR or mobile gaming. However, the applicability of
mobile CV and the creation of CV content is hampered by
the requirement of (global) large-scale databases that hold
representations of the respective objects for comparison [4].
DMCV, in contrast, facilitates CV through transmission
of the necessary CV information directly between mobile
devices and recognizable objects. We seamlessly integrate
DMCV into the 802.11 and Bluetooth as well as Beacon
Stuffing of PREQ/PRES mechanism to establish a ubiquitous
communication channel that allows mobile devices to discover
recognizable objects and their CV information.
Our implementation for the iPhone 4 and Nexus 5 shows

the real-world applicability of DMCV. Our evaluation shows
both an affordable time overhead in the communication com-
ponent as well as a high dependence on the computational
capabilities of the mobile device in the CV component. No-
tably, the capabilities of our development device did not
afford a usable mobile CV application when recognizing a
single object whereas state-of-the-art devices, such as the
iPhone 5S, allow fluent detection and tracking of multiple
objects simultaneously. Last, creation of CV information
that enables object recognition does not induce excessive
overhead, as measured by the number of distinct CV data
sets, but only requires CV data for a small number of selected
user positions.

6.1 Discussion
DMCV meets the challenges and reduces the costs of pro-

viding a centralized, database-driven CV approach and the
associated processing infrastructure with a localized tech-
nique that “crowdsources” the capabilities of existing mobile
and stationary wireless devices. Local creation and provision
of CV information then requires an integrated, user-friendly
solution that i) builds sufficient CV information from a small
number of images and the object’s location and ii) offers an
interface for registering application content with CV infor-
mation. We argue that localized provision scopes and the
ability to retain full control of the provided content serve
as user incentives for using DMCV, in contrast to handing
user position data, CV information, image material, and
application content over to centralized CV providers.

6.2 Future Work
Future work will extend the descriptor matching design

of DMCV by further CV techniques such as space-efficient
feature descriptors [8] to assess the resulting design space and
the associated CV performance and communication require-
ments. Current efforts to optimize CV techniques for the

GPUs of mobile phones [15] promise a performance increase
with regard to the computational effort of object detection
in the future. Leveraging such efforts might further reduce
the processing time on mobile devices, allowing for a simul-
taneous tracking of a large number of objects.
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Database.
http://www.vision.ee.ethz.ch/datasets/index.en.html.

[11] Forbes. Apple + WiFiSLAM = Game on for Indoor
Location. http://www.forbes.com/sites/forrester/2013/
03/29/apple-wifislam-game-on-for-indoor-location/.

[12] S. Gammeter, A. Gassmann, L. Bossard, T. Quack, and
L. Van Gool. Server-side object recognition and client-side
object tracking for mobile augmented reality. In CVPRW,
2010.

[13] GOOGLE. Google Glass.
http://www.google.com/glass/start/.

[14] H. Hile, R. Grzeszczuk, A. Liu, R. Vedantham, J. Košecka,
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