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Abstract—Bit errors regularly occur in wireless communica-

tions. While many media streaming codecs in principle provide

bit error tolerance and resilience, packet-based communication

typically drops packets that are not transmitted perfectly. We

present PICCETT, a method to heuristically identify which con-

nections corrupted packets belong to, and to assign them to

the correct applications instead of dropping them. PICCETT is a

receiver-side classifier that requires no support from the sender

or network, and no information which communication protocols

are used. We show that PICCETT can assign virtually all packets

to the correct connections at bit error rates up to 7–10%, and

prevents misassignments even during error bursts. PICCETT’s

classification algorithm needs no prior offline training and both

trains and classifies fast enough to easily keep up with IEEE

802.11 communication speeds.

I. INTRODUCTION

Media content, especially audio and video streaming, has
been an increasingly important part of Internet communica-
tions. These days, it produces a large part of data traffic world-
wide. Many audio and video codecs can, at least in theory, cope
with bit errors in the received data, and are more sensitive to
packet loss than to (partially) erroneous data [1], [2].

Such bit errors are a typical property of wireless con-
nections, which are much more susceptible to them than the
classic wired connections. In recent years, the use of wireless
communications has greatly increased. The ubiquitous use of
notebooks, smartphones and tablets has increased the portion
of devices that communicate wirelessly at least on the last hop.
As a result, the problem of bit errors within packets (even after
PHY decoding) has become more widespread.

The classical approach to Internet communications, how-
ever, has not taken these developments into account. Data is
still secured by checksums, and even single bit errors lead to a
complete discard (and potential retransmission) of a packet, a
very inefficient approach in case of error-tolerant data. Partial
solutions to single protocols, such as UDP-Lite [3], have tried
to mitigate the problem by introducing tolerance to errors in
the application payload. However, these insular approaches
are not well-adapted because they interact badly with existing
solutions: they need support from both sender and receiver
to switch to a new protocol, and their advantages are typically
rendered void by the interaction with other protocols within the
network stack, which still enforce complete packet integrity.

Finally, even if such a solution worked well, and allowed
error-tolerant applications to receive erroneous data instead of
discarding and retransmitting, only errors in the payload of

packets could be coped with. However, especially in the case
of audio streaming, headers form a sizable part of a packet,
sometimes more than 50%. A solution that also tolerates
header errors can produce further performance improvements.

In this paper, we present PICCETT, a protocol-independent
classifier for corrupted error-tolerant traffic that takes all these
considerations into account and has the following properties:
(1) It refrains from discarding packets with checksum mis-
matches, heuristically identifies which connection a packet
belongs to, and repairs header errors, thus introducing error
tolerance for both packet headers and payload. (2) It allows for
concurrent error-tolerant and error-sensitive traffic, that is, it
does not produce negative side-effects to error-intolerant traffic
such as HTTP or FTP. (3) It resides on the receiving host
and does not need support from the sender. (4) It is a general
approach that neither focuses on specific protocols nor needs
detailed domain knowledge about the protocols it handles.

To reach these goals, we created a classification algorithm
that inspects the header and payload content of correctly re-
ceived packets (as indicated by a correct checksum). It creates
patterns from these contents which it then uses to classify
packets with bit errors (indicated by checksum mismatches) to
find the connection a packet most likely belongs to (property
4). Applications can, on connection setup, indicate that they
tolerate bit errors (property 2). If the algorithm chooses such a
connection, it will repair packet contents to fit learned values
(property 1). All information to do this is locally acquired, and
no interaction with the sender is needed (property 3).

We will show that PICCETT assigns erroneous packets to
the correct connections at bit error rates (BERs) in excess of
7% while preventing misassignments to wrong connections, all
while being fast enough to do both training and classifying in
real-time (within a few microseconds) as packets are received,
and without needing any prior off-line training.

The rest of the paper is structured as follows. We describe
the packet classification algorithm in Section II. In Section III,
we explain how this algorithm can be used in a system by
implementing it in the Linux kernel. We show evaluation
results in Section IV. We discuss potential extensions of the
classifier in Section V and related work in Section VI before
concluding in Section VII.

II. PACKET CLASSIFICATION ALGORITHM

We will start the description with some basic properties and
constraints that the classifier must follow. First, the algorithm
needs to produce a high classification accuracy. As many



packets as possible should be classified correctly. Even more
important, as few packet as possible should be classified incor-
rectly (misassigned), even at very high bit error rates (BERs).
While misassigning a packet to an error-tolerant application is
not instantly fatal (it will merely appear to the application as if
the packet had an extremely high error rate), it is nevertheless
undesirable. Second, to reach this goal, the algorithm should
have a discard threshold. Contrary to standard classification
algorithms used in Machine Learning, which always assign
the input to a class, our algorithm should have a threshold that
drops packets that are too different from previously seen ones.
Otherwise, extremely corrupted packets which do not well
match any connection have a high risk of being misassigned.
Furthermore, packets for other network participants could be
overheard; they need to be sorted out. Third, the algorithm
must be fast. It must be able to both train new classes from
new connections (i.e., learn) and classify incoming corrupted
packets (i.e., predict) in real-time without slowing down the
system. As such, the demands are similar to data stream mining
algorithms. As a rough estimate of the speed requirement,
a fully utilized 802.11a/g connection at 54Mbit/s produces
several packets per millisecond, with which the classifier needs
to keep up. Fourth, the algorithm should run inside the OS
kernel and therefore not use floating-point operations. This is
because in many kernels, among them the Linux kernel [4],
the floating-point unit is reserved for user-space calculations.

These constraints suggest that popular classifiers such
as support vector machines [5] and random forests [6] are
unsuitable. Hence, we create a novel classifier tailored to our
problem. PICCETT comprises two main parts: the learner and
the predictor. The learner sits between the network stack and an
application and processes correct packets. At this point, it has
access to the full packet content (header and payload), packet
size and reception time, and most importantly, knows which
application the packet belongs to. It then uses this information
to train the classifier, creating one class per connection.

The predictor sits at the bottom of the network stack and
processes corrupted packets before protocol handlers process
the packet. It compares the (potentially erroneous) content
of the packet to the learned classes. It then makes one of
three decisions: (1) It assigns a class label of an error-tolerant
connection. The packet is then repaired as far as possible (see
Section III-C) and passed up the network stack. (2) It assigns
a class label of an error-sensitive connection, and drops the
packet. Note that the learner processes all correct packets for
all applications, not merely for those applications that indicated
error tolerance. This is to train a class for each connection and
filter out erroneous packets belonging to error-sensitive traffic.
(3) It assigns no label, indicating no close resemblance to any
ongoing connections, and drops the packet.

To get an idea of the variability of certain bits in network
connections, we captured several kinds of data streams, among
them audio and video streams with and without RTP, web
browsing via HTTP, and ICMP pings. We then analyzed how
static bits tended to be across packets, that is, how often within
any single stream a certain bit position was 1 and how often
it was 0. Our results showed that within the first 46 byte (we
truncated the results to the shortest packet lengths in our data
set), 66% of the bits either were a static 0 or a static 1, that
is, never changed over the course of the connection. A further

training packets
1. packet 0 1 1 0 1 0 0 0
2. packet 0 1 1 0 1 0 1 1
3. packet 0 1 1 0 0 1 0 1

learned pattern mask 1 1 1 1 0 0 0 0
value 0 1 1 0 - - - -

scoring packets
score 0.0 0 1 1 0 1 1 1 1

score 0.25 0 0 1 0 0 1 0 1
score 0.75 1 0 0 0 0 0 0 0

Fig. 1. Example of the scoring algorithm. After learning from three packets,
mask shows the first four bits to be static, with the static values in value.
Incoming packets can then be assigned a score. The score of a packet is the
ratio of non-matching (static) bits to all (static) bits. Non-matching bits for
to-be-scored packets are bold, masked (ignored) bits italic.

23% were almost completely random, with a close to 50%–
50% distribution between 1s and 0s in those positions.

This motivated our design of a very lightweight classifica-
tion algorithm: For each class (i.e., connection), bits are placed
into one of two categories. They are either considered static or
random. Each class contains a bit field (the mask) that denotes
which bit positions are static and which are random. A second
bit field (the value) contains values for the static positions, to
keep track of whether those are static 1s or 0s. The initial mask
after the first packet processed by the learner for a connection
is all 1s, and the initial value equal to the packet. With each
additional packet, the packet is compared to the value bitfield,
and differing positions are set to 0 in the mask.

The predictor calculates the score by comparing the re-
ceived bits to the unmasked (i.e., static) value bits. All these
operations can be done efficiently with basic binary operations.
The score is the ratio of non-matching (static) bits to all (static)
bits. An example is given in Figure 1. Whenever a corrupted
packet is received, the predictor calculates the score for every
class trained by the learner. The packet is assigned to the
class with the lowest score, unless that score is above the
discard threshold, in which case it is dropped because the risk
of misassignment is deemed to high. We will investigate the
effects of threshold setting in Section IV-B.

This scoring algorithm already worked very well in most
situations. However, we noticed that in dynamic environments,
with connections opening and closing, the accuracy decreased
whenever a new connections was opened. This is because it
takes several packets for the mask to stabilize. After the first
packet, the mask would be set to 1 for every bit. Positions with
random bits can only be recognized as such on subsequent
correctly received packets that the learner uses for training.
Those random bits inflate the score even on packets belonging
to the connection: the class cannot recognize its own packets
properly. The effect is that erroneous packets for new connec-
tions have a high risk to be misassigned to older connections.
Only the first few packets of each connection are susceptible
to this effect (in our experiments, masks typically stabilized
within the first five learned packets), but in highly dynamic
scenarios with many opening and closing connections, this can
lead to undesirably high misassignment rates.

To mitigate this problem, we introduced combined scoring.
The idea is to compare two classes by specifically testing
for those bits that are static and different between them. A
combined mask for two classes is created by mask1,2 =
mask1 AND mask2 AND(value1 XOR value2). This mask
is then used instead of the class’s own mask to calculate the



connection 1 mask1 1 1 1 1 0 1 0 0
value1 1 0 1 1 - 1 - -

connection 2 mask2 1 1 1 1 1 1 1 1
value2 1 0 1 1 0 0 1 1

combined mask cmask 0 0 0 0 0 1 0 0
incoming packet 1 0 1 1 1 0 0 0

score 1 0.2 1 0 1 1 1 0 0 0
score 2 0.375 1 0 1 1 1 0 0 0

combined score 1 1.0 1 0 1 1 1 0 0 0
combined score 2 0.0 1 0 1 1 1 0 0 0

Fig. 2. Example of the combined scoring algorithm. A new connection (2)
has not learned any random bits yet. The next incoming packet shows a high
score towards that connection, preferring connection 1. Applying the combined
mask shows a combined score that suggests the packet should not be assigned
to connection 1, either.

combined score. This gives a comparative measure between
two streams. Figure 2 shows an example of combined scoring.
One idea behind this is that, in many protocols, static bits that
identify a connection (e.g., ports in TCP/UDP) occur at the
same positions, so for connections with (at least some) shared
protocols, this is especially beneficial. To reduce the O(n2)
complexity of the combined scoring (pairwise combination
of all streams), we limit its use. Analysis during evaluation
showed that a good tradeoff between accuracy and complexity
is considering only classes for combined scoring that had
scores of 0.2 or less or fewer than 10 learned packets.

The predictor combines both scoring algorithms into a
three-step algorithm to decide on how to label a packet:

1) Calculate packet’s score for each connection. Remove
all connections with a score above a threshold ✓s from
consideration.

2) Order connections by increasing score and iterate over
them. If for a connection, combined scores with all other
connections are below a threshold ✓cs, label packet with
that connection.

3) If packet has no label or a label of an error-sensitive
connection, discard.

III. KERNEL IMPLEMENTATION

In order to assess the feasibility of PICCETT in a real-world
setting, we prototypically implemented our proposed approach
for handling corrupted network packets into the Linux kernel
(version 2.6.32). This illustrates (in addition to the feasibility
of implementing the classifier in a kernel context) which parts
of the network stack need to be modified to facilitate handling
of corrupted packets. For this prototype, we decided to start
classification at the network layer. This is not due to any
fundamental limitations, and in fact, PICCETT could include
the link layer protocol into classification. Rather, starting at the
network layer in this prototype was done for practical reasons:
the MAC protocol of IEEE 802.11 (which, as a widespread
wireless technology, is our main focus) requires strict timing,
so that time-critical parts of the protocol are done in firmware
on consumer hardware. Thus, interception of packets below the
MAC layer would require (hardware-specific) firmware pro-
gramming. In addition to the classification algorithm described
in Section II, the prototypical implementation comprises three
changes to the network stack: signal packet corruption from the
link layer upwards (Section III-A), create packet interception
points for learner and predictor (Section III-B), and enabling
the passing of corrupted packets up the stack (Section III-C).

A. Link Layer Signaling

To enable recovery of corrupted packets, we have to, as a
first step, instruct the network hardware to not discard them.
This feature is available in many consumer cards (e.g., by
Atheros and Broadcom) and can be activated by setting a
flag via the Linux kernel’s mac80211 hardware abstraction
interface. While the information whether a packet is corrupted
or not is passed with the packet from the hardware, we also
need this information later on, in order for the learner, which
sits at the very top of the stack at the socket interface with
the application, to know which packets to learn from. Hence,
we added a flag to the kernel’s sk_buff structure, which is
used to store all information about network packets, to signal
whether the link layer checksum matched or not.

B. Interception Points and Signaling

As discussed in Section II, we have to intercept network
packets at two distinct points in the network stack: all correct
packets have to be intercepted right before they are passed
to the application in order to learn packet patterns and all
corrupted network packets have to be intercepted before they
are passed to the corresponding network layer protocol handler.

For the learner, which resides between the transport layer
and the application layer, we leverage the concept of Linux
Socket Filters which was derived from Berkeley Packet Fil-
ters [7]. The sk_filter() method is called by all transport
layer protocols after the processing of a packet has finished and
it is ready to be passed to the application. By hooking into this
filter, we are able to intercept all incoming network packets
right before they are passed to the (user space) application in
order to feed the learner component of PICCETT.

In order to realize the predictor, we have to intercept all
corrupted packets before they are passed to the handler of
the specified Internet layer protocol. In the Linux kernel, the
task of identifying the correct Internet layer protocol handler
is performed by the __netif_receive_skb() method.
We decided to integrate the predictor here so it can use its
repair feature (see Section III-C) to recover from errors in
the protocol identifier field of the packet header. Additionally,
our requirements laid out in Section I demand coexistence
of error-tolerant and error-sensitive traffic. If we simply used
our classifier on all incoming packets, corrupted data would
be assigned to applications which cannot tolerate this, such
as file transfers. To prevent this, we require error-tolerant
applications to signal this capability. This means that PICCETT
is backwards-compatible: if the application does not signal
error tolerance, no corrupted packets will reach it, and packets
that the classifier assigns to those applications will be discarded
instead of delivered. For this signaling, we use an approach
we presented in an earlier paper [8]. For applications to
signal error tolerance, we extend the socket interface that
is used to open and close connections by an additional flag
SO_BROKENOK that can be set when the connection is opened.
Conversely, we also signal to the application if a packet is
corrupted. This information can then be used by the application
if desired, for example, to use error concealment algorithms on
the contained data. When an application uses the recvmsg
system call to receive incoming data, it also receives addi-
tional ancillary information via message flags. We added the
MSG_HASERRORS flag to signal data from corrupted packets.



C. Leveraging Predicted Information

With the above changes, we are able to receive corrupted
packets and to predict which connection they most probably
belong to. However, if we simply pass those corrupted packets
to the network stack, the upper layers will most likely discard
them as their checksums fail. Hence, additional measures have
to be taken in order to leverage the predicted information.

It might seem as if the easiest solution were to simply skip
the protocol handlers and directly assign the packet to the pre-
dicted socket. However, this comes with two large downsides:
First, stateful protocols which react to packet receptions, for
example, for flow control or statistics gathering, cannot work
properly if some received packets are not processed. Second,
the protocol handlers remove the headers from the packet, so
that the application receives the payload part of the packet.
For static-size headers, it would be possible to learn this size
and chop off the headers on corrupted packets. However, for
protocols with variable-size headers, this is impossible.

We therefore take a more complicated approach. As a first
step, we repair header fields by settings all static bits to the
values learned by the classifier (see Section II). However,
random bits are not repaired, so checksums in network and
transport layer protocols can still be expected to fail. Hence, we
disable checksum checks in those protocol handlers. Thus, we
can repair errors in some header fields, and have the handlers
accept corrupted packets. How the handlers react to residual
errors in bits that were learned as random and therefore not
repaired depends on the protocols used. Errors in such fields
may lead to packet drops; however, we have shown in previous
work [8] for IPv4 and UDP that many header fields are unused
and their contents ignored even for standard protocol handlers.
Hence, we consider this a workable solution, especially due to
the fact that many important fields (e.g., IP addresses in IP,
port numbers in UDP or TCP) stay static over the course of
the connection and are therefore repaired.

IV. EVALUATION

The main goal of PICCETT is to classify packets to the
correct applications and to prevent misassignments. The per-
formance stems from the classification algorithm as described
in Section II, while the implementation details presented in
Section III are mostly inconsequential. Hence, we will focus on
the classification algorithm in the evaluation. Its classification
needs to be fast and lean enough to allow real-time processing
in an operating system network stack. From this, the two
questions we want to answer in this section follow: how
accurate is our prediction, and how fast is it?

A. Experimental Setup

To evaluate the performance of our classification algorithm,
we again captured a number of connections of different types.
To create a data set (data set 1), we surfed the web, ran a
Debian aptitude system update, listened to several web
radios (HTTP and UDP-based), and watched a number of
YouTube videos (via HTTP and RTP). Ancillary traffic, such
as DNS, was also captured. In total, this resulted in 214
connections. All data traffic was transmitted over an Ethernet
interface, so we can safely assume this data set to be error-free.
To achieve comparability, repeatability, and to exactly control

bit error rates (BERs), we decided to use the data set as trace
instead of manually creating live traffic for every experiment.
Thus, we can track assignments and misassignments exactly.
Since in our data set the association of every packet with a
connection is known, we can easily calculate the algorithm’s
classification accuracy. In a real system with live testing,
this information has to be derived from the packet contents;
however, the motivation of our work is to classify packets in
which this information is corrupted and unreliable.

We fed the pre-captured traffic with injected errors into
our classification algorithm to evaluate its output. For error
injection we used a Bernoulli process. Note that this leads to
an independent error distribution. While it is well known that
bit errors in many real-world wireless systems, such as 802.11,
show a bursty tendency [9], we will show performance values
for the complete BER range from 0% to 50% (i.e., completely
corrupted). The latter in effect models the worst case of an
error burst over the whole length of the packet. We examine
this wide range to investigate the number of misassignments
our classifier produces in worst-case situations.

Especially at high BERs, virtually no packet is error-free.
As a point of reference, a BER of 1% produces more than
99.9% packet errors at packet sizes of only 100 bytes. Since
we rely on correct packets to learn from, at high BERs no
classes could be trained, and it would be impossible to present
evaluation results. Hence, we decided to only inject errors
into 70% of the packets. The remaining 30% were fed into
the classifier without any injected errors. As a side effect,
this introduces a certain packet-level error burstiness. Each
data point presented in the following graphs is the result of
repeating the experiment 20 times. The error bars denote the
minimum and maximum observed results.

We also split the data set into streams and randomized
the starting time for each one, emulating different surfing
behaviors and increasing the number of combinations of con-
current connections. Finally, we also used the same data set
as described in Section II (data set 2) to compare performance
between the two data sets.

B. Classification Accuracy

The main performance parameter of a classification al-
gorithm is its accuracy in assigning data to the right class.
While a typical classification algorithm knows two outcomes
(correct and incorrect assignment), our algorithm produces
three: correct and incorrect assignment, and no assignment at
all. Since we want to make sure that misassignments occur
preferably never or at least as rarely as possible, the algorithm
has to be parameterized to balance these outcomes. If the
discard threshold is too lenient, many misassignments occur. If
it is too strict, misassignments are prevented, but many packets
that would have been correctly assigned are also discarded.

We therefore investigated a number of thresholds ✓s and ✓cs
for score and combined score, respectively. Figure 3 presents
results for data set 1 and ✓s = ✓cs = 0.2, 0.3, 0.4 as well as a
variant of the algorithm where the threshold for discard was the
sum of both scores. As the figure shows, all variants of the al-
gorithm produce exceedingly good classification accuracy. As
the thresholds get stricter, the number of correct assignments
decreases, but even the strictest presented thresholds recover
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Fig. 3. Classification accuracy for all streams in evaluation data set 1. More
lenient thresholds provide high accuracy up to extremely high error rates, but
at the cost of misassignments. Stricter thresholds prevent misassignments and
still work well at error rates up to 10%. Note linear scale on the top and
logarithmic scale on the bottom graph.

almost all packets at BERs above 7–10%. As shown above, this
results in extremely high packet error rates (and consequently
packet loss in standard systems), and even robust voice codecs
show strong quality degradation at such BERs [2]. Regarding
misclassification, all variants produce at least reasonably good
performance. Even lenient thresholds produce misclassification
rates of 10�4 to 10�3 up to 35% BER. At the stricter
thresholds, we witnessed no misclassifications at all, over the
whole spectrum of 0%–50% BER. We omit the results for data
set 2 for reasons of space and because the results are virtually
identical to those of data set 1.

After these very encouraging results, we decided to stress-
test the classification algorithm even further. In the next step,
we took nine YouTube video streams and let them run concur-
rently. While this does not constitute realistic user behavior,
it gives us a possibility to further investigate the capabilities
and limitations of the classification algorithm. Each of the
nine streams comprised two RTP, two RTCP, and one RTSP
connection. These connections were very similar to the others
of the same protocol, in protocols used and protocol header
contents (e.g., source and destination IP addresses). The results
are presented in Figure 4. The results are roughly similar to
the ones presented in Figure 3. Regarding correct classification,
the accuracy is somewhat lower, but still allows almost perfect
recovery up to BERs of 5–8%, and much higher at more lenient
thresholds. Misclassification at lower BERs interestingly is
somewhat lower than in the other scenario. We attribute this to
the fact that in this setup, the total number of connections is
lower than in data set 1, which reduces the number of wrong
choices the classifier can make.

Concluding from these results, we suggest the stricter of
the investigated thresholds (both  0.2 or sum  0.35) for
use. At these thresholds, our classification algorithm produces
no noticeable misclassification, while producing almost perfect
classification in BER ranges that allow practical use of the
received data by typical error-tolerant applications.

C. Classification Speed

One of our requirements for the classification algorithm
was that it should be fast, to not slow down the receiving
system. To investigate this, we measured the time learner and
predictor took at different BERs and numbers of streams. The

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
ct

(fr
ac

tio
n)

Both <= 0.4
Both <= 0.3
Both <= 0.2

Sum <= 0.35

10-6
10-5
10-4
10-3
10-2
10-1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

In
co

rre
ct

(fr
ac

tio
n)

Bit Error Rate

Fig. 4. Classification accuracy for nine concurrent YouTube streams. Even
in this extreme scenario with a large number of very similar streams and with
strict thresholds, correct assignments show little degradation up to 5–8% BER.

following results used ✓s = ✓cs = 0.2 as threshold and were
measured on a PC with an Intel Core 2 Duo CPU at 2.66GHz.
The measurements only used a single core at a time.

Figure 5 shows the processing time the learner takes per
packet. BER does not change these results. The time increases
linearly with the number of open connections. The chief
contributor is the data format in which the classifier saves
information about streams. The current implementation uses
a linked list, so it takes linear time to look up the right
stream to save the learned data to. The time could be further
reduced by a different lookup mechanism, for example, by
extending the kernel’s socket structure to keep a pointer to the
right data element, leading to constant lookup time. However,
the processing time is so low even now (on the order of
nanoseconds) that performance is not impacted.

The predictor has to perform significantly more computa-
tions than the learner. While the latter only has to update mask
and value for a connection, the predictor has to compare the
incoming data to all open connections. This means that lookup
time in the linked list is overshadowed by these additional
operations. As Figure 6 shows, the prediction time is on the
order of microseconds. However, this still does not constitute a
bottleneck for typical connections. For example, the interframe
space time alone (to acquire medium access) in IEEE 802.11 is
a minimum of 28 µs. Two results are of note: First, processing
time decreases with increasing BER. This is because at higher
BERs, more connections are ruled out as potential receivers
during step 1 of the algorithm. (Note that the results for BER=0
are artificial, because if no errors occurred, no prediction would
be done.) Second, even though the algorithm has a potential
complexity of O(n2), in practice, the processing time increases
linearly. This is because ✓s typically removes most connections
from consideration for step 2 of the algorithm.
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Fig. 5. Processing time in the learner is on the order of nanoseconds. It
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candidates during step 1 of the classification algorithm.

Overall, the results show that our classification algorithm
is fast enough to be of practical use in packet classification.

V. EXCURSUS: EXPLOITATION OF FURTHER
PACKET-SPECIFIC INFORMATION

During the development of the classifier, we investigated
further input that is not part of the packet content, but specific
to every packet. Specifically, each packet has a size and an
inter-arrival time (IAT), that is, the time that has passed since
the reception of the previous packet for that connection. Be-
cause these are not part of the packet content, we termed these
properties extrinsic information. The motivation behind using
this information comes (apart from the goal of using as much
information as possible to potentially improve classification
accuracy) from the observation that in media streaming these
properties sometimes show very specific patterns. Especially
in live audio streaming or telephony, data needs to be sent
out fast enough to not introduce any noticeable delay, so it
is common to see packets of the same size arriving with very
regular inter-arrival times (a typical value is every 20ms [10]).

We therefore investigated our data sets for exploitable
patterns in packet size and inter-arrival time that identify each
connection. Regarding size, we expected to see very static
packet sizes for streaming applications. However, we soon
noticed that this assumption is too simplistic. Even in audio
streams, many codecs do not employ completely static bit
rates. Switching between different bit rates creates different
packet sizes. Furthermore, during periods of silence, no packets
or only very small ones indicating the silence are transmitted.
For video streams, the situation is even more complicated: even
individual frames are often too large to fit into single packets.
Therefore, the data is fragmented into several packets, some
with the maximum permissible size, and the last one being of
unpredictable size. Therefore, these connections will not show
any preference to specific packet sizes – except for a large

number of maximum-size packets, which all those connections
share, which is not conducive to classification.

Similar problems arise with the exploitation of packet inter-
arrival times (IATs). If video data does not fit into a single
packet, the data is transmitted in a burst of many packets within
a short time frame, which leads to extremely low IATs. Only
the first packet of such a burst will show the “real” IAT to
the last packet of the last burst. This leads to at least two
data clusters: one with the connection’s characteristic IAT, and
another close to 0, which is common to all such connections.
But even audio streaming does not necessarily produce regular
IATs. This is due to several effects.

First, if the audio stream is not a live stream, then pre-
buffering leads to packet bursts similar to the ones in the video
streaming case. Furthermore, in non-live streaming cases, the
application can refill the buffers with intermittent bursts of data
packets, instead of relying on regular transmissions.

Second, even in the live streaming case, network effects
can significantly alter IATs. Packets can be lost on the way
between sender and receiver, for example, due to congestion
or interference. In this case, the IAT as observed by the receiver
is twice the normal IAT. In case of multiple consecutive losses,
this increases further. Furthermore, intermittent congestion can
lead to delayed packets that further skew IATs. This well-
known effect of jitter is one of the reasons that streaming
applications employ buffers.

These problems are highlighted by the graphic representa-
tion given in Figure 7. We took three audio and video streams
each out of our data set 1 and show for each packet the size
and time since the last packet (IAT) in a two-dimensional
space. Except for one audio stream, the regions of all streams
significantly overlap each other. Note the IAT jitter, even
though the data was collected over a switched Ethernet link.
In a shared medium, such as in wireless communications, the
jitter can be expected to be even stronger. We therefore see no
way how this information could be used to classify packets on
its own. At best, we can envision using it as a sort of pre-filter
for our content classifier described in Section II. Returning all
possible connections for a given packet’s size and IAT could
replace the content classifier’s ✓-thresholds. This could result
in faster processing without losing accuracy.

However, there is an important tradeoff in that employ-
ing the size/IAT classifier would take processing time itself.
Furthermore, we have shown in Section IV that the content
classifier is already both fast and accurate without this ad-
ditional help. Finally, preliminary experiments showed that
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Fig. 7. An example of the problem of exploiting packet size and inter-arrival time (IAT): Two-dimensional representation of packet size and IAT for three audio
(left) and video (right) streams each (note the different scales). Except for one audio stream, all streams overlap each other, suggesting problematic separability.



training of the size/IAT classifier to return accurate results
takes significantly more packets (and hence time) than the
about 5 packets it takes the content classifier. During this time,
the filter will produce unreliable results.

All of these factors combined mean that for the time being,
we decided against using packet size and IAT as input for
our classifier. There are several significant problems in using
this information to create or support a highly accurate packet
classifier. Nevertheless, if these problems could be solved, we
envision the use of such information to be helpful in further
improving packet classification.

VI. RELATED WORK

Related work can be roughly split into two areas: work
that improves retransmission concepts, but enforces total cor-
rectness, and work that tolerates errors in packet payloads and
sometimes headers.

Maranello [11] uses partial checksums to facilitate partial
retransmissions of corrupted packet areas. ZipTx [12] sends
additional Reed–Solomon code data in case a packet contained
errors. Other solutions require additional support from the
PHY layer (collaborative decoding on several nodes in SOFT
[13]), retransmissions to reconstruct packets from (ZigZag
[14]), or both (MRD [15]). All these either require PHY
support or change protocol behaviors fundamentally. TVA [16]
requires neither, but focuses on only correcting specific pre-
defined error patterns.

When it comes to tolerating errors, the best-known solution
is UDP-Lite [3]. However, as a new protocol, it requires
support from both communication partners. UDP-Liter [17]
stays compatible to UDP while tolerating payload errors, but
not header errors. Error tolerance for protocol headers has
been implemented for specific protocols, such as RTP [18],
UDP and IP [8], and suggested for IEEE 802.11 MAC [19]
and TCP [20]. These works leverage specific knowledge about
header fields in the investigated protocols. In contrast, PICCETT
does not require any such information to tolerate and recover
from header errors; it merely needs a way to disable packet
discarding due to errors in the protocol handlers.

VII. CONCLUSION

We presented PICCETT, a novel scheme that identifies the
connection a network packet belongs to, even in the presence
of payload and header errors. If an application has signaled
error tolerance, such packets will then be assigned to the
connection. Thus, it allows error-tolerant application to benefit
from receiving partially corrupted packets, while not negatively
influencing error-sensitive applications. PICCETT needs no
prior training or information about the protocols whose headers
it classifies. Without any off-line training, PICCETT both trains
(learns) and classifies (predicts) with a speed per incoming
packet that is well below packet inter-arrival times in IEEE
802.11, facilitating real-time performance. The classifier can
correctly assign virtually all packets up to bit error rates in
excess of 7%, while preventing misassignments.

We identify the following aspects as future work. (1) While
our results with a set of static ✓s and ✓cs have shown very
satisfactory performance, dynamically adapting the threshold

could optimize both classification accuracy and speed. (2) In-
vestigation into creating a fast and accurate classifier for packet
sizes and inter-arrival times could replace the static thresholds
and likewise improve classification performance.

Overall, we consider the work presented in this paper
a feasible, fast, and very generally applicable approach to
introducing support for error tolerance into the network stack.
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