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Abstract—Jamming is a well-known reliability threat for
mass-market wireless networks. With the rise of safety-critical
applications this is likely to become a constraining issue in
the future. Thus, the design of accurate jamming detection
algorithms becomes important to react to ongoing jamming
attacks. With respect to experimental work, jamming detection
has been mainly studied for sensor networks. However, many
safety-critical applications are also likely to run over 802.11-
based networks where the proposed approaches do not carry
over. In this paper we present a jamming detection approach
for 802.11 networks. It uses metrics that are accessible through
standard device drivers and performs detection via machine
learning. While it allows for stand-alone operation, it also enables
cooperative detection. We experimentally show that our approach
achieves remarkably high detection rates in indoor and mobile
outdoor scenarios even under challenging link conditions.

I. Introduction

Jamming attacks consist of radio signals maliciously emitted
to disrupt legitimate communications. Various studies show
this in the context of 802.11 and 802.15.4 systems [4], [17],
[24], as well as in the context of cellular networks [9], [18].
With the proliferation of (time-critical) machine-to-machine
applications in general, and safety-critical applications in
vehicular ad-hoc networks (VANETs) in particular, the im-
portance of jamming-aware communications is expected to
increase in the future. In general, the impact of jamming
can be alleviated by either increasing the robustness of the
legitimate signal [11], [15] or by migrating the communication
to a different frequency band [14]. However, many of the pro-
posed countermeasures cannot always be applied on already
existing systems and, in most cases, the only alternative is
to try to detect the jammer. In the context of safety-critical
communications over VANETs, the detection of a jamming
attack could, for instance, alert the driver about potentially
malfunctioning applications.

Jamming detection can be performed by dedicated devices
or by algorithms within the communication devices them-
selves. In general, the latter case is associated with less over-
head and costs. In either case, one has to rely on previously
acquired knowledge of the communication behavior under
normal and jammed conditions. This requires the tracking of
potential indicators (or metrics) of jamming activity, which
are obtained at different layers (e.g., packet delivery rate at

the application layer and channel busy time at the MAC
layer). The use of a cross-layer architecture can ease the
task of collecting necessary metrics and, hence, of jamming
detection [15].

In literature, only few experimentally-evaluated approaches
for jamming detection have been proposed [7], [24], [23],
which either do not explicitly address 802.11 communica-
tions [7], [24] or focus on very specific, and hence hardly gen-
eralizable, jamming attacks [23]. Common approaches manu-
ally set thresholds for the selected metrics based on empirical
observations [7], [24]. However, during normal operation other
effects such as network congestion and challenging wireless
link conditions can exhibit a similar impact as jamming, which
degrades the detection accuracy. Furthermore, adding more
metrics, which theoretically increases the accuracy, compli-
cates the problem of the manual threshold setting.

In this paper, we present a machine learning-based jamming
detection approach for 802.11 networks that weighs and com-
bines a considerable set of metrics and automatically selects
appropriate thresholds, thereby circumventing the arduous and
error-prone manual tuning. Our approach relies on metrics
available from drivers of commodity network interface cards.
For convenience, we utilize crawler [3], a cross-layer tool
that facilitates the access to the metrics. Afterwards, the
metrics are provided to a machine learning algorithm to predict
the likelihood of a jamming attack. The proposed approach
features a high detection accuracy in different scenarios (in-
door and vehicular), under different propagation conditions
(good- and bad-link conditions, with and without concurrent
traffic from neighbor networks), and for two different jammer
types (constant and reactive). In addition, our approach easily
integrates cooperative jamming detection to further improve
the accuracy without incurring significant costs.

The remainder of this paper is organized as follows. In
Section II, we introduce metrics for jamming detection and
analyze their reaction to jamming. Section III presents the
design of our machine learning-based jamming detection ap-
proach, which is evaluated in Section IV. In Section V we
discuss practical problems. An overview of related work is
provided in Section VI. Finally, in Section VII we conclude
our work and discuss on future work directions.
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Fig. 1. Indoor (reference) and outdoor scenarios considered in the evaluation.

II. Challenges of designing jamming detection strategies

To differentiate jamming from normal operation, it is nec-
essary to analyze the impact of jamming on the system perfor-
mance. Therefore, we investigate a set of metrics that react to
jamming attacks and helper metrics that do not show a reaction
to jamming, but provide context for an appropriate weighting
of other metrics. Our results demonstrate the difficulty of
jamming detection by showing the complex interdependencies
between the scenario, the system behavior, and the jammer.

A. Reference Scenario and Measurement Setup

The scenario used to evaluate the suitability of the selected
metrics was an office room located in the UMIC Research
Centre at the RWTH-Aachen University, which is sketched in
Figure 1(a). Our setup consisted of three Linux PCs equipped
with 802.11g Atheros WLAN cards running the ath9k driver
[1]. The three nodes were configured in ad-hoc mode and
communicate on channel 11 in the 2.4 GHz band, which was
not occupied by any other network during our experiments.

In order to mimic ideal and challenging link characteristics,
we considered two different configurations which we refer to
as good-link and bad-link. In the good-link configuration, the
nodes were placed close to each other and the transmission was
parameterized to achieve, on average, a high packet delivery
rate. The bad-link topology was characterized by a poor
communication performance, which was achieved by selecting
a lower transmit power and/or by adding attenuation elements
at the output of the radio front-end. For each configuration
we collected data under normal and jammed conditions. In
the latter case, we placed the jammer at different positions
(cf. Fig. 1(a)) and varied its output power to impact the
performance of the communicating nodes differently. We im-
plemented the jammer on a WARP board [13], which provides
an 802.11-like OFDM physical layer featuring a 10 MHz
bandwidth and an output power of 18 dBm in the 2.4 GHz
band. The jamming signal consisted of a preamble and BPSK
modulated random payload of variable length. The jamming
signals prevented the legitimate devices to access the medium,
which differs from what has been reported for other Atheros
cards in [21], [17].

Constant jammer: Implementing a constant jammer on
WARP is not entirely possible, since the amount of time
that the boards can be transmitting a single signal is upper-
bounded. We measured it using a spectrum analyzer to be
about 2.7 ms. Between two consecutive signals there is a 10 µs

gap required by the hardware to set up a new transmission.
Nevertheless, this marginal off-phase is expected to not affect
the performance of the legitimate communication, as this gap
is not large enough for 802.11 stations to access the medium.

Reactive jammer: The reactive jammer starts a transmis-
sion when it senses energy on the channel above a threshold
regardless of the type of signal detected. We set the threshold
to -65 dBm to achieve a sufficiently high jammer sensitivity,
while guaranteeing a low number of false detections, that is,
avoid reacting to signals from neighbor 802.11 networks or
other sources of electromagnetic activity. The jammer has a
total reaction delay of 12 µs. This is fast enough to partially
interfere the preamble of the 802.11 signal, which is known
to increase the effectiveness of the attack [8].

B. Experimenting with Indicators of Jamming Activity

We experimented with multiple metrics to detect jamming
activity. Candidate metrics were selected based on two main
criteria. First, we focused on metrics that are accessible via
a common driver of commodity 802.11 network interface
cards. Second, the metrics should work regardless of the
type of traffic exchanged by the nodes. For instance, we
discarded the number of frame retransmissions, since this
metric requires the use of ACK frames that are not available
in broadcast transmissions. Finally, we chose six metrics for
further analysis, which we divided into three categories: (i)
channel, (ii) performance, and (iii) signal metrics.

Channel metrics: These metrics sample the state of the
wireless channel. We identified noise and channel busy ratio
(CBR) as relevant. Noise is defined as the power measured on
the channel during idle times of the transceiver [2]. Jamming
signals that are transmitted while the legitimate nodes are idle
(e.g., constant jammer) are likely to be included in the noise
measurements of the cards as shown in Figure 2(a). However,
a minimum jamming power and interference duty cycle are
required for the cards to include the jamming signal into the
noise measurements [19]. This happened to only 30% of the
constant jammer samples collected in our indoor experiments
(see Figure 2(a)).

The CBR measures the time (normalized to the observation
time) that the wireless channel has been sensed busy. The
channel is considered busy if the received power is above
the clear channel assessment (CCA) threshold. As reactive
jamming attacks are launched once the legitimate nodes have
gained access to the medium, no impact is expected from
this jammer on noise and CBR metrics, which can be clearly
observed in Figures 2(a) and 2(b).

Performance metrics: This type of metrics can only be
obtained if a connection is established between two or more
stations. We identify inactive time (IT) and packet delivery
ratio (PDR) as suitable metrics. The IT corresponds to the
time that elapses between two consecutive successful packet
receptions, including probing, beacons, and payload frames.
Specifically, we account for the maximum IT at a node
measured over the links to its neighbors.
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Fig. 2. CDF to compare the impact on all selected metrics of the constant and reactive jammer with the non-jammed case. Noise is completely unaffected
by the reactive jammer, in contrast to the constant jammer. The CBR is strongly affected by the constant jammer, while the reactive jammer has only a
marginal impact on it. PDR and max. IT are significantly affected by the presence of both jammers.

As opposed to the other metrics, the PDR is not directly
provided by the card. For its computation, each node is aware
of the number of network members in its hearing range and
of a predefined rate for generating probing packets. With that
knowledge, and based on the number of correctly received
probing packets, the PDR can be computed. Figures 2(c)
and 2(d) show that these metrics are good indicators for
detecting jamming activity, since, in most cases, they clearly
separate jamming from normal operational conditions.

Signal metrics: Signal is the power measured upon arrival
of a packet, but only passed to higher layers in case of
successful reception. This metric is a helper metric, that
provides a useful context (i.e., link quality) to the PDR and
the max. IT metrics, although it is not explicitly affected by
jamming. For instance, a low received signal power is likely
to result in a low PDR even if the jammer is silent. This
knowledge is important to appropriately weigh the significance
of PDR and max. IT accordingly. In our experiments, instead
of collecting a single signal metric (i.e., the average power),
we have observed that the differentiation between minimum
and maximum signal over all links is most valuable.

C. Threshold Identification

A common strategy in related work is to manually choose
thresholds for selected metrics [24] based on their behavior in
a specific scenario. However, it is a difficult task to appropri-
ately separate the values of the metrics and weigh them based
on their significance. We illustrate this issue by jointly collect-
ing samples of measured PDR and received signal strength
(plus measured noise power). We collect these samples in
our reference scenario without jamming activity, following the
approach proposed in [24]. These samples correspond to the
blue circles depicted in Figure 3. We then manually determine
the thresholds to best capture normal operation, specifically
the thresholds are set so as to contain 99% of the unjammed
samples as in [24]. Next, we activate the jammer and eval-
uate how well this method can identify jamming activity. In
Figures 3(a) and 3(b) we observe a clear overlap of jammed
and unjammed samples, which anticipates inaccurate detection
rates. From these figures we derive two major observations: (1)
metrics for jamming detection proposed by related work in the
context of general wireless networks do not necessarily work
well in 802.11 and (2) finding appropriate thresholds, even for
only two metrics, is already a difficult task. The combination
of multiple metrics will drastically increase the complexity
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Fig. 3. Consistency check approach of PDR vs. max. signal in indoor scenario
as proposed by Xu et al. in [24]. Samples for jammed and not jammed overlap,
which makes a clear threshold identification impractical for 802.11.

and make manual threshold setting impractical. For tackling
this complex problem, we use machine learning algorithms,
as they are known to be well-suited for multi-dimensional
(binary) classification problems such as the decision about the
presence and absence of jamming based on multiple metrics.

III. Detection System Design

Our jamming detection approach consists of two phases:
(1) the collection of training data and (2) the application of
machine learning on the collected data.

A. Data Collection Phase

Our machine learning algorithm takes training data as
input. Therefore, the selected metrics need to be accessed and
forwarded to the machine learning component, as illustrated
in Figure 4. While most of the metrics are provided by the
802.11 device driver, the PDR is obtained from the application
layer. As the latter requires a supervised packet exchange
mechanism, we have incorporated an information exchange
component into our design. The other metrics reside in the
kernel space of the operating system, but they have to be
provided to the user space in order to be used by the machine
learning component. To address this task, we incorporate a
cross-layer component (see À in Fig. 4) that improves the
flexibility of the framework and reduces the complexity. The
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Fig. 4. Design overview of our detection approach consisting of three
components: (1) Metrics are accessed via crawler and are provided to the
machine learning component. (2) Similarly does the information exchange
component with the PDR metric. (3) Based on the gathered data, the machine
learning component decides on the presence of the jammer.

details of the cross-layer and information exchange compo-
nents are described in the following.

Cross-layer component: A cross-layer component should
(i) offer the flexibility to include and prepare diverse met-
rics from different protocol layers and (ii) still reduce the
complexity, i.e., simplify the access to protocol and system
information without requiring excessive effort and knowl-
edge about system details. As the cross-layer architecture
crawler [3] offers these features, we incorporated it into our
framework. crawler is an open-source software for Linux that
allows cross-layer developers to express their monitoring and
optimization requirements in an abstract and declarative way.
crawler provides many accessors to read and write system
information ranging from TCP-IP to our metrics partially
gathered directly from the WLAN devices.

Information exchange component: We propose the ex-
change of probing packets between nodes to measure the
PDR (see Á in Fig. 4). We have implemented the packet
exchange in a client-server manner running in the user space
of the operating system. Each node runs the server and the
client. The client broadcasts UDP packets every 100 ms. These
packets have a total size of 57 Byte. In particular, 8 bit are
reserved for the message type, although one message type
is currently used, we reserved these bits for future use. A
16 bit value can be utilized to enable a cooperative mode to
convey the detection probabilities from neighbor nodes. We
later show in our evaluation that the use of the cooperative
mode increases the jamming detection accuracy significantly
(cf. Section IV-F). Finally, 54 Byte are necessary for protocol
headers and CRC checksums. Hence, the broadcast of probing
packets introduces a per-station overhead of about 570 Byte/s.

B. Machine Learning Phase

Before using machine learning for detecting the presence of
a jammer, training data needs to be collected and provided to
our machine learning component (cf. Â in Fig. 4) for learning.
Our training data consists of multiple instances of the decision
problem, which are themselves divided into input variables or
features (i.e., the six selected metrics) and a corresponding
output variable or class (i.e., a binary variable stating whether
the jammer is active or not).

Learning: In this work we have considered multiple learn-
ing algorithms, which are introduced and evaluated in Sec-

tion IV-G. However, most investigations exclusively employ
Random Forests [6], a sophisticated decision tree-based clas-
sifier known to be superior, in terms of accuracy, to most other
classifiers [6]. For learning, Random Forests generates a large
number of random decision trees (we empirically determined
50 trees with a depth of 10 to be a good trade-off and we later
use this dimensionality in the evaluation part), the so-called
forest. The input variable and the splitting threshold chosen
at a node are automatically selected so as to maximize the
classification accuracy. Finally, the leaf nodes represent the
distribution of values that the output variable takes for the
corresponding path through the decision tree.

Predicting: During operation, the input variables are contin-
uously monitored and new instances (i.e., new values of met-
rics) are pushed down each decision tree reaching a specific
leaf node. Depending on the distribution of the output variable
at the leaf node, the tree will either vote for the presence of a
jammer (i.e., output a one) or against it (i.e., output a zero).
Finally, the votes of all trees are aggregated into a single output
variable representing the prediction probability of jamming.
In its default configuration, jamming activity is assumed if the
predicted probability is larger than 0.5.

IV. Evaluation

In earlier sections we have pointed out the necessity of
appropriately selecting, combining, and weighting metrics to
identify jamming attacks. In this section we present a detailed
evaluation of our proposed approach in a representative set of
scenarios to underline our arguments.

A. Measurement Methodology

We have conducted static indoor and mobile outdoor ex-
periments. We first provide results for the indoor tests. The
experimental settings for the evaluation are the same as in
the reference scenario introduced in Section II-A. We have
configured the nodes to gather the value of the metrics every
second. For every chosen topology, we conduct multiple runs
with a duration of 60 s. The value of the binary output
variable (i.e., the jammer activity) is introduced off-line once
the measurement is finished. We collect the same number of
instances with and without jammer activity in order to avoid
biased learning. In the reference scenario, we collect a total
of 27000 samples, namely 9000 for each jammer and 9000
without jammer. From the final training set, we randomly
select 60% for learning and 40% for testing. To minimize
the impact of this selection, we run the learning algorithm
20 times considering a different subset of samples at each
iteration. The prediction accuracy is obtained on the samples
reserved for testing. Unless specified differently, our results
show the average detection accuracy together with the 95%
confidence intervals.

B. Detection Accuracy

In our evaluation we show the true positive (TP) rate,
i.e., the correct detection of existing jammer activity, and the
true negative (TN) rate, i.e., the correct identification that
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(b) Prediction accuracy obtained with all metrics and
when a certain group of metrics is excluded from learning.
As expected, the combination of all metrics achieves the
highest detection accuracy.

Fig. 5. Detection accuracy obtained in the indoor reference scenario.

there is no jammer. In Section II-B we have shown that four
metrics provided by commodity cards are suitable indicators
of jamming activity. However, it is unclear if a subset of these
metrics (or even a single metric) is able to yield the desired
accuracy. Figure 5(a) shows the detection accuracy obtained
in the reference scenario if only one metric is considered for
learning. It can be observed that every metric has the potential
of detecting jamming activity, which is illustrated by TP rates
larger than 50% with the single exception of the noise metric
in case of reactive jamming. The latter is evident based on
the observations of Section II-B. Hence, relying on a single
metric is not sufficient for guaranteeing a reliable detection.

Figure 5(b) shows the accuracy achieved with all available
metrics compared to the accuracy when certain metrics are
excluded. As expected, employing all metrics results in higher
detection rates. The no channel group (i.e., excluding noise
and CBR) yields a high accuracy, although the detection of
the constant jammer is slightly worse. Excluding the signal
metrics degrades the detection of reactive jamming. Clearly,
the performance metrics (i.e., PDR and max. IT) are most
important, as excluding them from the learning phase degrades
all detection rates significantly. This was expected based on
the results presented in Section II-B. To summarize, although
single metrics can be used to some extent to detect a jammer,
a holistic consideration of multiple metrics is the right strategy
towards an efficient jamming detection.

C. Impact of Concurrent 802.11 Traffic

Besides jamming there are other sources of interference
that can impact 802.11 communication, thereby complicating

TABLE I
Detection Accuracy with & without ConcurrentWLAN Traffic

Constant Reactive

TP TN TP TN

(1) Without concurrent Traffic 97.97 98.64 94.13 98.10
(2) Concurrent Traffic 12 Mbit/s 98.44 99.70 94.31 99.00
(3) Training 1 for predicting 2 98.05 72.70 89.36 54.34
(4) Training 1&2 for predicting 2 98.23 99.72 93.18 99.19

the detection of an attack. In this context, we are interested
in evaluating the ability of our approach to detect jamming
activity in the presence of intense traffic generated by a
neighbor 802.11 network. For that, we placed two additional
nodes in the reference scenario that communicated with each
other in an ad-hoc fashion. Each node run the iperf application
to generate an average traffic load of 12 Mbit/s with a fixed
MTU size of 1500 Byte. The nodes were located close (about
2-3 m) to the original three-nodes and used the same frequency
channel for transmission.

Row 2 in Table I shows the detection accuracy achieved
by our approach when concurrent 802.11 traffic is present
during the learning phase and later also during prediction. For
better readability we omit the 95% confidence intervals, which
are always below 1%. It can be observed that the detection
rates for both jammers are not degraded compared to the
ones obtained without background traffic (as in Row 1), which
indicates that our approach efficiently differentiates between
jamming and 802.11 interference. However, the activity of
legitimate interference can have an unpredictable pattern de-
pending on the number of neighbor nodes and the amount of
traffic they generate. Performing learning without accounting
for concurrent traffic leads to a significant drop in accuracy
if this traffic activity appears only during the detection (see
Row 3 in Table I). To overcome this problem, it is important
to collect training data samples under different conditions that
are likely to emerge during operation. We show (in Row 4 of
Table I) that by combining training data samples from different
scenarios (i.e., from Rows 1 and 2), high TN and TP rates are
obtained, which are comparable with the accuracy achieved
with scenario-specific learning.

D. Impact of Outdoor Mobility

Safety-critical communications in vehicular scenarios have
tough reliability constraints and strict delivery deadlines.
Hence, a responsive and accurate jamming detection is im-
portant to initiate appropriate countermeasures. We evaluated
our approach in an outdoor scenario with mobility, which is
illustrated in Figure 1(b). We placed two cars at the ends
of a parking lot, while mobility was introduced by a third
car that was moving back and forth between the static nodes
at a maximal speed of 25 km/h. The jammer was located
close to one of the static nodes. The wireless link between
the static nodes was characterized (without jammer activity)
by a low PDR of about 40% that dropped further due to
the attenuation caused by the moving vehicle. Depending
on the position of the latter, the quality of the links varied
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Fig. 6. Outdoor scenario: Detection accuracy when using outdoor training
data (Outdoor Train) compared to training with indoor data for outdoor
prediction (Indoor Train) and combining both training data sets for outdoor
prediction (Both Train). Collecting training samples under different conditions
is a requisite to achieve high detection accuracy.

significantly and we obtained PDR values that spanned the
whole range. We conducted multiple runs of 60 s and collected
a total of 4500 data samples (1500 for each jammer and
1500 without jammer). Figure 6 (cf. Outdoor Train) shows
that the constant jammer can be detected with high reliability,
while the accuracy for the reactive jammer is slightly above
80%. In general, node mobility and the signal propagation
characteristics of the outdoor environment do not hinder an
accurate detection of the jammers.

Obtaining training data in outdoor environments can be
time-consuming. We have investigated the reusability of indoor
learning for detecting outdoors. Figure 6 (cf. Indoor Train)
shows that the TN rates for both jammers are degraded and
fall below 50%. In general, differences in the scenario char-
acteristics, and hence in the behavior of the metrics, lead to
notable training dependencies. Therefore, as already discussed
in Section IV-C, collecting training samples under different
conditions is a requisite for robust and flexible jamming
detection. This is underlined in the figure by the high accuracy
achieved when the learning is applied on training data that
contains both indoor and outdoor samples (cf. Both Train).

E. Exploiting Detection History

So far, every node decides (with one second granularity)
on the presence of a jammer using instantaneous informa-
tion. However, we have observed that the predicted jammer
probability features a certain degree of correlation in the time
domain. Figure 7(a) is a 10 s excerpt of a measurement in
the outdoor scenario when the constant jammer was active.
The figure illustrates the time correlation of the probability as
predicted by Random Forests and the final decision about the
presence of a jammer. At some points, the probability falls
below the 0.5 threshold and a wrong decision is made.

Figure 7(b) shows the burst length of erroneous decisions in
the outdoor scenario. It can be observed that the majority of the
detection errors are isolated events (i.e., they are preceded and
followed by correct detections) and that more than five consec-
utive detection errors rarely happen. We have identified small
fluctuations of the signal strength under bad-link conditions,
as the main cause for isolated errors. These observations can
be exploited for more efficient detection approaches. We have
investigated the benefits of combining successive predictions
to intercept these single detection errors. Specifically, we
apply a moving average (mAvg) of a particular window size

to account for past probabilities. For a window of size k,
the values of k−1 previous detection probabilities are stored
and combined with the current probability. Figure 7(c) shows
the benefits provided by this method as a function of the
window size. Remarkable is the 10% higher detection accuracy
achieved with a window of 3 s, as this size is able to efficiently
intercept the isolated detection errors. Further increasing the
window size provides only a moderate gain and can even
degrade the accuracy.

F. On-the-Fly Jamming Detection:

The evaluation results provided so far have been obtained
off-line by applying our detection algorithm on previously
collected data samples (not used for learning though). How-
ever, having an approach that enables immediate predictions
is mandatory for real-world applicability. We have imple-
mented our learning-based jamming detection framework on
the 802.11 devices to perform on-the-fly predictions. This is
achieved by installing the required machine learning libraries
(e.g., we used OpenCV 2.4.3 for Random Forests) on the
devices and redirecting the collected metrics to the machine
learning component (cf. Â in Fig. 4). For the on-the-fly
detection to work, the outcome of the learning phase (e.g., the
structure of the forest) needs to be stored and made accessible
to the machine learning component. In the following, we
evaluate our framework in on-the-fly mode.

Scenario Details and Methodology: We consider an office
room (25 m2) located in the building of the Communication
and Distributed Systems Chair. The topologies chosen in this
scenario were comparable to those of the reference scenario
(cf. Figure 1(a)). Nevertheless, small differences in the propa-
gation conditions of both scenarios were observed, especially
with respect to the background 802.11 activity.

The jammer was placed at different locations within the
room so as to affect the communication differently. We mea-
sured for a total of 60 minutes (with and without jammer) on
different days and at different working hours. It is important
to note that no specific learning was conducted, instead, the
outcome of the learning obtained in the reference scenario
was reused for detection in this new one. In the following we
show the results for our on-the-fly detection (referred to as
basic approach) and for two enhancements that increase the
detection accuracy.

Results basic approach: Figure 8 shows the evaluation
results for both jammers. In general, a high detection accuracy
is achieved, even without the availability of scenario-specific
learning. For instance, the TN rates are above 85% for both
jammers and the TP rate for the constant jammer is close
to 100%. The detection of the reactive jammer is in general
lower, but the TP rate is still above 85%.

Advanced approaches: We extend the basic approach to
incorporate the moving average mechanism (i.e., mAvg) to
exploit the correlation in the time domain. Figure 8 shows
the benefits of using moving average (window size of 3 s).

We are also interested in exploiting the correlation in the
space domain, as nodes that are close to each other can
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(c) Exploiting detection history (mAvg) improves
detection in the outdoor scenario.

Fig. 7. Based on observed temporal correlations in the detection probability (cf. Fig 7(a)) and large proportion of isolated errors (cf. Fig. 7(b)), we propose
a moving average to improve the detection accuracy (cf. Fig. 7(c)).
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Fig. 8. Benefits of moving average (mAvg) and cooperation (Coop) for
an accurate jamming detection. Despite considering different scenarios for
learning and testing, the combined approach (Coop + mAvg) achieves
remarkably high detection rates.

be expected to be similarly affected by the jammer. This
information redundancy can be exploited by letting neighbor
nodes exchange their individually computed detection prob-
abilities and can be easily conveyed (after 1 s delay) within
the probing packets without significantly adding complexity or
overhead. We enabled our information exchange component to
support cooperative jamming detection (i.e., Coop). However,
we have investigated only a naive approach, where the nodes
assume that all network members within hearing range are
identically affected by the jammer and correspondingly they
average the detection probabilities of all neighbors. Smarter
approaches that, for instance, make use of GPS information
are more appropriate to weigh these probabilities. Note that
this investigation is out of the scope of this paper.

Results advanced approach: In general, the use of moving
average alone already improves the detection accuracy. Fig-
ure 8 shows that the TN rate for the constant jammer increased
by up to 7%. The figure also shows the improvements of
cooperation combined with moving average (i.e., Coop +

mAvg). This combined approach shows the most significant
gain with up to 11% higher accuracy compared to the basic
approach, which brings all detection rates above 95%.

Conclusion: We demonstrated the ability of our jamming
detection framework to achieve a high detection accuracy at
runtime. In addition, we observed that the basic approach
achieves a high detection accuracy even when using learning
based on training data obtained in a different scenario. This
fact highlights the reusability of the learning phases to be
applied on scenarios of similar characteristics. Furthermore,

the proposed advanced mechanisms that exploit correlation
in the time and space domains, in particular when applied
together, achieve a dramatic boost in accuracy.

G. Machine Learning Algorithms

So far, we have used Random Forests as learning algo-
rithm in all our experiments. Nevertheless, there exist other
algorithms that are well-suited for the considered problem.
Therefore, we investigated the following set of well known
machine learning algorithms with respect to their accuracy
and robustness. For a detailed description of these algorithms
we refer the interested reader to [5] and the references therein.
C4.5 Decision Tree: This algorithm relies on a single decision
tree for classification. The input feature at each node of the tree
is selected so as to maximize the information gain. Pruning
is applied to reduce the size of the tree without degrading
classification accuracy.
Adaptive Boosting (AdaBoost): AdaBoost iteratively com-
bines multiple weak classifiers to obtain a single strong one.
For this purpose, each individual classifier only needs to
achieve a classification accuracy higher than 50%. Further-
more, the errors produced in one iteration are appropriately
weighted in the next iteration. We select a maximum of 100
iterations and choose the C4.5 algorithm as weak classifier.
Support Vector Machine (SVM): This classifier looks for an
hyperplane in a high dimensional space that maximizes the
margin, i.e., the minimum distance between the hyperplane
and a data point of any class. A non-linear transformation, by
means of a kernel function, is applied to the data points to
perform the classification in a higher dimensional space. We
have used a gaussian kernel k(xi, x j) = e−γ(xi−x j) with γ = 100.
Expectation Maximization (EM): This learning algorithm
is of unsupervised nature, hence, the class is not explicitly
specified. The algorithm identifies patterns in the data points
and groups them into clusters. We empirically determined that
two clusters provide the best accuracy for outdoor training.

Results: Figure 9(a) shows the detection accuracy achieved
by the different algorithms in the outdoor scenario. The four
supervised learning algorithms exhibit a similar performance,
although Random Forests and SVM achieve, on average, a
marginally better detection. The EM algorithm yields a poor
performance, which indicates that unsupervised learning is not
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(a) Accuracy obtained outdoors with scenario-specific training.
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(b) True positive (reactive jammer) accuracy obtained for dif-
ferent amounts of training data in the outdoor scenario.

Fig. 9. Comparison of the detection accuracy and robustness obtained by the
different machine learning algorithms in the outdoor scenario.

well-suited for the considered problem. Figure 9(b) shows the
accuracy of the algorithms for a varying amount of training
data. In general, all algorithms (expect for EM) provide an
accurate detection already with 10% of the total training data.
Random Forests and AdaBoost exhibit a very stable accuracy,
which is in contrast with the large fluctuations experienced by
SVM and C4.5, particularly with only 1% of the data.

H. Comparison with Related Work

In literature there are only few works implementing a
jamming detection scheme that could be applied (partially with
significant modifications) in the context of 802.11 networks.
We select the approaches presented in [7] and [24] and
compare their accuracy against our scheme with respect to
different link qualities, where the latter are characterized by
the average PDR obtained while the jammer is silent. The
accuracy of Giustiniano’s scheme has been extracted from
Figure 8 in [7]1. In addition, we implement an approach
similar to Xu’s method [24]. For that, we generate a scatter
plot containing samples of the PDR and (maximum) signal
strength plus noise power collected without jammer activity.
This is done similarly as in Figure 3, but for the data gathered
in the indoor scenario described in Section IV-F. By inspecting
the graph, we determine the operational non-jammed area.
Later, any sample falling above that region is considered as a
jamming attack. For more details we refer the reader to [24].

Figure 10 compares our approach in on-the-fly mode (basic
design, moving average, and cooperation with moving aver-
age) against these two works for two different PDR ranges. We
conducted the experiments in the indoor scenario described in
Section IV-F. In general, we observe that all schemes (with
punctual exceptions) are able to efficiently detect jamming

1Please note that the scenario, propagation conditions, and jammer behavior
considered in the work may differ significantly from ours. Hence, this specific
comparison should be treated with caution.
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(b) Constant Jammer comparison.

Fig. 10. Comparison of our approach with Xu [24] and Giustiniano [7].

attacks when the PDR is larger than 80%. Under challenging
propagation conditions, Xu’s approach [24] yields a poor
accuracy with respect to TP rates, while (for the reactive
jammer) Giustiniano’s approach [7] provides a better detec-
tion. Nevertheless, our scheme outperforms these two works
significantly (for both jammers and link conditions). In cases
where the basic design falls short in providing a successful
detection (e.g., low TN rate for the constant jammer), the
combination of cooperation and moving average achieves a
remarkable performance.

I. Tuning Detection Sensitivity

In general, we are interested in a timely and accurate
jamming detection, particularly in the context of safety-
critical applications over VANETs. Figure 11(a) illustrates
the situation where a car moves towards a jammer. In this
scenario, the communication conditions can be divided into
three regions [17]. First, Region A is completely outside the
interference range of the jammer. In Region B, the jammer
impacts the communication but not enough to completely
block it. Hence, safety-critical applications are expected to
still work reliably. Finally, in Region C the vehicle is not
able to successfully receive any packet. The dimensions of
these regions depend on the transmit power of the devices,
the network topology, and the jammer type, among others.

However, in this kind of scenarios the presence of a jammer
is an event that can be expected to occur only sporadically.
Assuming a higher probability of unjammed situations (such
as in Region A), it is necessary to keep a very low rate of
false positive detections. However, it is also desirable to have
high true positive rates in Regions B and C. In the following,
we propose and evaluate a method to address this issue.

Figure 7(b) has shown that erroneous jamming detections
(i.e., false positives) rarely occur in a consecutive manner.
In the outdoor scenario, error bursts larger than 5 s happen
in only 0.1% and in 0.4% of the cases for the constant and
reactive jammer, respectively. Based on this observation, we
propose a strategy to lower the false positive detections in
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(a) Interference regions with different implica-
tions to the communication and to the jamming
detection requirements as a vehicle approaches
a jammed area.
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(b) We apply an absolute majority voting win-
dow to limit the sensitivity to false positive
events of our detection framework in the out-
door scenario.
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(c) The combination of moving average (window
of 5 s) with the absolute majority voting window
achieves very high TN rates, while keeping accept-
able TP rates for both jammers.

Fig. 11. Discussion on the applicability of our detection framework in vehicular scenarios.

unjammed situations (i.e., Region A). That strategy, which we
refer to as absolute majority vote work as follows: A jammer
is assumed to be present when all collected predictions within
a specific time span give a positive answer. The corresponding
results for different window sizes are shown in Figure 11(b).
This method achieves TN rates that are very close to 100%
for both jammers. For instance, in the case of 5 s window,
the values are 99.96% and 99.95% for constant and reactive
jammer, respectively. As expected, the sensitivity to jamming
attacks happening in Regions B and C is degraded, particularly
for the reactive jammer. This can be improved by combining
this strategy with the moving average method presented in
Section IV-E. As illustrated in Figure 11(c), the TP rates can
be significantly improved. For instance, employing a moving
average of 5 s yields a detection accuracy of 97% for the
constant jammer and a TN rate of 99.92%. Finally, we believe
that the appropriate cooperation between vehicles (e.g., by
using additional context information such as GPS coordinates)
will further improve the overall performance.

V. Discussion
In this work, we have considered two jamming attacks,

namely reactive and constant. The jamming signals, as dis-
cussed in Section II, do not comply with the 802.11 standard
nor do they exploit any knowledge about the protocol of the
targeted network. We believe that a jammer emitting 802.11
compliant frames would not affect the metrics in a significantly
different way than our jammer does. However, one major
difference is expected with respect to the noise metric, since
legitimate packets are not considered for that computation.
This metric, however, provides only a modest improvement of
the detection rate (cf. Figure 5).

A smarter jammer could, for instance, deliberately allow the
successful reception of probing packets so as to tamper with
the PDR computation. The jammer would need to distinguish
the small probing packets from other packet types, which could
be hindered by randomly adding padding bits to the packets.

Ideally, to provide accurate detection rates for a novel
jammer type, our approach needs to gather training data that
captures the impact of that specific jammer. In this context, we
face two issues: First, collecting training data requires effort
and the existence of the jammer is mandatory. Second, there is
an indeterminably large number of jamming attacks that can
be obtained by changing the interference signal pattern [11],
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Fig. 12. Detection accuracy achieved exclusively with training data from a
particular attack. Interestingly, using only reactive jammer training data for
detecting a constant jammer achieves a successful detection. On the contrary,
exclusively training with a constant jammer does not provide an accurate
detection of the reactive jammer. These results were obtained in the indoor
scenario introduced in Section IV-F.

[12] or adding protocol-awareness to the attacker [16], among
others. As a result, we believe that there is no jamming
detection strategy that guarantees the detection of all potential
jammer types. To some extent the same problem is faced by
computer anti-virus programs that need to regularly update
their database with the fingerprints of new unseen viruses.

Hence, our approach should not be considered as a one-
fits-all solution that detects all possible jamming attacks on
802.11 networks. It is rather a methodology that improves the
adaptability to novel jammers with low effort, while keeping
a high detection accuracy. In this context, we made the
interesting observation that training with a particular jammer
can be reused to successfully detect other jamming attacks.
This is illustrated in Figure 12, where the learning conducted
in the presence of the reactive jammer is able to accurately
detect constant jammer activity. We hence believe that training
data that accounts for a representative amount of attacks, has
the potential to accurately detect a wider range of jammers.

VI. RelatedWork
With the widespread deployment of wireless networks,

especially 802.11-based WLANs, many research efforts have
focused on jamming attacks due to their potential for com-
promising both reliability and security. Many works have
characterized the impact of jamming on the network perfor-
mance and discussed the reasons for the observed jamming
effectiveness [4], [8]. Some other works have proposed meth-
ods to (partially) overcome the effects of jamming by using
specific transmission technologies [14] or by appropriately
tuning transmission parameters [15], among others.

In the cases where the robustness of the system to jamming
cannot be increased, it is important to, at least, detect the pres-



ence of a jammer. Several jamming detection approaches for
wireless networks have been proposed in the past years [24],
[7], [20], [22], [10]. However, the majority of these works
evaluate the proposed approaches only by means of simula-
tions [20], [22] or not at all [10]. In [24] Xu et al. propose the
use of measured energy together with the packet delivery ratio
(PDR) for jamming detection in wireless sensor networks. The
authors implement the approach in sensor devices and show
that different jamming attacks can be identified. However,
the approach is not directly transferrable to 802.11 networks
as energy measurements as applied in Xu’s work are not
applicable with commodity hardware in 802.11.

Giustiniano et al. present in [7] an approach for detecting
reactive jamming in direct sequence spread spectrum (DSSS)
wireless systems (e.g., 802.11b/g). The authors characterize
the relationship between the chip error rate measured over the
preamble (where the reactive jammer is assumed to be silent)
and the actual frame error rate. During operation, transmission
events that diverge from the previously characterized behavior
are assumed to be caused by a reactive jamming signal.
The authors implement and evaluate their approach on an
USRP platform. They measure a detection rate with a false
negative rate below 5% under good channel conditions, while
the accuracy decreases under challenging conditions (e.g., the
false negative rate rises up to 30% for links with a PDR below
25%). The approach has a limited applicability, as it is only
useful to detect reactive jamming in DSSS-based systems. This
is, however, not the common case in 802.11, where OFDM is
the de-facto PHY present in current and considered for future
WLAN generations. Furthermore, the proposed metric is not
provided by commodity 802.11 hardware.

VII. Conclusions

In this paper, we have presented a machine learning-based
jamming detection approach for 802.11 networks that works
with commodity off-the-shelf hardware. We have experimen-
tally evaluated our approach and showed that it achieves
an extraordinarily high accuracy both for true positives and
negatives in indoor and mobile outdoor scenarios, under dif-
ferent propagation conditions (good- and bad-links, with and
without concurrent traffic from neighbor networks), and for
constant and reactive jammer types. Although our approach
is a standalone tool that does not rely on other applications
or information from other nodes in the network, we have
incorporated a cooperative approach that can be enabled on
demand. We have shown that exploiting the knowledge of past
predictions in combination with cooperative jamming detec-
tion significantly improves the detection accuracy introducing
only low overhead. Furthermore, we have compared different
popular machine learning algorithms with respect to their
accuracy and robustness. Finally, we have shown by means
of measurements that our approach outperforms related work
significantly, especially in scenarios with poor link conditions.
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