A Framework for Remote Automation, Configuration, and
Monitoring of Real-World Experiments

Ismet Aktas, Oscar Punal, Florian Schmidt, Tobias Driiner, Klaus Wehrle
Chair of Communication and Distributed Systems,
RWTH Aachen University, Germany
{aktas,punal,schmidt,druener,wehrle}@comsys.rwth-aachen.de

ABSTRACT

The evaluation of wireless and mobile communication sys-
tems in real-world testbeds can be cumbersome and tedious.
Experiments require manual intervention to coordinate the
execution of involved programs and to collect test results on
each involved device. Moreover, the collection of test results
from protocols is difficult due to operating system restric-
tions. In contrast, simulation offers the ability to easily log
such information and automate whole experiments. Real-
testbeds should offer the same flexibility and convenience to
automate whole experiments and to collect test results as
in simulation. In this paper, we propose a framework that
effectively addresses this challenge. Moreover, with the inte-
gration of the cross-layer architecture CRAWLER, we demon-
strate that we are able to automate experiments where cross-
layer optimizations are involved and while experimenting we
centrally monitor and log parameters across protocol layers
on different devices.

Categories and Subject Descriptors

C.2.0 [Computer Systems Organization|: Computer-
Communication Networks—Data Communication

Keywords
Cross-Layer Design; Monitoring; Testbed; Test Automation

1. INTRODUCTION

The design and evaluation of protocols for communica-
tion systems in general, and wireless distributed systems
in specific, is a challenging task. Typically, either network
simulations or, depending on their availability, real testbeds
are considered for that purpose. Using the latter has the
advantage of implicitly taking hardware, software, and en-
vironmental specific issues into account that are typically
abstracted in simulations. However, real testbeds usually
lack the flexibility of a simulator for accessing performance
metrics of interest and relevant system parameters that im-
pact the behavior of the protocol under investigation. More-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WINTECH'14, September 7, 2014, Maui, Hawaii, USA.

Copyright 2014 ACM 978-1-4503-3072-5/14/09 ...$15.00.
http://dx.doi.org/10.1145/2643230.2643236.

over, when multiple devices are involved, running new ex-
periments with different programs and parameterizations
and collecting the test results can be a monotonous, time-
inefficient task, as it requires manual intervention of the de-
signer [5]. This particularly applies to evaluation of proto-
cols for wireless communication systems, as typically multi-
ple repetitions of the experiment are necessary to neutralize
the unpredictable behavior of the channel.

Our goal is to carry over advantages of simulation to real
testbeds by (i) providing the flexibility to access and log
parameters in devices involved in testing and (ii) enabling
the automated execution of experiments. To enable the lat-
ter, we propose a client-server architecture that allows for
a centralized execution of experiments and collection of re-
sults. To achieve the former, we rely on CRAWLER [1], an
experimentation platform for monitoring and cross-layer co-
ordination. It alleviates the problem of complicated access
to relevant system information by providing a unified inter-
face for accessing application, protocol, and system infor-
mation. The generic design of its interface further enables
a convenient and declarative way to specify and experiment
how a set of cross-layer optimizations should be composed
and adapted at runtime. This feature not only provides the
necessary degree of flexibility to conveniently specify and
monitor the desired system information even while exper-
imenting, it also allows us to experiment with cross-layer
optimizations. This is in contrast to other static architec-
tures [3,11], where optimizations are designed at compile
time and require a system reboot.

In this work, we present a framework that provides the
following three key features:

¢ Remote test automation allows a developer to re-
motely describe whole experimentation setups, that is,
start and termination of applications with their respec-
tive parameterization and cross-layer optimizations, on
a specified set of nodes without physical human inter-
action.

e Remote configuration allows to distribute cross-
layer optimizations to remote nodes, to control them
(i.e., to add, remove, and modify optimizations), and
enables to conveniently access protocol and system in-
formation at runtime.

¢ Remote monitoring allows to conveniently specify
and log a set of predefined parameters and states of
cross-layer optimizations from any node involved in the
test and, if desired, to store them centrally. Moreover,
live monitoring of parameters and the ability to adjust
the level of report granularity are enabled at runtime.

[SJC IS U OIS

The remainder of this paper is organized as follows:
Section 2 introduces CRAWLER and Section 3 presents an
overview of our framework. In Section 4, we describe the
details of our three key features. Implementation details are
provided in Section 4.5. We evaluate our architecture in
Section 5 and discuss related work in Section 6. Finally, we
conclude the paper in Section 7.

2. BACKGROUND

CRAWLER [1] already offers a unified interface which al-
lows to add, remove and modify cross-layer optimizations
at runtime. For this, CRAWLER only requires an abstract
configuration in its configuration language. Using this lan-
guage, developers can specify cross-layer optimizations at
runtime and at a high level of abstraction without need-
ing to care about implementation details. Applications that
want to use these functionalities have to register beforehand
at CRAWLER (running as a daemon) using a shared library.
This only requires an application to include the shared li-
brary’s header file crawler.h and link against the library.
Moreover, CRAWLER’s unified interface not only allows ap-
plications to provide their own set of cross-layer optimiza-
tions but also to exchange information with protocols and
system components. In the latter case, the shared library
takes care about the interaction between the applications
and CRAWLER. To highlight CRAWLER’s power, we want to
give a small example.

Listing 1 presents a cross-layer optimization to switch
TCP’s congestion control algorithm at runtime while keep-
ing the internal values such as the congestion window with-
out resetting them. In the first line of the configuration the
radio signal strength indicator (RSSI) is accessed. CRAWLER
uses so-called stubs which require a fully qualified name, i.e.,
unique and hierarchical, to access a specific variable in the
system. Stubs act as a glue element between the optimiza-
tions and the OS. However, in line two of the configuration,
the average over 10 values of the RSSI is calculated. In line
three this average value is compared to a specific threshold.
If the threshold is exceeded as expressed in line three, the
congestion control algorithm is switched in line four.

myRssi:get ("wlanO.qual.rssi")
rssiAvg:avg(history (myRssi) ,10)
rssilsLow:less(rssiAvg ,60)

cwndAlg:if (rssilsLow ,"westwood","vegas")
setCwndAlg:set ("tcp.cwnd", cwndAlg)
load(setCwndAlg)

Listing 1: A cross-layer optimization to switch
TCP’s congestion control algorithm using Crawler’s
declarative language.

Each line in the configuration is a rule which can be nested
into complex rule compositions. The keyword load in line
five instructs CRAWLER to automatically load a specific rule
into the system, here rule setCwndAlg. In cases of nested
rules, the dependencies are automatically resolved and all
necessary rules are all loaded into the system. A removal of
rules or their replacement work similarly. In particular, by
using the keywords unload or replace a rule is removed or
exchanged with another, respectively.

After providing such a configuration, CRAWLER takes care
to realize the cross-layer optimization. In particular, based
on the configuration, functional units (FUs) are composed

Config for Q

Automation Remote Runtime

Configuration
od

CRAWLER

Client Server

| N —
r—

-———)

D Wit

Remote Runtime
Monitoring

Protocols
Protocols

G sy

Operating System & Hardware
Operating System & Hardware

Accelerometer

System
components
System
components
>
2
8
8
]
il
3
3
T
Fl
3
t
o
S

Node 1
""" - Logical Connection
Node n === Physical Connection

Figure 1: Conceptual view for remote automation,
configuration and monitoring.

Instructing

Node 2

to realize the desired cross-layer optimization (cf. node 1
in Figure 1). FUs are stateful functions that maintain a
record of the data and provide results based on that record
each time they are called. For example, every instance of
History keeps its collected values between calls. Moreover,
FUs share a unified interface so that they can be flexibly
composed with each other. As long as a configuration does
not delete FUs but only changes their composition, they
will keep their current state and collected information. For
example, by exchanging rule 2 (rssiAvg) in Listing 1, we can
replace the Avg FU (cf. Figure 1) with Min or Max at runtime
due to the uniform interface, and still use the collected data
from History.

3. DESIGN OVERVIEW

This section provides an overview of the design and the
used components. In order to enable developers to centrally
and remotely automate, control and monitor their experi-
ments, we opted for a client-server architecture as shown in
Figure 1. The client is the central node that controls several
servers running on different devices that are being part of
the experiment.

To conduct experiments with our architecture, the devel-
oper provides a configuration file (cf. @ in Figure 1). The
configuration includes the required parameters for the entire
experiment. In particular, it includes information about the
devices that are part of the experiment, the programs and
cross-layer optimizations that should run on the devices, the
schedule of the programs, and information about parameters
that should be logged. Subsequently, the client parses the
configuration and extracts the necessary tasks. Each task
consists of its execution time, target device and instruction
(e.g., to run a specific program). At the scheduled execu-
tion time, the client sends the given instruction to the listed
devices via the network, see (2. Simply put, the client gives
instructions about what should be done, when and on which
device. The servers receive these instructions and realize
them. Only the servers need to run CRAWLER.

We decided to extend CRAWLER with communication and
remote control capabilities because its architecture already
supported dynamic loading and unloading of programs and
cross-layer optimizations. CRAWLER so far offered a system-
wide interface to provide these abstractions. By enhancing
the interface, we enabled CRAWLER to distribute cross-layer
optimizations defined by our central client to other nodes
in a network. This capability enables new possibilities to
control the servers remotely during experimentation, see (3).
The configuration file also contains information about which
system parameters to monitor on the servers. At the end
of the experiment, the data is automatically aggregated at
the client for easy evaluation, see (»). Another advantage of
CRAWLER is its live monitoring feature which conveniently
allows to monitor a set of variables in running applications,
protocols and system components at runtime. We extended
this feature to allow remote access, see (6). This enables
live monitoring of variables during the experiment, without
having to wait for the aggregation of log files at the con-
clusion of the experiment. This monitoring is supported
by a graphical front-end, which also allows controlling and
adapting cross-layer optimizations on any server during the
experiment.

4. ARCHITECTURAL DETAILS

This section provides more details about how we realized
the three key features of remote automation, configuration
and monitoring and describe how we incorporated them into
our interactive front-end.

4.1 Remote Automation

In a testbed experiment, all nodes have to be set up with
the appropriate software and configuration. For instance,
the nodes might be instructed to run different applications
and cross-layer optimizations, and produce different data
traffic patterns. After the tests, log files have to be ana-
lyzed on each node to understand the interplay of the pro-
grams. Moreover, due to outside effects in testbeds, espe-
cially in wireless networks, experiments have to be repeated
many times to lend credibility to the results. Ideally, the
adjustment of parameters, the repetition of the test and the
collection of log files should be very convenient.

We propose an architecture which allows central configu-
ration and execution of testbed setups. The configuration
includes the necessary instructions to automate the execu-
tion of desired settings including applications, cross-layer op-
timizations and further helper programs. An example con-
figuration is shown in Listing 2 which we use later in the
evaluation. The configuration is subdivided into sections by
keywords enclosed in brackets.

The [crosslayerremote] section includes information
about the involved remote servers in the test. For exam-
ple, in line 2 crosslayer_server_count defines the number
of remote servers used in the test. Line 3 gives the port
number which is used by CRAWLER running on the servers
for incoming requests for a remote connection. In the sub-
sequent lines the details about the three servers are config-
ured. To differentiate between several servers, we again use
the bracket notation followed by the number of the specific
server. For instance, in line 4 we configure server 1 which
we assign an alias, here node01, followed by the IP-address
assigned in line ten. The alias allows assigning mnemonic

1
2
3
4
5
6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

[crosslayerremote]

2 crosslayer_server_count: 3

crawler_default_port: 12345
[crosslayerremoteserverl]
alias: nodeO1

ip_address: 192.168.0.1
[crosslayerremoteserver2]
alias: node02

ip_address: 192.168.0.2
[crosslayerremoteserver3]
alias: node03

ip_address: 192.168.0.3

[schedule]
logclear: [([1,2,3], 1, "rm logfile.txt")]
daemonclear: [([1,2,3], 1, "rm daemon.txt")]

crawler:[([1,2,3],3,"1load_crawler cfg8021lLayer
ethernetLayer")]
cfg_n01:[(’node01’,3,"iwconfig wlanl txpower 8;")]
cfg_n02:[(’node02’,3,"iwconfig wlanO txpower 8;")]
cfg_n03:[(’node03’,3,"iwconfig wlanl txpower 4;")]

detect01:[(’node01’,4,"crawlerapp mainJammingApp")]

detect02:[(’node02’,4,"crawlerapp mainJammingApp")]

detect03:[(’node03’,4,"crawlerapp mainJammingApp")]

stopdetect:[([1,2,3], 124,"killall mainJammingApp")]

on_finish:[([1,2,3],130,"load_crawler cfg8021llLayer
ethernetLayer")]

[logl
log_crosslayer_remote_server:
log_daemon: True

jammingdetLog: [([1,2,3],

True

"logfile.txt")]

Listing 2: Setup of the configuration used for the
evaluation of the jamming detection scenario.

names to servers in the configuration. The two remaining
servers are similarly configured (cf. lines 7-12).

The main part of the configuration is the [schedule]
section which determines when to execute which instruc-
tion on which server. For this, we use a three-tuple no-
tation (<server>, <time>, <command>); the first element
indicates the server, the second the relative time in seconds
since the start of the experiment, and the third the instruc-
tion that should be executed. Commands can be CRAWLER
specific functions (such as load_crawler and crawlerapp)
or shell commands. As an example of our tuple notation,
in line 19, we use in the first element the alias of the node
(node01) to specify the server; the second element indicates
the time of execution of a specific command (here 3 sec-
onds after starting the experiment); and the third element
indicates the command that should be executed (here the
manipulation of transmission power txpower which is modi-
fied using the wireless tools iwconfig). The subsequent lines
(20-21) instruct the other servers similarly.

To avoid having to execute the same instructions for dif-
ferent servers over and over again, we provide a bracket no-
tation to address all servers at once such as shown in lines
17-18: the three servers are instructed to load CRAWLER
(using the special keyword load_crawler) with some of its
kernel modules after three seconds. In lines 15-16 we also
used this notation to first clean all log files before starting
to collect data with CRAWLER.

However, the main instruction in this configuration is the
start of a jamming detection application on each server. This
is done in lines 23-25. The mainJammingApp loads a previ-
ously defined cross-layer optimization (that determines the

-

jamming detection strategy).1 Finally, in lines 26-28 the
instructions to stop the whole test are given.

To deliver logged parameters to the central place, i.e.,
the client, the [log] section is used. For example, line 33
indicates that all log files from all three servers should be
collected.

The configuration presented so far only considered one
single test run. To relieve the user from rewriting config-
uration files for each little parameter change, we support
additional custom configuration files. The presented List-
ing 2 constitutes a main configuration file. The custom con-
figuration describes the relative changes and overwrites the
respective values of the main configuration. For example,
if we want to have an earlier scheduling time (2 instead
of 3) for loading CRAWLER, we only have to add a single
modified line in the custom configuration in the respective
section ([schedule]) such as crawler: [([1,2,3], 2,
"load_crawler cfg80211lLayer ethernetLayer")]. This
will then override the command given in line 17 of Listing 2.

4.2 Remote Configuration

CRAWLER only allowed a system-wide access to protocols
and system components. A remote access from another sys-
tem was not feasible. Hence, we have enhanced the shared
library to allow a remote client to interact with a server,
even securely (via OpenSSL). Its use to access remote nodes
is similarly simple as for the local use. It only requires to
provide few more details about the remote server (e.g., IP
address of server and certificate). Furthermore, our frame-
work allows a client to distribute cross-layer optimizations to
remote nodes and to control them (i.e., to add, remove, and
modify optimizations). This feature together with the abil-
ity to remotely access nodes, allow the remote configuration
of nodes involved in the experiment with a unprecedented
degree of convenience and this even at runtime. To use the
shared library, it is only necessary, to include the crawler.h
file and link against the shared library.

In order to further simplify the process of adding cross-
layer optimizations into remote devices, we implemented a
helper application which we refer to as addChainsApp. The
optimization has to be provided as a configuration file using
CRAWLER’s declarative language. Let we assume a config-
uration as described in Listing 1. We can now utilize the
addChainsApp application to remotely configure cross-layer
optimizations in a remote system. For example, the follow-
ing command in the console allows to provide the above de-
scribed TCP cross-layer optimization contained in the file
myconfig.cfg to the server reachable via the IP-address
192.168.0.5 and port 12345.

$>./addChainsApp --host 192.168.0.5 --port 12345
--chain myconfig.cfg

On calling this command in the console, the addChainsApp
application first remotely registers at the server as illustrated
by step @O in Figure 2. Subsequently, addChainsApp sends
the configuration containing the cross-layer optimizations to
the remote system (cf. step (@). Finally, the server passes
the configuration to CRAWLER which automatically realizes
the given configuration (cf. step ®).

The details of this specific optimization are presented
in [10].

-

Shared
Library register

CRAWLER

Realize cross—laya

addChainsApp | Server optimization

’—\I TCP_ CWND

Transport)
[:; T

Network I I I

Data Link
o 1

— —
wlan®.qual.rssi

E a1
Battery I
I
GPS

{sety

Protocols

§5;

state

Accelerometer

I
I1
—I]

motion

Operating System & Hardware

System
components

coordinate

J

\.

Figure 2: The addChainsApp allows to remotely con-
figure optimizations. After @ registration, the con-
figuration @) instructs the server to add, remove or
replace a set of optimizations, which are then (3
realized by the server.

4.3 Remote Monitoring

Access to system information, i.e., to protocols and sys-
tem components such as sensors, is relatively difficult due to
OS limitations. However, the access to system information
significantly helps to understand and debug the experiment
and the interplay between algorithms and other effects such
as the unpredictable wireless channel. Moreover, it will also
help to measure and analyze the benefits of the envisioned
algorithms. While CRAWLER provides the necessary inter-
faces to locally access these information, a remote access was
initially not enabled. With the improvements to the shared
library as presented above, we also lay out the foundation for
remote monitoring. The improvements allow us to remotely
feed cross-layer optimizations into the system and also to
access the desired system information. We implemented the
helper application monitorVariableApp which makes use of
these features. In particular, it generates CRAWLER con-
figurations to conveniently monitor the desired information.
For example, by calling the following command in the con-
sole it is possible to monitor the RSSI (specified by its fully
qualified name wlanO.qual.rssi.avg) every 100 millisec-
onds (update intervals) on the remote server with the IP
address 192.168.0.5.

$>./monitorVariableApp --host 192.168.0.5 --port 12345
--variablename "wlanO.qual.rssi.avg" --interval 100

On calling this command in the console, monitorVari-
ableApp first remotely registers at the server running on the
specified remote node as indicated by step (O in Figure 3.
In a next step, based on the given name of the variable, a
CRAWLER configuration is created that specifies the access
to the desired stub (information accessor). This configura-
tion is then sent to the remote system (step (@). Based on
the given configuration, CRAWLER realizes the cross-layer
optimization to read the specified variable (step 63). Fi-
nally, the variable is continuously monitored and, based on
the specified update intervals, provided to the server (step
@) which delivers the monitored values to the client running
the monitorVariableApp (step (®).

In addition to monitoring system variables, it would be
also interesting to monitor intermediate states of the cross-
layer optimization, for example, to monitor the average val-

-

Shared
Library

monitorVariableApp) f‘%&
[7_2
monitorRuleApp S

CRAWLER

Server

Protocols

\ | Battery

GPS

Operating System & Hardware

System
components

Figure 3: The monitorVariableApp allows to remotely
monitor system variables. After (O registration, the
configuration (@ instructs the server to monitor a
variable. Crawler automatically (3 realizes the ac-
cess, (®» monitors the variable, and () delivers the
values to the client.

ues of the RSSI in our optimization to modify TCP’s con-
gestion control algorithm (which we previously added with
addChainsApp). As CRAWLER realizes such cross-layer opti-
mizations by composing functional units (FUs), monitoring
FUs already provides the essential monitoring ability to un-
derstand and debug cross-layer optimizations. For this pur-
pose, we have implemented the dedicated application mon-
itorRuleApp which works similar to monitorVariableApp
but allows to monitor a specific FUs. For example, by call-
ing the following command in the console, it is possible to
monitor the average RSSI value every 500 ms (update inter-
val) on the remote server with the IP address 192.168.0.5.

$>./monitorRuleApp --host 192.168.0.5 --port 12345
--rulename "rssiAvg" --interval 500

On calling this command the monitorRuleApp first re-
motely registers at the server running on the specified re-
mote node, cf. step @O in Figure 3. Compared to monitor-
VariableApp, the monitorRuleApp accepts only an identifier
of a rule instead of a fully qualified name of a stub. Based
on the given identifier, a CRAWLER configuration is created
that specifies the access to the desired FU. This configura-
tion is then sent to the remote system (cf. step). Upon
receiving the configuration, CRAWLER realizes the access to
the specified FU, for instance, the access to the FU that pro-
vides the average RSSI values (cf. step éD). From then on,
the specific FU is continuously monitored and based on the
specified update intervals provided to the server (cf. step
@). Finally, these values are further delivered to the moni-
torRuleApp (cf. step (®).

To summarize, by using the addChainsApp, we enabled to
conveniently add cross-layer optimizations into remote sys-
tems. While the application monitorVariableApp allows to
remotely monitor a set of variables in a specified system,
the application monitorRuleApp allows to remotely monitor
internal states of cross-layer optimizations. These helper
applications can be conveniently used within any other soft-
ware, while the applications monitorVariableApp and mon-
itorRuleApp only requires that the software using them is
able to processes and pipe the standard input or rather out-
put. In the following, we demonstrate the benefits of our
three helper applications in a graphical and interactive front-
end.

> Command line interface

Interactive
Interface

Context
Information

, a manual fo

Measured
Data
Display

Figure 4: A sketch of the interface layout

4.4 Graphical and Interactive Front-End

To further support the developer while experimenting, we
integrated our helper applications into a graphical front-end
that provides the following interactive commands. First, the
addChains command makes use of the helper application
addChainsApp and allows to add, remove and modify cross-
layer optimizations at runtime. Second, by using the com-
mand monitor the helper applications monitorVariableApp
and monitorRuleApp are used in the back-end. Third, the
run command allows to control third-party programs re-
motely and allows to intervene into a test such as starting or
stoping programs, e.g., when misbehavior is observed. An-
other use could be to start further helper programs such
as tcpdump or netem. In effect, this relieves the user from
manually opening remote shells to all nodes, giving a unified
control interface.

Figure 4 shows a sketch of the interactive front-end. The
layout consist mainly of three areas: (i) an area that allows
to provide the commands, (ii) an area for given additional
information regarding the commands or providing feedback
information from our toolchain, and (iii) the data that is
being monitored. In the latter case, the area is subdivided
into fields reflecting each parameter type such as radio sig-
nal strength (RSS). The field is labeled at the top with the
node name and the name of the monitored variable, (e.g.,
node01 wlanl.cfg80211.signal.avg) and the most recent
values below. Additional fields for monitoring are added or
removed at runtime depended on given instructions.

4.5 Implementation

The implementation mainly consists of two separate parts:
The first part is the extensions to CRAWLER where we en-
hanced the application support interface in order to make
it accessible over the network. For this it was necessary to
add further functionality (remote configuration and mon-
itoring) into the shared library. These enhancements are
implemented in C++. Remark, we have also enabled a se-
cure remote configuration using OpenSSL. Second, the re-
mote automation and the interactive remote front-end are
implemented in Python. We opted for Python as it allows
scripting at a high level, which makes it very suitable as
a test automation language. The graphical front-end for
the helper applications uses the curses [9] library. Commu-
nication between the remote client and the remote servers
is realized with PYthon Remote Objects (PYRO). A client
connects to remote servers using the PYRO interface and
can directly use objects of the corresponding remote server
implementation.

o N4

K&k\“ ammer

%n} (« %») (@ %

Node 1 Node 2 Node 3

- Ethernet
))) |EEE 802.11g
Remote Client

Figure 5: Scenario used to evaluate our 3 key fea-
tures. Consists of a three nodes and a remote client.
The remote client controls the nodes involved in the
experiment and monitors the impact of several met-
rics under jamming.

S. EVALUATION

In this section we illustrate the benefits and potential of
our three contributions by means of a practical experiment.
In particular, we use a framework based on CRAWLER that
provides 802.11 devices with capabilities for detecting the
presence of jamming attacks in a distributed and reliable
manner [10]. We enhanced the framework to support remote
automation, configuration, and monitoring. In the following,
we first describe the experimental setup and later present the
main observations, thereby comparing the flexibility of the
framework with and without our enhancements.

The experiment was conducted in a small office room in
the ComSys Institute at RWTH Aachen University. We used
three Linux PCs equipped with 802.11g/n Atheros WLAN
cards running the ath9k driver [2]. We let the three PCs
build a wireless ad-hoc network and continuously exchange
messages. The remote access to the communicating devices
was enabled by Ethernet connectivity. Note that the jammer
device was not remotely controllable, as it is implemented
on the WARP Platform [6], while CRAWLER is specifically
designed for x86-based systems. A sketch of our reference
scenario is shown in Figure 5.

5.1 Evaluating Remote Automation

The preparation of the experiment first requires to open
various terminals on each communicating node. In one ter-
minal the kernel modules of CRAWLER are loaded and it
later displays kernel logs. A second terminal is used for
adjusting the transmission power of the nodes (via iwcon-
fig), starting CRAWLER, and printing log information of the
CRAWLER daemon. In a third terminal the jamming detec-
tion framework is launched. Once the experiment is finished,
the daemon running in second terminal and application run-
ning in the third terminal are closed and the respective log
files (CRAWLER and kernel) are manually collected from each
node. The tasks associated with the preparation and col-
lection of results require several minutes of manual work.
Clearly, such an approach does not scale well due to two
main reasons. First, the required time increases linearly
with the number of devices. Second, multiple experiment
runs are generally required for a complete parameter study
and to obtain statistical confidence in the results. However,

N oG A W N e

(S NENC- R R

once the short and intuitive configuration was specified as
illustrated in Listing 2, the above-mentioned steps with our
framework spanned only few seconds.

5.2 Evaluating Remote Configuration and
Monitoring

In order to validate remote configuration, we show the
proper working of the commands addChains and run. For
validating the remote monitoring feature we need to show
that we are able to monitor both (i) system variables and
(ii) states of cross-layer optimizations. To validate these fea-
tures, we selected a set of instructions that were executed
while simultaneously running a jamming detection experi-
ment.

monitor node02 wlanl.cfg80211.signal.avg
addChains node02 rssi.cfg

monitor node02 maxrssi

monitor node02 minrssi

run node03 iwconfig wlanl txpower 20

monitor stop node02 wlanl.cfg80211.signal.avg
monitor stop node02 minrssi

Listing 3: List of instructions that are conducted
successively in the interactive mode.

With the first line we monitor on node02 the average signal
strength of messages originated at all neighboring nodes.
The respective output of our front-end is depicted in Figure 6
which shows reported values (stable between —76 dBm and
—T77dBm) for the specified variable. In line two we add the
CRAWLER configuration (shown in Listing 4), which includes
two cross-layer optimizations. In particular, the instructions
in line 2 and 3 compute, over a series of 20 collected values,
the maximum and minimum of our monitored RSS variable
(as accessed in line 1), respectively. In line 4 and 5 we deliver
the corresponding values, that is maxrssi and minrssi, to
the application layer.

myrssi:get("wlanl.cfg80211.signal.avg")

maxrssi:max (maxhistory:history(myrssi,20))
minrssi:min(minhistory:history(myrssi,20))
appvarl:set("application.mainJammingApp.varl" ,maxrssi)
appvar2:set("application.mainJammingApp.var2",minrssi)

Listing 4: Crawler config that we inserted into the
system during experimentation.

Using the addChains command, we inserted these rules
into the system. The validation of this step is easily possible
with the instructions shown in line three and four of Listing 3
where we used the monitor command to monitor both rules.
The output of the graphical front-end is depicted in Figure 6
where the middle column shows the maxrssi values (area is
marked as (®) and the right column the minrssi values (area
is marked as (). Note that the newly monitored values are
at the top.

To validate that we are able to control third party pro-
grams during experimentation we significantly increased the
transmission power of the neighboring node node03 by us-
ing the keyword run and the program iwconfig as shown
in line five of Listing 3. We observed that this change
improved the received signal strength at node02. In par-
ticular, wlanl.cfg80211.signal.avg significantly increased
from —76 dBm to —68 dBm.

If there is no need to continue monitoring a specific vari-
able or optimization, the front-end allows its removal from
the display by using the keyword monitor stop as shown in
line six and seven of Listing 3.

monitor node05 wian1
cfg80211.signal.avg

)

Figure 6: The interactive mode allows to mon-
itor system variables and cross-layer optimiza-
tions by using the keyword monitor. Particu-
larly, we monitored on node02 the system variable
wlanl.cfg80211.signal.avg and its aggregation, i.e.,
maxrssi and minrssi.

To conclude, in our evaluation we have demonstrated that
we are able to automate an experiment with several nodes
and programs including cross-layer optimizations. More-
over, during the experiment we showed how to remotely add
cross-layer optimizations into the system, run third party
programs and monitor different parameters.

6. RELATED WORK

The three key features of our framework are remote au-
tomation, configuration, and monitoring. In literature there
are a few works that offer only one or two of these function-
alities.

An example with respect to remote configuration is
OpenFlow [8] which is a communication protocol that allows
remote access to the flow tables of switches and routers. For
this, OpenFlow suggests a uniform interface for vendors to
allow the configuration of flow tables without revealing in-
ternal details of the implementation. The remote devices are
controlled via a secure channel using a dedicated controller
running on the remote device which allows access only to
legitimate peers. However, OpenFlow is primarily focused
on high performance flow control and thus limited only to
flow table configuration. Hence, it does not allows the con-
figuration of other functionalities besides the network layer,
e.g., sensors, protocols, and applications.

A candidate in the field of remote monitoring is Gan-
glia [7] which is a system monitoring tool particularly built
for high-performance systems such as clusters and grids.
The information distribution of monitored values follows a
hierarchical pattern. In particular, servers access the in-
formation (called gmond), which is then incorporated into
XLM files. These files on the servers can then be accessed
via a polling scheme. Intermediate nodes (called gmetad)
poll servers or other gmetad and cache these data. Finally,
the cached data is accessed by a client for visualization of
data. However, the major focus of Ganglia is performance

monitor node05 maxrssi

monitor node05 minrssi

on clusters and its supported set of metrics only consider
performance relevant indicators such as CPU and memory
utilization. Therefore, neither monitoring of protocols is
supported nor cross-layer optimizations.

A similar approach is IETF’s standard remote monitoring
(RMON) [12] which targets at remote “flow” monitoring in
LANSs. In its initial version it focused only on monitoring
of OSI layers 1 and 2 in Ethernet and Token Ring. Later
versions also include the network and application layer. Al-
though RMON has a more general scope in terms of layer
support than Ganglia, its concept does not consider other
sources of information such as from sensors, transport proto-
cols, other wireless technologies and cross-layer information.

A prominent work regarding remote automation is Em-
ulab [4] which targets at combining network simulation,
network emulation, and real networks to create a complex
testbed. Emulab provides an infrastructure for testbeds in-
cluding both (real) physical and simulated nodes. It virtu-
alizes nodes and the links between them. It allows to con-
figure and automate test runs, while introducing high cost,
restrictions, and complexity to the experimental setup due
to additional infrastructure requirements. Emulab targets
rather the general case of wireless communication testing.
Using Emulab for testing of cross-layer optimizations is not
possible. Moreover, the ability of (live) monitoring and log-
ging of variables from system components and protocols to
the degree and convenience that we offer is not supported.

To summarize, regarding our three key features, related
work only focuses on subsets of the functionality that we
provide. For each key feature they target, they focus only
on a specific aspect (e.g., performance, layer 1 and 2, etc)
which separates their work from ours. Another major dis-
tinction is the flexibility and convenience that our approach
offers to access information from diverse subcomponents and
protocols on remote systems.

7. CONCLUSION

We presented a framework that allows to carry over two
advantages of simulation to real-world testbeds: (i) central-
ized, convenient, and flexible access and logging of parame-
ters in devices involved in testing, and (ii) automated exe-
cution of experiments.

This is achieved by three complementary key features:
First, we propose remote automation which enables the cen-
tralized automation and execution of whole test setups with
different settings. It only requires to provide a configura-
tion that includes the necessary instructions to automate
the experiment. Based on the configuration the necessary
commands are parsed and the nodes involved in testing are
instructed. Second, the remote configuration feature allows
the distribution of cross-layer optimizations which in turn
facilitates remote access to devices. Third, the remote mon-
itoring feature allows to log and monitor internal states of
cross-layer optimizations as well as variables in protocols and
system components. To further support the developer while
experimenting, we integrated all three key features into a
graphical front-end.

We plan to make the source code of the whole frame-
work available at http://www.comsys.rwth-aachen.de/
research/projects/crawler/.

8.

ACKNOWLEDGMENTS

This work was funded by the DFG and the UMIC research
cluster of RWTH Aachen University.

9.
1]

REFERENCES

I. Aktas, F. Schmidt, M. Alizai, T. Driiner, and

K. Wehrle. CRAWLER: An Experimentation Platform
for System Monitoring and Cross-Layer-Coordination.
In Proc. IEEE WoWMoM, 2012.

Ath9k - Linux Wireless: Official Website. http:
//wireless.kernel.org/en/users/Drivers/ath9k.
M. Conti, G. Maselli, G. Turi, and S. Giordano. Cross-
layering in mobile ad hoc network design. Computer,
2004.

Emulab.Net - Emulab - Network Emulation Testbed
Home. http://wuw.emulab.net/.

R. S. Gray, D. Kotz, C. Newport, N. Dubrovsky,

A. Fiske, J. Liu, C. Masone, S. McGrath, and

Y. Yuan. Outdoor experimental comparison of four ad
hoc routing algorithms. In Proc. ACM/IEEE MSWiM,
2004.

A. Khattab, J. Camp, C. Hunter, P. Murphy,

A. Sabharwal, and E. W. Knightly. WARP: A Flexible
Platform for Clean-Slate Wireless Medium Access
Protocol Design. ACM SIGMOBILE Mobile
Computing and Communications Review, 2008.

[7]

8]

[9

(10]

(11]

(12]

M. L. Massie, B. N. Chun, and D. E. Culler. The
Ganglia Distributed Monitoring System: Design,
Implementation, and Experience. Parallel Computing,
2004.

N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: Enabling Innovation in Campus
Networks. ACM SIGCOMM Computer
Communication Review, 2008.

NCurses (new curses) library. http:
//www.gnu.org/software/ncurses/ncurses.html.

O. Punal, 1. Aktas, C.-J. Schnelke, G. Abidin,

J. Gross, and K. Wehrle. Machine learning-based
jamming detection for IEEE 802.11: Design and
experimental evaluation. In Proc. IEEE WoWMoM,
2014.

V. Raisinghani and S. Iyer. ECLAIR: An efficient
cross layer architecture for wireless protocol stacks. In
Proc. World Wireless Congress, 2004.

S. Waldbusser. RFC 4502 - Remote Network
Monitoring Management Information Base Version 2,
May 2006.

