
A Heuristic Header Error Recovery Scheme for RTP

Florian Schmidt, David Orlea, Klaus Wehrle
Communication and Distributed Systems Group

RWTH Aachen University, Germany
Email: {schmidt,wehrle}@comsys.rwth-aachen.de, david.orlea@rwth-aachen.de

Abstract—Streaming applications often tolerate bit errors in

their received data well. This is contrasted by the enforcement

of correctness of the packet headers and payload by network

protocols. We investigate a solution for the Real-time Transport

Protocol (RTP) that is tolerant to errors by accepting erroneous

data. It recovers from header errors by leveraging the known state

of a stream, passing potentially corrupted payloads to the codecs.

It is a receiver-based solution that requires neither support from

the sender nor changes to the RTP specification. Evaluations show

that our header error recovery scheme can recover from almost

all errors, with virtually no erroneous recoveries, up to bit error

rates of about 10%.

I. INTRODUCTION

Wireless communication is playing an ever-increasing role
in Internet connectivity. The ubiquity of notebooks, tablets,
and smartphones leads to increasingly common use of wireless
connections for the last hop. One fundamental problem of
wireless communication is the higher unreliability of the link
compared to wired communication, which leads to a higher bit
error rate. This high bit error rate requires large numbers of
retransmissions of data, because protocol standards that were
defined with wired link characteristics in mind require full
packet retransmission if even a single bit error occurs.

At the same time, video and audio traffic has greatly
increased. Many codecs are in principle error-tolerant, being
able to correct or at least mask errors. However, especially for
live streaming and bidirectional communication, they require
high timeliness of data to reduce harmful delay. For this
class of traffic, partially erroneous packets arriving in time are
helpful, while correct packets that arrive too late (due to packet
drops and retransmissions) are practically useless. Therefore,
providing those streaming applications with partially erroneous
data is beneficial to their overall performance [1].

It therefore stands to reason to support error-tolerant appli-
cations by introducing error tolerance concepts to the standard
Internet communication. Previous solutions, most prominently
UDP-Lite [2], introduced error tolerance for a single protocol.
They typically focus on payload error tolerance, that is, they
allow errors in the payload by using checksums to secure only
packet headers. For large payload sizes, as in video streaming,
this works well because headers only form a small part of each
packet. Conversely, for communication such as Voice over IP
(VoIP), packets are typically small, and the headers are, in
relation, large, sometimes larger than the payload. This limits
the effectiveness of payload-only error tolerance.

We therefore focus on how to introduce tolerance also to
header errors. We accept erroneous packets, even if the errors
are within the header area, and heuristically repair these errors
to identify the correct data stream the packet belongs to. In

previous work [3], we showed that an approach that we termed
Refector (from Latin: repairer, mender) is feasible for UDP and
IP, and that it can significantly reduce packet loss. However,
for many application scenarios, UDP and IP are not enough.
Many streaming applications, first and foremost VoIP, employ
the application-layer Real-time Transport Protocol (RTP) [4]
for timestamping, sequencing, and payload format layout.

Our main contribution is a heuristic header error recovery
scheme for RTP that enables error-tolerant media codecs to
receive packet payloads even if there are errors in the RTP
header. We identify which stream a packet belongs to by
looking at the header values expected for the next packet
in each stream, and then repair the header contents to those
expected ones. Thus, we can repair errors for static parts of
the header as well as dynamic parts that change every packet.
Our system only needs to be deployed on the receiver’s side,
neither requires any support from the sender nor changes RTP’s
behavior, and as such is easily and incrementally deployable.
Recovery works well even at very high bit error rates up to
10%, recovering most packets and almost never recovering
incorrectly. Our main envisioned application scenarios are
VoIP and audio conferencing, in which due to small payload
sizes, header recovery will produce high relative gains over
payload-only error tolerance such as in UDP-Lite, and in which
many codecs support bit error tolerance. However, the basic
concept is also applicable to other scenarios that use RTP.

II. SYSTEM DESIGN

We will first explain the concept of heuristic header recov-
ery, followed by a short introduction to RTP. Then, we discuss
the details of the recovery process for this protocol.

A. Heuristic Header Error Recovery

Our scheme leverages the fact that at any given time, a
protocol has expectations about the contents of headers of
received messages. For example, RTP encapsulates media data
into one or multiple so-called streams. For every received
packet, RTP requires the packet’s header contents to match
values expected for one of the streams. If it cannot match the
packet to any of them, the standard behavior is to discard it.

To heuristically repair header errors, instead of discard-
ing erroneous packets, we assign them to the stream whose
expected header values best match the received values. As
similarity metric, we employ Hamming distances, which have
several advantages: they are computationally inexpensive to
calculate, and their similarity metric is independent of the
positions of bit errors.

However, if a packet was corrupted in a way that makes
it resemble a different stream’s headers more closely than

the original one, it will be assigned to the wrong stream.
This problem of misattribution is inherent to the system.
Since our solution focuses on error-tolerant media codecs,
assigning data to the wrong stream is not immediately fatal
(it will rather appear to such a codec as if it received a
highly corrupted payload); it is, however, undesirable, because
the correct stream loses data, while another stream will have
to cope with unrelated data. Our main goal is therefore to
maximize correct identification, while reducing misattribution
to very rare occurrences.

After recovery, the packet headers can be repaired by
replacing header values with those expected by the stream
the packet was assigned to. This is not strictly necessary, but
generally advisable: it allows standard, unchanged protocol
routines to process the packet properly.

B. The Real-time Transport Protocol

The Real-time Transport Protocol (RTP) is used for a wide
range of streaming and conferencing scenarios. For example,
many VoIP solutions combine RTP as the streaming protocol
with session protocols such as SIP [5] into a telephony system.

RTP uses so-called profiles that define encodings for media
codecs. They can even, to a certain extent, modify the size
and existence of header fields. For this work, we will focus
on the baseline profile [6] standardized together with RTP
itself. In this scenario, a streaming setup comprises one or
more RTP sessions. For example, a videoconference system is
expected to use two sessions concurrently, one for video and
one for audio, to separate the two media types. Each session
comprises one or more streams that identify logical units of
data. For example, each stream applies sequence numbers to
its packets independently of other streams within the same
session. To identify streams within a session, each stream uses
a synchronization source identifier (SSRC) as unique ID.

Different RTP sessions are typically managed by differ-
ent underlying protocol connections and will use different
transport-layer ports. This means that “cross-talk” between ses-
sions can be ignored for the purposes of RTP error tolerance.1
Thus, our heuristic repair only has to correctly identify streams
within a session, not sessions within a complete RTP setup.

C. Header Field Categorization

To support our header recovery scheme, we categorize the
fields of the RTP header into three classes. Due to space con-
straints, we will not explain each header field’s categorization
in detail, but merely give examples for each category.

Static fields are fields that do not change in the lifetime of
a stream. They are either the same for all RTP packets (e.g.,
the version field), or different, but immutable, for each stream
(e.g., the SSRC). These fields are trivial to repair, because
we know their values for each stream at any given point in
time. We simply need to calculate the Hamming distance of
the received header values to the static values of each stream.

Predictably dynamic fields change from packet to packet
within a stream, but allow for prediction. To repair these fields,

1Identification of the correct receiver port, even under errors, is a different
problem outside of the scope of this paper; however, it has been shown [3]
that such identification is feasible.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

V P X CC M PT

sequence number

timestamp

synchronization source (SSRC) identifier

contributing source (CSRC) identifiers

...

Fig. 1. A Real-time Transport Protocol header, with fields classified as static
(white), predictably dynamic (light gray), and unpredictably dynamic (dark
gray). Most fields are recoverable with our header recovery scheme; only
seven bits are classified as unrecoverable, and even those are recoverable in
many standard situations.

we need to learn their behavior to predict the possible values.
For example, the sequence number is incremented by 1 with
every packet. To match a received value to a stream, we need
to match it against the next expected value for those fields.

Unpredictably dynamic fields change from packet to packet
within a stream irregularly. For example, the marker bit is used
to signal events. Its use is codec dependent and can denote
events such as the beginning of talk spurts or the last packet of
a multi-packet video frame. These fields cannot be predicted,
and therefore, errors in those fields are unrecoverable. Note
that this does not lead to outright drops of the packet, but
rather to potentially incorrect values in those fields.

D. RTP Stream Identification in Corrupted Packets

If a corrupted packet is received by the RTP library, the
most straightforward solution is to check whether the SSRC
matches one of the ongoing connections. If none of them
matches perfectly, finding the closest match via Hamming
distance might be the next step. Still, if the SSRC is strongly
corrupted, this will be problematic. However, the matching
can be improved by taking into account more header fields.
Since each RTP stream uses its own progression of sequence
numbers and timestamps, these can be included in the overall
decision. To facilitate this, we learn additional state informa-
tion from every correctly received packet, and use it to predict
the correct stream for erroneous packets.

Whenever a correct packet is received, the learner saves
its header contents for future use. For each ongoing stream,
it saves the last correctly received packet in this fashion. Fur-
thermore, it calculates the sampling rate, that is, the difference
between two consecutive packets in their timestamps. As the
RFC notes, this sample rate is expected to be static in audio
streams. That way, whenever a corrupted packet is received,
the second component, the predictor, can match the received
header field contents against that stream’s SSRC, sequence
number incremented by 1, and timestamp incremented by the
sampling rate. Thus, a much larger area of the header can be
compared, and finding the best match becomes more stable.

This will work well until more than one corrupted packet
is received in sequence. In that case, a simple incrementation
is not effective, because any further packets will not have the
chance to exactly match this information. So we save, for every
stream, a bad packet counter that tracks how many corrupted
packets were assigned to that stream since its last correct
packet was received. We then use this value as a multiplier
to the increments for sequence number and timestamp. While
completely lost packets or those misattributed to the wrong
stream will still cause a slight desynchronization between

received and expected information, a number of corrupted
packets received in succession will not.

E. User–Kernel interface

As explained in Section II-D, our approach learns from
correct packets to correctly identify corrupted packets with
errors in header fields. Because RTP does not employ any
checksumming, it relies on lower layers to detect errors.
Furthermore, to even receive erroneous packets in the first
place, it will need to instruct the operating system’s network
stack to let those pass. We therefore extend the standard socket
interface for user–kernel space interaction as described in [3].

When our RTP library sets up a connection, it signals
to the OS that it can handle erroneous packets by setting a
socket option. After that, whenever the network stack hands an
erroneous packet to the RTP library, it signals this as ancillary
information with the packet. In our Linux implementation, we
(backwards-compatibly) extend the recvmsg syscall for this.
To receive erroneous packets in the first place, the network
stack’s error handling has to be changed. In this paper, we
abstract from this problem and assume a solution such as in [3].

III. IMPLEMENTATION

For this work and to evaluate our concepts, we imple-
mented the learner–predictor scheme for heuristic header error
recovery into the oRTP [7] library (version 0.16.5), an open-
source library that was easily adaptable for our purposes.
The implementation follows a minimally invasive approach
that interferes with the standard behavior of the RTP packet
handling as little as possible. This is advantageous for such
tasks as statistics collection that can be used to inform the
sender about current reception conditions via RTCP [4] to
potentially decide on reactions to improve streaming quality.

Whenever a correct packet is received, the learner takes
the header of the RTP packet and saves it to its list of
current streams, indexed by SSRC. In addition, it calculates the
sampling rate between the received and the last saved packet,
and resets the bad packet counter to 0.

Whenever an erroneous packet is received, the predictor
iterates over the list maintained by the learner and matches
the received header to the expected headers of each stream
as described in Section II-D. After the predictor has decided
which stream the packet most likely belongs to, it will attempt
header repair by copying the saved header from the predictor’s
list over the received header, updating the sequence number
and timestamp value accordingly. Thus, subsequent routines of
the oRTP library do not have to be changed to introduce error
handling, since the header is now guaranteed to be coherent.
Finally, it will increment the bad packet counter of that stream.

The ease of this approach and the minimal changes in the
oRTP library suggest that similar changes in other RTP imple-
mentations should be similarly easy and fast to implement.

IV. EVALUATION

Since the main advantage of our heuristic header error
recovery scheme is that erroneous packets can be assigned
to a stream, our evaluation focuses on two packet-delivery-
related metrics: (1) How often can a packet be delivered to the

 0

 0.1

 0.2

 0.3

 0.4

 0 0.1 0.2 0.3 0.4

M
is

at
tri

bu
tio

n
R

at
e

Bit Error Rate

2 streams
3 streams
4 streams

Fig. 2. Misattribution rates for two, three, and four concurrent streams with
no cutoff (i.e., the best match is always taken, even if its Hamming distance is
large; packets are never dropped). For each bit error rate (increments of 0.001
from 0 to 0.5), the mean and 95% confidence intervals are shown. Even at a
bit error rate of 20%, we witnessed virtually no misattributions.

correct stream? And (2) how often does the heuristic approach
misidentify the stream the packet belongs to, and misattributes
it to the wrong stream? To answer these questions, we will
present several setups that we evaluated. We will start with a
description of the evaluation setup before discussing results.

A. Experimental Setup

To eliminate influences from layers below RTP that could
skew our evaluation results, we exchanged the standard net-
work socket interface of the oRTP library with Unix Domain
Sockets. These allow data exchange between processes in a
similar way to network communication, without additional
protocols being used. Thus, RTP packets could be exchanged
between two instances of the library running on the same
machine, without changing the behavior of the implementation.
To introduce errors into the RTP packets, we connected the two
instances via a simple packet destroyer. It introduces bit errors
into a data stream with a defined probability p. For each bit,
it rolls a random number between 0 and 1, and flips the bit if
the number is lower than p, implementing a Bernoulli process.

We investigated three scenarios that differed in the number
of concurrent streams in the RTP session. While a single-
stream session is arguably the most common use case for RTP,
especially in the case of VoIP telephony, this case is also not
very interesting to evaluate. In fact, in a single-stream scenario,
since there is no risk of misattribution, our repair technique will
be able to correctly assign every packet, regardless of error
rate. To investigate the possible downsides of our scheme, we
therefore looked at more challenging scenarios with several
concurrent streams. In every experiment, the sender sent 10 000
packets for each stream. Each stream’s first two packets were
not corrupted to populate the list of known streams. This mod-
els a scenario with successful connection setup and subsequent
link quality degradation. Experiments were repeated 10 times
for every data point. This is important because oRTP follows
the RFC’s advice to randomize SSRCs, initial timestamps,
and sequence numbers. This influences the robustness of the
heuristics that depend on how large the Hamming distances
between values of different streams are. Error bars in graphs
denote 95% confidence intervals. In some cases we removed
error bars to preserve lucidity.

B. Misattribution

As a first step, we ran our experiments for two, three,
and four concurrent streams. In this setup, every packet was

 0

 0.1

 0.2

 0.3

 0.4

 0 0.1 0.2 0.3 0.4

Fi
el

d
Er

ro
r R

at
e

Bit Error Rate

2 streams
3 streams
4 streams

Fig. 3. Errors in header fields due to incorrect repairing. The high variance
is due to error propagation that leads to incorrect repair of header fields in a
large number of packets after a single misattribution, especially at high BERs.

assigned to the stream it most likely belonged to, without
discarding any packets. The results from this experiment are
shown in Figure 2. As expected, misattribution increases with
bit error rate (BER) and the number of concurrent streams.
High BERs lead to more corruption in the header; as an
extreme case, at 50% BER, a header will form a random bit
sequence. As the number of concurrent streams in an RTP
session increases, the Hamming distances between streams will
decrease on average, making it harder to distinguish them.

Our heuristic header error recovery scheme produces al-
most no misattributions up to BERs of 20%. For comparison,
BERs of more than 1% can lead to almost 100% packet loss
in standard systems, and even if data reaches the codec, most
voice codecs will start showing noticeable degradation at 20%
BER [8].

C. Field Errors

Misattribution is only one type of error that can occur in
heuristic recovery. Packets are not only assigned to a stream,
but also repaired to the values that this stream expects in
the next packet’s header. Thus, header fields can be wrongly
repaired. The occurrences of these field errors are shown in
Figure 3. The high error rates and large uncertainties occur due
to error propagation. As an example, consider two concurrent
streams A and B that expect sA and sB as next sequence
numbers. If packet n belongs to stream A, but is misattributed
to B, its sequence number will be incorrectly repaired to sB .
In addition, packet n+1’s sequence number will now also be
repaired incorrectly. If it belongs to A, it contained sA + 1,
which will be repaired to sA. If it belongs to B, it contained
sB , which will be repaired to sB + 1. This shift by 1 will
continue until the stream “resynchronizes” after receiving a
correct packet. At high BERs, most packets are corrupted, so
that it can take a long time until this error is corrected.

Two facts are of note: (1) The field error rate overestimates
the impact of errors. In the sequence number case, while a large
number of them might be incorrect, they are simply shifted.
Interruptions in the regular pattern only occur at the time of
misattribution and resynchronization. These are the only points
in time playback would be negatively affected. (2) Because
these errors are a secondary effect of misattribution, they do
not occur at BERs below 10%. Again, this is much higher than
the typically tolerable BER for media transmissions.

D. Reduction of Misattribution

The last two sections showed that our heuristic header
error recovery scheme only produces errors under such high

BERs that packets would typically get lost before these occur.
However, in cases such as short-term interference, the RTP
header could experience a much higher BER than the lower-
level protocols. In this case, packets would reach the RTP li-
brary without problems, but the high header BER could lead to
misattributions. We therefore investigated when misattribution
occurred, so that we could further reduce it. To be of practical
use, we only examined information that was available to the
RTP library. One such information is the Hamming distance to
the best match. Low distances mean a very close match, while
high ones mean only rough resemblance. Thus, the probability
that a misattribution occurs should be higher whenever a high
distance to the closest match is observed.

The results of this investigation are shown in Figure 4a.
Indeed, misattributions are virtually nonexistent at distances of
less than 20. For comparison and reference, a minimum RTP
header has 96 bits. 20 bits translate into more than 20% BER,
which matches our results from Figure 2, in which we wit-
nessed almost no misattributions until that BER.2 Considering
this, we changed our scheme to drop all packets that show a
high Hamming distance to the best match. The goal is to reduce
misattributions at high BERs, and to drop those suspicious
packets instead. Figure 4b shows misattribution rates for four
different Hamming distance cutoffs in a 4-stream scenario. We
focus on the 4-stream scenario because it produced the highest
misattribution in our initial experiments. The results show that
cutoffs are very effective at reducing misattributions. Even at
a lenient cutoff of 24, misattributions are reduced by almost
two orders of a magnitude; cutoffs of 20 and, even more so, 18
almost completely eliminate them. Unfortunately, we now also
drop suspicious packets that would have been assigned to the
correct stream. Figure 4c shows that we indeed increased the
drop rate compared to the misattribution rate of Figure 2. For
the strictest cutoff value of 18, drops start to occur at about
4% BER, and reach 10% drop rate at 10% BER. The less strict
cutoff of 20 only has a drop rate of about 1% at 10% BER,
and the most lenient cutoff of 24 rarely drops any packets until
the BER is in excess of 15%.

Judging from these results, we suggest a cutoff of 20 bits
as a good tradeoff. This should effectively prevent most misat-
tributions in most situations (single-digit number of concurrent
streams, independently of BER), while still only regularly
dropping packets when the BER reaches excessively high
values above 10%.

V. RELATED WORK

While the concept of heuristically recovering from header
errors is relatively unique, related work can be roughly sepa-
rated into two fields: optimizing the reception and retransmis-
sion of data, and ignoring errors in packet payloads.

Considering the first group, Maranello [9] improves ARQ
by partitioning packets, calculating and sending partial check-
sums, and letting the receiver identify corrupt blocks that are
selectively retransmitted. PPR [10] uses soft information (per-
bit error probabilities) to recognize erroneous parts in packets
and selectively retransmit those. Soft information can also be

2Note that Figure 4a shows the absolute number of misattributions in our
experiments, which is why the numbers decrease again at high Hamming
distances since these are less likely to occur.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 20 40 60nu
m

be
r o

f m
is

at
tri

bu
tio

ns
 in

 d
at

as
et

Hamming distance of best match

2 streams
3 streams
4 streams

(a)

 0

 0.001

 0.002

 0 0.1 0.2 0.3 0.4 0.5

M
is

at
tri

bu
tio

n
R

at
e

Bit Error Rate

24
22
20
18

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

D
ro

p
R

at
e

Bit Error Rate

24
22
20
18

(c)
Fig. 4. Misattribution occurs due to high bit error rates. (a) A side effect of high BERs is that even the best match often shows a high Hamming distance to its
expected header values. Hamming distance can be used as an estimator for risk of misattribution. (b) The result is a dramatic reduction in misattribution. Even
with 4 streams at a cutoff value of 24 (one quarter of the 96 bits of a standard RTP header), misattribution stays below 0.2%, regardless of BER, and becomes
exceedingly rare at stricter cutoffs. (c) The tradeoff is an increased drop rate. However, even strict cutoffs only show minimal drop rates until BERs> 5%.

used to reconstruct a correct packet from several receptions,
either due to spatial diversity, or from retransmissions. Exam-
ples include SOFT [11] (spatial diversity), ZigZag [12] (re-
transmissions), and MRD [13] (both). All of these approaches
either require deployment on all nodes, or special hardware
that allows access to physical layer soft information, or both.

The second group is most prominently represented by
UDP-Lite [2], a UDP derivative that redefines the “length”
header field as “checksum coverage”. This means that both
sides need to understand UDP-Lite, as it is a different trans-
port layer protocol. UDP-Liter [14] solves this by enabling
applications to receive packets with UDP checksum errors.
However, UDP-Liter does not provide mechanisms to recover
from header bit errors. Packets with errors in the UDP header
are lost, as are packets with errors on lower layers.

With respect to heuristic recovery, Jiang [15] and Schmidt
et al. [3] proposed solutions for header bit errors. Both rely
on Hamming distances as similarity metric. Jiang [15] focuses
on header recovery for some static fields in the 802.11 MAC
header, such as MAC addresses, as opposed to sequence
number fields, which are not considered. Schmidt et al. [3] aim
at recovering headers in the IP and UDP protocol. Again, the
focus is on the static fields that form the bulk of information
in those protocol headers. In contrast, this paper proposes a
simple but effective way to deal with dynamic header fields
that follow regular patterns, such as the RTP timestamp field.

VI. CONCLUSION

In this paper, we presented a heuristic header error recovery
scheme for RTP that even in case of header errors identifies the
stream a packet belongs to and repairs those fields. We showed
that our scheme is robust up to bit error rates of 10%, very
rarely assigning packets to wrong streams or repairing incor-
rectly, while still keeping packet drop rates low. This holds true
even more at more modest BERs that are realistically tolerable
by media codecs.

One field of future work is to make the static Hamming
cutoffs from Section IV-D dynamic, adapting to both the
number of concurrent streams and the Hamming distance in
their SSRCs, timestamps, and sequence numbers, to further
optimize the tradeoff between misattribution and drop rate.

Overall, we consider the work presented in this paper a
feasible, simple, and effective approach to support an error-
tolerant application in the reception of partially erroneous data.

ACKNOWLEDGMENTS

This research was funded in part by the DFG Cluster
of Excellence on Ultra High-Speed Mobile Information and
Communication (UMIC).

REFERENCES

[1] F. Hammer, P. Reichl, T. Nordström, and G. Kubin, “Corrupted speech
data considered useful: Improving perceived speech quality of voip over
error-prone channels,” Acta acustica, vol. 90, pp. 1052–1060, 2004.

[2] L.-Å. Larzon, M. Degermark, S. Pink, E. Jonsson, and E. Fairhurst,
“The lightweight user datagram protocol (UDP-Lite),” IETF, RFC 3828,
Jul. 2004. [Online]. Available: http://www.rfc-editor.org/rfc/rfc3828.txt

[3] F. Schmidt, M. H. Alizai, I. Aktas, and K. Wehrle, “Refector: Heuristic
header error recovery for error-tolerant transmissions,” in Proc. ACM
CoNEXT, Dec. 2011, pp. 1–12.

[4] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications,” IETF, RFC 3550, Jul.
2003. [Online]. Available: http://www.ietf.org/rfc/rfc3550.txt

[5] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation
Protocol,” IETF, RFC 3261, Jul. 2002. [Online]. Available: http:
//www.ietf.org/rfc/rfc3261.txt

[6] H. Schulzrinne, “RTP Profile for Audio and Video Conferences with
Minimal Control,” IETF, RFC 3551, Jul. 2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3551.txt

[7] “oRTP, A Real-Time Transport Protocol (RTP, RFC3550) library,”
[Online] Available http://linphone.org/eng/documentation/dev/ortp.html.

[8] S. Nguyen, C. Okino, C. Loren, and W. Walsh, “Space-Based Voice
over IP Networks,” in Proc. IEEE Aerospace Conference, March 2007.

[9] B. Han, A. Schulman, F. Gringoli, N. Spring, B. Bhattacharjee, L. Nava,
L. Ji, S. Lee, and R. Miller, “Maranello: practical partial packet recovery
for 802.11,” in Proc. NSDI. USENIX Association, 2010.

[10] K. Jamieson and H. Balakrishnan, “PPR: Partial Packet Recovery for
Wireless Networks,” in Proc. SIGCOMM, August 2007, pp. 315–326.

[11] G. Woo, P. Kheradpour, D. Shen, and D. Katabi, “Beyond the bits:
cooperative packet recovery using physical layer information,” in Proc.
MOBICOM. ACM, 2007, pp. 147–158.

[12] S. Gollakota and D. Katabi, “Zigzag decoding: combating hidden
terminals in wireless networks,” in Proc. SIGCOMM. New York, USA:
ACM, 2008, pp. 159–170.

[13] A. Miu, H. Balakrishnan, and C. E. Koksal, “Improving loss resilience
with multi-radio diversity in wireless networks,” in Proc. ACM MOBI-
COM, 2005, pp. 16–30.

[14] P.-K. Lam and S. Liew, “UDP-Liter: an improved UDP protocol for
real-time multimedia applications over wireless links,” in Proc. Wireless
Communication Systems, 2004, Sep. 2004, pp. 314–318.

[15] W. Jiang, “Bit Error Correction without Redundant Data: a MAC Layer
Technique for 802.11 Networks,” in Proc. WiNMee, Apr. 2006.

