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ABSTRACT
It is well known that wireless channels produce higher bit er-
ror rates than wired connections. However, little knowledge
exists about how bit errors are distributed within messages.
In this paper, we present results from our experiments in an
802.15.4 sensor node testbed investigating the distribution
of errors within erroneous frames. We identify three effects
that can only partially be explained by coding and chan-
nel conditions: (1) errors are not independently distributed,
but to a certain extent bursty, (2) coding leads to some bits
being more stable than others, and (3) some content is in-
herently more stable than other during transmission. We
discuss hypotheses on the origins of these effects and give
some preliminary ideas on how to leverage them.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication

Keywords
sensor networks; IEEE 802.15.4; testbeds; measurements;
bit error distribution within frames; coding

1. INTRODUCTION
Low-power wireless devices are slowly populating every-

day scenarios interconnecting the physical world with the
virtual one, realizing visions such as the Internet of Things.
One of their enabling features is the ability to communicate
over a wireless channel consuming little energy. However,
this commonly results in unreliable links with hardly pre-
dictable behavior depending on the scenario. Facing such
limitations and acquiring knowledge on the causes behind
such unreliability are stepping stones to fulfill the risen ex-
pectations.

Unreliability is typically observed in low-power wireless
networks only as the ratio of not correctly received frames
or, in rare cases, bits. Therefore, corrupted messages are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiNTECH’13, September 30 2013, Miami, Florida, USA
Copyright 2013 ACM 978-1-4503-2364-2/13/09 ...$15.00.
http://dx.doi.org/10.1145/2505469.2505475 .

treated as lost, usually requiring additional energy overhead
for retransmissions. This approach is also motivated by the
common focus on message corruption that is caused by ex-
ternal dynamic interference, such as IEEE 802.11 [8] net-
works corrupting low-power IEEE 802.15.4 [7] transmissions.
As a result, the common belief is that corruption of and in-
side packets is an erratic, not structural, effect in low-power
networks.

In this work, we take a different, more in-depth perspec-
tive. We observe properties of corrupted messages in IEEE
802.15.4 systems without interference from coexisting net-
works. Instead of limiting ourselves to observing corrupted
packets or bit error rates, we extend the analysis to identify
how transmitted symbols are transformed upon corruption.
This provides a unique perspective that has, to our knowl-
edge, never been investigated before in 802.15.4 networks
(Section 2).

After some preliminary study in a small indoor network,
we executed measurements in an outdoor experimental setup
(Section 3) composed of 20 devices employing a common
CC2420 radio chip [3], which implements the IEEE 802.15.4
PHY standard. In this scenario, we gathered extensive data
on corrupted messages for a long period of time, confirming
the results from our initial small-scale investigation. The
results (Section 4) clearly show that these systems have links
where specific symbols are more likely to break than others,
with structural, repeating mutation patterns.

We then try to discuss the reasons for the effects that we
measured (Section 5) and give simple guidelines for software
developers to exploit the identified higher stability of specific
symbols. While we currently cannot identify all underlying
causes, the results that we present in this work are likely to
be observed in most deployments of this technology as they
are, from our own experience, independent from the scenario
and already measurable in small-scale networks. Therefore,
we believe that the subject requires further investigation
(Section 6) to increase the overall reliability of these systems
at the benefit of the user.

2. RELATED WORK
The behavior of low-power wireless networks in real set-

tings has been studied extensively in the last decade. The
main focus was typically on the characterization of link prop-
erties in terms of correct packet reception rates as affected by
environmental conditions. To study and exploit the causes
of message failures, in particular in indoor scenarios, the im-
pact of external interference on the observed RSSI signal has
been investigated and generic error correction schemes have



been introduced to increase the link reliability. In this sec-
tion, we discuss these approaches, focusing mainly on IEEE
802.15.4 low-power wireless communication, and relate them
to our own investigation.
Link Characterization. Several experimental studies have
identified the properties of communication links employing
IEEE 802.15.4 radios. In [13, 16], the unreliability of low-
power wireless is demonstrated both in terms of interme-
diate reception probabilities as well as asymmetries. The
dependence of such properties upon the specific scenario at
hand has also been demonstrated [10]. Finally, the same
scenario may change over time together with its link char-
acteristics, for example, as a consequence of temperature
excursions [1]. While these works provide valuable insight
based on experimental results, they exclusively address cor-
rectly received packets, treating not received and corrupted
transmissions equally. Some prior work exists that gives in-
sight into bit error distributions within frames for 802.11
networks. In particular, [15] analyzes an industrial 802.11b
setup. Among other results, they briefly discuss bit error
distributions within frames. A more in-depth analysis of
sub-frame bit error distributions is given in [4]. However,
their work focuses on the OFDM-based WiFi sub-standards,
which is not directly comparable to the DSSS-based 802.15.4
transmission.
Interference Classification. Different works have focused
on message corruption as caused by wireless interference
from devices operating in the same frequency band. The
focus was mostly at the level of RSSI as observed by a re-
ceiver under interference [2]. Such information can be ex-
ploited to classify the interference pattern and its source [5]
to, then, take countermeasures, for example, by rescheduling
communication. These approaches and studies use informa-
tion related to possibly corrupted packets, but they limit
their investigation to the RSSI fingerprint, without explor-
ing how the actual message content is transformed by the
interference.
Packet Error Correction Schemes. To face the prob-
lems of corrupted messages, different schemes have been pro-
posed. In [9], the interplay between 802.15.4 and 802.11 net-
works is analyzed; based on the experimental observations,
header redundancy and an effective forward error correction
scheme are introduced to allow coexistence of the different
network types. This study exploits the error bit distribution
as caused by 802.11 networks on low-power 802.15.4 trans-
missions. As corrupted patterns may change over time, [12]
proposes correction schemes capable of adapting to changing
link characteristics, typical in indoor scenarios. However, we
are not aware of any study that identifies and exploits sig-
nificant mutation pattern in corrupted messages.

3. EXPERIMENTAL SETUP
In this section, we provide information about the setup of

our measurements and observations.

3.1 Technology
In our investigation, we decided to use TelosB [11] wire-

less sensor devices, a common hardware platform for low-
power embedded networks research. Most importantly for
our work, they mount an on-board CC2420 radio [3], one of
the currently most widespread chip implementing the IEEE
802.15.4 standard [7]. At the physical layer, the standard de-
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Figure 1: Outdoor testbed of 20 TelosB devices in-
stalled on the roof of our department and corre-
sponding identifiers.

fines a DSSS (Direct Sequence Spread Spectrum) O-QPSK
modulation, in the 2.4GHz ISM band, with a nominal data
rate of 250 kbps. Moreover, the devices we employed in our
experimentation had an omni-directional inverted-F micro-
strip antenna or an external 5 dBi one. The nodes were
purchased at different times from different producers. Some
were reused from previous deployments, while others were
bought for use in the current deployment.

3.2 Deployment
We installed our devices in a 20-nodes testbed, as depicted

in Figure 1. As mentioned before, some devices, nodes #0,
#12 and #17, have external antennas, while all others have
an integrated inverted-F micro-strip antenna. The nodes
are connected via USB cables to routers so that a reliable
back-channel is available for controlling each individual de-
vice, without affecting the wireless communication. We can,
therefore, control experiments remotely and log extensive in-
formation on a remote server for later processing.

The nodes are installed on the roof of our department.
The area is not accessible to people; the only dynamics in
the environment are the ones related to weather conditions
such as rain. All the devices are installed inside water-proof
plastic boxes, which, in the general case, are placed on top of
bricks. Nodes #9 and #16 are placed directly on the ground,
and nodes #0, #3, #5 and #7 are installed at 2.60m height
on the facade of the adjacent building; finally, nodes #1 and
#2 are at 2.60m covered by eaves.

3.3 Software
In the measurements, our goal is to experiment with trans-

missions as directly observed by the radio, without any in-
fluence from higher layers in the network stack. For this
reason, the devices do not execute any multi-hop routing or
MAC protocol. Each node runs a simple TinyOS [6] appli-
cation, forwarding messages received from the serial to the
radio interface and vice versa. The message handling done
by the radio chip takes care of adding a CRC to each out-
going message and verifying it upon reception. At reception
time, the packet is validated, and typically discarded if the
CRC does not match. Our application instructs the radio



to pass on messages with failed CRCs, to collect erroneous
messages and their content. The resulting message structure
is depicted in Figure 2.

In order to control the messages sent over the radio and
avoid possible message collision, which would affect the re-
sults, a single Java application running on a remote host is
in charge of building MAC frames with a given payload and
header, and of delivering them, via serial, to all of the TelosB
nodes in the testbed. The internal message structure used
for this delivery contains additional side information about
which node should send the message, as well as the trans-
mission power and the radio channel. The nodes can then
adjust the channel and, in case they are the sender, send
the message after a short delay to account for the time re-
quired by the potential receivers to switch channel. After
delivering a message to a node, the Java application waits
long enough for each node to receive and process the frame.
It then requests each node to hand the received frame plus
side information (RSSI, LQI, etc.) back to the central re-
mote host for logging and off-line processing.

The Java application can be configured to execute specific
experiment configurations and therefore send messages on
a specific channel, cycling over different sizes, transmission
powers, and senders. In order to control the actual content
of the MAC layer frame payload, we allow for different pat-
terns to be repeated, either filled with predefined constant
values or randomly generated inside a defined interval. Fi-
nally, both the sent message and the received, potentially
corrupted, packets, forwarded over the different testbed se-
rials, are recorded in textual logs for later processing.

4. EXPERIMENTAL RESULTS
In the following, we will present the results from our ex-

perimental setup as described in Section 3. We will first
give an overview over the setup and execution for the ex-
periments we analyze, before going into the details of the
evaluation.

We ran the experiments over the course of several weeks
in December 2012 and January 2013. In each experiment,
we instructed the nodes to take turns in sending a message,
with the other nodes set to receive it. The inter-message in-
terval was 500ms. Even though the deployment was on the
roof of a building and there was no physical influence on the
deployment due to people moving between the nodes, there
are WLAN access point installed in the building. Therefore,
we focused our experiments on channel 26, which is outside
of the spectrum allotted for 802.11 in Germany, to minimize
the influence of interference. In addition to cycling through
the nodes for sending duty, we also cycled through transmis-
sion powers. We picked three transmission powers chosen to
provoke erroneous transmissions. The least powerful trans-
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Figure 2: 802.15.4 message structure definition [7]
with MAC layer fields as specified in the TinyOS
implementation [14].

mission power produced errors in nodes relatively close to
the sender, while those messages were not sensed at all by
far-away nodes. The highest power tended to produce erro-
neous messages in far-away nodes and correct receptions in
close ones.

With regards to content, we sent different patterns for dif-
ferent experiments. In one experiment, we sent randomized
payloads, that is, every time a message was sent, we ran-
domly chose new content to fill the payload with. In other
experiments, we set a fixed payload that was then sent over
and over from each node to every other node. This was done
to analyze the effects of content on error rates and distribu-
tions.

4.1 Error distribution within frames
In the following, we will look into the bit error distri-

bution within received MAC frames. For these results, we
aggregated all data sent between all sensor nodes. We then
counted, for each bit position, how often it was broken. We
normalized our bit error probabilities by only considering
messages that had at least one broken bit in them; com-
pletely error-free messages were not considered for the calcu-
lation of bit error rates. This aggregation does not hide any
connection-specific behavior between two nodes: whenever
there were enough erroneous messages to produce statisti-
cally useful results, the patterns closely followed the general
trend. The results can therefore be interpreted as represen-
tative for each connection.

In the following, we will present answers to the follow-
ing questions: (1) Are errors more likely to occur towards
the beginning or the end of a frame (influence of position)?
(2) Are some bits more likely to break than others due to
PHY modulation and coding (influence of coding)? (3) To
what extent do bit errors occur in groups (burstiness of er-
rors)? (4) Are some bit patterns more robust than others
(influence of content)?

4.1.1 Influence of Position
To investigate the influence of position within a frame on

error probability, we sent fixed-size frames with randomized
payloads between all nodes in our testbed. Afterwards, we
looked at the first bit in each frame and counted the number
of times the bit arrived flipped. We did this for every bit in
the frame. Therefore, Figure 3 shows the probability of each
bit to break in the packet. Within each octet of bits, the
least significant bit is plotted first and the most significant
bit last.

Two results are apparent here: First, the beginning of
the packet shows a much less regular pattern than the rest.
This is because the first 96 bits contain the MAC header.
Even when the payload is randomized, most fields in the
header will stay fixed for every packet that is sent out and
are therefore not randomized. We will discuss the striking
irregularities in this area in a more general sense in Sec-
tion 4.1.4 when we analyze the influence of content on the
error rate. The fact that in the very beginning of the mes-
sage, some bits do not show any errors at all is an artifact of
our processing and the way the radio chip saves the received
data in memory. The first field of the message contains the
frame length (cf. Figure 2). If the length field is broken,
the message can end up truncated in the node’s memory,
and some parts of the data structure holding it may contain
uninitialized values from previous messages. Therefore, if
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Figure 3: Influence of position on errors from 137570
erroneous frame receptions of randomized payloads.
BER neither increases nor diminishes towards the
end of the message.

the length field varied from the actual length by more than
a couple of bytes and the frame was truncated, we discarded
it during processing.

Second, within the payload, there is no sloping pattern
that would indicate a tendency for later bits to break more
or less often. While bit position has an influence on a small
scale (which we will discuss in the next section), the bit error
probability is roughly the same for bit 128 and bit 512.

4.1.2 Influence of Coding
Figure 3 already shows a noticeable variation in BER be-

tween adjacent bits. A magnified excerpt is shown in Fig-
ure 4. This sawtooth-like pattern has a period of 4 bits and
repeats over the full length of the frame. We assume that
this pattern is due to the coding of the message on the phys-
ical layer. The TelosB nodes used in our setup employ an
802.15.4 PHY [7] implementation. That means that each
frame is encoded and spread via DSSS with specified chip-
ping sequences. Each byte is split into two symbols of 4 bits
each, by splitting the byte in half. Each 4-bit symbol is then
mapped to a 32-bit chip sequence, which is then modulated
with O-QPSK. Remember that, for our figures, we ordered
the bits in each byte by increasing significance. That means
that bit 384 is the least significant bit (LSB) and bit 391
the most significant bit (MSB) of byte 48. This conserves
the PHY layer’s order of putting information on the channel:
later bytes are sent after earlier bytes, and within a byte, the
four lower-significance bits are encoded and sent out before
the higher-significance bits. The figure therefore shows that
each 4-bit-group’s MSB is significantly less likely to break
than the others.

The 32-bit chip sequences used by 802.15.4 were designed
to produce high Hamming distances to each other, so that
even if some of the chip bits are flipped during transmission,
the original symbol can be reconstructed. Figure 5 shows
a graphical representation of the Hamming distances from
each symbol’s chip sequence to every other. (The minimum
Hamming distance between two 32-bit chips is 12, and the
maximum is 20. The diagonal line marks fields that are left
empty because they have the same “from” and “to” fields.)
This makes it easy to see that the chips follow a relatively
regular pattern. High Hamming distances between symbols
should mean that a mutation between them should be less
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Figure 5: Hamming distances from every 4-bit sym-
bol to every other symbol after coding them into
32-bit chips.

likely than with lower distances.1 Interestingly, our mea-
surements do not match this reasoning: Since the MSB was
more robust in our measurements, we would expect the top
right and bottom left quadrants of Figure 5 to show higher
Hamming distances. In fact, the opposite is true: these ar-
eas tend to show below-average distances.

4.1.3 Burstiness of Errors
While it is generally accepted knowledge that bit errors

are not independently distributed within frames, there is
little insight into any actual interdependence. From our ex-
periments, we analyzed the burstiness of errors, that is, how
likely a burst of length n (exactly n errors in sequence) is,
compared to single-bit errors.

For this, we chose from our experiments those links be-
tween nodes that had seen at least 1000 erroneous messages.
This left us with 213 links (of 380, because each of our 20
nodes could receive data from every other node). We then
counted the number of occurrences of n-bursts for each con-

1This assumes an independent distribution of errors. While
this is not generally true for transmissions (and also not in
our case, cf. Section 4.1.3), we can assume this in this special
case, since we are looking at average bit flip probabilities
over many frames and long periods.
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Figure 6: Burstiness of errors. From our exper-
iments, we took 213 links that had at least 1000
erroneous frames each. For each, we counted how
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normalized the number to the amount of single bit
errors. The error bars denote 99% confidence inter-
vals. Bursts longer than 10 bits occurred so rarely
that the numbers are not reliable. The line on
the left denotes the expected relative occurrence of
bursts if errors were independently distributed.

nection, and then normalized the results by dividing each
number by the number of 1-bursts (single bit errors) for
that connection. That way, for each connection, a value of
0.5 for a burst of length n would denote that this n-burst
occurred half as often as single bit errors, regardless of the
actual number of errors in frames for that link.

Figure 6 shows the results from those 213 links. Error
bars denote 99% confidence intervals. For lucidity, the data
points are connected by a dashed line. The solid black
line on the left side of the graph denotes the expected re-
sults if errors were independently distributed. For this, we
counted the number of bit errors over all messages, calcu-
lated the average BER in those messages, and then calcu-
lated probability of a burst of length n occurring by comput-
ing BERn(1−BER), that is, the probability that n bits are
erroneous and the following bit correct. There are several
conclusions to draw from these results. (Note that bursts
longer than 10 bits occurred so rarely that it is not possible
to draw substantiated conclusions from them.)

First, the relative occurrences of n-bursts are remarkably
stable. Even though the average BER varied by a factor
of 25 between the highest- and lowest-BER link (0.07% vs.
1.8%), the results were so similar that even 99% confidence
intervals are hardly visible for smaller n. Second, bit er-
rors indeed are not independently distributed within frames.
Bursts occur more often than they should if errors were in-
dependently distributed.

Third, there is a noticeable drop between 4-bursts and
5-bursts. This is the border between bursts that can be
confined to one symbol, and bursts that spread more than
one symbol. (Note that bursts of lengths 2 to 4 can also
spread two symbols, but do not have to.) This makes sense
considering the coding, because to corrupt bits in two sym-
bols, a much higher number of chip bits has to be corrupted
(a minimum of 7 in each symbol, to overcome the minimum
Hamming distance of 12 between two symbols). If that is
true, there should be a similar drop between 8-bursts and
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Figure 7: Influence of content on errors from 200390
erroneous frame receptions of static payloads. Some
symbols are more likely to break than others.

9-bursts. From our data, it is hard to draw conclusions in
that area, however, because those already occur very rarely.

Fourth, 4-bursts occur much more rarely than 3-bursts.
Even relatively speaking, the difference between those two
is much higher than between 2-bursts and 3-bursts. This
matches our results from Section 4.1.2. Since every 4-bit
symbol contains one bit that breaks significantly less often,
this bit can act as a “burst breaker” that ends a burst at
length 3.

4.1.4 Influence of Content
During our experiments, we not only transmitted random

payload data, but also investigated bit patterns, to analyze
whether the content of a message has influence on the error
distribution. In one example that we present here, we sent
messages of 64 bytes payload, with a fixed pattern consist-
ing of the hexadecimal values 0x0000, 0x1111, 0x2222, . . . ,
0xFFFF; this means that each symbol was repeated 4 times
before switching to the next one. This produces 32 bytes, so
the overall pattern was repeated once more. This fixed pat-
tern was broadcast over and over from each node, and every
reception by another node was recorded. The results and
effects shown in the following could also be seen in experi-
ments with other patterns; we experimented with a number
of patterns, and only present one setup here for brevity, and
because it forms a representative example.

The difference between the various 4-bit symbols is very
noticeable. Symbols with a most significant bit (MSB) of
1 tend to break more often than those with an MSB of 0.
These results came as a surprise to us. We cannot explain
such an imbalance from the coding. Since the coding tries to
spread the Hamming distances as evenly as possible between
symbols, the differences should be much less pronounced,
and not skewed towards high-value (MSB=1) symbols.

This effect is even larger than the difference between bits
within symbols: The coding effect, while still very notice-
able, does not conceal the differences. Especially the jump
between bit pattern 0x7777 and 0x8888 is so striking that
the bit most likely to break in the first pattern is still more
robust than the bit least likely to break in the second pat-
tern. Figure 8 shows a magnified excerpt of Figure 7. There
are clear differences between the error probabilities, depend-
ing on which symbol is transmitted. Each symbol forms a
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Figure 9: Frequency with which a symbol mutates
(decodes into another symbol) due to errors. Low-
value symbols (0-7) have a much smaller probability
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ing to their overall higher stability.

characteristic error pattern that is clearly different from the
other symbols.

The fact that coding still shines through, but is in part
masked by content when it comes to effect on error proba-
bility, can be seen in Figure 9. For this figure, we took all
results from all nodes in all experiments, and looked at how
often each symbol broke and mutated into another symbol.
The color pattern was chosen to match Figure 5: low Ham-
ming distances (darker in Figure 5) should, in theory, result
in higher error rates (darker in Figure 9). Therefore, if cod-
ing were the major influence, the pattern should look similar
to Figure 5.

However, there is no apparent correlation. In fact, the
only noticeable correlation is a negative one: a single bit flip
of the MSB is quite unlikely (which matches our results from
Section 4.1.2), as can be seen by the light diagonal lines from
(8, 0) to (15, 7) and from (0, 8) to (7, 15). These, however,
are mutations between symbols that have a comparatively
low Hamming distance to each other.

The most noticeable effect in Figure 9 is probably the
lower values in the bottom left quadrant. This means that
it is relatively unlikely for low-value symbols (0–7) to mutate
into high-value symbols (8–15). This is the main contributor
to the result shown in Figure 8: low-value symbols are more
stable than high-value symbols.

5. DISCUSSION
In this section, we first want to compare our results to

those of [4], the most in-depth analysis of bit error distribu-
tions within frames available in the literature.

With respect to position within a frame, the authors no-
ticed what they called a “sloping pattern” that led to a
steady increase in BERs towards the end of the packet.
While we did not see this effect in our setup, this might sim-
ply be due to the length of the frames. WLAN frames tend
to be much larger than low-power wireless frames, which
are allowed by the standard to have a maximum size of 127
bytes. In fact, the frames Han et al. analyzed had sizes of
more than 1000 bytes. In several setups, their sloping pat-
tern did not start until after our frames would have already
ended.

They also noted the effect that coding and modulation
have on repeating patterns in the error distribution. While
their work focuses mostly on OFDM, they present also some
results for DSSS. The sawtooth pattern was witnessed by
them, too, in both modulation systems. We agree with them
that this strong correlation to coding parameters suggests an
interaction between coding and bit error distribution.

With regard to content, the authors do not provide any
results, since they used a simple all-zeroes payload for the
bulk of their experiments. Our results are indeed puzzling
to us. When we first noticed this influence of content on
error probability in a small setup, we suspected a hardware
error, or a mere coincidence. However, we saw these ef-
fects in all our test runs. The effects were the same in our
outdoor testbed, which contains TelosB nodes from several
different production runs. As such, we can rule out coin-
cidence, setup-specific effects, and hardware issues that are
specific to manufacturing.

At this point in time, we cannot provide any satisfying
or substantiated explanation. We tried to rule out all ef-
fects that would be due to special circumstances of our node
deployment. One possibility that we cannot exclude is that



the radio chip used on the TelosB nodes simply produces less
robust wireless output for some input symbols, for example
during modulation. Even if this should be the case, we still
consider our results important, due to the widespread use of
the CC2420 radio chip in real systems. These deployments
should then all experience this behavior.

Even though we cannot give certain answers to why these
effects occur, the identification alone can give some sugges-
tions for further work exploiting those characteristics. For
example, in cases where only few different values have to
be saved in data fields of larger size (e.g., a deployment
with just 2 or 3 message types that are encoded in the 8-
bit AM type header field), it makes sense to choose values
that will be encoded into more stable symbols. In the case
of error-tolerant payloads (i.e., messages are not discarded
because it is hoped the content can still be of use, even if
partially erroneous), content should be saved into the mes-
sage in ways such that the most likely mutations lead to the
least distortion in the received results. Moreover, the iden-
tified mutation patters could serve as basis for refined link
models, significantly improving the adherence of low-power
wireless simulation to real-world behavior.

Finally, knowing these characteristics and the different ro-
bustness of symbols, it might be possible to create an addi-
tional “coding” that translates high-BER symbols into low-
BER symbols. Of course, this coding would introduce ad-
ditional messaging overhead (which leads to higher energy
consumption for larger frames, and an increased frame error
rate), so the tradeoff between these two will require scrutiny
and case-by-case consideration of advantages and disadvan-
tages.

6. CONCLUSION
In this paper, we presented results from our study of bit er-

ror distributions within erroneous frames for 802.15.4-based
low-power networks. Our analysis makes three effects mani-
fest: errors are not evenly distributed, but show bursty ten-
dencies; within each 4-bit symbol that is coded together for
transmission, the most significant bit (MSB) is remarkably
less likely to break; some symbols are more stable than oth-
ers, with low-value (MSB=0) symbols in general being more
stable than high-value (MSB=1) symbols.

While we cannot provide satisfying explanations for some
of these effects, we discussed possible contributors. Fur-
thermore, we consider these results important and relevant,
since they give insight into the actual distribution of errors,
and could be used to improve the robustness of data ex-
change in low-power wireless networks. In addition, these
results can be used to create more accurate error models for
network simulations. In the future, we plan to investigate
additional hardware platforms and deployment scenarios to
gather more insight into the generality of our results. We
will then explore several possibilities to exploit the acquired
knowledge in novel coding schemes.
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