
Aachen
.

Department of Computer Science
Technical Report

Support for Error Tolerance in the
Real-Time Transport Protocol

Florian Schmidt, David Orlea, Klaus Wehrle

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2013-19
.
RWTH Aachen · Department of Computer Science · December 2013

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Support for Error Tolerance in the Real-Time
Transport Protocol∗

Florian Schmidt, David Orlea, Klaus Wehrle

Communication and Distributed Systems Group
RWTH Aachen University, Germany

Email: {schmidt,wehrle}@comsys.rwth-aachen.de, david.orlea@rwth-aachen.de

Abstract. Streaming applications often tolerate bit errors in their received data
well. This is contrasted by the enforcement of correctness of the packet headers
and payload by network protocols. We investigate a solution for the Real-time
Transport Protocol (RTP) that is tolerant to errors by accepting erroneous data.
It passes potentially corrupted stream data payloads to the codecs. If errors occur
in the header, our solution recovers from these by leveraging the known state and
expected header values for each stream. The solution is fully receiver-based and
incrementally deployable, and as such requires neither support from the sender
nor changes to the RTP specification. Evaluations show that our header error
recovery scheme can recover from almost all errors, with virtually no erroneous
recoveries, up to bit error rates of about 10%.

1 Introduction

Wireless communication is playing an ever-increasing role in Internet connectiv-
ity. The ubiquity of notebooks, tablets, and smartphones leads to increasingly
common use of at least one wireless hop for Internet communication, typically
on the very last stretch from the user to an access point or base station. One
of the fundamental problems of wireless communication is the inherently higher
unreliability of the link compared to wired communication, which leads to a
higher bit error rate. This high bit error rate, in turn, requires large numbers
of retransmissions of data, as required by protocol standards that were defined
with wired link characteristics in mind and require full packet retransmission if
even a single bit error occurs.

At the same time, Internet traffic has seen composition shifts that lead to
high volumes of video and audio traffic being transmitted. Many of these codecs
are in principle error-tolerant, being able to correct or at least mask errors.
However, especially for live streaming and bidirectional communication, they
require high timeliness of data to reduce harmful delay. For this class of traffic,
partially erroneous packets arriving in time are helpful, while correct packets
that arrive too late (potentially due to packet discards and retransmissions)
are practically useless. Therefore, providing those streaming applications with
partially erroneous data is beneficial to their overall performance [2].

It therefore stands to reason to allow applications that send and receive
error-tolerant traffic to employ techniques that introduce error tolerance concepts
into the standard Internet communication. Previous solutions, most prominently
UDP-Lite [7], introduced error tolerance for a single protocol. Their focus is

∗ This technical report is an extended version of the conference paper A Heuristic Header
Error Recovery Scheme for RTP [14] presented at IEEE/IFIP WONS 2013.

typically on allowing payload error tolerance, that is, they allow errors in the
payload by using checksums to secure packet headers only. For large payload
sizes, for example, in video streaming, this works well because headers only form
a small part of each packet. Conversely, for communication such as Voice over
IP (VoIP), packets are typically small, and the headers are, in relation, large,
sometimes larger than the payload. In such situations, employing a payload-only
error tolerance is limited in its effectiveness.

We therefore focus on how to introduce tolerance also to header errors. We
accept erroneous packets, even if the errors are within the header area, and
heuristically repair these errors to identify the correct stream of data the packet
belongs to. In previous work [13], we have shown that an approach that we termed
Refector (from Latin: repairer, mender) is feasible for UDP and IP, and that it
can significantly reduce packet loss. However, for many of our main application
scenarios, UDP and IP alone are often not enough. Many streaming applica-
tions, first and foremost VoIP, employ the application-layer Real-time Transport
Protocol (RTP) [16] for timestamping, sequencing, and payload format layout.

The main contribution of this report is a heuristic header error recovery
scheme designed for RTP that enables error-tolerant media codecs to receive
packet payloads even if there are errors in the RTP header. We identify which
stream a packet belongs to by looking at the header values expected for the next
packet in each stream, and then repair the header contents to those expected ones.
This way, we can repair errors for static parts of the header as well as dynamic
parts that change from packet to packet. Our system only needs to be deployed on
the receiving side of a stream, does neither require any support from the sender
nor change RTP’s behavior, and as such is easily and incrementally deployable.
Recovery works well even at very high bit error rates up to 10%, recovering most
packets and almost never recovering incorrectly. Our main envisioned application
scenario is VoIP and audio conferencing, in which due to small payload sizes,
header recovery will produce the highest relative gains over payload-only error
tolerance solutions such as UDP-Lite, and in which many codecs support bit error
tolerance. However, the basic concept should also be applicable other scenarios
that use RTP.

The rest of this report is structured as follows. We discuss the design of
our system, as well as the concept of heuristic header recovery, in Section 2. In
Section 3, we briefly describe our prototype implementation. Evaluation results
are presented in Section 4. We discuss related work in Section 5 before concluding
in Section 6.

2 System Design

In the following, we will first explain the concept of heuristic header recovery.
We will then give a short introduction into RTP, before we discuss the details of
the recovery process for this protocol.

2.1 Heuristic Header Error Recovery

Our heuristic error tolerance scheme leverages the fact that at any given time,
a protocol implementation has expectations about the contents of headers of

received messages. For example, RTP encapsulates media data into one or several
so-called streams, each of which is assigned an identifier (the synchronization
source identifier, SSRC). For every received packet, RTP requires the packet’s
header contents to match values expected for one of the streams. If it cannot
match the packet to any of them, the standard behavior is to discard it.

To heuristically repair header errors, as a first step, we do not outright discard
packets as erroneous that contain unexpected header values. Instead, we try
to match a packet to the stream whose expected header values most closely
match the received values. As a similarity metric, we employ Hamming distances.
Hamming distances have several advantages: they are easy and computationally
inexpensive to calculate, their similarity metric is independent of the position of
the bit error in a string, and since bit errors are bit flips, they map to the amount
of bit errors in a string very well. A simple example is given in Figure 1.

1! 0! 0! 1! 0! 0! 1! 1! …!…IN!

A!

B!

RTP streams!

1! 0! 0! 0! 1! 0! …!…

1! 0! 0! 0! 1! 1! …!…

1!1!

0!1!

RTP session!

Fig. 1. A simple example of heuristic matching via Hamming distances. An incoming packet
that contains errors is matched against two existing RTP streams. In this example, stream B is
chosen because of the lower Hamming distance of 2 (as opposed to stream A with a Hamming
distance of 4).

For the sake of clarity, only a small header excerpt is shown, and the re-
mainder is assumed to match both streams perfectly. In this case, the Hamming
distance of the incoming packet is 2 to the expected values for the next packet
of stream B and 4 to the expected values of stream A. Therefore, the packet is
assumed to belong to stream B, and assigned to it.

Because this matching strategy depends on heuristics, it can happen that
it decides wrongly. If a packet was corrupted in a way that makes it resemble
a different stream’s headers more closely than its own, it will be assigned to
the wrong stream. This problem of misattribution is inherent to the system.
Since our solution focuses on error-tolerant media codecs, assigning data to the
wrong stream is not immediately fatal (it will rather appear to such a codec as
if it received a highly corrupted piece of payload); it is, however, undesirable,
because the correct stream loses data, while another stream will have to cope
with unrelated data. Our main goal is therefore to maximize correct identification
of endpoints, while reducing misattribution to very rare occurrences.

As the last step of the recovery process, the packet headers can then be
repaired by replacing header values with those expected by the stream the packet
was assigned to. This is not strictly necessary, but generally advisable, because it
will allow standard, unchanged protocol routines to process the packet properly.

2.2 The Real-time Transport Protocol

The Real-Time Transport Protocol (RTP) is used for a wide range of audio and
video streaming and conferencing scenarios. For example, many VoIP solutions
combine RTP as the streaming protocol with session protocols such as SIP [12]
into a telephony system.

RTP is used in combination with a so-called profile that defines what media
codecs can be used, and how they are encoded. It can even, to a certain extent,
modify the size and existence of header fields. For this work, we will focus on the
widespread profile that was standardized as baseline [15] together with RTP it-
self. In this scenario, a telephony, conference, or other streaming setup comprises
one or more RTP sessions. For example, a videoconference system is expected to
use two sessions concurrently, one for video and one for audio, so that the two
media types are separated from each other.

Each session comprises one or more streams that identify logical units of
data that belong together. For example, each stream applies sequence numbers
to packets that belong to it independently of other streams within the same
session. To identify streams within a session, each stream uses a synchroniza-
tion source identifier (SSRC) as unique originator ID. Subsidiary contributors
to a stream can be identified via contributing source identifiers (CSRC). The
difference between SSRC and CSRC is not a technical, but a logical one. Several
cameras that show a scene might be considered different sources, such that each
camera’s stream uses its own SSRC. A combined stream that uses some data
from these cameras, on the other hand, might use its own SSRC and denote
which camera the currently-sent data originated from by using that camera’s
CSRC.

Different RTP sessions are typically managed by different underlying protocol
connections and will use different transport-layer ports. This means that “cross-
talk” between sessions can be ignored for the purposes of RTP error tolerance.1

Since packets of different sessions arrive on different ports, they will be easily
distinguishable from each other. In fact, an RTP library implementation will
typically not even be aware of other sessions going on at the same time, because
it will be independently instantiated once for each session.

The main focus of this report, our heuristic repair technique, therefore only
has to address identifying streams correctly within a sessions, not sessions within
a complete RTP setup.

2.3 Header Field Categorization

To support our header recovery scheme, we categorized the fields of the RTP
header into three classes:

Static fields are fields that are not expected to change in the lifetime of a
stream. They are either the same for all RTP packets (for example, the version
field), or different, but immutable, for each stream (for example, the SSRC).
These fields are trivial to repair, because we know their possible value for each
ongoing stream at any given point in time, and simply need to calculate the

1 Identification of the correct receiver port, even under errors, is a different problem outside of
the scope of this report; however, it has been shown [13] that such identification is feasible.

Hamming distance of the received header values to the static values of each
stream.

Predictably dynamic fields change from packet to packet within a stream, but
allow for prediction. For example, a sequence number will predictably increase
with every sent packet. To repair these fields, we need to learn their behavior to
predict the possible values. For the sequence number, this is easy, because it will
be incremented by 1 with every packet. Hence, to match a received value to a
stream, we need to match it against the next expected sequence number.

Unpredictably dynamic fields change from packet to packet within a stream,
and do so on an irregular basis. These fields cannot be predicted, and therefore,
errors in those fields are unrecoverable. Note that this does not lead to outright
drops of the packet, but rather to potentially incorrect values in those fields.

In the following, we will classify each of the RTP header fields into one of those
categories. Figure 2 gives an overview over the RTP header and an understanding
of the proportions with which the three categories contribute to the header. For
those fields where it is applicable, we will explain the used recovery techniques.
(The techniques for fields that chiefly contribute to stream identification will
instead be explained in Section 2.4.)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

V P X CC M PT sequence number

timestamp

synchronization source (SSRC) identifier

contributing source (CSRC) identifiers

...

Fig. 2. A Real-time Transport Protocol header, with fields classified as static (white), pre-
dictably dynamic (light gray), and unpredictably dynamic (dark gray). Most fields are recover-
able with our header recovery scheme; only seven bits are classified as unrecoverable, and even
those are recoverable in many standard situations.

Version (V): The version field contains a static identifier of the RTP version.
Since up to now, there only exists one version, this field is always statically set
to 2. During repair, this field can therefore be set to this value and disregarded
otherwise.

Padding (P): This field signals whether the packet is padded after the pay-
load. Additional information, such as how much padding exists, is expected to
be written into the padding itself. We categorized this field as unpredictably
dynamic, because padding may change from packet to packet in case of a combi-
nation of dynamic data rates and fixed block sizes expected by the media codec.
However, this combination would be rather exotic, and we deem that for most
practical cases, this field will either be always 0 (either because the payload size
is fixed and immutable, or because the media codec knows how to deal with
varying payload sizes), or a fixed value for all frames.

Extension (X): If this field is set to 1, the RTP header is followed by an exten-
sion header that contains additional information as defined by a common sender
and receiver profile. Because choosing how and when to use extension headers is

not defined by the standard, we categorized this field as unpredictable. It should,
however, be noted that the standard itself discourages the use of extension head-
ers, and no currently defined official profile for RTP [15] makes use of them.
Therefore, for most practical cases, this field could be assumed to be a static 0.

CSRC count (CC): This field indicates the number of contributing source
identifiers (CSRCs) that follow the SSRC in the RTP header. If CSRCs are
heavily used by the sender in numbers differing from packet to packet, this field
is unpredictably dynamic. That said, in a large number of RTP application sce-
narios, such as one-to-one VoIP or audioconferencing, CSRCs are of little use. In
these cases, each potential speaker would be identified by their own SSRC. This
is underlined by the fact support for CSRCs in many libraries and applications
is rudimentary or non-existent, such as in linphone [8] and the oRTP library [11]
that we use for our experiments. In these cases, this field can assumed to be 0
and therefore trivially be repaired.

Marker (M): This bit is used to mark, in the words of the RTP standard [16]
“significant events”. Which events are considered significant is up to the RTP
profile that is used. It can denote such diverse events as the beginning of a
talkspurt (first packet to contain actual voice data after a comfort noise pause)
or the last packet of a series of packets containing one video frame, if the data
does not fit into a single packet. Because of this diversity and dependency on the
used profile, we categorized this field as unpredictable.

payload type (PT): The payload type signals the format of the payload for
use by the media codec. This only specifies the baseline codec, not specifics such
as current bit rate. As such, while it can be changed within the lifetime of a
session, this is a rare occurrence. For corrupted packets, we can therefore safely
assume that the payload type is the same as seen in the last correctly received
packet, effectively making it a static field.

sequence number : The sequence number increases by 1 for every packet of a
stream that is sent and is therefore predictably dynamic. This is one of the fields
that contributes to stream identification in a corrupted packet.

timestamp: The timestamp indicates the point in time at which the recording
of the payload contained in the RTP packet was started. In audio situations such
as VoIP and conferencing, this, as noted by the RFC, is expected to increase
monotonously and regularly, as the RTP packet creation happens at regular
intervals. In these situations, timestamp and sequence number form a tightly
coupled progression in that for every incrementation of the sequence number,
the timestamp is increased by a static value, making it predictably dynamic.
This field also chiefly contributes to our way of stream identification.

synchronization source identifier (SSRC): As explained in Section 2.2, SSRCs
identify streams within a session. Because they are the identifier of a stream in
RTP, they are static for each stream. Together with the previous two fields, this
forms the base of our identification for corrupted packets.

contributing source identifier(s) (CSRC(s)): Also explained in Section 2.2,
CSRCs identify different contributors to a stream. These identifiers could give
additional help in identifying streams. This, however, depends on the correct
reception of the CC field, because otherwise, CSRC headers that are part of the
RTP header would be passed on to the application codec, or conversely, parts of
the payload would be identified as CSRC. As discussed for the CC field, due to

the rarity of their use in main use cases of VoIP and audioconferencing, we can
often safely assume that none are present in the received packets.

2.4 RTP Stream Identification in Corrupted Packets

Generally speaking, every protocol that implements a form of multiplexing via
header information needs to keep, for each communication end-point, information
about the expected values in headers for each of these end-points. In UDP, these
are ports, while in RTP, this job is done by the SSRCs.

In the case of a corrupted packet that is received by the RTP protocol library,
the most straightforward solution therefore is to check whether the SSRCmatches
one of the already ongoing connections. If none of them matches perfectly, finding
the closest match via Hamming distance might be the next step. Still, in a case
where the SSRC is strongly corrupted, this would be problematic. However, it
is possible to improve the matching by taking into account more fields for the
overall matching decision.

Since each stream in RTP uses its own progression of sequence numbers and
timestamps, these can be included into the overall decision. To facilitate this,
we learn additional state information from every correctly received packet to
support us in the identification of corrupted packets. The logical flow of packets
through our learner–predictor setup is shown in Figure 3.

..DB.Learner . Predictor.

Incoming Packets

.

Main RTP routines

.store .
lookup

.

forward

.

repair

.

correct

.

corrupt

Fig. 3. Packet flow through the extended RTP library. Correct packets will be inspected by
the learner, their contents saved to a list indexed by SSRCs, and forwarded to the main RTP
processing routines. Corrupted packets will be passed to the predictor, matched against expected
header field values for ongoing streams, repaired to match the best stream, and afterwards
forwarded.

Whenever a correct packet is received, the learner saves the header contents
for future use. For each ongoing stream, it saves the last correctly received packet
in this fashion. Furthermore, it calculates the sampling rate, that is, the difference
between two consecutive (as identified by the sequence number) packets in their
timestamps. That way, whenever a corrupted packet is received, the second com-
ponent, the predictor, can match the header field contents by matching SSRCs,
the received sequence number against the recorded sequence number incremented
by 1, and the received timestamp by the recorded timestamp incremented by the
sampling rate. This means that a much larger area of the header can be com-
pared to expected values, and the finding of a best match via Hamming distances
becomes inherently more stable.

This will work well unless more than one corrupted packet is received in se-
quence. In that case, a simple incrementation by 1 resp. the sampling rate is not
effective, because any further packets will not have the chance to exactly match
this information. One solution to this would be to have the learner update the
information for use by the predictor with the header contents of the received cor-
rupted packets. This is risky, because the learner would save potentially broken
information for future use. Therefore, we instead save, for every stream, a bad
packet counter that tracks how many corrupted packets were assigned to that
stream since the last correct packet was received for it. We then use this value as
a multiplier to the increments for sequence number and timestamp. While com-
pletely lost packets or those misattributed to the wrong stream will still cause a
slight desynchronization between received and expected information, a number
of corrupted packets received in succession will not. Whenever the learner re-
ceives a correct packet for a stream, it is able to update all header information,
specifically the sequence number and timestamp, from that packet’s headers, and
therefore resets the bad packet counter.

2.5 User–Kernel interface

As explained in Section 2.4, our approach learns from correct packets to correctly
identify corrupted packets with errors in header fields. Because RTP does not
employ any checksumming, instead relying on error-detection by lower layers,
it is not able to reliably detect errors on its own. Furthermore, to even receive
erroneous packets in the first place, it will need to instruct the operating sys-
tem’s network stack to pass those to it. We therefore extend the standard socket
interface for user-space–kernel-space interaction in a similar way to [13].

In our Linux implementation, we extend the recvmsg system call that is
used to receive incoming packets and that also signals ancillary information with
an additional flag MSG HASERRORS that signals whether checksums at lower layers
failed. Note that this is a conservative check: any RTP packet that contains errors
will have checksum fails (barring extremely rare circumstances of undetectable
errors that are inherent in every checksumming system and not specific to our
system) reported. Conversely, if errors solely occurred in headers of lower layers,
the potential for errors in the RTP packet will be signaled when in fact, there
are no errors present. This means that we can always rely on the fact that the
learner will not learn from corrupted packets, and our per-stream information
(see Section 2.4) will be reliable.

To signal to the network stack that our RTP library is able to cope with
errors and interested in erroneous packets, we added an additional socket option
SO BROKENOK that can be set by an application for every socket. That way, the
network stack can still discard packets for legacy and error-sensitive applications
(for example, concurrent file transfers), making reception of erroneous packets
and opt-in choice.

Of course, to facilitate this reception of erroneous packets, changes have to
be made to the network stack’s error handling. For the scope of this report, we
abstract from this problem and assume that a solution such as [13] is in place.

3 Implementation

For this work and to evaluate our concepts, we implemented the learner–predictor
scheme for heuristic header error recovery into the oRTP [11] library (version
0.16.5), an open-source library that was easily adaptable for our purposes.

The implementation follows a minimally invasive approach that interferes
with the standard behavior of the RTP packet handling as little as possible. This
is advantageous for such tasks as statistics collection that can be used to inform
the sender about current reception conditions via RTCP [16] so it can potentially
decide on proper reactions to improve streaming quality.

Whenever a correct (error-free) packet is received, the learner takes the header
of the RTP packet and saves it to its list of current streams, indexed by SSRC,
so that for every stream, only the most recent header is saved. In addition, it
calculates the sampling rate between the just received and the last saved packet
by

tsthis − tslast
seqthis − seqlast

where ts and seq denote the values of the timestamp and the sequence number
fields, respectively.

Whenever a packet flagged as erroneous is received, the predictor matches
the received header to the possible expected headers of each current stream,
iterating over the list maintained by the learner. During this matching, each of
the expected headers will have their sequence number field increased by the bad
packet counter (see Section 2.4), and the timestamp by that value multiplied
with the sampling rate calculated by the learner.

Whenever the predictor has decided on which stream the packet most likely
belongs to, it will attempt header repair by copying the saved header from the
predictor’s list over the received header, updating the sequence number and time-
stamp value accordingly. This way, the subsequent RTP routines implemented in
the oRTP library do not have to be changed to introduce additional error han-
dling, since the header is now guaranteed to be coherent. Finally, it will increment
the bad packet counter of that stream.

The ease of this approach and the little need for in-depth changes in the
oRTP library suggest that similar changes in other RTP implementations should
be similarly easy and fast to implement.

4 Evaluation

Since the main advantage of our heuristic header error recovery scheme is that
erroneous packets can be delivered to a stream, our evaluation focuses on two
packet-delivery-related metrics: (1) How often can a packet be delivered to the
correct stream? And (2) how often does the heuristic approach misidentify the
stream the packet belongs to, and misattributes it to the wrong stream? To
answer these questions, we will present several setups that we evaluated. We will
start with a description of the evaluation setup before discussing results.

4.1 Experimental Setup

We implemented our heuristic header repair into the oRTP library, version 0.16.5,
and conducted our evaluation on a Ubuntu Linux 10.04.

To specifically evaluate the behavior of our heuristic header repair system
for RTP, we wanted to eliminate influences from the lower layers that can skew
our evaluation results. To ensure this, we exchanged the standard network socket
interface that the RTP library uses to open connections via the network stack
with Unix Domain Sockets. These allow data exchange between processes in
very similar way to network communication, without additional protocols being
used. In effect, the RTP packets could be exchanged between two instances of
the library running on the same machine, without changing the behavior of the
implementation.

To introduce errors into the RTP packets sent by the sender instance, we did
not connect the two instances directly. Instead, we created a packet destroyer,
whose sole job is to introduce bit errors into a data stream with a defined prob-
ability p. For each bit, it rolls a random number between 0 and 1, and flips the
bit if the number is lower than p. This, in effect, implements a Bernoulli process.
The evaluation setup is depicted in Figure 4.

..Sender. Destroyer. Receiver.
. .
. 0
10
11
00
1.
. .

.
. .
. 1
00
10
01
1.
. .

.

va
lid

RT
P
pa
ck
et

.
co
rr
up
t R
TP

pa
ck
et

Fig. 4. Overview over the experimental evaluation setup. The sender and receiver are two
instances of the RTP library. The receiver is enhanced with our heuristic header error recovery
techniques. The destroyer can be instructed to introduce various amounts of errors into the
RTP packet.

For each step in our evaluation, we investigated three scenarios that differed
in the number of concurrent streams in the RTP session. While a single-stream
session is arguably the most common use case for RTP, especially in the case of
VoIP telephony, this case is also not very interesting from an evaluation point of
view. In fact, in a single-stream scenario, since there is no risk of misattribution
to other concurrent streams, our repair technique will be able to correctly assign
every packet, regardless of error rate. To investigate the possible downsides and
limits of this approach, we therefore looked at scenarios with several concurrent
streams, namely two, three, and four concurrent streams. An experiment was
defined by the combination of the number of concurrent streams and the bit
error rate. The sender sent 10 000 packets for each stream in every experiment.
In each experiment, the first two packets were not corrupted in any way, to
populate the list of known SSRCs. This can be considered to model a use case
in which initial setup of an RTP connection was successful and link quality
started to suffer afterwards. Experiments were repeated 10 times for every data
point unless otherwise noted. This is especially important since oRTP follows the
RFC advice and randomizes SSRCs, as well as initial timestamps and sequence
numbers, every time a stream is created. This influences the robustness of the
heuristics depending on how large the Hamming distances between values of

different streams are. Error bars in graphs denote 95% confidence intervals. In
some cases (Figures 8 and 9), error bars were not plotted to preserve lucidity.

4.2 Misattribution

As a first step, we ran our experiments for two, three, and four concurrent streams
in an RTP session. In this setup, every packet was assigned to the stream it most
likely belonged to. That is, the (potentially erroneous) header was assigned to
the stream whose expected header values it had the lowest Hamming distance
to. Every packet was assigned to some stream, without discarding any packets.
The main downside of this is that it is possible for a header to be corrupted in
a way that it more closely resembles another stream’s header on the receiver’s
side. In this case, the packet will be misattributed.

 0

 0.1

 0.2

 0.3

 0.4

 0 0.1 0.2 0.3 0.4

M
is

at
tri

bu
tio

n
R

at
e

Bit Error Rate

2 streams
3 streams
4 streams

Fig. 5. Misattribution rates for two, three, and four concurrent streams with no cutoff (i.e., the
best match is always taken, even if its Hamming distance is large; packets are never dropped).
For each bit error rate (increments of 0.001 from 0 to 0.5), the mean and 95% confidence
intervals are shown. Even at a bit error rate of 20%, we witnessed virtually no misattributions.

The results from this experiment are shown in Figure 5. As expected, this
risk increases with high bit error rates and the number of concurrent streams.
High bit error rates lead to more corruption in the header; as an extreme case,
at 50% BER, a header can be expected to be a random bit sequence without
any resemblance to its original contents. High bit error rates therefore make it
harder to recover and assign the packet to the correct stream. As the number
of concurrent streams in an RTP session increases, on average the Hamming
distances between between streams will decrease, making it harder to distinguish
them. To correctly recover and assign the packet, its header values must be closer
to the expected header values of the correct stream than those of any other
stream.

One important finding to point out here is that our heuristic error recovery
scheme does produce almost no misattributions until the BER is in excess of
20%. For comparison, BERs of more than 0.1% can lead to a packet drop rate
of almost 100% in standard systems, and even if data reaches the media codec,
most voice codecs will start showing noticeable degradation at that BER [10].

4.3 Field Errors

Misattribution is only one type of error that can occur in heuristic recovery. The
other type occurs if packets are not only assigned to a stream, but also repaired
to the values that this stream expects in the next packet’s header. In this case,
fields can be wrongly repaired. The occurrences of these field errors are shown
in Figure 6.

 0

 0.1

 0.2

 0.3

 0.4

 0 0.1 0.2 0.3 0.4

Fi
el

d
Er

ro
r R

at
e

Bit Error Rate

2 streams
3 streams
4 streams

Fig. 6. Errors in header fields due to incorrect repairing. The high variance is due to error
propagation that leads to incorrect repair of header fields in a large number of packets after a
single misattribution, especially at high BERs.

The high error rates and very large uncertainties denoted by the confidence
intervals originate in the fact that field errors are prone to error propagation.
As an example, consider two concurrent streams A and B that expect as next
sequence number sA and sB, respectively. If packet n belongs to stream A, but
is misattributed to B, its sequence number will be incorrectly repaired to sB. In
addition, packet n+ 1 will now also suffer from incorrect repair of the sequence
number, regardless of whether it belongs to stream A or B, and even if it is
assigned correctly. If it belongs to A, it contained sA + 1, which will be repaired
to sA. If it belongs to B, it contained sB, which will be repaired to sB + 1. This
shift by 1 will continue until the stream “resynchronizes” after the reception of
and learning from a correct packet. At high bit error rates, almost every packet
will be corrupted, so that it can take a long time until this error is corrected.

Two facts are of note here: (1) The field error rate overestimates the impact
that such an error has. In the sequence number case, while a large number of them
might be incorrect, they are simply shifted by a fixed number. Interruptions in the
regular pattern only occur at the time of misattribution and resynchronization.
This is the only point in time playback would be negatively affected by this
problem. (2) Because these errors are a secondary effect of misattributions, they
do not occur at BERs below 10%. Again, this is much higher than the typically
tolerable BER for media transmissions.

4.4 Reduction of Misattribution

As shown in the last two sections, our heuristic header error recovery can be ex-
pected to work exceedingly well in most situations, correctly assigning all packets
to their corresponding streams and producing no incorrect repair. One notice-
able exception to this rule is that in cases such as short-term interference, the
RTP header could experience a much higher BER than the surrounding areas
(lower-level protocols and payload). In this case, RTP packets could be received
without problems by the RTP library, and the payload could still be useful for
the media codec, but the high header BER can lead to misattributions.

We therefore investigated when misattributions tended to happen. As a self-
imposed limitation, we only used information that was available to the RTP
library itself, so that our findings could then be used to improve the performance
of our implementation. One information that is available, after comparing the
received header to the expected header values of all streams, is the Hamming
distance to the best match. Low Hamming distances mean a very close match,
while high distances mean only rough resemblance. That means that the proba-
bility that a misattribution occurs should be higher whenever a high Hamming
distance to the closest match is observed (because it is relatively unlikely that
random bit errors corrupt a header in such a way that it then happens to exactly
match another stream’s expected header).

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 20 40 60

nu
m

be
r o

f m
is

at
tri

bu
tio

ns
 in

 d
at

as
et

Hamming distance of best match

2 streams
3 streams
4 streams

Fig. 7. Misattribution occurs due to high bit error rates. A side effect of high BERs is that even
the best match often shows a high Hamming distance to its expected header values. Hamming
distance can therefore be used as an estimator for risk of misattribution. At low Hamming
distances, no misattribution occurs. Extremely high Hamming distances are uncommon because
it is more likely another match with lower distance exists instead.

The results of this investigation are shown in Figure 7. Indeed, misattributions
are virtually nonexistent at Hamming distances of less than 20. For comparison
and reference, a minimum RTP header without any CSRC fields has 12 bytes,
that is, 96 bits. 20 bits therefore translates into more than 20% BER, which
is consistent with our results from Figure 5, in which we witnessed almost no
misattributions until that BER. Note that Figure 7 shows the absolute number

of misattribution in our experiments, which is why the misattribution number
decreases again at high Hamming distances since these are less likely to occur.

 0

 0.001

 0.002

 0 0.1 0.2 0.3 0.4 0.5

M
is

at
tri

bu
tio

n
R

at
e

Bit Error Rate

24
22
20
18

Fig. 8. Misattribution rate in a 4-stream scenario for different Hamming distance cutoffs. By
setting a a cutoff and discarding all packets whose best match has a higher distance, misattri-
bution can be reduced dramatically. Even at a cutoff value of 24 (one quarter of the 96 bits of
the standard RTP header), misattribution stays below 0.2%, regardless of BER, and becomes
exceedingly rare at stricter cutoffs.

Considering this result, we then decided to change our implementation by
having it drop all packets that show a high Hamming distance to the best match.
The goal is to reduce misattributions at high BERs, instead dropping those
suspicious packets. Figure 8 shows misattribution rates for four different Ham-
ming distance cutoffs in a 4-stream scenario. We focus on the 4-stream scenario
here because it showed the highest misattribution rate in our initial experiments
(cf. Figure 5). The results show that this cutoff is very effective in reducing mis-
attributions. Even at the more lenient cutoff of 24, misattributions are reduced
by almost two orders of a magnitude; cutoffs of 20 and, even more so, 18 almost
completely eliminate misattribution.

However, as pointed out above, this improvement comes at a cost: as a trade-
off, we will now drop packets with high Hamming distances to their best match,
even if they would have been assigned to the correct stream. We therefore again
evaluated the 4-stream scenario for the four chosen cutoff rates, this time inves-
tigating the average packet drop rate at different BERs.

Figure 9 shows that we indeed considerably increased the drop rate compared
to the misattribution rate of Figure 5. For the strictest cutoff value of 18, drops
start to occur at about 4% BER, and reach 10% drop rate at 10% BER. The less
strict cutoff of 20 only has a a drop rate of about 1% at 10% BER, and the most
lenient cutoff of 24 rarely drops any packets until the BER is in excess of 15%.

Judging from these results, we suggest to set the cutoff to 20 bits as a good
tradeoff between prevention of both misattribution and packet drops. This should
effectively prevent most misattributions in most situations (single-digit number
of concurrent streams, independently of bit error rate), while still only regularly
dropping packets when the BER reaches excessively high values above 10%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

D
ro

p
R

at
e

Bit Error Rate

24
22
20
18

Fig. 9. Drop rate in a 4-stream scenario for different Hamming distance cutoffs. When using
cutoffs, misattribution rate is reduced, but packets are outright dropped instead. However, even
at a strict cutoff rate that prevents virtually all misattribution (see Figure 8), drop rates stay
minimal until BER is in excess of 5%.

5 Related work

While the concept itself of heuristically recovering from header errors is relatively
unique, related work can be roughly separated into two fields: those that try to
optimize the reception and retransmission of data (typically residing on the PHY
and MAC layer), and those that ignore errors in the payload of data packets.

Considering the first group, one solution proposed is to improve ARQ (auto-
matic repeat request, i.e., (N)ACK-based mechanisms with retransmissions) by
partitioning packets and calculating and sending partial checksums instead of a
checksum that covers the whole packet. Maranello [3] uses this idea so that the
receiver can identify the corrupt blocks and selectively request retransmissions
of those. By using rich data from the physical layer, PPR [4] uses so-called soft
information, that is, additional information from the signal demodulation and
decoding unit about the probability that a bit is 1 or 0, to recognize erroneous
parts in packets and selectively retransmit those parts. The same kind of rich
information is used to reconstruct a correct packet from several receptions, either
due to spatial diversity, or from retransmissions of the same packet. Examples
include SOFT [17] (spatial diversity), ZigZag [1] (retransmissions), and MRD [9]
(both). All of these approaches either require deployment on all participating
nodes to be effective, or special hardware that allows access to physical layer soft
information, or both.

The second group, using checksums with partial checksums to only secure
headers or parts of the payload, is most prominently represented by UDP-Lite [7],
an RFC-standardized protocol derived from UDP by redefining the “length”
header field as “checksum coverage”. While the protocol is easily implemented,
and, once available, the switch to UDP-Lite from a UDP-based application is
simple, there are several drawbacks. Both sides need to be able to understand
UDP-Lite, as it is, in effect, a new transport layer protocol. This also means that
application developers have to rely on the operating system to provide the proto-
col, since they cannot provide it themselves. UDP-Liter [6] solves these problems

by providing a way for applications to receive packets with UDP checksum er-
rors. It ignores checksum mismatches and passes the payload to the application.
However, UDP-Liter does not provide mechanisms to recover from header bit
errors. Packets with errors in the UDP header are lost, as are all packets with
errors on lower layers because UDP-Liter focuses solely on UDP.

With respect to heuristic recovery, Jiang [5] and Schmidt et al. [13] proposed
solutions to heuristically recover from header bit errors. Both of these chiefly
rely on Hamming distances as similarity metric to some pool of expected values.
Jiang [5] focuses on header recovery for some static fields in the 802.11 MAC
header, such as MAC addresses, as opposed to sequence number fields, which are
not considered. Schmidt et al. [13] aim at recovering headers in the IP and UDP
protocol. Again, the focus is on the static fields that form the bulk of information
in those protocol headers. One difference is that we propose a simple but effective
way to deal with dynamic header fields that follow regular patterns, such as the
RTP sequence number and timestamp field.

6 Conclusion

In this report, we presented a heuristic header error recovery scheme for RTP
that allows identifying the stream a packet belongs to even if errors in header
fields occurred and repairing those fields. We showed that our scheme is robust
up to bit error rates of 10%, very rarely assigning packets to wrong streams or
repairing incorrectly, while still keeping packet drop rates low. This holds true
even more at more modest BERs that are realistically tolerable by media codecs.

One main field of future work is to make the statically defined Hamming
cutoffs described in Section 4.4 dynamic, adapting to both the number of con-
current streams and the Hamming distance in SSRC, timestamp, and sequence
number of those streams. That way, the tradeoff between reducing misattribu-
tion and increasing drop rate can be further optimized. Another idea would be
to loosen the requirement to have a fully receiver-based solution. If the sender
is also adapted for heuristic header error recovery, it can choose, for concurrent
streams, SSRCs and initial values for timestamps and sequence numbers that
maximize the Hamming distance, increasing robustness.

Overall, we consider the work presented in this report a feasible, simple, and
effective approach to support an error-tolerant application in the reception of
partially erroneous data.

Acknowledgments

This research was funded in part by the DFG Cluster of Excellence on Ultra
High-Speed Mobile Information and Communication (UMIC).

References

1. S. Gollakota and D. Katabi. Zigzag decoding: combating hidden terminals in wireless
networks. In Proceedings of the 36th ACM SIGCOMM Conference, SIGCOMM ’08, pages
159–170, New York, NY, USA, Aug. 2008. ACM.

2. F. Hammer, P. Reichl, T. Nordström, and G. Kubin. Corrupted Speech Data Considered
Useful: Improving Perceived Speech Quality of VoIP over Error-Prone Channels. Acta
acustica, 90(6):1052–1060, Dec. 2004.

3. B. Han, A. Schulman, F. Gringoli, N. Spring, B. Bhattacharjee, L. Nava, L. Ji, S. Lee, and
R. Miller. Maranello: practical partial packet recovery for 802.11. In Proceedings of the
Seventh USENIX conference on Networked systems design and implementation, NSDI ’10,
pages 14–14, Berkeley, CA, USA, Apr. 2010. USENIX Association.

4. K. Jamieson and H. Balakrishnan. PPR: partial packet recovery for wireless networks. In
Proceedings of the 35th ACM SIGCOMM Conference, SIGCOMM ’07, pages 409–420, New
York, NY, USA, Aug. 2007. ACM.

5. W. Jiang. Bit Error Correction without Redundant Data: a MAC Layer Technique for
802.11 Networks. In Proceedings of the 4th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks, WiOPT’06, pages 1–8. IEEE,
Apr. 2006.

6. P. P.-k. Lam and S. C. Liew. UDP-Liter: an improved UDP protocol for real-time multi-
media applications over wireless links. In Proceedings of the 1st International Symposium
on Wireless Communication Systems, pages 314–318. IEEE, Sept. 2004.

7. L.-Å. Larzon, M. Degermark, S. Pink, E. L.-E. Jonsson, and E. G. Fairhurst. The lightweight
user datagram protocol (UDP-Lite). RFC 3828, Internet Engineering Task Force, July 2004.

8. Linphone, an open-source VoIP software. [Online] Available http://www.linphone.org,
April 13, 2013.

9. A. Miu, H. Balakrishnan, and C. E. Koksal. Improving loss resilience with multi-radio
diversity in wireless networks. In Proceedings of the 11th annual international conference
on Mobile computing and networking, MobiCom’05, pages 16–30, New York, NY, USA,
Aug. 2005. ACM.

10. S. Nguyen, C. Okino, L. Clare, and W. Walsh. Space-Based Voice over IP Networks. In
Proceedings of the 28th IEEE Aerospace Conference, pages 1–11. IEEE, Mar. 2007.

11. oRTP, A Real-Time Transport Protocol (RTP, RFC3550) library. [Online] Available http:
//linphone.org/eng/documentation/dev/ortp.html April 13, 2013.

12. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. R. Johnston, J. Peterson, R. Sparks, M. Han-
dley, and E. M. Schooler. SIP: session initiation protocol. RFC 3261, Internet Engineering
Task Force, June 2002.

13. F. Schmidt, M. H. Alizai, I. Aktaş, and K. Wehrle. Refector: heuristic header error recovery
for error-tolerant transmissions. In Proceedings of the Seventh COnference on emerging
Networking EXperiments and Technologies, CoNEXT ’11, pages 22:1–22:12, New York,
NY, USA, Dec. 2011. ACM.

14. F. Schmidt, D. Orlea, and K. Wehrle. A Heuristic Header Error Recovery Scheme for
RTP. In Proceedings of the 10th Annual IEEE/IFIP Conference on Wireless On-Demand
Network Systems and Services, WONS ’13, Mar. 2013.

15. H. Schulzrinne and S. Casner. RTP profile for audio and video conferences with minimal
control. RFC 3551, Internet Engineering Task Force, July 2003.

16. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: a transport protocol for
Real-Time applications. RFC 3550, Internet Engineering Task Force, July 2003.

17. G. R. Woo, P. Kheradpour, D. Shen, and D. Katabi. Beyond the bits: cooperative packet
recovery using physical layer information. In Proceedings of the 13th Annual ACM Inter-
national Conference on Mobile Computing and Networking, MobiCom ’07, pages 147–158,
New York, NY, USA, Sept. 2007. ACM.

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years.

A complete list of reports dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2010-01 ∗ Fachgruppe Informatik: Jahresbericht 2010

2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time

2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering

2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme

2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme

2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-

tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:

Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of

Tolerance and Cocomparability Graphs

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-

brenik, René Thiemann: Automated Termination Analysis for Logic Pro-

grams with Cut

2010-11 Martin Zimmermann: Parametric LTL Games

2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut

2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems

2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination

2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode

2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles

2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten

2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und

Sicherheit

2010-19 Felix Reidl: Experimental Evaluation of an Independent Set Algorithm

2010-20 Wladimir Fridman, Christof Löding, Martin Zimmermann: Degrees of

Lookahead in Context-free Infinite Games

2011-01 ∗ Fachgruppe Informatik: Jahresbericht 2011

2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-06 Johannes Lotz, Klaus Leppkes, and Uwe Naumann: dco/c++ - Deriva-

tive Code by Overloading in C++

2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational

Semantics for Activity Diagrams using SMV

2011-08 Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl,

Carsten Fuhs: A Linear Operational Semantics for Termination and

Complexity Analysis of ISO Prolog

2011-09 Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-

tors): Fifth SIAM Workshop on Combinatorial Scientific Computing

2011-10 Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-

joint Subgradient Calculation for McCormick Relaxations

2011-11 Nils Jansen, Erika brahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter

Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time

Markov Chains

2011-12 Ingo Felscher, Wolfgang Thomas: On Compositional Failure Detection

in Structured Transition Systems

2011-13 Michael Förster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP

2011-14 Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller

Games via Safety Games

2011-16 Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM

2011-17 Carsten Fuhs: SAT Encodings: From Constraint-Based Termination

Analysis to Circuit Synthesis

2011-18 Kamal Barakat: Introducing Timers to pi-Calculus

2011-19 Marc Brockschmidt, Thomas Ströder, Carsten Otto, Jürgen Giesl: Au-

tomated Detection of Non-Termination and NullPointerExceptions for

Java Bytecode

2011-24 Callum Corbett, Uwe Naumann, Alexander Mitsos: Demonstration of a

Branch-and-Bound Algorithm for Global Optimization using McCormick

Relaxations

2011-25 Callum Corbett, Michael Maier, Markus Beckers, Uwe Naumann, Amin

Ghobeity, Alexander Mitsos: Compiler-Generated Subgradient Code for

McCormick Relaxations

2011-26 Hongfei Fu: The Complexity of Deciding a Behavioural Pseudometric on

Probabilistic Automata

2012-01 Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems

2012-04 Marcus Gelderie: Strategy Machines and their Complexity

2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter Schneider-Kamp,

and Carsten Fuhs: Automated Complexity Analysis for Prolog by Term

Rewriting

2012-06 Marc Brockschmidt, Richard Musiol, Carsten Otto, Jürgen Giesl: Auto-

mated Termination Proofs for Java Programs with Cyclic Data

2012-07 André Egners, Björn Marschollek, and Ulrike Meyer: Hackers in Your

Pocket: A Survey of Smartphone Security Across Platforms

2012-08 Hongfei Fu: Computing Game Metrics on Markov Decision Processes

2012-09 Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.

Neuhäußer: Quantitative Timed Analysis of Interactive Markov Chains

2012-10 Uwe Naumann and Johannes Lotz: Algorithmic Differentiation of Nu-

merical Methods: Tangent-Linear and Adjoint Direct Solvers for Systems

of Linear Equations

2012-12 Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes,

and Carsten Fuhs: Symbolic Evaluation Graphs and Term Rewriting —

A General Methodology for Analyzing Logic Programs

2012-15 Uwe Naumann, Johannes Lotz, Klaus Leppkes, and Markus Towara:

Algorithmic Differentiation of Numerical Methods: Tangent-Linear and

Adjoint Solvers for Systems of Nonlinear Equations

2012-16 Georg Neugebauer and Ulrike Meyer: SMC-MuSe: A Framework for Se-

cure Multi-Party Computation on MultiSets

2012-17 Viet Yen Nguyen: Trustworthy Spacecraft Design Using Formal Methods

2013-01 ∗ Fachgruppe Informatik: Annual Report 2013

2013-02 Michael Reke: Modellbasierte Entwicklung automobiler Steuerungssys-

teme in Klein- und mittelständischen Unternehmen

2013-03 Markus Towara and Uwe Naumann: A Discrete Adjoint Model for Open-

FOAM

2013-04 Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes Lotz, and

Klaus Leppkes: Algorithmic Differentiation of a Complex C++ Code

with Underlying Libraries

2013-05 Andreas Rausch and Marc Sihling: Software & Systems Engineering Es-

sentials 2013

2013-06 Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better termination

proving through cooperation

2013-07 André Stollenwerk: Ein modellbasiertes Sicherheitskonzept für die ex-

trakorporale Lungenunterstützung

2013-08 Sebastian Junges, Ulrich Loup, Florian Corzilius and Erika brahám: On

Gröbner Bases in the Context of Satisfiability-Modulo-Theories Solving

over the Real Numbers

2013-10 Joost-Pieter Katoen, Thomas Noll, Thomas Santen, Dirk Seifert, and

Hao Wu: Performance Analysis of Computing Servers using Stochastic

Petri Nets and Markov Automata

2013-12 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and

Jürgen Giesl: Alternating Runtime and Size Complexity Analysis of In-

teger Programs

2013-13 Michael Eggert, Roger Häußling, Martin Henze, Lars Hermerschmidt,

René Hummen, Daniel Kerpen, Antonio Navarro Pérez, Bernhard

Rumpe, Dirk Thißen, and Klaus Wehrle: SensorCloud: Towards the In-

terdisciplinary Development of a Trustworthy Platform for Globally In-

terconnected Sensors and Actuators

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

